llvm-project/llvm/lib/CodeGen/AsmPrinter/DwarfCompileUnit.cpp

1245 lines
48 KiB
C++

//===- llvm/CodeGen/DwarfCompileUnit.cpp - Dwarf Compile Units ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for constructing a dwarf compile unit.
//
//===----------------------------------------------------------------------===//
#include "DwarfCompileUnit.h"
#include "AddressPool.h"
#include "DwarfDebug.h"
#include "DwarfExpression.h"
#include "DwarfUnit.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/DIE.h"
#include "llvm/CodeGen/LexicalScopes.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MachineLocation.h"
#include "llvm/Support/Casting.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <memory>
#include <string>
#include <utility>
using namespace llvm;
DwarfCompileUnit::DwarfCompileUnit(unsigned UID, const DICompileUnit *Node,
AsmPrinter *A, DwarfDebug *DW,
DwarfFile *DWU)
: DwarfUnit(dwarf::DW_TAG_compile_unit, Node, A, DW, DWU), UniqueID(UID) {
insertDIE(Node, &getUnitDie());
MacroLabelBegin = Asm->createTempSymbol("cu_macro_begin");
}
/// addLabelAddress - Add a dwarf label attribute data and value using
/// DW_FORM_addr or DW_FORM_GNU_addr_index.
void DwarfCompileUnit::addLabelAddress(DIE &Die, dwarf::Attribute Attribute,
const MCSymbol *Label) {
// Don't use the address pool in non-fission or in the skeleton unit itself.
// FIXME: Once GDB supports this, it's probably worthwhile using the address
// pool from the skeleton - maybe even in non-fission (possibly fewer
// relocations by sharing them in the pool, but we have other ideas about how
// to reduce the number of relocations as well/instead).
if ((!DD->useSplitDwarf() || !Skeleton) && DD->getDwarfVersion() < 5)
return addLocalLabelAddress(Die, Attribute, Label);
if (Label)
DD->addArangeLabel(SymbolCU(this, Label));
unsigned idx = DD->getAddressPool().getIndex(Label);
Die.addValue(DIEValueAllocator, Attribute,
DD->getDwarfVersion() >= 5 ? dwarf::DW_FORM_addrx
: dwarf::DW_FORM_GNU_addr_index,
DIEInteger(idx));
}
void DwarfCompileUnit::addLocalLabelAddress(DIE &Die,
dwarf::Attribute Attribute,
const MCSymbol *Label) {
if (Label)
DD->addArangeLabel(SymbolCU(this, Label));
if (Label)
Die.addValue(DIEValueAllocator, Attribute, dwarf::DW_FORM_addr,
DIELabel(Label));
else
Die.addValue(DIEValueAllocator, Attribute, dwarf::DW_FORM_addr,
DIEInteger(0));
}
unsigned DwarfCompileUnit::getOrCreateSourceID(const DIFile *File) {
// If we print assembly, we can't separate .file entries according to
// compile units. Thus all files will belong to the default compile unit.
// FIXME: add a better feature test than hasRawTextSupport. Even better,
// extend .file to support this.
unsigned CUID = Asm->OutStreamer->hasRawTextSupport() ? 0 : getUniqueID();
if (!File)
return Asm->OutStreamer->EmitDwarfFileDirective(0, "", "", None, None, CUID);
return Asm->OutStreamer->EmitDwarfFileDirective(
0, File->getDirectory(), File->getFilename(), getMD5AsBytes(File),
File->getSource(), CUID);
}
DIE *DwarfCompileUnit::getOrCreateGlobalVariableDIE(
const DIGlobalVariable *GV, ArrayRef<GlobalExpr> GlobalExprs) {
// Check for pre-existence.
if (DIE *Die = getDIE(GV))
return Die;
assert(GV);
auto *GVContext = GV->getScope();
auto *GTy = DD->resolve(GV->getType());
// Construct the context before querying for the existence of the DIE in
// case such construction creates the DIE.
auto *CB = GVContext ? dyn_cast<DICommonBlock>(GVContext) : nullptr;
DIE *ContextDIE = CB ? getOrCreateCommonBlock(CB, GlobalExprs)
: getOrCreateContextDIE(GVContext);
// Add to map.
DIE *VariableDIE = &createAndAddDIE(GV->getTag(), *ContextDIE, GV);
DIScope *DeclContext;
if (auto *SDMDecl = GV->getStaticDataMemberDeclaration()) {
DeclContext = resolve(SDMDecl->getScope());
assert(SDMDecl->isStaticMember() && "Expected static member decl");
assert(GV->isDefinition());
// We need the declaration DIE that is in the static member's class.
DIE *VariableSpecDIE = getOrCreateStaticMemberDIE(SDMDecl);
addDIEEntry(*VariableDIE, dwarf::DW_AT_specification, *VariableSpecDIE);
// If the global variable's type is different from the one in the class
// member type, assume that it's more specific and also emit it.
if (GTy != DD->resolve(SDMDecl->getBaseType()))
addType(*VariableDIE, GTy);
} else {
DeclContext = GV->getScope();
// Add name and type.
addString(*VariableDIE, dwarf::DW_AT_name, GV->getDisplayName());
addType(*VariableDIE, GTy);
// Add scoping info.
if (!GV->isLocalToUnit())
addFlag(*VariableDIE, dwarf::DW_AT_external);
// Add line number info.
addSourceLine(*VariableDIE, GV);
}
if (!GV->isDefinition())
addFlag(*VariableDIE, dwarf::DW_AT_declaration);
else
addGlobalName(GV->getName(), *VariableDIE, DeclContext);
if (uint32_t AlignInBytes = GV->getAlignInBytes())
addUInt(*VariableDIE, dwarf::DW_AT_alignment, dwarf::DW_FORM_udata,
AlignInBytes);
if (MDTuple *TP = GV->getTemplateParams())
addTemplateParams(*VariableDIE, DINodeArray(TP));
// Add location.
addLocationAttribute(VariableDIE, GV, GlobalExprs);
return VariableDIE;
}
void DwarfCompileUnit::addLocationAttribute(
DIE *VariableDIE, const DIGlobalVariable *GV, ArrayRef<GlobalExpr> GlobalExprs) {
bool addToAccelTable = false;
DIELoc *Loc = nullptr;
Optional<unsigned> NVPTXAddressSpace;
std::unique_ptr<DIEDwarfExpression> DwarfExpr;
for (const auto &GE : GlobalExprs) {
const GlobalVariable *Global = GE.Var;
const DIExpression *Expr = GE.Expr;
// For compatibility with DWARF 3 and earlier,
// DW_AT_location(DW_OP_constu, X, DW_OP_stack_value) becomes
// DW_AT_const_value(X).
