forked from OSchip/llvm-project
259 lines
9.9 KiB
C++
259 lines
9.9 KiB
C++
//===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/Passes.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/AssemblyAnnotationWriter.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/FormattedStream.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
using namespace llvm;
|
|
|
|
/// Computes loop safety information, checks loop body & header
|
|
/// for the possibility of may throw exception.
|
|
///
|
|
void llvm::computeLoopSafetyInfo(LoopSafetyInfo *SafetyInfo, Loop *CurLoop) {
|
|
assert(CurLoop != nullptr && "CurLoop cant be null");
|
|
BasicBlock *Header = CurLoop->getHeader();
|
|
// Setting default safety values.
|
|
SafetyInfo->MayThrow = false;
|
|
SafetyInfo->HeaderMayThrow = false;
|
|
// Iterate over header and compute safety info.
|
|
SafetyInfo->HeaderMayThrow =
|
|
!isGuaranteedToTransferExecutionToSuccessor(Header);
|
|
|
|
SafetyInfo->MayThrow = SafetyInfo->HeaderMayThrow;
|
|
// Iterate over loop instructions and compute safety info.
|
|
// Skip header as it has been computed and stored in HeaderMayThrow.
|
|
// The first block in loopinfo.Blocks is guaranteed to be the header.
|
|
assert(Header == *CurLoop->getBlocks().begin() &&
|
|
"First block must be header");
|
|
for (Loop::block_iterator BB = std::next(CurLoop->block_begin()),
|
|
BBE = CurLoop->block_end();
|
|
(BB != BBE) && !SafetyInfo->MayThrow; ++BB)
|
|
SafetyInfo->MayThrow |=
|
|
!isGuaranteedToTransferExecutionToSuccessor(*BB);
|
|
|
|
// Compute funclet colors if we might sink/hoist in a function with a funclet
|
|
// personality routine.
|
|
Function *Fn = CurLoop->getHeader()->getParent();
|
|
if (Fn->hasPersonalityFn())
|
|
if (Constant *PersonalityFn = Fn->getPersonalityFn())
|
|
if (isFuncletEHPersonality(classifyEHPersonality(PersonalityFn)))
|
|
SafetyInfo->BlockColors = colorEHFunclets(*Fn);
|
|
}
|
|
|
|
/// Return true if we can prove that the given ExitBlock is not reached on the
|
|
/// first iteration of the given loop. That is, the backedge of the loop must
|
|
/// be executed before the ExitBlock is executed in any dynamic execution trace.
|
|
static bool CanProveNotTakenFirstIteration(BasicBlock *ExitBlock,
|
|
const DominatorTree *DT,
|
|
const Loop *CurLoop) {
|
|
auto *CondExitBlock = ExitBlock->getSinglePredecessor();
|
|
if (!CondExitBlock)
|
|
// expect unique exits
|
|
return false;
|
|
assert(CurLoop->contains(CondExitBlock) && "meaning of exit block");
|
|
auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator());
|
|
if (!BI || !BI->isConditional())
|
|
return false;
|
|
auto *Cond = dyn_cast<CmpInst>(BI->getCondition());
|
|
if (!Cond)
|
|
return false;
|
|
// todo: this would be a lot more powerful if we used scev, but all the
|
|
// plumbing is currently missing to pass a pointer in from the pass
|
|
// Check for cmp (phi [x, preheader] ...), y where (pred x, y is known
|
|
auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0));
|
|
auto *RHS = Cond->getOperand(1);
|
|
if (!LHS || LHS->getParent() != CurLoop->getHeader())
|
|
return false;
|
|
auto DL = ExitBlock->getModule()->getDataLayout();
|
|
auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader());
|
|
auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(),
|
|
IVStart, RHS,
|
|
{DL, /*TLI*/ nullptr,
|
|
DT, /*AC*/ nullptr, BI});
|
|
auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull);
|
|
if (!SimpleCst)
|
|
return false;
|
|
if (ExitBlock == BI->getSuccessor(0))
|
|
return SimpleCst->isZeroValue();
|
|
assert(ExitBlock == BI->getSuccessor(1) && "implied by above");
|
|
return SimpleCst->isAllOnesValue();
|
|
}
|
|
|
|
/// Returns true if the instruction in a loop is guaranteed to execute at least
|
|
/// once.
