forked from OSchip/llvm-project
557 lines
23 KiB
C++
557 lines
23 KiB
C++
//===- UnwindInfoSection.cpp ----------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "UnwindInfoSection.h"
|
|
#include "ConcatOutputSection.h"
|
|
#include "Config.h"
|
|
#include "InputSection.h"
|
|
#include "OutputSection.h"
|
|
#include "OutputSegment.h"
|
|
#include "SymbolTable.h"
|
|
#include "Symbols.h"
|
|
#include "SyntheticSections.h"
|
|
#include "Target.h"
|
|
|
|
#include "lld/Common/ErrorHandler.h"
|
|
#include "lld/Common/Memory.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/BinaryFormat/MachO.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::MachO;
|
|
using namespace lld;
|
|
using namespace lld::macho;
|
|
|
|
#define COMMON_ENCODINGS_MAX 127
|
|
#define COMPACT_ENCODINGS_MAX 256
|
|
|
|
#define SECOND_LEVEL_PAGE_BYTES 4096
|
|
#define SECOND_LEVEL_PAGE_WORDS (SECOND_LEVEL_PAGE_BYTES / sizeof(uint32_t))
|
|
#define REGULAR_SECOND_LEVEL_ENTRIES_MAX \
|
|
((SECOND_LEVEL_PAGE_BYTES - \
|
|
sizeof(unwind_info_regular_second_level_page_header)) / \
|
|
sizeof(unwind_info_regular_second_level_entry))
|
|
#define COMPRESSED_SECOND_LEVEL_ENTRIES_MAX \
|
|
((SECOND_LEVEL_PAGE_BYTES - \
|
|
sizeof(unwind_info_compressed_second_level_page_header)) / \
|
|
sizeof(uint32_t))
|
|
|
|
#define COMPRESSED_ENTRY_FUNC_OFFSET_BITS 24
|
|
#define COMPRESSED_ENTRY_FUNC_OFFSET_MASK \
|
|
UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(~0)
|
|
|
|
// Compact Unwind format is a Mach-O evolution of DWARF Unwind that
|
|
// optimizes space and exception-time lookup. Most DWARF unwind
|
|
// entries can be replaced with Compact Unwind entries, but the ones
|
|
// that cannot are retained in DWARF form.
|
|
//
|
|
// This comment will address macro-level organization of the pre-link
|
|
// and post-link compact unwind tables. For micro-level organization
|
|
// pertaining to the bitfield layout of the 32-bit compact unwind
|
|
// entries, see libunwind/include/mach-o/compact_unwind_encoding.h
|
|
//
|
|
// Important clarifying factoids:
|
|
//
|
|
// * __LD,__compact_unwind is the compact unwind format for compiler
|
|
// output and linker input. It is never a final output. It could be
|
|
// an intermediate output with the `-r` option which retains relocs.
|
|
//
|
|
// * __TEXT,__unwind_info is the compact unwind format for final
|
|
// linker output. It is never an input.
|
|
//
|
|
// * __TEXT,__eh_frame is the DWARF format for both linker input and output.
|
|
//
|
|
// * __TEXT,__unwind_info entries are divided into 4 KiB pages (2nd
|
|
// level) by ascending address, and the pages are referenced by an
|
|
// index (1st level) in the section header.
|
|
//
|
|
// * Following the headers in __TEXT,__unwind_info, the bulk of the
|
|
// section contains a vector of compact unwind entries
|
|
// `{functionOffset, encoding}` sorted by ascending `functionOffset`.
|
|
// Adjacent entries with the same encoding can be folded to great
|
|
// advantage, achieving a 3-order-of-magnitude reduction in the
|
|
// number of entries.
|
|
//
|
|
// * The __TEXT,__unwind_info format can accommodate up to 127 unique
|
|
// encodings for the space-efficient compressed format. In practice,
|
|
// fewer than a dozen unique encodings are used by C++ programs of
|
|
// all sizes. Therefore, we don't even bother implementing the regular
|
|
// non-compressed format. Time will tell if anyone in the field ever
|
|
// overflows the 127-encodings limit.