if (GlobalExprs.size() == 1 && Expr && Expr->isConstant()) {
addToAccelTable = true;
addConstantValue(*VariableDIE, /*Unsigned=*/true, Expr->getElement(1));
break;
}
// We cannot describe the location of dllimport'd variables: the
// computation of their address requires loads from the IAT.
if (Global && Global->hasDLLImportStorageClass())
continue;
// Nothing to describe without address or constant.
if (!Global && (!Expr || !Expr->isConstant()))
continue;
if (Global && Global->isThreadLocal() &&
!Asm->getObjFileLowering().supportDebugThreadLocalLocation())
continue;
if (!Loc) {
addToAccelTable = true;
Loc = new (DIEValueAllocator) DIELoc;
DwarfExpr = llvm::make_unique<DIEDwarfExpression>(*Asm, *this, *Loc);
}
if (Expr) {
// According to
// https://docs.nvidia.com/cuda/archive/10.0/ptx-writers-guide-to-interoperability/index.html#cuda-specific-dwarf
// cuda-gdb requires DW_AT_address_class for all variables to be able to
// correctly interpret address space of the variable address.
// Decode DW_OP_constu <DWARF Address Space> DW_OP_swap DW_OP_xderef
// sequence for the NVPTX + gdb target.
unsigned LocalNVPTXAddressSpace;
if (Asm->TM.getTargetTriple().isNVPTX() && DD->tuneForGDB()) {
const DIExpression *NewExpr =
DIExpression::extractAddressClass(Expr, LocalNVPTXAddressSpace);
if (NewExpr != Expr) {
Expr = NewExpr;
NVPTXAddressSpace = LocalNVPTXAddressSpace;
}
}
DwarfExpr->addFragmentOffset(Expr);
}
if (Global) {
const MCSymbol *Sym = Asm->getSymbol(Global);
if (Global->isThreadLocal()) {
if (Asm->TM.useEmulatedTLS()) {
// TODO: add debug info for emulated thread local mode.
} else {
// FIXME: Make this work with -gsplit-dwarf.
unsigned PointerSize = Asm->getDataLayout().getPointerSize();
assert((PointerSize == 4 || PointerSize == 8) &&
"Add support for other sizes if necessary");
// Based on GCC's support for TLS:
if (!DD->useSplitDwarf()) {
// 1) Start with a constNu of the appropriate pointer size
addUInt(*Loc, dwarf::DW_FORM_data1,
PointerSize == 4 ? dwarf::DW_OP_const4u
: dwarf::DW_OP_const8u);
// 2) containing the (relocated) offset of the TLS variable
// within the module's TLS block.
addExpr(*Loc, dwarf::DW_FORM_udata,
Asm->getObjFileLowering().getDebugThreadLocalSymbol(Sym));
} else {
addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_GNU_const_index);
addUInt(*Loc, dwarf::DW_FORM_udata,
DD->getAddressPool().getIndex(Sym, /* TLS */ true));
}
// 3) followed by an OP to make the debugger do a TLS lookup.
addUInt(*Loc, dwarf::DW_FORM_data1,
DD->useGNUTLSOpcode() ? dwarf::DW_OP_GNU_push_tls_address
: dwarf::DW_OP_form_tls_address);
}
} else {
DD->addArangeLabel(SymbolCU(this, Sym));
addOpAddress(*Loc, Sym);
}
}
// Global variables attached to symbols are memory locations.
// It would be better if this were unconditional, but malformed input that
// mixes non-fragments and fragments for the same variable is too expensive
// to detect in the verifier.
if (DwarfExpr->isUnknownLocation())
DwarfExpr->setMemoryLocationKind();
DwarfExpr->addExpression(Expr);
}
if (Asm->TM.getTargetTriple().isNVPTX() && DD->tuneForGDB()) {
// According to
// https://docs.nvidia.com/cuda/archive/10.0/ptx-writers-guide-to-interoperability/index.html#cuda-specific-dwarf
// cuda-gdb requires DW_AT_address_class for all variables to be able to
// correctly interpret address space of the variable address.
const unsigned NVPTX_ADDR_global_space = 5;
addUInt(*VariableDIE, dwarf::DW_AT_address_class, dwarf::DW_FORM_data1,
NVPTXAddressSpace ? *NVPTXAddressSpace : NVPTX_ADDR_global_space);
}
if (Loc)
addBlock(*VariableDIE, dwarf::DW_AT_location, DwarfExpr->finalize());
if (DD->useAllLinkageNames())
addLinkageName(*VariableDIE, GV->getLinkageName());
if (addToAccelTable) {
DD->addAccelName(*CUNode, GV->getName(), *VariableDIE);
// If the linkage name is different than the name, go ahead and output
// that as well into the name table.
if (GV->getLinkageName() != "" && GV->getName() != GV->getLinkageName() &&
DD->useAllLinkageNames())
DD->addAccelName(*CUNode, GV->getLinkageName(), *VariableDIE);
}
}
DIE *DwarfCompileUnit::getOrCreateCommonBlock(
const DICommonBlock *CB, ArrayRef<GlobalExpr> GlobalExprs) {
// Construct the context before querying for the existence of the DIE in case
// such construction creates the DIE.
DIE *ContextDIE = getOrCreateContextDIE(CB->getScope());
if (DIE *NDie = getDIE(CB))
return NDie;
DIE &NDie = createAndAddDIE(dwarf::DW_TAG_common_block, *ContextDIE, CB);
StringRef Name = CB->getName().empty() ? "_BLNK_" : CB->getName();
addString(NDie, dwarf::DW_AT_name, Name);
addGlobalName(Name, NDie, CB->getScope());
if (CB->getFile())
addSourceLine(NDie, CB->getLineNo(), CB->getFile());
if (DIGlobalVariable *V = CB->getDecl())
getCU().addLocationAttribute(&NDie, V, GlobalExprs);
return &NDie;
}
void DwarfCompileUnit::addRange(RangeSpan Range) {
bool SameAsPrevCU = this == DD->getPrevCU();
DD->setPrevCU(this);
// If we have no current ranges just add the range and return, otherwise,
// check the current section and CU against the previous section and CU we
// emitted into and the subprogram was contained within. If these are the
// same then extend our current range, otherwise add this as a new range.
if (CURanges.empty() || !SameAsPrevCU ||
(&CURanges.back().getEnd()->getSection() !=
&Range.getEnd()->getSection())) {
CURanges.push_back(Range);
DD->addSectionLabel(Range.getStart());
return;
}
CURanges.back().setEnd(Range.getEnd());
}
void DwarfCompileUnit::initStmtList() {
if (CUNode->isDebugDirectivesOnly())
return;
// Define start line table label for each Compile Unit.
