forked from OSchip/llvm-project
802 lines
29 KiB
C++
802 lines
29 KiB
C++
//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass performs various transformations related to eliminating memcpy
|
|
// calls, or transforming sets of stores into memset's.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "memcpyopt"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/IntrinsicInst.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/LLVMContext.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include <list>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
|
|
STATISTIC(NumMemSetInfer, "Number of memsets inferred");
|
|
STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy");
|
|
|
|
/// isBytewiseValue - If the specified value can be set by repeating the same
|
|
/// byte in memory, return the i8 value that it is represented with. This is
|
|
/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
|
|
/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
|
|
/// byte store (e.g. i16 0x1234), return null.
|
|
static Value *isBytewiseValue(Value *V) {
|
|
LLVMContext &Context = V->getContext();
|
|
|
|
// All byte-wide stores are splatable, even of arbitrary variables.
|
|
if (V->getType()->isIntegerTy(8)) return V;
|
|
|
|
// Constant float and double values can be handled as integer values if the
|
|
// corresponding integer value is "byteable". An important case is 0.0.
|
|
if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
|
|
if (CFP->getType()->isFloatTy())
|
|
V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(Context));
|
|
if (CFP->getType()->isDoubleTy())
|
|
V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(Context));
|
|
// Don't handle long double formats, which have strange constraints.
|
|
}
|
|
|
|
// We can handle constant integers that are power of two in size and a
|
|
// multiple of 8 bits.
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
|
|
unsigned Width = CI->getBitWidth();
|
|
if (isPowerOf2_32(Width) && Width > 8) {
|
|
// We can handle this value if the recursive binary decomposition is the
|
|
// same at all levels.
|
|
APInt Val = CI->getValue();
|
|
APInt Val2;
|
|
while (Val.getBitWidth() != 8) {
|
|
unsigned NextWidth = Val.getBitWidth()/2;
|
|
Val2 = Val.lshr(NextWidth);
|
|
Val2.trunc(Val.getBitWidth()/2);
|
|
Val.trunc(Val.getBitWidth()/2);
|
|
|
|
// If the top/bottom halves aren't the same, reject it.
|
|
if (Val != Val2)
|
|
return 0;
|
|
}
|
|
return ConstantInt::get(Context, Val);
|
|
}
|
|
}
|
|
|
|
// Conceptually, we could handle things like:
|
|
// %a = zext i8 %X to i16
|
|
// %b = shl i16 %a, 8
|
|
// %c = or i16 %a, %b
|
|
// but until there is an example that actually needs this, it doesn't seem
|
|
// worth worrying about.
|
|
return 0;
|
|
}
|
|
|
|
static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
|
|
bool &VariableIdxFound, TargetData &TD) {
|
|
// Skip over the first indices.
|
|
gep_type_iterator GTI = gep_type_begin(GEP);
|
|
for (unsigned i = 1; i != Idx; ++i, ++GTI)
|
|
/*skip along*/;
|
|
|
|
// Compute the offset implied by the rest of the indices.
|
|
int64_t Offset = 0;
|
|
for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
|
|
ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
|
|
if (OpC == 0)
|
|
return VariableIdxFound = true;
|
|
if (OpC->isZero()) continue; // No offset.
|
|
|
|
// Handle struct indices, which add their field offset to the pointer.
|
|
if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
|
|
Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, we have a sequential type like an array or vector. Multiply
|
|
// the index by the ElementSize.
|
|
uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
|
|
Offset += Size*OpC->getSExtValue();
|
|
}
|
|
|
|
return Offset;
|
|
}
|
|
|
|
/// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
|
|
/// constant offset, and return that constant offset. For example, Ptr1 might
|
|
/// be &A[42], and Ptr2 might be &A[40]. In this case offset would be -8.
|
|
static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
|
|
TargetData &TD) {
|
|
// Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
|
|
// base. After that base, they may have some number of common (and
|
|
// potentially variable) indices. After that they handle some constant
|
|
// offset, which determines their offset from each other. At this point, we
|
|
// handle no other case.
|
|
GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
|
|
GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
|
|
if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
|
|
return false;
|
|
|
|
// Skip any common indices and track the GEP types.