|
|
//
|
|
// Refer to the definition of unwind_info_section_header in
|
|
// compact_unwind_encoding.h for an overview of the format we are encoding
|
|
// here.
|
|
|
|
// TODO(gkm): prune __eh_frame entries superseded by __unwind_info, PR50410
|
|
// TODO(gkm): how do we align the 2nd-level pages?
|
|
|
|
using EncodingMap = llvm::DenseMap<compact_unwind_encoding_t, size_t>;
|
|
|
|
struct SecondLevelPage {
|
|
uint32_t kind;
|
|
size_t entryIndex;
|
|
size_t entryCount;
|
|
size_t byteCount;
|
|
std::vector<compact_unwind_encoding_t> localEncodings;
|
|
EncodingMap localEncodingIndexes;
|
|
};
|
|
|
|
template <class Ptr> class UnwindInfoSectionImpl : public UnwindInfoSection {
|
|
public:
|
|
void prepareRelocations(InputSection *) override;
|
|
void finalize() override;
|
|
void writeTo(uint8_t *buf) const override;
|
|
|
|
private:
|
|
std::vector<std::pair<compact_unwind_encoding_t, size_t>> commonEncodings;
|
|
EncodingMap commonEncodingIndexes;
|
|
// Indices of personality functions within the GOT.
|
|
std::vector<uint32_t> personalities;
|
|
SmallDenseMap<std::pair<InputSection *, uint64_t /* addend */>, Symbol *>
|
|
personalityTable;
|
|
std::vector<unwind_info_section_header_lsda_index_entry> lsdaEntries;
|
|
// Map of function offset (from the image base) to an index within the LSDA
|
|
// array.
|
|
llvm::DenseMap<uint32_t, uint32_t> functionToLsdaIndex;
|
|
std::vector<CompactUnwindEntry<Ptr>> cuVector;
|
|
std::vector<CompactUnwindEntry<Ptr> *> cuPtrVector;
|
|
std::vector<SecondLevelPage> secondLevelPages;
|
|
uint64_t level2PagesOffset = 0;
|
|
};
|
|
|
|
// Compact unwind relocations have different semantics, so we handle them in a
|
|
// separate code path from regular relocations. First, we do not wish to add
|
|
// rebase opcodes for __LD,__compact_unwind, because that section doesn't
|
|
// actually end up in the final binary. Second, personality pointers always
|
|
// reside in the GOT and must be treated specially.
|
|
template <class Ptr>
|
|
void UnwindInfoSectionImpl<Ptr>::prepareRelocations(InputSection *isec) {
|
|
assert(isec->segname == segment_names::ld &&
|
|
isec->name == section_names::compactUnwind);
|
|
assert(!isec->shouldOmitFromOutput() &&
|
|
"__compact_unwind section should not be omitted");
|
|
|
|
// FIXME: This could skip relocations for CompactUnwindEntries that
|
|
// point to dead-stripped functions. That might save some amount of
|
|
// work. But since there are usually just few personality functions
|
|
// that are referenced from many places, at least some of them likely
|
|
// live, it wouldn't reduce number of got entries.
|
|
for (Reloc &r : isec->relocs) {
|
|
assert(target->hasAttr(r.type, RelocAttrBits::UNSIGNED));
|
|
if (r.offset % sizeof(CompactUnwindEntry<Ptr>) !=
|
|
offsetof(CompactUnwindEntry<Ptr>, personality))
|
|
continue;
|
|
|
|
if (auto *s = r.referent.dyn_cast<Symbol *>()) {
|
|
if (auto *undefined = dyn_cast<Undefined>(s)) {
|
|
treatUndefinedSymbol(*undefined);
|
|
// treatUndefinedSymbol() can replace s with a DylibSymbol; re-check.
|
|
if (isa<Undefined>(s))
|
|
continue;
|
|
}
|
|
if (auto *defined = dyn_cast<Defined>(s)) {
|
|
// Check if we have created a synthetic symbol at the same address.