MCSymbol *LineTableStartSym;
const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
if (DD->useSectionsAsReferences()) {
LineTableStartSym = TLOF.getDwarfLineSection()->getBeginSymbol();
} else {
LineTableStartSym =
Asm->OutStreamer->getDwarfLineTableSymbol(getUniqueID());
}
// DW_AT_stmt_list is a offset of line number information for this
// compile unit in debug_line section. For split dwarf this is
// left in the skeleton CU and so not included.
// The line table entries are not always emitted in assembly, so it
// is not okay to use line_table_start here.
StmtListValue =
addSectionLabel(getUnitDie(), dwarf::DW_AT_stmt_list, LineTableStartSym,
TLOF.getDwarfLineSection()->getBeginSymbol());
}
void DwarfCompileUnit::applyStmtList(DIE &D) {
D.addValue(DIEValueAllocator, *StmtListValue);
}
void DwarfCompileUnit::attachLowHighPC(DIE &D, const MCSymbol *Begin,
const MCSymbol *End) {
assert(Begin && "Begin label should not be null!");
assert(End && "End label should not be null!");
assert(Begin->isDefined() && "Invalid starting label");
assert(End->isDefined() && "Invalid end label");
addLabelAddress(D, dwarf::DW_AT_low_pc, Begin);
if (DD->getDwarfVersion() < 4)
addLabelAddress(D, dwarf::DW_AT_high_pc, End);
else
addLabelDelta(D, dwarf::DW_AT_high_pc, End, Begin);
}
// Find DIE for the given subprogram and attach appropriate DW_AT_low_pc
// and DW_AT_high_pc attributes. If there are global variables in this
// scope then create and insert DIEs for these variables.
DIE &DwarfCompileUnit::updateSubprogramScopeDIE(const DISubprogram *SP) {
DIE *SPDie = getOrCreateSubprogramDIE(SP, includeMinimalInlineScopes());
attachLowHighPC(*SPDie, Asm->getFunctionBegin(), Asm->getFunctionEnd());
if (DD->useAppleExtensionAttributes() &&
!DD->getCurrentFunction()->getTarget().Options.DisableFramePointerElim(
*DD->getCurrentFunction()))
addFlag(*SPDie, dwarf::DW_AT_APPLE_omit_frame_ptr);
// Only include DW_AT_frame_base in full debug info
if (!includeMinimalInlineScopes()) {
if (Asm->MF->getTarget().getTargetTriple().isNVPTX()) {
DIELoc *Loc = new (DIEValueAllocator) DIELoc;
addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_call_frame_cfa);
addBlock(*SPDie, dwarf::DW_AT_frame_base, Loc);
} else {
const TargetRegisterInfo *RI = Asm->MF->getSubtarget().getRegisterInfo();
MachineLocation Location(RI->getFrameRegister(*Asm->MF));
if (RI->isPhysicalRegister(Location.getReg()))
addAddress(*SPDie, dwarf::DW_AT_frame_base, Location);
}
}
// Add name to the name table, we do this here because we're guaranteed
// to have concrete versions of our DW_TAG_subprogram nodes.
DD->addSubprogramNames(*CUNode, SP, *SPDie);
return *SPDie;
}
// Construct a DIE for this scope.
void DwarfCompileUnit::constructScopeDIE(
LexicalScope *Scope, SmallVectorImpl<DIE *> &FinalChildren) {
if (!Scope || !Scope->getScopeNode())
return;
auto *DS = Scope->getScopeNode();
assert((Scope->getInlinedAt() || !isa<DISubprogram>(DS)) &&
"Only handle inlined subprograms here, use "
"constructSubprogramScopeDIE for non-inlined "
"subprograms");
SmallVector<DIE *, 8> Children;
// We try to create the scope DIE first, then the children DIEs. This will
// avoid creating un-used children then removing them later when we find out
// the scope DIE is null.
DIE *ScopeDIE;
if (Scope->getParent() && isa<DISubprogram>(DS)) {
ScopeDIE = constructInlinedScopeDIE(Scope);
if (!ScopeDIE)
return;
// We create children when the scope DIE is not null.
createScopeChildrenDIE(Scope, Children);
} else {
// Early exit when we know the scope DIE is going to be null.
if (DD->isLexicalScopeDIENull(Scope))
return;
bool HasNonScopeChildren = false;
// We create children here when we know the scope DIE is not going to be
// null and the children will be added to the scope DIE.
createScopeChildrenDIE(Scope, Children, &HasNonScopeChildren);
// If there are only other scopes as children, put them directly in the
// parent instead, as this scope would serve no purpose.
if (!HasNonScopeChildren) {
FinalChildren.insert(FinalChildren.end(),
std::make_move_iterator(Children.begin()),
std::make_move_iterator(Children.end()));
return;
}
ScopeDIE = constructLexicalScopeDIE(Scope);
assert(ScopeDIE && "Scope DIE should not be null.");
}
// Add children
for (auto &I : Children)
ScopeDIE->addChild(std::move(I));
FinalChildren.push_back(std::move(ScopeDIE));
}
void DwarfCompileUnit::addScopeRangeList(DIE &ScopeDIE,
SmallVector<RangeSpan, 2> Range) {
const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
// Emit the offset into .debug_ranges or .debug_rnglists as a relocatable
// label. emitDIE() will handle emitting it appropriately.
const MCSymbol *RangeSectionSym =
DD->getDwarfVersion() >= 5
? TLOF.getDwarfRnglistsSection()->getBeginSymbol()
: TLOF.getDwarfRangesSection()->getBeginSymbol();
HasRangeLists = true;
// Add the range list to the set of ranges to be emitted.
auto IndexAndList =
(DD->getDwarfVersion() < 5 && Skeleton ? Skeleton->DU : DU)
->addRange(*(Skeleton ? Skeleton : this), std::move(Range));
uint32_t Index = IndexAndList.first;
auto &List = *IndexAndList.second;
// Under fission, ranges are specified by constant offsets relative to the
// CU's DW_AT_GNU_ranges_base.