|
|
unsigned Idx = 1;
|
|
for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
|
|
if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
|
|
break;
|
|
|
|
bool VariableIdxFound = false;
|
|
int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
|
|
int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
|
|
if (VariableIdxFound) return false;
|
|
|
|
Offset = Offset2-Offset1;
|
|
return true;
|
|
}
|
|
|
|
|
|
/// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
|
|
/// This allows us to analyze stores like:
|
|
/// store 0 -> P+1
|
|
/// store 0 -> P+0
|
|
/// store 0 -> P+3
|
|
/// store 0 -> P+2
|
|
/// which sometimes happens with stores to arrays of structs etc. When we see
|
|
/// the first store, we make a range [1, 2). The second store extends the range
|
|
/// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
|
|
/// two ranges into [0, 3) which is memset'able.
|
|
namespace {
|
|
struct MemsetRange {
|
|
// Start/End - A semi range that describes the span that this range covers.
|
|
// The range is closed at the start and open at the end: [Start, End).
|
|
int64_t Start, End;
|
|
|
|
/// StartPtr - The getelementptr instruction that points to the start of the
|
|
/// range.
|
|
Value *StartPtr;
|
|
|
|
/// Alignment - The known alignment of the first store.
|
|
unsigned Alignment;
|
|
|
|
/// TheStores - The actual stores that make up this range.
|
|
SmallVector<StoreInst*, 16> TheStores;
|
|
|
|
bool isProfitableToUseMemset(const TargetData &TD) const;
|
|
|
|
};
|
|
} // end anon namespace
|
|
|
|
bool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const {
|
|
// If we found more than 8 stores to merge or 64 bytes, use memset.
|
|
if (TheStores.size() >= 8 || End-Start >= 64) return true;
|
|
|
|
// Assume that the code generator is capable of merging pairs of stores
|
|
// together if it wants to.
|
|
if (TheStores.size() <= 2) return false;
|
|
|
|
// If we have fewer than 8 stores, it can still be worthwhile to do this.
|
|
// For example, merging 4 i8 stores into an i32 store is useful almost always.
|
|
// However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
|
|
// memset will be split into 2 32-bit stores anyway) and doing so can
|
|
// pessimize the llvm optimizer.
|
|
//
|
|
// Since we don't have perfect knowledge here, make some assumptions: assume
|
|
// the maximum GPR width is the same size as the pointer size and assume that
|
|
// this width can be stored. If so, check to see whether we will end up
|
|
// actually reducing the number of stores used.
|
|
unsigned Bytes = unsigned(End-Start);
|
|
unsigned NumPointerStores = Bytes/TD.getPointerSize();
|
|
|
|
// Assume the remaining bytes if any are done a byte at a time.
|
|
unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize();
|
|
|
|
// If we will reduce the # stores (according to this heuristic), do the
|
|
// transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
|
|
// etc.
|
|
return TheStores.size() > NumPointerStores+NumByteStores;
|
|
}
|
|
|
|
|
|
namespace {
|
|
class MemsetRanges {
|
|
/// Ranges - A sorted list of the memset ranges. We use std::list here
|
|
/// because each element is relatively large and expensive to copy.
|
|
std::list<MemsetRange> Ranges;
|
|
typedef std::list<MemsetRange>::iterator range_iterator;
|
|
TargetData &TD;
|
|
public:
|
|
MemsetRanges(TargetData &td) : TD(td) {}
|
|
|
|
typedef std::list<MemsetRange>::const_iterator const_iterator;
|
|
const_iterator begin() const { return Ranges.begin(); }
|
|
const_iterator end() const { return Ranges.end(); }
|
|
bool empty() const { return Ranges.empty(); }
|
|
|
|
void addStore(int64_t OffsetFromFirst, StoreInst *SI);
|
|
};
|
|
|
|
} // end anon namespace
|
|
|
|
|
|
/// addStore - Add a new store to the MemsetRanges data structure. This adds a
|
|
/// new range for the specified store at the specified offset, merging into
|
|
/// existing ranges as appropriate.
|
|
void MemsetRanges::addStore(int64_t Start, StoreInst *SI) {
|
|
int64_t End = Start+TD.getTypeStoreSize(SI->getOperand(0)->getType());
|
|
|
|
// Do a linear search of the ranges to see if this can be joined and/or to
|
|
// find the insertion point in the list. We keep the ranges sorted for
|
|
// simplicity here. This is a linear search of a linked list, which is ugly,
|
|
// however the number of ranges is limited, so this won't get crazy slow.