|
|
Symbol *&personality =
|
|
personalityTable[{defined->isec, defined->value}];
|
|
if (personality == nullptr) {
|
|
personality = defined;
|
|
in.got->addEntry(defined);
|
|
} else if (personality != defined) {
|
|
r.referent = personality;
|
|
}
|
|
continue;
|
|
}
|
|
assert(isa<DylibSymbol>(s));
|
|
in.got->addEntry(s);
|
|
continue;
|
|
}
|
|
|
|
if (auto *referentIsec = r.referent.dyn_cast<InputSection *>()) {
|
|
assert(!referentIsec->isCoalescedWeak());
|
|
|
|
// Personality functions can be referenced via section relocations
|
|
// if they live in the same object file. Create placeholder synthetic
|
|
// symbols for them in the GOT.
|
|
Symbol *&s = personalityTable[{referentIsec, r.addend}];
|
|
if (s == nullptr) {
|
|
// This runs after dead stripping, so the noDeadStrip argument does not
|
|
// matter.
|
|
s = make<Defined>("<internal>", /*file=*/nullptr, referentIsec,
|
|
r.addend, /*size=*/0, /*isWeakDef=*/false,
|
|
/*isExternal=*/false, /*isPrivateExtern=*/false,
|
|
/*isThumb=*/false, /*isReferencedDynamically=*/false,
|
|
/*noDeadStrip=*/false);
|
|
in.got->addEntry(s);
|
|
}
|
|
r.referent = s;
|
|
r.addend = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Unwind info lives in __DATA, and finalization of __TEXT will occur before
|
|
// finalization of __DATA. Moreover, the finalization of unwind info depends on
|
|
// the exact addresses that it references. So it is safe for compact unwind to
|
|
// reference addresses in __TEXT, but not addresses in any other segment.
|
|
static void checkTextSegment(InputSection *isec) {
|
|
if (isec->segname != segment_names::text)
|
|
error("compact unwind references address in " + toString(isec) +
|
|
" which is not in segment __TEXT");
|
|
}
|
|
|
|
// We need to apply the relocations to the pre-link compact unwind section
|
|
// before converting it to post-link form. There should only be absolute
|
|
// relocations here: since we are not emitting the pre-link CU section, there
|
|
// is no source address to make a relative location meaningful.
|
|
template <class Ptr>
|
|
static void
|
|
relocateCompactUnwind(ConcatOutputSection *compactUnwindSection,
|
|
std::vector<CompactUnwindEntry<Ptr>> &cuVector) {
|
|
for (const ConcatInputSection *isec : compactUnwindSection->inputs) {
|
|
assert(isec->parent == compactUnwindSection);
|
|
|
|
uint8_t *buf =
|
|
reinterpret_cast<uint8_t *>(cuVector.data()) + isec->outSecFileOff;
|
|
memcpy(buf, isec->data.data(), isec->data.size());
|
|
|
|
for (const Reloc &r : isec->relocs) {
|
|
uint64_t referentVA = 0;
|
|
if (auto *referentSym = r.referent.dyn_cast<Symbol *>()) {
|
|
if (!isa<Undefined>(referentSym)) {
|
|
assert(referentSym->isInGot());
|
|
if (auto *defined = dyn_cast<Defined>(referentSym))
|
|
checkTextSegment(defined->isec);
|
|
// At this point in the link, we may not yet know the final address of
|
|
// the GOT, so we just encode the index. We make it a 1-based index so
|
|
// that we can distinguish the null pointer case.
|
|
referentVA = referentSym->gotIndex + 1;
|
|
}
|
|
} else if (auto *referentIsec = r.referent.dyn_cast<InputSection *>()) {
|
|
checkTextSegment(referentIsec);
|
|
if (referentIsec->shouldOmitFromOutput())
|
|
referentVA = UINT64_MAX; // Tombstone value
|
|
else
|
|
referentVA = referentIsec->getVA(r.addend);
|
|
}
|
|
|
|
writeAddress(buf + r.offset, referentVA, r.length);
|
|
}
|
|
}
|
|
}
|
|
|
|
// There should only be a handful of unique personality pointers, so we can
|
|
// encode them as 2-bit indices into a small array.
|
|
template <class Ptr>
|
|
void encodePersonalities(
|
|
const std::vector<CompactUnwindEntry<Ptr> *> &cuPtrVector,
|
|
std::vector<uint32_t> &personalities) {
|
|
for (CompactUnwindEntry<Ptr> *cu : cuPtrVector) {
|
|
if (cu->personality == 0)
|
|
continue;
|
|
// Linear search is fast enough for a small array.