// FIXME: For DWARF v5, do not generate the DW_AT_ranges attribute under
// fission until we support the forms using the .debug_addr section
// (DW_RLE_startx_endx etc.).
if (DD->getDwarfVersion() >= 5)
addUInt(ScopeDIE, dwarf::DW_AT_ranges, dwarf::DW_FORM_rnglistx, Index);
else if (isDwoUnit())
addSectionDelta(ScopeDIE, dwarf::DW_AT_ranges, List.getSym(),
RangeSectionSym);
else
addSectionLabel(ScopeDIE, dwarf::DW_AT_ranges, List.getSym(),
RangeSectionSym);
}
void DwarfCompileUnit::attachRangesOrLowHighPC(
DIE &Die, SmallVector<RangeSpan, 2> Ranges) {
if (Ranges.size() == 1 || !DD->useRangesSection()) {
const RangeSpan &Front = Ranges.front();
const RangeSpan &Back = Ranges.back();
attachLowHighPC(Die, Front.getStart(), Back.getEnd());
} else
addScopeRangeList(Die, std::move(Ranges));
}
void DwarfCompileUnit::attachRangesOrLowHighPC(
DIE &Die, const SmallVectorImpl<InsnRange> &Ranges) {
SmallVector<RangeSpan, 2> List;
List.reserve(Ranges.size());
for (const InsnRange &R : Ranges)
List.push_back(RangeSpan(DD->getLabelBeforeInsn(R.first),
DD->getLabelAfterInsn(R.second)));
attachRangesOrLowHighPC(Die, std::move(List));
}
// This scope represents inlined body of a function. Construct DIE to
// represent this concrete inlined copy of the function.
DIE *DwarfCompileUnit::constructInlinedScopeDIE(LexicalScope *Scope) {
assert(Scope->getScopeNode());
auto *DS = Scope->getScopeNode();
auto *InlinedSP = getDISubprogram(DS);
// Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
// was inlined from another compile unit.
DIE *OriginDIE = getAbstractSPDies()[InlinedSP];
assert(OriginDIE && "Unable to find original DIE for an inlined subprogram.");
auto ScopeDIE = DIE::get(DIEValueAllocator, dwarf::DW_TAG_inlined_subroutine);
addDIEEntry(*ScopeDIE, dwarf::DW_AT_abstract_origin, *OriginDIE);
attachRangesOrLowHighPC(*ScopeDIE, Scope->getRanges());
// Add the call site information to the DIE.
const DILocation *IA = Scope->getInlinedAt();
addUInt(*ScopeDIE, dwarf::DW_AT_call_file, None,
getOrCreateSourceID(IA->getFile()));
addUInt(*ScopeDIE, dwarf::DW_AT_call_line, None, IA->getLine());
if (IA->getDiscriminator() && DD->getDwarfVersion() >= 4)
addUInt(*ScopeDIE, dwarf::DW_AT_GNU_discriminator, None,
IA->getDiscriminator());
// Add name to the name table, we do this here because we're guaranteed
// to have concrete versions of our DW_TAG_inlined_subprogram nodes.
DD->addSubprogramNames(*CUNode, InlinedSP, *ScopeDIE);
return ScopeDIE;
}
// Construct new DW_TAG_lexical_block for this scope and attach
// DW_AT_low_pc/DW_AT_high_pc labels.
DIE *DwarfCompileUnit::constructLexicalScopeDIE(LexicalScope *Scope) {
if (DD->isLexicalScopeDIENull(Scope))
return nullptr;
auto ScopeDIE = DIE::get(DIEValueAllocator, dwarf::DW_TAG_lexical_block);
if (Scope->isAbstractScope())
return ScopeDIE;
attachRangesOrLowHighPC(*ScopeDIE, Scope->getRanges());
return ScopeDIE;
}
/// constructVariableDIE - Construct a DIE for the given DbgVariable.
DIE *DwarfCompileUnit::constructVariableDIE(DbgVariable &DV, bool Abstract) {
auto D = constructVariableDIEImpl(DV, Abstract);
DV.setDIE(*D);
return D;
}
DIE *DwarfCompileUnit::constructLabelDIE(DbgLabel &DL,
const LexicalScope &Scope) {
auto LabelDie = DIE::get(DIEValueAllocator, DL.getTag());
insertDIE(DL.getLabel(), LabelDie);
DL.setDIE(*LabelDie);
if (Scope.isAbstractScope())
applyLabelAttributes(DL, *LabelDie);
return LabelDie;
}
DIE *DwarfCompileUnit::constructVariableDIEImpl(const DbgVariable &DV,
bool Abstract) {
// Define variable debug information entry.
auto VariableDie = DIE::get(DIEValueAllocator, DV.getTag());
insertDIE(DV.getVariable(), VariableDie);
if (Abstract) {
applyVariableAttributes(DV, *VariableDie);
return VariableDie;
}
// Add variable address.
unsigned Offset = DV.getDebugLocListIndex();
if (Offset != ~0U) {
addLocationList(*VariableDie, dwarf::DW_AT_location, Offset);
return VariableDie;
}
// Check if variable is described by a DBG_VALUE instruction.
if (const MachineInstr *DVInsn = DV.getMInsn()) {
assert(DVInsn->getNumOperands() == 4);
if (DVInsn->getOperand(0).isReg()) {
auto RegOp = DVInsn->getOperand(0);
auto Op1 = DVInsn->getOperand(1);
// If the second operand is an immediate, this is an indirect value.
assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset");
MachineLocation Location(RegOp.getReg(), Op1.isImm());
addVariableAddress(DV, *VariableDie, Location);
} else if (DVInsn->getOperand(0).isImm()) {
// This variable is described by a single constant.
// Check whether it has a DIExpression.
auto *Expr = DV.getSingleExpression();
if (Expr && Expr->getNumElements()) {
DIELoc *Loc = new (DIEValueAllocator) DIELoc;
DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc);
// If there is an expression, emit raw unsigned bytes.
