llvm-project/llvm/test/Transforms/SROA/fca.ll

50 lines
1.5 KiB
LLVM

; RUN: opt < %s -sroa -S | FileCheck %s
; RUN: opt < %s -sroa -force-ssa-updater -S | FileCheck %s
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-n8:16:32:64"
define { i32, i32 } @test0(i32 %x, i32 %y) {
; CHECK-LABEL: @test0(
; CHECK-NOT: alloca
; CHECK: insertvalue { i32, i32 }
; CHECK: insertvalue { i32, i32 }
; CHECK: ret { i32, i32 }
entry:
%a = alloca { i32, i32 }
store { i32, i32 } undef, { i32, i32 }* %a
%gep1 = getelementptr inbounds { i32, i32 }* %a, i32 0, i32 0
store i32 %x, i32* %gep1
%gep2 = getelementptr inbounds { i32, i32 }* %a, i32 0, i32 1
store i32 %y, i32* %gep2
%result = load { i32, i32 }* %a
ret { i32, i32 } %result
}
define { i32, i32 } @test1(i32 %x, i32 %y) {
; FIXME: This may be too conservative. Duncan argues that we are allowed to
; split the volatile load and store here but must produce volatile scalar loads
; and stores from them.
; CHECK-LABEL: @test1(
; CHECK: alloca
; CHECK: alloca
; CHECK: load volatile { i32, i32 }*
; CHECK: store volatile { i32, i32 }
; CHECK: ret { i32, i32 }
entry:
%a = alloca { i32, i32 }
%b = alloca { i32, i32 }
%gep1 = getelementptr inbounds { i32, i32 }* %a, i32 0, i32 0
store i32 %x, i32* %gep1
%gep2 = getelementptr inbounds { i32, i32 }* %a, i32 0, i32 1
store i32 %y, i32* %gep2
%result = load volatile { i32, i32 }* %a
store volatile { i32, i32 } %result, { i32, i32 }* %b
ret { i32, i32 } %result
}