|
|
auto it = find(personalities, cu->personality);
|
|
uint32_t personalityIndex; // 1-based index
|
|
if (it != personalities.end()) {
|
|
personalityIndex = std::distance(personalities.begin(), it) + 1;
|
|
} else {
|
|
personalities.push_back(cu->personality);
|
|
personalityIndex = personalities.size();
|
|
}
|
|
cu->encoding |=
|
|
personalityIndex << countTrailingZeros(
|
|
static_cast<compact_unwind_encoding_t>(UNWIND_PERSONALITY_MASK));
|
|
}
|
|
if (personalities.size() > 3)
|
|
error("too many personalities (" + std::to_string(personalities.size()) +
|
|
") for compact unwind to encode");
|
|
}
|
|
|
|
// Scan the __LD,__compact_unwind entries and compute the space needs of
|
|
// __TEXT,__unwind_info and __TEXT,__eh_frame
|
|
template <class Ptr> void UnwindInfoSectionImpl<Ptr>::finalize() {
|
|
if (compactUnwindSection == nullptr)
|
|
return;
|
|
|
|
// At this point, the address space for __TEXT,__text has been
|
|
// assigned, so we can relocate the __LD,__compact_unwind entries
|
|
// into a temporary buffer. Relocation is necessary in order to sort
|
|
// the CU entries by function address. Sorting is necessary so that
|
|
// we can fold adjacent CU entries with identical
|
|
// encoding+personality+lsda. Folding is necessary because it reduces
|
|
// the number of CU entries by as much as 3 orders of magnitude!
|
|
compactUnwindSection->finalize();
|
|
assert(compactUnwindSection->getSize() % sizeof(CompactUnwindEntry<Ptr>) ==
|
|
0);
|
|
size_t cuCount =
|
|
compactUnwindSection->getSize() / sizeof(CompactUnwindEntry<Ptr>);
|
|
cuVector.resize(cuCount);
|
|
relocateCompactUnwind(compactUnwindSection, cuVector);
|
|
|
|
// Rather than sort & fold the 32-byte entries directly, we create a
|
|
// vector of pointers to entries and sort & fold that instead.
|
|
cuPtrVector.reserve(cuCount);
|
|
for (CompactUnwindEntry<Ptr> &cuEntry : cuVector)
|
|
cuPtrVector.emplace_back(&cuEntry);
|
|
llvm::sort(cuPtrVector, [](const CompactUnwindEntry<Ptr> *a,
|
|
const CompactUnwindEntry<Ptr> *b) {
|
|
return a->functionAddress < b->functionAddress;
|
|
});
|
|
|
|
// Dead-stripped functions get a functionAddress of UINT64_MAX in
|
|
// relocateCompactUnwind(). Filter them out here.
|
|
// FIXME: This doesn't yet collect associated data like LSDAs kept
|
|
// alive only by a now-removed CompactUnwindEntry or other comdat-like
|
|
// data (`kindNoneGroupSubordinate*` in ld64).
|
|
CompactUnwindEntry<Ptr> tombstone;
|
|
tombstone.functionAddress = static_cast<Ptr>(UINT64_MAX);
|
|
cuPtrVector.erase(
|
|
std::lower_bound(cuPtrVector.begin(), cuPtrVector.end(), &tombstone,
|
|
[](const CompactUnwindEntry<Ptr> *a,
|
|
const CompactUnwindEntry<Ptr> *b) {
|
|
return a->functionAddress < b->functionAddress;
|
|
}),
|
|
cuPtrVector.end());
|
|
|
|
// Fold adjacent entries with matching encoding+personality+lsda
|
|
// We use three iterators on the same cuPtrVector to fold in-situ:
|
|
// (1) `foldBegin` is the first of a potential sequence of matching entries
|
|
// (2) `foldEnd` is the first non-matching entry after `foldBegin`.
|
|
// The semi-open interval [ foldBegin .. foldEnd ) contains a range
|
|
// entries that can be folded into a single entry and written to ...