DwarfExpr.addFragmentOffset(Expr);
DwarfExpr.addUnsignedConstant(DVInsn->getOperand(0).getImm());
DwarfExpr.addExpression(Expr);
addBlock(*VariableDie, dwarf::DW_AT_location, DwarfExpr.finalize());
} else
addConstantValue(*VariableDie, DVInsn->getOperand(0), DV.getType());
} else if (DVInsn->getOperand(0).isFPImm())
addConstantFPValue(*VariableDie, DVInsn->getOperand(0));
else if (DVInsn->getOperand(0).isCImm())
addConstantValue(*VariableDie, DVInsn->getOperand(0).getCImm(),
DV.getType());
return VariableDie;
}
// .. else use frame index.
if (!DV.hasFrameIndexExprs())
return VariableDie;
Optional<unsigned> NVPTXAddressSpace;
DIELoc *Loc = new (DIEValueAllocator) DIELoc;
DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc);
for (auto &Fragment : DV.getFrameIndexExprs()) {
unsigned FrameReg = 0;
const DIExpression *Expr = Fragment.Expr;
const TargetFrameLowering *TFI = Asm->MF->getSubtarget().getFrameLowering();
int Offset = TFI->getFrameIndexReference(*Asm->MF, Fragment.FI, FrameReg);
DwarfExpr.addFragmentOffset(Expr);
SmallVector<uint64_t, 8> Ops;
Ops.push_back(dwarf::DW_OP_plus_uconst);
Ops.push_back(Offset);
// According to
// https://docs.nvidia.com/cuda/archive/10.0/ptx-writers-guide-to-interoperability/index.html#cuda-specific-dwarf
// cuda-gdb requires DW_AT_address_class for all variables to be able to
// correctly interpret address space of the variable address.
// Decode DW_OP_constu <DWARF Address Space> DW_OP_swap DW_OP_xderef
// sequence for the NVPTX + gdb target.
unsigned LocalNVPTXAddressSpace;
if (Asm->TM.getTargetTriple().isNVPTX() && DD->tuneForGDB()) {
const DIExpression *NewExpr =
DIExpression::extractAddressClass(Expr, LocalNVPTXAddressSpace);
if (NewExpr != Expr) {
Expr = NewExpr;
NVPTXAddressSpace = LocalNVPTXAddressSpace;
}
}
if (Expr)
Ops.append(Expr->elements_begin(), Expr->elements_end());
DIExpressionCursor Cursor(Ops);
DwarfExpr.setMemoryLocationKind();
if (const MCSymbol *FrameSymbol = Asm->getFunctionFrameSymbol())
addOpAddress(*Loc, FrameSymbol);
else
DwarfExpr.addMachineRegExpression(
*Asm->MF->getSubtarget().getRegisterInfo(), Cursor, FrameReg);
DwarfExpr.addExpression(std::move(Cursor));
}
if (Asm->TM.getTargetTriple().isNVPTX() && DD->tuneForGDB()) {
// According to
// https://docs.nvidia.com/cuda/archive/10.0/ptx-writers-guide-to-interoperability/index.html#cuda-specific-dwarf
// cuda-gdb requires DW_AT_address_class for all variables to be able to
// correctly interpret address space of the variable address.
const unsigned NVPTX_ADDR_local_space = 6;
addUInt(*VariableDie, dwarf::DW_AT_address_class, dwarf::DW_FORM_data1,
NVPTXAddressSpace ? *NVPTXAddressSpace : NVPTX_ADDR_local_space);
}
addBlock(*VariableDie, dwarf::DW_AT_location, DwarfExpr.finalize());
return VariableDie;
}
DIE *DwarfCompileUnit::constructVariableDIE(DbgVariable &DV,
const LexicalScope &Scope,
DIE *&ObjectPointer) {
auto Var = constructVariableDIE(DV, Scope.isAbstractScope());
if (DV.isObjectPointer())
ObjectPointer = Var;
return Var;
}
/// Return all DIVariables that appear in count: expressions.
static SmallVector<const DIVariable *, 2> dependencies(DbgVariable *Var) {
SmallVector<const DIVariable *, 2> Result;
auto *Array = dyn_cast<DICompositeType>(Var->getType());
if (!Array || Array->getTag() != dwarf::DW_TAG_array_type)
return Result;
for (auto *El : Array->getElements()) {
if (auto *Subrange = dyn_cast<DISubrange>(El)) {
auto Count = Subrange->getCount();
if (auto *Dependency = Count.dyn_cast<DIVariable *>())
Result.push_back(Dependency);
}
}
return Result;
}
/// Sort local variables so that variables appearing inside of helper
/// expressions come first.
static SmallVector<DbgVariable *, 8>
sortLocalVars(SmallVectorImpl<DbgVariable *> &Input) {
SmallVector<DbgVariable *, 8> Result;
SmallVector<PointerIntPair<DbgVariable *, 1>, 8> WorkList;
// Map back from a DIVariable to its containing DbgVariable.
SmallDenseMap<const DILocalVariable *, DbgVariable *> DbgVar;
// Set of DbgVariables in Result.
SmallDenseSet<DbgVariable *, 8> Visited;
// For cycle detection.
SmallDenseSet<DbgVariable *, 8> Visiting;
// Initialize the worklist and the DIVariable lookup table.
for (auto Var : reverse(Input)) {
DbgVar.insert({Var->getVariable(), Var});
WorkList.push_back({Var, 0});
}
// Perform a stable topological sort by doing a DFS.
while (!WorkList.empty()) {
auto Item = WorkList.back();
DbgVariable *Var = Item.getPointer();
bool visitedAllDependencies = Item.getInt();
WorkList.pop_back();
// Dependency is in a different lexical scope or a global.
if (!Var)
continue;
// Already handled.
if (Visited.count(Var))
continue;
// Add to Result if all dependencies are visited.
if (visitedAllDependencies) {
Visited.insert(Var);
Result.push_back(Var);
continue;
}
// Detect cycles.
auto Res = Visiting.insert(Var);
if (!Res.second) {
assert(false && "dependency cycle in local variables");
return Result;
}
// Push dependencies and this node onto the worklist, so that this node is
// visited again after all of its dependencies are handled.
