llvm-project/llvm/test/Transforms/InstCombine/extractvalue.ll

108 lines
3.7 KiB
LLVM

; RUN: opt < %s -instcombine -S | FileCheck %s
declare void @bar({i32, i32} %a)
declare i32 @baz(i32 %a)
; CHECK: define i32 @foo
; CHECK-NOT: extractvalue
define i32 @foo(i32 %a, i32 %b) {
; Instcombine should fold various combinations of insertvalue and extractvalue
; together
; Build a simple struct and pull values out again
%s1.1 = insertvalue {i32, i32} undef, i32 %a, 0
%s1 = insertvalue {i32, i32} %s1.1, i32 %b, 1
%v1 = extractvalue {i32, i32} %s1, 0
%v2 = extractvalue {i32, i32} %s1, 1
; Build a nested struct and pull a sub struct out of it
; This requires instcombine to insert a few insertvalue instructions
%ns1.1 = insertvalue {i32, {i32, i32}} undef, i32 %v1, 0
%ns1.2 = insertvalue {i32, {i32, i32}} %ns1.1, i32 %v1, 1, 0
%ns1 = insertvalue {i32, {i32, i32}} %ns1.2, i32 %v2, 1, 1
%s2 = extractvalue {i32, {i32, i32}} %ns1, 1
%v3 = extractvalue {i32, {i32, i32}} %ns1, 1, 1
call void @bar({i32, i32} %s2)
; Use nested extractvalues to get to a value
%s3 = extractvalue {i32, {i32, i32}} %ns1, 1
%v4 = extractvalue {i32, i32} %s3, 1
call void @bar({i32, i32} %s3)
; Use nested insertvalues to build a nested struct
%s4.1 = insertvalue {i32, i32} undef, i32 %v3, 0
%s4 = insertvalue {i32, i32} %s4.1, i32 %v4, 1
%ns2 = insertvalue {i32, {i32, i32}} undef, {i32, i32} %s4, 1
; And now extract a single value from there
%v5 = extractvalue {i32, {i32, i32}} %ns2, 1, 1
ret i32 %v5
}
; CHECK: define i32 @extract2gep
; CHECK-NEXT: [[GEP:%[a-z0-9]+]] = getelementptr inbounds {{.*}}* %pair, i32 0, i32 1
; CHECK-NEXT: [[LOAD:%[A-Za-z0-9]+]] = load i32* [[GEP]]
; CHECK-NEXT: store
; CHECK-NEXT: br label %loop
; CHECK-NOT: extractvalue
; CHECK: call {{.*}}(i32 [[LOAD]])
; CHECK-NOT: extractvalue
; CHECK: ret i32 [[LOAD]]
define i32 @extract2gep({i32, i32}* %pair, i32* %P) {
; The load + extractvalue should be converted
; to an inbounds gep + smaller load.
; The new load should be in the same spot as the old load.
%L = load {i32, i32}* %pair
store i32 0, i32* %P
br label %loop
loop:
%E = extractvalue {i32, i32} %L, 1
%C = call i32 @baz(i32 %E)
store i32 %C, i32* %P
%cond = icmp eq i32 %C, 0
br i1 %cond, label %end, label %loop
end:
ret i32 %E
}
; CHECK: define i32 @doubleextract2gep
; CHECK-NEXT: [[GEP:%[a-z0-9]+]] = getelementptr inbounds {{.*}}* %arg, i32 0, i32 1, i32 1
; CHECK-NEXT: [[LOAD:%[A-Za-z0-9]+]] = load i32* [[GEP]]
; CHECK-NEXT: ret i32 [[LOAD]]
define i32 @doubleextract2gep({i32, {i32, i32}}* %arg) {
; The load + extractvalues should be converted
; to a 3-index inbounds gep + smaller load.
%L = load {i32, {i32, i32}}* %arg
%E1 = extractvalue {i32, {i32, i32}} %L, 1
%E2 = extractvalue {i32, i32} %E1, 1
ret i32 %E2
}
; CHECK: define i32 @nogep-multiuse
; CHECK-NEXT: load {{.*}} %pair
; CHECK-NEXT: extractvalue
; CHECK-NEXT: extractvalue
; CHECK-NEXT: add
; CHECK-NEXT: ret
define i32 @nogep-multiuse({i32, i32}* %pair) {
; The load should be left unchanged since both parts are needed.
%L = load volatile {i32, i32}* %pair
%LHS = extractvalue {i32, i32} %L, 0
%RHS = extractvalue {i32, i32} %L, 1
%R = add i32 %LHS, %RHS
ret i32 %R
}
; CHECK: define i32 @nogep-volatile
; CHECK-NEXT: load volatile {{.*}} %pair
; CHECK-NEXT: extractvalue
; CHECK-NEXT: ret
define i32 @nogep-volatile({i32, i32}* %pair) {
; The load volatile should be left unchanged.
%L = load volatile {i32, i32}* %pair
%E = extractvalue {i32, i32} %L, 1
ret i32 %E
}