|
|
// (3) `foldWrite`
|
|
auto foldWrite = cuPtrVector.begin();
|
|
for (auto foldBegin = cuPtrVector.begin(); foldBegin < cuPtrVector.end();) {
|
|
auto foldEnd = foldBegin;
|
|
while (++foldEnd < cuPtrVector.end() &&
|
|
(*foldBegin)->encoding == (*foldEnd)->encoding &&
|
|
(*foldBegin)->personality == (*foldEnd)->personality &&
|
|
(*foldBegin)->lsda == (*foldEnd)->lsda)
|
|
;
|
|
*foldWrite++ = *foldBegin;
|
|
foldBegin = foldEnd;
|
|
}
|
|
cuPtrVector.erase(foldWrite, cuPtrVector.end());
|
|
|
|
encodePersonalities(cuPtrVector, personalities);
|
|
|
|
// Count frequencies of the folded encodings
|
|
EncodingMap encodingFrequencies;
|
|
for (const CompactUnwindEntry<Ptr> *cuPtrEntry : cuPtrVector)
|
|
encodingFrequencies[cuPtrEntry->encoding]++;
|
|
|
|
// Make a vector of encodings, sorted by descending frequency
|
|
for (const auto &frequency : encodingFrequencies)
|
|
commonEncodings.emplace_back(frequency);
|
|
llvm::sort(commonEncodings,
|
|
[](const std::pair<compact_unwind_encoding_t, size_t> &a,
|
|
const std::pair<compact_unwind_encoding_t, size_t> &b) {
|
|
if (a.second == b.second)
|
|
// When frequencies match, secondarily sort on encoding
|
|
// to maintain parity with validate-unwind-info.py
|
|
return a.first > b.first;
|
|
return a.second > b.second;
|
|
});
|
|
|
|
// Truncate the vector to 127 elements.
|
|
// Common encoding indexes are limited to 0..126, while encoding
|
|
// indexes 127..255 are local to each second-level page
|
|
if (commonEncodings.size() > COMMON_ENCODINGS_MAX)
|
|
commonEncodings.resize(COMMON_ENCODINGS_MAX);
|
|
|
|
// Create a map from encoding to common-encoding-table index
|
|
for (size_t i = 0; i < commonEncodings.size(); i++)
|
|
commonEncodingIndexes[commonEncodings[i].first] = i;
|
|
|
|
// Split folded encodings into pages, where each page is limited by ...
|
|
// (a) 4 KiB capacity
|
|
// (b) 24-bit difference between first & final function address
|
|
// (c) 8-bit compact-encoding-table index,
|
|
// for which 0..126 references the global common-encodings table,
|
|
// and 127..255 references a local per-second-level-page table.
|
|
// First we try the compact format and determine how many entries fit.
|
|
// If more entries fit in the regular format, we use that.
|
|
for (size_t i = 0; i < cuPtrVector.size();) {
|
|
secondLevelPages.emplace_back();
|
|
SecondLevelPage &page = secondLevelPages.back();
|
|
page.entryIndex = i;
|
|
uintptr_t functionAddressMax =
|
|
cuPtrVector[i]->functionAddress + COMPRESSED_ENTRY_FUNC_OFFSET_MASK;
|
|
size_t n = commonEncodings.size();
|
|
size_t wordsRemaining =
|
|
SECOND_LEVEL_PAGE_WORDS -
|
|
sizeof(unwind_info_compressed_second_level_page_header) /
|
|
sizeof(uint32_t);
|
|
while (wordsRemaining >= 1 && i < cuPtrVector.size()) {
|
|
const CompactUnwindEntry<Ptr> *cuPtr = cuPtrVector[i];
|
|
if (cuPtr->functionAddress >= functionAddressMax) {
|
|
break;
|
|
} else if (commonEncodingIndexes.count(cuPtr->encoding) ||
|
|
page.localEncodingIndexes.count(cuPtr->encoding)) {
|
|
i++;
|
|
wordsRemaining--;
|
|
} else if (wordsRemaining >= 2 && n < COMPACT_ENCODINGS_MAX) {
|
|
page.localEncodings.emplace_back(cuPtr->encoding);
|
|
page.localEncodingIndexes[cuPtr->encoding] = n++;
|
|
i++;
|
|
wordsRemaining -= 2;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
page.entryCount = i - page.entryIndex;
|
|
|
|
// If this is not the final page, see if it's possible to fit more
|
|
// entries by using the regular format. This can happen when there
|
|
// are many unique encodings, and we we saturated the local
|
|
// encoding table early.