WorkList.push_back({Var, 1});
for (auto *Dependency : dependencies(Var)) {
auto Dep = dyn_cast_or_null<const DILocalVariable>(Dependency);
WorkList.push_back({DbgVar[Dep], 0});
}
}
return Result;
}
DIE *DwarfCompileUnit::createScopeChildrenDIE(LexicalScope *Scope,
SmallVectorImpl<DIE *> &Children,
bool *HasNonScopeChildren) {
assert(Children.empty());
DIE *ObjectPointer = nullptr;
// Emit function arguments (order is significant).
auto Vars = DU->getScopeVariables().lookup(Scope);
for (auto &DV : Vars.Args)
Children.push_back(constructVariableDIE(*DV.second, *Scope, ObjectPointer));
// Emit local variables.
auto Locals = sortLocalVars(Vars.Locals);
for (DbgVariable *DV : Locals)
Children.push_back(constructVariableDIE(*DV, *Scope, ObjectPointer));
// Skip imported directives in gmlt-like data.
if (!includeMinimalInlineScopes()) {
// There is no need to emit empty lexical block DIE.
for (const auto *IE : ImportedEntities[Scope->getScopeNode()])
Children.push_back(
constructImportedEntityDIE(cast<DIImportedEntity>(IE)));
}
if (HasNonScopeChildren)
*HasNonScopeChildren = !Children.empty();
for (DbgLabel *DL : DU->getScopeLabels().lookup(Scope))
Children.push_back(constructLabelDIE(*DL, *Scope));
for (LexicalScope *LS : Scope->getChildren())
constructScopeDIE(LS, Children);
return ObjectPointer;
}
DIE &DwarfCompileUnit::constructSubprogramScopeDIE(const DISubprogram *Sub,
LexicalScope *Scope) {
DIE &ScopeDIE = updateSubprogramScopeDIE(Sub);
if (Scope) {
assert(!Scope->getInlinedAt());
assert(!Scope->isAbstractScope());
// Collect lexical scope children first.
// ObjectPointer might be a local (non-argument) local variable if it's a
// block's synthetic this pointer.
if (DIE *ObjectPointer = createAndAddScopeChildren(Scope, ScopeDIE))
addDIEEntry(ScopeDIE, dwarf::DW_AT_object_pointer, *ObjectPointer);
}
// If this is a variadic function, add an unspecified parameter.
DITypeRefArray FnArgs = Sub->getType()->getTypeArray();
// If we have a single element of null, it is a function that returns void.
// If we have more than one elements and the last one is null, it is a
// variadic function.
if (FnArgs.size() > 1 && !FnArgs[FnArgs.size() - 1] &&
!includeMinimalInlineScopes())
ScopeDIE.addChild(
DIE::get(DIEValueAllocator, dwarf::DW_TAG_unspecified_parameters));
return ScopeDIE;
}
DIE *DwarfCompileUnit::createAndAddScopeChildren(LexicalScope *Scope,
DIE &ScopeDIE) {
// We create children when the scope DIE is not null.
SmallVector<DIE *, 8> Children;
DIE *ObjectPointer = createScopeChildrenDIE(Scope, Children);
// Add children
for (auto &I : Children)
ScopeDIE.addChild(std::move(I));
return ObjectPointer;
}
void DwarfCompileUnit::constructAbstractSubprogramScopeDIE(
LexicalScope *Scope) {
DIE *&AbsDef = getAbstractSPDies()[Scope->getScopeNode()];
if (AbsDef)
return;
auto *SP = cast<DISubprogram>(Scope->getScopeNode());
DIE *ContextDIE;
DwarfCompileUnit *ContextCU = this;
if (includeMinimalInlineScopes())
ContextDIE = &getUnitDie();
// Some of this is duplicated from DwarfUnit::getOrCreateSubprogramDIE, with
// the important distinction that the debug node is not associated with the
// DIE (since the debug node will be associated with the concrete DIE, if
// any). It could be refactored to some common utility function.
else if (auto *SPDecl = SP->getDeclaration()) {
ContextDIE = &getUnitDie();
getOrCreateSubprogramDIE(SPDecl);
} else {
ContextDIE = getOrCreateContextDIE(resolve(SP->getScope()));
// The scope may be shared with a subprogram that has already been
// constructed in another CU, in which case we need to construct this
// subprogram in the same CU.
ContextCU = DD->lookupCU(ContextDIE->getUnitDie());
}
// Passing null as the associated node because the abstract definition
// shouldn't be found by lookup.
AbsDef = &ContextCU->createAndAddDIE(dwarf::DW_TAG_subprogram, *ContextDIE, nullptr);
ContextCU->applySubprogramAttributesToDefinition(SP, *AbsDef);
if (!ContextCU->includeMinimalInlineScopes())
ContextCU->addUInt(*AbsDef, dwarf::DW_AT_inline, None, dwarf::DW_INL_inlined);
if (DIE *ObjectPointer = ContextCU->createAndAddScopeChildren(Scope, *AbsDef))
ContextCU->addDIEEntry(*AbsDef, dwarf::DW_AT_object_pointer, *ObjectPointer);
}
DIE &DwarfCompileUnit::constructCallSiteEntryDIE(DIE &ScopeDIE,
const DISubprogram &CalleeSP,
bool IsTail,
const MCExpr *PCOffset) {
// Insert a call site entry DIE within ScopeDIE.
DIE &CallSiteDIE =
createAndAddDIE(dwarf::DW_TAG_call_site, ScopeDIE, nullptr);
// For the purposes of showing tail call frames in backtraces, a key piece of
// information is DW_AT_call_origin, a pointer to the callee DIE.
DIE *CalleeDIE = getOrCreateSubprogramDIE(&CalleeSP);
assert(CalleeDIE && "Could not create DIE for call site entry origin");
addDIEEntry(CallSiteDIE, dwarf::DW_AT_call_origin, *CalleeDIE);
if (IsTail) {
// Attach DW_AT_call_tail_call to tail calls for standards compliance.
addFlag(CallSiteDIE, dwarf::DW_AT_call_tail_call);
} else {
// Attach the return PC to allow the debugger to disambiguate call paths
// from one function to another.
assert(PCOffset && "Missing return PC information for a call");
addAddressExpr(CallSiteDIE, dwarf::DW_AT_call_return_pc, PCOffset);
}
return CallSiteDIE;
}
DIE *DwarfCompileUnit::constructImportedEntityDIE(
const DIImportedEntity *Module) {
DIE *IMDie = DIE::get(DIEValueAllocator, (dwarf::Tag)Module->getTag());
insertDIE(Module, IMDie);
DIE *EntityDie;
auto *Entity = resolve(Module->getEntity());
if (auto *NS = dyn_cast<DINamespace>(Entity))
EntityDie = getOrCreateNameSpace(NS);
else if (auto *M = dyn_cast<DIModule>(Entity))
EntityDie = getOrCreateModule(M);
else if (auto *SP = dyn_cast<DISubprogram>(Entity))
EntityDie = getOrCreateSubprogramDIE(SP);
else if (auto *T = dyn_cast<DIType>(Entity))
EntityDie = getOrCreateTypeDIE(T);
else if (auto *GV = dyn_cast<DIGlobalVariable>(Entity))
EntityDie = getOrCreateGlobalVariableDIE(GV, {});
else
EntityDie = getDIE(Entity);
assert(EntityDie);
addSourceLine(*IMDie, Module->getLine(), Module->getFile());
addDIEEntry(*IMDie, dwarf::DW_AT_import, *EntityDie);
StringRef Name = Module->getName();
if (!Name.empty())
addString(*IMDie, dwarf::DW_AT_name, Name);
return IMDie;
}
void DwarfCompileUnit::finishSubprogramDefinition(const DISubprogram *SP) {
DIE *D = getDIE(SP);
if (DIE *AbsSPDIE = getAbstractSPDies().lookup(SP)) {
if (D)
// If this subprogram has an abstract definition, reference that
addDIEEntry(*D, dwarf::DW_AT_abstract_origin, *AbsSPDIE);
} else {
assert(D || includeMinimalInlineScopes());
if (D)
// And attach the attributes
applySubprogramAttributesToDefinition(SP, *D);
}
}
void DwarfCompileUnit::finishEntityDefinition(const DbgEntity *Entity) {
DbgEntity *AbsEntity = getExistingAbstractEntity(Entity->getEntity());
auto *Die = Entity->getDIE();
/// Label may be used to generate DW_AT_low_pc, so put it outside
/// if/else block.
