llvm-project/llvm/lib/CodeGen/GlobalISel/GISelKnownBits.cpp

493 lines
18 KiB
C++

//===- lib/CodeGen/GlobalISel/GISelKnownBits.cpp --------------*- C++ *-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// Provides analysis for querying information about KnownBits during GISel
/// passes.
//
//===------------------
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#define DEBUG_TYPE "gisel-known-bits"
using namespace llvm;
char llvm::GISelKnownBitsAnalysis::ID = 0;
INITIALIZE_PASS(GISelKnownBitsAnalysis, DEBUG_TYPE,
"Analysis for ComputingKnownBits", false, true)
GISelKnownBits::GISelKnownBits(MachineFunction &MF, unsigned MaxDepth)
: MF(MF), MRI(MF.getRegInfo()), TL(*MF.getSubtarget().getTargetLowering()),
DL(MF.getFunction().getParent()->getDataLayout()), MaxDepth(MaxDepth) {}
Align GISelKnownBits::inferAlignmentForFrameIdx(int FrameIdx, int Offset,
const MachineFunction &MF) {
const MachineFrameInfo &MFI = MF.getFrameInfo();
return commonAlignment(Align(MFI.getObjectAlignment(FrameIdx)), Offset);
// TODO: How to handle cases with Base + Offset?
}
MaybeAlign GISelKnownBits::inferPtrAlignment(const MachineInstr &MI) {
if (MI.getOpcode() == TargetOpcode::G_FRAME_INDEX) {
int FrameIdx = MI.getOperand(1).getIndex();
return inferAlignmentForFrameIdx(FrameIdx, 0, *MI.getMF());
}
return None;
}
void GISelKnownBits::computeKnownBitsForFrameIndex(Register R, KnownBits &Known,
const APInt &DemandedElts,
unsigned Depth) {
const MachineInstr &MI = *MRI.getVRegDef(R);
computeKnownBitsForAlignment(Known, inferPtrAlignment(MI));
}
void GISelKnownBits::computeKnownBitsForAlignment(KnownBits &Known,
MaybeAlign Alignment) {
if (Alignment)
// The low bits are known zero if the pointer is aligned.
Known.Zero.setLowBits(Log2(Alignment));
}
KnownBits GISelKnownBits::getKnownBits(MachineInstr &MI) {
return getKnownBits(MI.getOperand(0).getReg());
}
KnownBits GISelKnownBits::getKnownBits(Register R) {
KnownBits Known;
LLT Ty = MRI.getType(R);
APInt DemandedElts =
Ty.isVector() ? APInt::getAllOnesValue(Ty.getNumElements()) : APInt(1, 1);
// For now, we only maintain the cache during one request.
assert(ComputeKnownBitsCache.empty() && "Cache should have been cleared");
computeKnownBitsImpl(R, Known, DemandedElts);
ComputeKnownBitsCache.clear();
return Known;
}
bool GISelKnownBits::signBitIsZero(Register R) {
LLT Ty = MRI.getType(R);
unsigned BitWidth = Ty.getScalarSizeInBits();
return maskedValueIsZero(R, APInt::getSignMask(BitWidth));
}
APInt GISelKnownBits::getKnownZeroes(Register R) {
return getKnownBits(R).Zero;
}
APInt GISelKnownBits::getKnownOnes(Register R) { return getKnownBits(R).One; }
LLVM_ATTRIBUTE_UNUSED static void
dumpResult(const MachineInstr &MI, const KnownBits &Known, unsigned Depth) {
dbgs() << "[" << Depth << "] Compute known bits: " << MI << "[" << Depth
<< "] Computed for: " << MI << "[" << Depth << "] Known: 0x"
<< (Known.Zero | Known.One).toString(16, false) << "\n"
<< "[" << Depth << "] Zero: 0x" << Known.Zero.toString(16, false)
<< "\n"
<< "[" << Depth << "] One: 0x" << Known.One.toString(16, false)
<< "\n";
}
void GISelKnownBits::computeKnownBitsImpl(Register R, KnownBits &Known,
const APInt &DemandedElts,
unsigned Depth) {
MachineInstr &MI = *MRI.getVRegDef(R);
unsigned Opcode = MI.getOpcode();
LLT DstTy = MRI.getType(R);
// Handle the case where this is called on a register that does not have a
// type constraint (i.e. it has a register class constraint instead). This is
// unlikely to occur except by looking through copies but it is possible for
// the initial register being queried to be in this state.