|
|
if (i < cuPtrVector.size() &&
|
|
page.entryCount < REGULAR_SECOND_LEVEL_ENTRIES_MAX) {
|
|
page.kind = UNWIND_SECOND_LEVEL_REGULAR;
|
|
page.entryCount = std::min(REGULAR_SECOND_LEVEL_ENTRIES_MAX,
|
|
cuPtrVector.size() - page.entryIndex);
|
|
i = page.entryIndex + page.entryCount;
|
|
} else {
|
|
page.kind = UNWIND_SECOND_LEVEL_COMPRESSED;
|
|
}
|
|
}
|
|
|
|
for (const CompactUnwindEntry<Ptr> *cu : cuPtrVector) {
|
|
uint32_t functionOffset = cu->functionAddress - in.header->addr;
|
|
functionToLsdaIndex[functionOffset] = lsdaEntries.size();
|
|
if (cu->lsda != 0)
|
|
lsdaEntries.push_back(
|
|
{functionOffset, static_cast<uint32_t>(cu->lsda - in.header->addr)});
|
|
}
|
|
|
|
// compute size of __TEXT,__unwind_info section
|
|
level2PagesOffset =
|
|
sizeof(unwind_info_section_header) +
|
|
commonEncodings.size() * sizeof(uint32_t) +
|
|
personalities.size() * sizeof(uint32_t) +
|
|
// The extra second-level-page entry is for the sentinel
|
|
(secondLevelPages.size() + 1) *
|
|
sizeof(unwind_info_section_header_index_entry) +
|
|
lsdaEntries.size() * sizeof(unwind_info_section_header_lsda_index_entry);
|
|
unwindInfoSize =
|
|
level2PagesOffset + secondLevelPages.size() * SECOND_LEVEL_PAGE_BYTES;
|
|
}
|
|
|
|
// All inputs are relocated and output addresses are known, so write!
|
|
|
|
template <class Ptr>
|
|
void UnwindInfoSectionImpl<Ptr>::writeTo(uint8_t *buf) const {
|
|
// section header
|
|
auto *uip = reinterpret_cast<unwind_info_section_header *>(buf);
|
|
uip->version = 1;
|
|
uip->commonEncodingsArraySectionOffset = sizeof(unwind_info_section_header);
|
|
uip->commonEncodingsArrayCount = commonEncodings.size();
|
|
uip->personalityArraySectionOffset =
|
|
uip->commonEncodingsArraySectionOffset +
|
|
(uip->commonEncodingsArrayCount * sizeof(uint32_t));
|
|
uip->personalityArrayCount = personalities.size();
|
|
uip->indexSectionOffset = uip->personalityArraySectionOffset +
|
|
(uip->personalityArrayCount * sizeof(uint32_t));
|
|
uip->indexCount = secondLevelPages.size() + 1;
|
|
|
|
// Common encodings
|
|
auto *i32p = reinterpret_cast<uint32_t *>(&uip[1]);
|
|
for (const auto &encoding : commonEncodings)
|
|
*i32p++ = encoding.first;
|
|
|
|
// Personalities
|
|
for (const uint32_t &personality : personalities)
|
|
*i32p++ =
|
|
in.got->addr + (personality - 1) * target->wordSize - in.header->addr;
|
|
|
|
// Level-1 index
|
|
uint32_t lsdaOffset =
|
|
uip->indexSectionOffset +
|
|
uip->indexCount * sizeof(unwind_info_section_header_index_entry);
|
|
uint64_t l2PagesOffset = level2PagesOffset;
|
|
auto *iep = reinterpret_cast<unwind_info_section_header_index_entry *>(i32p);
|
|
for (const SecondLevelPage &page : secondLevelPages) {
|
|
iep->functionOffset =
|
|
cuPtrVector[page.entryIndex]->functionAddress - in.header->addr;
|
|
iep->secondLevelPagesSectionOffset = l2PagesOffset;
|