const DbgLabel *Label = nullptr;
if (AbsEntity && AbsEntity->getDIE()) {
addDIEEntry(*Die, dwarf::DW_AT_abstract_origin, *AbsEntity->getDIE());
Label = dyn_cast<const DbgLabel>(Entity);
} else {
if (const DbgVariable *Var = dyn_cast<const DbgVariable>(Entity))
applyVariableAttributes(*Var, *Die);
else if ((Label = dyn_cast<const DbgLabel>(Entity)))
applyLabelAttributes(*Label, *Die);
else
llvm_unreachable("DbgEntity must be DbgVariable or DbgLabel.");
}
if (Label)
if (const auto *Sym = Label->getSymbol())
addLabelAddress(*Die, dwarf::DW_AT_low_pc, Sym);
}
DbgEntity *DwarfCompileUnit::getExistingAbstractEntity(const DINode *Node) {
auto &AbstractEntities = getAbstractEntities();
auto I = AbstractEntities.find(Node);
if (I != AbstractEntities.end())
return I->second.get();
return nullptr;
}
void DwarfCompileUnit::createAbstractEntity(const DINode *Node,
LexicalScope *Scope) {
assert(Scope && Scope->isAbstractScope());
auto &Entity = getAbstractEntities()[Node];
if (isa<const DILocalVariable>(Node)) {
Entity = llvm::make_unique<DbgVariable>(
cast<const DILocalVariable>(Node), nullptr /* IA */);;
DU->addScopeVariable(Scope, cast<DbgVariable>(Entity.get()));
} else if (isa<const DILabel>(Node)) {
Entity = llvm::make_unique<DbgLabel>(
cast<const DILabel>(Node), nullptr /* IA */);
DU->addScopeLabel(Scope, cast<DbgLabel>(Entity.get()));
}
}
void DwarfCompileUnit::emitHeader(bool UseOffsets) {
// Don't bother labeling the .dwo unit, as its offset isn't used.
if (!Skeleton && !DD->useSectionsAsReferences()) {
LabelBegin = Asm->createTempSymbol("cu_begin");
Asm->OutStreamer->EmitLabel(LabelBegin);
}
dwarf::UnitType UT = Skeleton ? dwarf::DW_UT_split_compile
: DD->useSplitDwarf() ? dwarf::DW_UT_skeleton
: dwarf::DW_UT_compile;
DwarfUnit::emitCommonHeader(UseOffsets, UT);
if (DD->getDwarfVersion() >= 5 && UT != dwarf::DW_UT_compile)
Asm->emitInt64(getDWOId());
}
bool DwarfCompileUnit::hasDwarfPubSections() const {
switch (CUNode->getNameTableKind()) {
case DICompileUnit::DebugNameTableKind::None:
return false;
// Opting in to GNU Pubnames/types overrides the default to ensure these are
// generated for things like Gold's gdb_index generation.
case DICompileUnit::DebugNameTableKind::GNU:
return true;
case DICompileUnit::DebugNameTableKind::Default:
return DD->tuneForGDB() && !includeMinimalInlineScopes() &&
!CUNode->isDebugDirectivesOnly() &&
DD->getAccelTableKind() != AccelTableKind::Apple &&
DD->getDwarfVersion() < 5;
}
llvm_unreachable("Unhandled DICompileUnit::DebugNameTableKind enum");
}
/// addGlobalName - Add a new global name to the compile unit.
void DwarfCompileUnit::addGlobalName(StringRef Name, const DIE &Die,
const DIScope *Context) {
if (!hasDwarfPubSections())
return;
std::string FullName = getParentContextString(Context) + Name.str();
GlobalNames[FullName] = &Die;
}
void DwarfCompileUnit::addGlobalNameForTypeUnit(StringRef Name,
const DIScope *Context) {
if (!hasDwarfPubSections())
return;
std::string FullName = getParentContextString(Context) + Name.str();
// Insert, allowing the entry to remain as-is if it's already present
// This way the CU-level type DIE is preferred over the "can't describe this
// type as a unit offset because it's not really in the CU at all, it's only
// in a type unit"
GlobalNames.insert(std::make_pair(std::move(FullName), &getUnitDie()));
}
/// Add a new global type to the unit.
void DwarfCompileUnit::addGlobalType(const DIType *Ty, const DIE &Die,
const DIScope *Context) {
if (!hasDwarfPubSections())
return;
std::string FullName = getParentContextString(Context) + Ty->getName().str();
GlobalTypes[FullName] = &Die;
}
void DwarfCompileUnit::addGlobalTypeUnitType(const DIType *Ty,
const DIScope *Context) {
if (!hasDwarfPubSections())
return;
std::string FullName = getParentContextString(Context) + Ty->getName().str();
// Insert, allowing the entry to remain as-is if it's already present
// This way the CU-level type DIE is preferred over the "can't describe this
// type as a unit offset because it's not really in the CU at all, it's only
// in a type unit"
GlobalTypes.insert(std::make_pair(std::move(FullName), &getUnitDie()));
}
/// addVariableAddress - Add DW_AT_location attribute for a
/// DbgVariable based on provided MachineLocation.
void DwarfCompileUnit::addVariableAddress(const DbgVariable &DV, DIE &Die,
MachineLocation Location) {
// addBlockByrefAddress is obsolete and will be removed soon.