if (!DstTy.isValid()) {
Known = KnownBits();
return;
}
unsigned BitWidth = DstTy.getSizeInBits();
auto CacheEntry = ComputeKnownBitsCache.find(R);
if (CacheEntry != ComputeKnownBitsCache.end()) {
Known = CacheEntry->second;
LLVM_DEBUG(dbgs() << "Cache hit at ");
LLVM_DEBUG(dumpResult(MI, Known, Depth));
assert(Known.getBitWidth() == BitWidth && "Cache entry size doesn't match");
return;
}
Known = KnownBits(BitWidth); // Don't know anything
if (DstTy.isVector())
return; // TODO: Handle vectors.
// Depth may get bigger than max depth if it gets passed to a different
// GISelKnownBits object.
// This may happen when say a generic part uses a GISelKnownBits object
// with some max depth, but then we hit TL.computeKnownBitsForTargetInstr
// which creates a new GISelKnownBits object with a different and smaller
// depth. If we just check for equality, we would never exit if the depth
// that is passed down to the target specific GISelKnownBits object is
// already bigger than its max depth.
if (Depth >= getMaxDepth())
return;
if (!DemandedElts)
return; // No demanded elts, better to assume we don't know anything.
KnownBits Known2;
switch (Opcode) {
default:
TL.computeKnownBitsForTargetInstr(*this, R, Known, DemandedElts, MRI,
Depth);
break;
case TargetOpcode::COPY:
case TargetOpcode::G_PHI:
case TargetOpcode::PHI: {
Known.One = APInt::getAllOnesValue(BitWidth);
Known.Zero = APInt::getAllOnesValue(BitWidth);
// Destination registers should not have subregisters at this
// point of the pipeline, otherwise the main live-range will be
// defined more than once, which is against SSA.
assert(MI.getOperand(0).getSubReg() == 0 && "Is this code in SSA?");
// Record in the cache that we know nothing for MI.
// This will get updated later and in the meantime, if we reach that
// phi again, because of a loop, we will cut the search thanks to this
// cache entry.
// We could actually build up more information on the phi by not cutting
// the search, but that additional information is more a side effect
// than an intended choice.
// Therefore, for now, save on compile time until we derive a proper way
// to derive known bits for PHIs within loops.
ComputeKnownBitsCache[R] = KnownBits(BitWidth);
// PHI's operand are a mix of registers and basic blocks interleaved.
// We only care about the register ones.
for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) {
const MachineOperand &Src = MI.getOperand(Idx);
Register SrcReg = Src.getReg();
// Look through trivial copies and phis but don't look through trivial
// copies or phis of the form `%1:(s32) = OP %0:gpr32`, known-bits
// analysis is currently unable to determine the bit width of a
// register class.
//
// We can't use NoSubRegister by name as it's defined by each target but
// it's always defined to be 0 by tablegen.
if (SrcReg.isVirtual() && Src.getSubReg() == 0 /*NoSubRegister*/ &&
MRI.getType(SrcReg).isValid()) {
// For COPYs we don't do anything, don't increase the depth.
computeKnownBitsImpl(SrcReg, Known2, DemandedElts,
Depth + (Opcode != TargetOpcode::COPY));
Known.One &= Known2.One;
Known.Zero &= Known2.Zero;
// If we reach a point where we don't know anything
// just stop looking through the operands.
if (Known.One == 0 && Known.Zero == 0)
break;
} else {
// We know nothing.
Known = KnownBits(BitWidth);
break;
}
}
break;
}
case TargetOpcode::G_CONSTANT: {
auto CstVal = getConstantVRegVal(R, MRI);
if (!CstVal)
break;
Known.One = *CstVal;
Known.Zero = ~Known.One;
break;
}
case TargetOpcode::G_FRAME_INDEX: {
computeKnownBitsForFrameIndex(R, Known, DemandedElts);
break;
}
case TargetOpcode::G_SUB: {
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
Depth + 1);
Known = KnownBits::computeForAddSub(/*Add*/ false, /*NSW*/ false, Known,
Known2);
break;
}
case TargetOpcode::G_XOR: {
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
Depth + 1);
// Output known-0 bits are known if clear or set in both the LHS & RHS.
APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
// Output known-1 are known to be set if set in only one of the LHS, RHS.
Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
Known.Zero = KnownZeroOut;
break;
}
case TargetOpcode::G_PTR_ADD: {
// G_PTR_ADD is like G_ADD. FIXME: Is this true for all targets?
LLT Ty = MRI.getType(MI.getOperand(1).getReg());
if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
break;
LLVM_FALLTHROUGH;
}
case TargetOpcode::G_ADD: {
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
Depth + 1);
Known =
KnownBits::computeForAddSub(/*Add*/ true, /*NSW*/ false, Known, Known2);
break;
}
case TargetOpcode::G_AND: {
// If either the LHS or the RHS are Zero, the result is zero.
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
Depth + 1);
// Output known-1 bits are only known if set in both the LHS & RHS.
Known.One &= Known2.One;
// Output known-0 are known to be clear if zero in either the LHS | RHS.
Known.Zero |= Known2.Zero;
break;
}
case TargetOpcode::G_OR: {
// If either the LHS or the RHS are Zero, the result is zero.
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
Depth + 1);
// Output known-0 bits are only known if clear in both the LHS & RHS.
Known.Zero &= Known2.Zero;
// Output known-1 are known to be set if set in either the LHS | RHS.
Known.One |= Known2.One;
break;
}
case TargetOpcode::G_MUL: {
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
Depth + 1);
// If low bits are zero in either operand, output low known-0 bits.
// Also compute a conservative estimate for high known-0 bits.
// More trickiness is possible, but this is sufficient for the
// interesting case of alignment computation.
unsigned TrailZ =
Known.countMinTrailingZeros() + Known2.countMinTrailingZeros();
unsigned LeadZ =
std::max(Known.countMinLeadingZeros() + Known2.countMinLeadingZeros(),
BitWidth) -
BitWidth;
Known.resetAll();
Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
break;
}
case TargetOpcode::G_SELECT: {
computeKnownBitsImpl(MI.getOperand(3).getReg(), Known, DemandedElts,
Depth + 1);
// If we don't know any bits, early out.
if (Known.isUnknown())
break;
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
Depth + 1);
// Only known if known in both the LHS and RHS.
Known.One &= Known2.One;
Known.Zero &= Known2.Zero;
break;
}
case TargetOpcode::G_FCMP:
case TargetOpcode::G_ICMP: {
if (TL.getBooleanContents(DstTy.isVector(),
Opcode == TargetOpcode::G_FCMP) ==
TargetLowering::ZeroOrOneBooleanContent &&
BitWidth > 1)
Known.Zero.setBitsFrom(1);
break;
}
case TargetOpcode::G_SEXT: {
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
// If the sign bit is known to be zero or one, then sext will extend
// it to the top bits, else it will just zext.
Known = Known.sext(BitWidth);
break;
}
case TargetOpcode::G_ANYEXT: {
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
Known = Known.zext(BitWidth);
break;
}
case TargetOpcode::G_LOAD: {
if (MI.hasOneMemOperand()) {
const MachineMemOperand *MMO = *MI.memoperands_begin();
if (const MDNode *Ranges = MMO->getRanges()) {
computeKnownBitsFromRangeMetadata(*Ranges, Known);
}
}
break;
}
case TargetOpcode::G_ZEXTLOAD: {
// Everything above the retrieved bits is zero
if (MI.hasOneMemOperand())
Known.Zero.setBitsFrom((*MI.memoperands_begin())->getSizeInBits());
break;
}
case TargetOpcode::G_ASHR:
case TargetOpcode::G_LSHR:
case TargetOpcode::G_SHL: {
KnownBits RHSKnown;
computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts,
Depth + 1);
if (!RHSKnown.isConstant()) {
LLVM_DEBUG(
MachineInstr *RHSMI = MRI.getVRegDef(MI.getOperand(2).getReg());
dbgs() << '[' << Depth << "] Shift not known constant: " << *RHSMI);
break;
}
uint64_t Shift = RHSKnown.getConstant().getZExtValue();
LLVM_DEBUG(dbgs() << '[' << Depth << "] Shift is " << Shift << '\n');
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
switch (Opcode) {
case TargetOpcode::G_ASHR:
Known.Zero = Known.Zero.ashr(Shift);
Known.One = Known.One.ashr(Shift);
break;
case TargetOpcode::G_LSHR:
Known.Zero = Known.Zero.lshr(Shift);
Known.One = Known.One.lshr(Shift);
Known.Zero.setBitsFrom(Known.Zero.getBitWidth() - Shift);
break;
case TargetOpcode::G_SHL:
Known.Zero = Known.Zero.shl(Shift);
Known.One = Known.One.shl(Shift);
Known.Zero.setBits(0, Shift);
break;
}
break;
}
case TargetOpcode::G_INTTOPTR:
case TargetOpcode::G_PTRTOINT:
// Fall through and handle them the same as zext/trunc.