|
iep->lsdaIndexArraySectionOffset =
|
|
lsdaOffset + functionToLsdaIndex.lookup(iep->functionOffset) *
|
|
sizeof(unwind_info_section_header_lsda_index_entry);
|
|
iep++;
|
|
l2PagesOffset += SECOND_LEVEL_PAGE_BYTES;
|
|
}
|
|
// Level-1 sentinel
|
|
const CompactUnwindEntry<Ptr> &cuEnd = cuVector.back();
|
|
iep->functionOffset = cuEnd.functionAddress + cuEnd.functionLength;
|
|
iep->secondLevelPagesSectionOffset = 0;
|
|
iep->lsdaIndexArraySectionOffset =
|
|
lsdaOffset +
|
|
lsdaEntries.size() * sizeof(unwind_info_section_header_lsda_index_entry);
|
|
iep++;
|
|
|
|
// LSDAs
|
|
size_t lsdaBytes =
|
|
lsdaEntries.size() * sizeof(unwind_info_section_header_lsda_index_entry);
|
|
if (lsdaBytes > 0)
|
|
memcpy(iep, lsdaEntries.data(), lsdaBytes);
|
|
|
|
// Level-2 pages
|
|
auto *pp = reinterpret_cast<uint32_t *>(reinterpret_cast<uint8_t *>(iep) +
|
|
lsdaBytes);
|
|
for (const SecondLevelPage &page : secondLevelPages) {
|
|
if (page.kind == UNWIND_SECOND_LEVEL_COMPRESSED) {
|
|
uintptr_t functionAddressBase =
|
|
cuPtrVector[page.entryIndex]->functionAddress;
|
|
auto *p2p =
|
|
reinterpret_cast<unwind_info_compressed_second_level_page_header *>(
|
|
pp);
|
|
p2p->kind = page.kind;
|
|
p2p->entryPageOffset =
|
|
sizeof(unwind_info_compressed_second_level_page_header);
|
|
p2p->entryCount = page.entryCount;
|
|
p2p->encodingsPageOffset =
|
|
p2p->entryPageOffset + p2p->entryCount * sizeof(uint32_t);
|
|
p2p->encodingsCount = page.localEncodings.size();
|
|
auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
|
|
for (size_t i = 0; i < page.entryCount; i++) {
|
|
const CompactUnwindEntry<Ptr> *cuep = cuPtrVector[page.entryIndex + i];
|
|
auto it = commonEncodingIndexes.find(cuep->encoding);
|
|
if (it == commonEncodingIndexes.end())
|
|
it = page.localEncodingIndexes.find(cuep->encoding);
|
|
*ep++ = (it->second << COMPRESSED_ENTRY_FUNC_OFFSET_BITS) |
|
|
(cuep->functionAddress - functionAddressBase);
|
|
}
|
|
if (page.localEncodings.size() != 0)
|
|
memcpy(ep, page.localEncodings.data(),
|
|
page.localEncodings.size() * sizeof(uint32_t));
|
|
} else {
|
|
auto *p2p =
|
|
reinterpret_cast<unwind_info_regular_second_level_page_header *>(pp);
|
|
p2p->kind = page.kind;
|
|
p2p->entryPageOffset =
|
|
sizeof(unwind_info_regular_second_level_page_header);
|
|
p2p->entryCount = page.entryCount;
|
|
auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
|
|
for (size_t i = 0; i < page.entryCount; i++) {
|
|
const CompactUnwindEntry<Ptr> *cuep = cuPtrVector[page.entryIndex + i];
|
|
*ep++ = cuep->functionAddress;
|
|
*ep++ = cuep->encoding;
|
|
}
|
|
}
|
|
pp += SECOND_LEVEL_PAGE_WORDS;
|
|
}
|
|
}
|
|
|
|
UnwindInfoSection *macho::makeUnwindInfoSection() {
|
|
if (target->wordSize == 8)
|
|
return make<UnwindInfoSectionImpl<uint64_t>>();
|
|
else
|
|
return make<UnwindInfoSectionImpl<uint32_t>>();
|
|
}
|