|
|
range_iterator I = Ranges.begin(), E = Ranges.end();
|
|
|
|
while (I != E && Start > I->End)
|
|
++I;
|
|
|
|
// We now know that I == E, in which case we didn't find anything to merge
|
|
// with, or that Start <= I->End. If End < I->Start or I == E, then we need
|
|
// to insert a new range. Handle this now.
|
|
if (I == E || End < I->Start) {
|
|
MemsetRange &R = *Ranges.insert(I, MemsetRange());
|
|
R.Start = Start;
|
|
R.End = End;
|
|
R.StartPtr = SI->getPointerOperand();
|
|
R.Alignment = SI->getAlignment();
|
|
R.TheStores.push_back(SI);
|
|
return;
|
|
}
|
|
|
|
// This store overlaps with I, add it.
|
|
I->TheStores.push_back(SI);
|
|
|
|
// At this point, we may have an interval that completely contains our store.
|
|
// If so, just add it to the interval and return.
|
|
if (I->Start <= Start && I->End >= End)
|
|
return;
|
|
|
|
// Now we know that Start <= I->End and End >= I->Start so the range overlaps
|
|
// but is not entirely contained within the range.
|
|
|
|
// See if the range extends the start of the range. In this case, it couldn't
|
|
// possibly cause it to join the prior range, because otherwise we would have
|
|
// stopped on *it*.
|
|
if (Start < I->Start) {
|
|
I->Start = Start;
|
|
I->StartPtr = SI->getPointerOperand();
|
|
I->Alignment = SI->getAlignment();
|
|
}
|
|
|
|
// Now we know that Start <= I->End and Start >= I->Start (so the startpoint
|
|
// is in or right at the end of I), and that End >= I->Start. Extend I out to
|
|
// End.
|
|
if (End > I->End) {
|
|
I->End = End;
|
|
range_iterator NextI = I;
|
|
while (++NextI != E && End >= NextI->Start) {
|
|
// Merge the range in.
|
|
I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
|
|
if (NextI->End > I->End)
|
|
I->End = NextI->End;
|
|
Ranges.erase(NextI);
|
|
NextI = I;
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MemCpyOpt Pass
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class MemCpyOpt : public FunctionPass {
|
|
bool runOnFunction(Function &F);
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
MemCpyOpt() : FunctionPass(ID) {}
|
|
|
|
private:
|
|
// This transformation requires dominator postdominator info
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<DominatorTree>();
|
|
AU.addRequired<MemoryDependenceAnalysis>();
|
|
AU.addRequired<AliasAnalysis>();
|
|
AU.addPreserved<AliasAnalysis>();
|
|
AU.addPreserved<MemoryDependenceAnalysis>();
|
|
}
|
|
|
|
// Helper fuctions
|
|
bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
|
|
bool processMemCpy(MemCpyInst *M);
|
|
bool processMemMove(MemMoveInst *M);
|
|
bool performCallSlotOptzn(MemCpyInst *cpy, CallInst *C);
|
|
bool iterateOnFunction(Function &F);
|
|
};
|
|
|
|
char MemCpyOpt::ID = 0;
|
|
}
|
|
|
|
// createMemCpyOptPass - The public interface to this file...
|
|
FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
|
|
|
|
INITIALIZE_PASS(MemCpyOpt, "memcpyopt", "MemCpy Optimization", false, false);
|
|
|
|
|
|
|
|
/// processStore - When GVN is scanning forward over instructions, we look for
|
|
/// some other patterns to fold away. In particular, this looks for stores to
|
|
/// neighboring locations of memory. If it sees enough consequtive ones
|
|
/// (currently 4) it attempts to merge them together into a memcpy/memset.
|
|
bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
|
|
if (SI->isVolatile()) return false;
|
|
|
|
LLVMContext &Context = SI->getContext();
|
|
|
|
// There are two cases that are interesting for this code to handle: memcpy
|
|
// and memset. Right now we only handle memset.
|
|
|
|
// Ensure that the value being stored is something that can be memset'able a
|
|
// byte at a time like "0" or "-1" or any width, as well as things like
|
|
// 0xA0A0A0A0 and 0.0.