LLVM_FALLTHROUGH;
case TargetOpcode::G_ZEXT:
case TargetOpcode::G_TRUNC: {
Register SrcReg = MI.getOperand(1).getReg();
LLT SrcTy = MRI.getType(SrcReg);
unsigned SrcBitWidth = SrcTy.isPointer()
? DL.getIndexSizeInBits(SrcTy.getAddressSpace())
: SrcTy.getSizeInBits();
assert(SrcBitWidth && "SrcBitWidth can't be zero");
Known = Known.zextOrTrunc(SrcBitWidth);
computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1);
Known = Known.zextOrTrunc(BitWidth);
if (BitWidth > SrcBitWidth)
Known.Zero.setBitsFrom(SrcBitWidth);
break;
}
}
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
LLVM_DEBUG(dumpResult(MI, Known, Depth));
// Update the cache.
ComputeKnownBitsCache[R] = Known;
}
unsigned GISelKnownBits::computeNumSignBits(Register R,
const APInt &DemandedElts,
unsigned Depth) {
MachineInstr &MI = *MRI.getVRegDef(R);
unsigned Opcode = MI.getOpcode();
if (Opcode == TargetOpcode::G_CONSTANT)
return MI.getOperand(1).getCImm()->getValue().getNumSignBits();
if (Depth == getMaxDepth())
return 1;
if (!DemandedElts)
return 1; // No demanded elts, better to assume we don't know anything.
LLT DstTy = MRI.getType(R);
// Handle the case where this is called on a register that does not have a
// type constraint. This is unlikely to occur except by looking through copies
// but it is possible for the initial register being queried to be in this
// state.
if (!DstTy.isValid())
return 1;
switch (Opcode) {
case TargetOpcode::COPY: {
MachineOperand &Src = MI.getOperand(1);
if (Src.getReg().isVirtual() && Src.getSubReg() == 0 &&
MRI.getType(Src.getReg()).isValid()) {
// Don't increment Depth for this one since we didn't do any work.
return computeNumSignBits(Src.getReg(), DemandedElts, Depth);
}
return 1;
}
case TargetOpcode::G_SEXT: {
Register Src = MI.getOperand(1).getReg();
LLT SrcTy = MRI.getType(Src);
unsigned Tmp = DstTy.getScalarSizeInBits() - SrcTy.getScalarSizeInBits();
return computeNumSignBits(Src, DemandedElts, Depth + 1) + Tmp;
}
case TargetOpcode::G_TRUNC: {
Register Src = MI.getOperand(1).getReg();
LLT SrcTy = MRI.getType(Src);
// Check if the sign bits of source go down as far as the truncated value.
unsigned DstTyBits = DstTy.getScalarSizeInBits();
unsigned NumSrcBits = SrcTy.getScalarSizeInBits();
unsigned NumSrcSignBits = computeNumSignBits(Src, DemandedElts, Depth + 1);
if (NumSrcSignBits > (NumSrcBits - DstTyBits))
return NumSrcSignBits - (NumSrcBits - DstTyBits);
break;
}
default:
break;
}
// TODO: Handle target instructions
// TODO: Fall back to known bits
return 1;
}
unsigned GISelKnownBits::computeNumSignBits(Register R, unsigned Depth) {
LLT Ty = MRI.getType(R);
APInt DemandedElts = Ty.isVector()
? APInt::getAllOnesValue(Ty.getNumElements())
: APInt(1, 1);
return computeNumSignBits(R, DemandedElts, Depth);
}
void GISelKnownBitsAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool GISelKnownBitsAnalysis::runOnMachineFunction(MachineFunction &MF) {
return false;
}