// The clang frontend always generates block byref variables with a
// complex expression that encodes exactly what addBlockByrefAddress
// would do.
assert((!DV.isBlockByrefVariable() || DV.hasComplexAddress()) &&
"block byref variable without a complex expression");
if (DV.hasComplexAddress())
addComplexAddress(DV, Die, dwarf::DW_AT_location, Location);
else
addAddress(Die, dwarf::DW_AT_location, Location);
}
/// Add an address attribute to a die based on the location provided.
void DwarfCompileUnit::addAddress(DIE &Die, dwarf::Attribute Attribute,
const MachineLocation &Location) {
DIELoc *Loc = new (DIEValueAllocator) DIELoc;
DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc);
if (Location.isIndirect())
DwarfExpr.setMemoryLocationKind();
DIExpressionCursor Cursor({});
const TargetRegisterInfo &TRI = *Asm->MF->getSubtarget().getRegisterInfo();
if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
return;
DwarfExpr.addExpression(std::move(Cursor));
// Now attach the location information to the DIE.
addBlock(Die, Attribute, DwarfExpr.finalize());
}
/// Start with the address based on the location provided, and generate the
/// DWARF information necessary to find the actual variable given the extra
/// address information encoded in the DbgVariable, starting from the starting
/// location. Add the DWARF information to the die.
void DwarfCompileUnit::addComplexAddress(const DbgVariable &DV, DIE &Die,
dwarf::Attribute Attribute,
const MachineLocation &Location) {
DIELoc *Loc = new (DIEValueAllocator) DIELoc;
DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc);
const DIExpression *DIExpr = DV.getSingleExpression();
DwarfExpr.addFragmentOffset(DIExpr);
if (Location.isIndirect())
DwarfExpr.setMemoryLocationKind();
DIExpressionCursor Cursor(DIExpr);
const TargetRegisterInfo &TRI = *Asm->MF->getSubtarget().getRegisterInfo();
if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
return;
DwarfExpr.addExpression(std::move(Cursor));
// Now attach the location information to the DIE.
addBlock(Die, Attribute, DwarfExpr.finalize());
}
/// Add a Dwarf loclistptr attribute data and value.
void DwarfCompileUnit::addLocationList(DIE &Die, dwarf::Attribute Attribute,
unsigned Index) {
dwarf::Form Form = DD->getDwarfVersion() >= 4 ? dwarf::DW_FORM_sec_offset
: dwarf::DW_FORM_data4;
Die.addValue(DIEValueAllocator, Attribute, Form, DIELocList(Index));
}
void DwarfCompileUnit::applyVariableAttributes(const DbgVariable &Var,
DIE &VariableDie) {
StringRef Name = Var.getName();
if (!Name.empty())
addString(VariableDie, dwarf::DW_AT_name, Name);
const auto *DIVar = Var.getVariable();
if (DIVar)
if (uint32_t AlignInBytes = DIVar->getAlignInBytes())
addUInt(VariableDie, dwarf::DW_AT_alignment, dwarf::DW_FORM_udata,
AlignInBytes);
addSourceLine(VariableDie, DIVar);
addType(VariableDie, Var.getType());
if (Var.isArtificial())
addFlag(VariableDie, dwarf::DW_AT_artificial);
}
void DwarfCompileUnit::applyLabelAttributes(const DbgLabel &Label,
DIE &LabelDie) {
StringRef Name = Label.getName();
if (!Name.empty())
addString(LabelDie, dwarf::DW_AT_name, Name);
const auto *DILabel = Label.getLabel();
addSourceLine(LabelDie, DILabel);
}
/// Add a Dwarf expression attribute data and value.
void DwarfCompileUnit::addExpr(DIELoc &Die, dwarf::Form Form,
const MCExpr *Expr) {
Die.addValue(DIEValueAllocator, (dwarf::Attribute)0, Form, DIEExpr(Expr));
}
void DwarfCompileUnit::addAddressExpr(DIE &Die, dwarf::Attribute Attribute,
const MCExpr *Expr) {
Die.addValue(DIEValueAllocator, Attribute, dwarf::DW_FORM_addr,
DIEExpr(Expr));
}
void DwarfCompileUnit::applySubprogramAttributesToDefinition(
const DISubprogram *SP, DIE &SPDie) {
auto *SPDecl = SP->getDeclaration();
auto *Context = resolve(SPDecl ? SPDecl->getScope() : SP->getScope());
applySubprogramAttributes(SP, SPDie, includeMinimalInlineScopes());
addGlobalName(SP->getName(), SPDie, Context);
}
bool DwarfCompileUnit::isDwoUnit() const {
return DD->useSplitDwarf() && Skeleton;
}
void DwarfCompileUnit::finishNonUnitTypeDIE(DIE& D, const DICompositeType *CTy) {
constructTypeDIE(D, CTy);
}
bool DwarfCompileUnit::includeMinimalInlineScopes() const {
return getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly ||
(DD->useSplitDwarf() && !Skeleton);
}
void DwarfCompileUnit::addAddrTableBase() {
const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
MCSymbol *Label = DD->getAddressPool().getLabel();
addSectionLabel(getUnitDie(),
getDwarfVersion() >= 5 ? dwarf::DW_AT_addr_base
: dwarf::DW_AT_GNU_addr_base,
Label, TLOF.getDwarfAddrSection()->getBeginSymbol());
}
void DwarfCompileUnit::addBaseTypeRef(DIEValueList &Die, int64_t Idx) {
Die.addValue(DIEValueAllocator, (dwarf::Attribute)0, dwarf::DW_FORM_udata,
new (DIEValueAllocator) DIEBaseTypeRef(this, Idx));
}
void DwarfCompileUnit::createBaseTypeDIEs() {
// Insert the base_type DIEs directly after the CU so that their offsets will
// fit in the fixed size ULEB128 used inside the location expressions.
// Maintain order by iterating backwards and inserting to the front of CU
// child list.
for (auto &Btr : reverse(ExprRefedBaseTypes)) {
DIE &Die = getUnitDie().addChildFront(
DIE::get(DIEValueAllocator, dwarf::DW_TAG_base_type));
SmallString<32> Str;
addString(Die, dwarf::DW_AT_name,
Twine(dwarf::AttributeEncodingString(Btr.Encoding) +
"_" + Twine(Btr.BitSize)).toStringRef(Str));
addUInt(Die, dwarf::DW_AT_encoding, dwarf::DW_FORM_data1, Btr.Encoding);
addUInt(Die, dwarf::DW_AT_byte_size, None, Btr.BitSize / 8);
Btr.Die = &Die;
}
}