|
|
Value *ByteVal = isBytewiseValue(SI->getOperand(0));
|
|
if (!ByteVal)
|
|
return false;
|
|
|
|
TargetData *TD = getAnalysisIfAvailable<TargetData>();
|
|
if (!TD) return false;
|
|
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
|
|
Module *M = SI->getParent()->getParent()->getParent();
|
|
|
|
// Okay, so we now have a single store that can be splatable. Scan to find
|
|
// all subsequent stores of the same value to offset from the same pointer.
|
|
// Join these together into ranges, so we can decide whether contiguous blocks
|
|
// are stored.
|
|
MemsetRanges Ranges(*TD);
|
|
|
|
Value *StartPtr = SI->getPointerOperand();
|
|
|
|
BasicBlock::iterator BI = SI;
|
|
for (++BI; !isa<TerminatorInst>(BI); ++BI) {
|
|
if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) {
|
|
// If the call is readnone, ignore it, otherwise bail out. We don't even
|
|
// allow readonly here because we don't want something like:
|
|
// A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
|
|
if (AA.getModRefBehavior(CallSite(BI)) ==
|
|
AliasAnalysis::DoesNotAccessMemory)
|
|
continue;
|
|
|
|
// TODO: If this is a memset, try to join it in.
|
|
|
|
break;
|
|
} else if (isa<VAArgInst>(BI) || isa<LoadInst>(BI))
|
|
break;
|
|
|
|
// If this is a non-store instruction it is fine, ignore it.
|
|
StoreInst *NextStore = dyn_cast<StoreInst>(BI);
|
|
if (NextStore == 0) continue;
|
|
|
|
// If this is a store, see if we can merge it in.
|
|
if (NextStore->isVolatile()) break;
|
|
|
|
// Check to see if this stored value is of the same byte-splattable value.
|
|
if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
|
|
break;
|
|
|
|
// Check to see if this store is to a constant offset from the start ptr.
|
|
int64_t Offset;
|
|
if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, *TD))
|
|
break;
|
|
|
|
Ranges.addStore(Offset, NextStore);
|
|
}
|
|
|
|
// If we have no ranges, then we just had a single store with nothing that
|
|
// could be merged in. This is a very common case of course.
|
|
if (Ranges.empty())
|
|
return false;
|
|
|
|
// If we had at least one store that could be merged in, add the starting
|
|
// store as well. We try to avoid this unless there is at least something
|
|
// interesting as a small compile-time optimization.
|
|
Ranges.addStore(0, SI);
|
|
|
|
|
|
// Now that we have full information about ranges, loop over the ranges and
|
|
// emit memset's for anything big enough to be worthwhile.
|
|
bool MadeChange = false;
|
|
for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
|
|
I != E; ++I) {
|
|
const MemsetRange &Range = *I;
|
|
|
|
if (Range.TheStores.size() == 1) continue;
|
|
|
|
// If it is profitable to lower this range to memset, do so now.
|
|
if (!Range.isProfitableToUseMemset(*TD))
|
|
continue;
|
|
|
|
// Otherwise, we do want to transform this! Create a new memset. We put
|
|
// the memset right before the first instruction that isn't part of this
|
|
// memset block. This ensure that the memset is dominated by any addressing
|
|
// instruction needed by the start of the block.
|
|
BasicBlock::iterator InsertPt = BI;
|
|
|
|
// Get the starting pointer of the block.
|
|
StartPtr = Range.StartPtr;
|
|
|
|
// Determine alignment
|
|
unsigned Alignment = Range.Alignment;
|
|
if (Alignment == 0) {
|
|
const Type *EltType =
|
|
cast<PointerType>(StartPtr->getType())->getElementType();
|
|
Alignment = TD->getABITypeAlignment(EltType);
|
|
}
|
|
|
|
// Cast the start ptr to be i8* as memset requires.
|
|
const PointerType* StartPTy = cast<PointerType>(StartPtr->getType());
|
|
const PointerType *i8Ptr = Type::getInt8PtrTy(Context,
|
|
StartPTy->getAddressSpace());
|
|
if (StartPTy!= i8Ptr)
|
|
StartPtr = new BitCastInst(StartPtr, i8Ptr, StartPtr->getName(),
|
|
InsertPt);
|
|
|
|
Value *Ops[] = {
|
|
StartPtr, ByteVal, // Start, value
|
|
// size
|
|
ConstantInt::get(Type::getInt64Ty(Context), Range.End-Range.Start),
|
|
// align
|
|
ConstantInt::get(Type::getInt32Ty(Context), Alignment),
|
|
// volatile
|
|
ConstantInt::get(Type::getInt1Ty(Context), 0),
|
|
};
|
|
const Type *Tys[] = { Ops[0]->getType(), Ops[2]->getType() };
|
|
|
|
Function *MemSetF = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys, 2);
|
|
|
|
Value *C = CallInst::Create(MemSetF, Ops, Ops+5, "", InsertPt);
|
|
DEBUG(dbgs() << "Replace stores:\n";
|
|
for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
|
|
dbgs() << *Range.TheStores[i];
|
|
dbgs() << "With: " << *C); C=C;
|
|
|
|
// Don't invalidate the iterator
|
|
BBI = BI;
|
|
|
|
// Zap all the stores.
|
|
for (SmallVector<StoreInst*, 16>::const_iterator
|
|
SI = Range.TheStores.begin(),
|
|
SE = Range.TheStores.end(); SI != SE; ++SI)
|
|
(*SI)->eraseFromParent();
|
|
++NumMemSetInfer;
|
|
MadeChange = true;
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
|
|
/// performCallSlotOptzn - takes a memcpy and a call that it depends on,
|
|
/// and checks for the possibility of a call slot optimization by having
|
|
/// the call write its result directly into the destination of the memcpy.
|
|
bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
|
|
// The general transformation to keep in mind is
|
|
//
|
|
// call @func(..., src, ...)
|
|
// memcpy(dest, src, ...)
|
|
//
|
|
// ->
|
|
//
|
|
// memcpy(dest, src, ...)
|
|
// call @func(..., dest, ...)
|
|
//
|
|
// Since moving the memcpy is technically awkward, we additionally check that
|
|
// src only holds uninitialized values at the moment of the call, meaning that
|
|
// the memcpy can be discarded rather than moved.
|
|
|
|
// Deliberately get the source and destination with bitcasts stripped away,
|
|
// because we'll need to do type comparisons based on the underlying type.
|
|
Value *cpyDest = cpy->getDest();
|
|
Value *cpySrc = cpy->getSource();
|
|
CallSite CS(C);
|
|
|
|
// We need to be able to reason about the size of the memcpy, so we require
|
|
// that it be a constant.
|
|
ConstantInt *cpyLength = dyn_cast<ConstantInt>(cpy->getLength());
|
|
if (!cpyLength)
|
|
return false;
|
|
|
|
// Require that src be an alloca. This simplifies the reasoning considerably.
|
|
AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
|
|
if (!srcAlloca)
|
|
return false;
|
|
|
|
// Check that all of src is copied to dest.
|
|
TargetData *TD = getAnalysisIfAvailable<TargetData>();
|
|
if (!TD) return false;
|
|
|
|
ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
|
|
if (!srcArraySize)
|
|
return false;
|
|
|
|
uint64_t srcSize = TD->getTypeAllocSize(srcAlloca->getAllocatedType()) *
|
|
srcArraySize->getZExtValue();
|
|
|
|
if (cpyLength->getZExtValue() < srcSize)
|
|
return false;
|
|
|
|
// Check that accessing the first srcSize bytes of dest will not cause a
|
|
// trap. Otherwise the transform is invalid since it might cause a trap
|
|
// to occur earlier than it otherwise would.
|
|
if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
|
|
// The destination is an alloca. Check it is larger than srcSize.
|
|
ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
|
|
if (!destArraySize)
|
|
return false;
|
|
|
|
uint64_t destSize = TD->getTypeAllocSize(A->getAllocatedType()) *
|
|
destArraySize->getZExtValue();
|
|
|
|
if (destSize < srcSize)
|
|
return false;
|
|
} else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
|
|
// If the destination is an sret parameter then only accesses that are
|
|
// outside of the returned struct type can trap.
|
|
if (!A->hasStructRetAttr())
|
|
return false;
|
|
|
|
const Type *StructTy = cast<PointerType>(A->getType())->getElementType();
|
|
uint64_t destSize = TD->getTypeAllocSize(StructTy);
|
|
|
|
if (destSize < srcSize)
|
|
return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// Check that src is not accessed except via the call and the memcpy. This
|
|
// guarantees that it holds only undefined values when passed in (so the final
|
|
// memcpy can be dropped), that it is not read or written between the call and
|
|
// the memcpy, and that writing beyond the end of it is undefined.
|
|
SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
|
|
srcAlloca->use_end());
|
|
while (!srcUseList.empty()) {
|
|
User *UI = srcUseList.pop_back_val();
|
|
|
|
if (isa<BitCastInst>(UI)) {
|
|
for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
|
|
I != E; ++I)
|
|
srcUseList.push_back(*I);
|
|
} else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(UI)) {
|
|
if (G->hasAllZeroIndices())
|
|
for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
|
|
I != E; ++I)
|
|
srcUseList.push_back(*I);
|
|
else
|
|
return false;
|
|
} else if (UI != C && UI != cpy) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Since we're changing the parameter to the callsite, we need to make sure
|
|
// that what would be the new parameter dominates the callsite.
|
|
DominatorTree &DT = getAnalysis<DominatorTree>();
|
|
if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
|
|
if (!DT.dominates(cpyDestInst, C))
|
|
return false;
|
|
|
|
// In addition to knowing that the call does not access src in some
|
|
// unexpected manner, for example via a global, which we deduce from
|
|
// the use analysis, we also need to know that it does not sneakily
|
|
// access dest. We rely on AA to figure this out for us.
|
|
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
|
|
if (AA.getModRefInfo(C, cpy->getRawDest(), srcSize) !=
|
|
AliasAnalysis::NoModRef)
|
|
return false;
|
|
|
|
// All the checks have passed, so do the transformation.
|
|
bool changedArgument = false;
|
|
for (unsigned i = 0; i < CS.arg_size(); ++i)
|
|
if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
|
|
if (cpySrc->getType() != cpyDest->getType())
|
|
cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
|
|
cpyDest->getName(), C);
|
|
changedArgument = true;
|
|
if (CS.getArgument(i)->getType() == cpyDest->getType())
|
|
CS.setArgument(i, cpyDest);
|
|
else
|
|
CS.setArgument(i, CastInst::CreatePointerCast(cpyDest,
|
|
CS.getArgument(i)->getType(), cpyDest->getName(), C));
|
|
}
|
|
|
|
if (!changedArgument)
|
|
return false;
|
|
|
|
// Drop any cached information about the call, because we may have changed
|
|
// its dependence information by changing its parameter.
|
|
MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>();
|
|
MD.removeInstruction(C);
|
|
|
|
// Remove the memcpy
|
|
MD.removeInstruction(cpy);
|
|
cpy->eraseFromParent();
|
|
++NumMemCpyInstr;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// processMemCpy - perform simplification of memcpy's. If we have memcpy A
|
|
/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
|
|
/// B to be a memcpy from X to Z (or potentially a memmove, depending on
|
|
/// circumstances). This allows later passes to remove the first memcpy
|
|
/// altogether.
|
|
bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
|
|
MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>();
|
|
|
|
// The are two possible optimizations we can do for memcpy:
|
|
// a) memcpy-memcpy xform which exposes redundance for DSE.
|
|
// b) call-memcpy xform for return slot optimization.
|
|
MemDepResult dep = MD.getDependency(M);
|
|
if (!dep.isClobber())
|
|
return false;
|
|
if (!isa<MemCpyInst>(dep.getInst())) {
|
|
if (CallInst *C = dyn_cast<CallInst>(dep.getInst()))
|
|
return performCallSlotOptzn(M, C);
|
|
return false;
|
|
}
|
|
|
|
MemCpyInst *MDep = cast<MemCpyInst>(dep.getInst());
|
|
|
|
// We can only transforms memcpy's where the dest of one is the source of the
|
|
// other
|
|
if (M->getSource() != MDep->getDest())
|
|
return false;
|
|
|
|
// Second, the length of the memcpy's must be the same, or the preceeding one
|
|
// must be larger than the following one.
|
|
ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
|
|
ConstantInt *C2 = dyn_cast<ConstantInt>(M->getLength());
|
|
if (!C1 || !C2)
|
|
return false;
|
|
|
|
uint64_t DepSize = C1->getValue().getZExtValue();
|
|
uint64_t CpySize = C2->getValue().getZExtValue();
|
|
|
|
if (DepSize < CpySize)
|
|
return false;
|
|
|
|
// Finally, we have to make sure that the dest of the second does not
|
|
// alias the source of the first
|
|
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
|
|
if (AA.alias(M->getRawDest(), CpySize, MDep->getRawSource(), DepSize) !=
|
|
AliasAnalysis::NoAlias)
|
|
return false;
|
|
else if (AA.alias(M->getRawDest(), CpySize, M->getRawSource(), CpySize) !=
|
|
AliasAnalysis::NoAlias)
|
|
return false;
|
|
else if (AA.alias(MDep->getRawDest(), DepSize, MDep->getRawSource(), DepSize)
|
|
!= AliasAnalysis::NoAlias)
|
|
return false;
|
|
|
|
// If all checks passed, then we can transform these memcpy's
|
|
const Type *ArgTys[3] = { M->getRawDest()->getType(),
|
|
MDep->getRawSource()->getType(),
|
|
M->getLength()->getType() };
|
|
Function *MemCpyFun = Intrinsic::getDeclaration(
|
|
M->getParent()->getParent()->getParent(),
|
|
M->getIntrinsicID(), ArgTys, 3);
|
|
|
|
Value *Args[5] = {
|
|
M->getRawDest(), MDep->getRawSource(), M->getLength(),
|
|
M->getAlignmentCst(), M->getVolatileCst()
|
|
};
|
|
|
|
CallInst *C = CallInst::Create(MemCpyFun, Args, Args+5, "", M);
|
|
|
|
|
|
// If C and M don't interfere, then this is a valid transformation. If they
|
|
// did, this would mean that the two sources overlap, which would be bad.
|
|
if (MD.getDependency(C) == dep) {
|
|
MD.removeInstruction(M);
|
|
M->eraseFromParent();
|
|
++NumMemCpyInstr;
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, there was no point in doing this, so we remove the call we
|
|
// inserted and act like nothing happened.
|
|
MD.removeInstruction(C);
|
|
C->eraseFromParent();
|
|
return false;
|
|
}
|
|
|
|
/// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
|
|
/// are guaranteed not to alias.
|
|
bool MemCpyOpt::processMemMove(MemMoveInst *M) {
|
|
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
|
|
|
|
// If the memmove is a constant size, use it for the alias query, this allows
|
|
// us to optimize things like: memmove(P, P+64, 64);
|
|
uint64_t MemMoveSize = ~0ULL;
|
|
if (ConstantInt *Len = dyn_cast<ConstantInt>(M->getLength()))
|
|
MemMoveSize = Len->getZExtValue();
|
|
|
|
// See if the pointers alias.
|
|
if (AA.alias(M->getRawDest(), MemMoveSize, M->getRawSource(), MemMoveSize) !=
|
|
AliasAnalysis::NoAlias)
|
|
return false;
|
|
|
|
DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
|
|
|
|
// If not, then we know we can transform this.
|
|
Module *Mod = M->getParent()->getParent()->getParent();
|
|
const Type *ArgTys[3] = { M->getRawDest()->getType(),
|
|
M->getRawSource()->getType(),
|
|
M->getLength()->getType() };
|
|
M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy,
|
|
ArgTys, 3));
|
|
|
|
// MemDep may have over conservative information about this instruction, just
|
|
// conservatively flush it from the cache.
|
|
getAnalysis<MemoryDependenceAnalysis>().removeInstruction(M);
|
|
|
|
++NumMoveToCpy;
|
|
return true;
|
|
}
|
|
|
|
|
|
// MemCpyOpt::iterateOnFunction - Executes one iteration of GVN.
|
|
bool MemCpyOpt::iterateOnFunction(Function &F) {
|
|
bool MadeChange = false;
|
|
|
|
// Walk all instruction in the function.
|
|
for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
|
|
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
|
|
BI != BE;) {
|
|
// Avoid invalidating the iterator.
|
|
Instruction *I = BI++;
|
|
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(I))
|
|
MadeChange |= processStore(SI, BI);
|
|
else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
|
|
MadeChange |= processMemCpy(M);
|
|
else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) {
|
|
if (processMemMove(M)) {
|
|
--BI; // Reprocess the new memcpy.
|
|
MadeChange = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
// MemCpyOpt::runOnFunction - This is the main transformation entry point for a
|
|
// function.
|
|
//
|
|
bool MemCpyOpt::runOnFunction(Function &F) {
|
|
bool MadeChange = false;
|
|
while (1) {
|
|
if (!iterateOnFunction(F))
|
|
break;
|
|
MadeChange = true;
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
|
|
|