|
|
bool llvm::isGuaranteedToExecute(const Instruction &Inst,
|
|
const DominatorTree *DT, const Loop *CurLoop,
|
|
const LoopSafetyInfo *SafetyInfo) {
|
|
// We have to check to make sure that the instruction dominates all
|
|
// of the exit blocks. If it doesn't, then there is a path out of the loop
|
|
// which does not execute this instruction, so we can't hoist it.
|
|
|
|
// If the instruction is in the header block for the loop (which is very
|
|
// common), it is always guaranteed to dominate the exit blocks. Since this
|
|
// is a common case, and can save some work, check it now.
|
|
if (Inst.getParent() == CurLoop->getHeader())
|
|
// If there's a throw in the header block, we can't guarantee we'll reach
|
|
// Inst.
|
|
return !SafetyInfo->HeaderMayThrow;
|
|
|
|
// Somewhere in this loop there is an instruction which may throw and make us
|
|
// exit the loop.
|
|
if (SafetyInfo->MayThrow)
|
|
return false;
|
|
|
|
// Note: There are two styles of reasoning intermixed below for
|
|
// implementation efficiency reasons. They are:
|
|
// 1) If we can prove that the instruction dominates all exit blocks, then we
|
|
// know the instruction must have executed on *some* iteration before we
|
|
// exit. We do not prove *which* iteration the instruction must execute on.
|
|
// 2) If we can prove that the instruction dominates the latch and all exits
|
|
// which might be taken on the first iteration, we know the instruction must
|
|
// execute on the first iteration. This second style allows a conditional
|
|
// exit before the instruction of interest which is provably not taken on the
|
|
// first iteration. This is a quite common case for range check like
|
|
// patterns. TODO: support loops with multiple latches.
|
|
|
|
const bool InstDominatesLatch =
|
|
CurLoop->getLoopLatch() != nullptr &&
|
|
DT->dominates(Inst.getParent(), CurLoop->getLoopLatch());
|
|
|
|
// Get the exit blocks for the current loop.
|
|
SmallVector<BasicBlock *, 8> ExitBlocks;
|
|
CurLoop->getExitBlocks(ExitBlocks);
|
|
|
|
// Verify that the block dominates each of the exit blocks of the loop.
|
|
for (BasicBlock *ExitBlock : ExitBlocks)
|
|
if (!DT->dominates(Inst.getParent(), ExitBlock))
|
|
if (!InstDominatesLatch ||
|
|
!CanProveNotTakenFirstIteration(ExitBlock, DT, CurLoop))
|
|
return false;
|
|
|
|
// As a degenerate case, if the loop is statically infinite then we haven't
|
|
// proven anything since there are no exit blocks.
|
|
if (ExitBlocks.empty())
|
|
return false;
|
|
|
|
// FIXME: In general, we have to prove that the loop isn't an infinite loop.
|
|
// See http::llvm.org/PR24078 . (The "ExitBlocks.empty()" check above is
|
|
// just a special case of this.)
|
|
return true;
|
|
}
|
|
|
|
|
|
namespace {
|
|
struct MustExecutePrinter : public FunctionPass {
|
|
|
|
static char ID; // Pass identification, replacement for typeid
|
|
MustExecutePrinter() : FunctionPass(ID) {
|
|
initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
}
|
|
bool runOnFunction(Function &F) override;
|
|
};
|
|
}
|
|
|
|
char MustExecutePrinter::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute",
|
|
"Instructions which execute on loop entry", false, true)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
|
|
INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute",
|
|
"Instructions which execute on loop entry", false, true)
|
|
|
|
FunctionPass *llvm::createMustExecutePrinter() {
|
|
return new MustExecutePrinter();
|
|
}
|
|
|
|
bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) {
|
|
// TODO: move loop specific code to analysis
|
|
//LoopSafetyInfo LSI;
|
|
//computeLoopSafetyInfo(&LSI, L);
|
|
//return isGuaranteedToExecute(I, DT, L, &LSI);
|
|
return isGuaranteedToExecuteForEveryIteration(&I, L);
|
|
}
|
|
|
|
/// \brief An assembly annotator class to print must execute information in
|
|
/// comments.
|
|
class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter {
|
|
DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec;
|
|
|
|
public:
|
|
MustExecuteAnnotatedWriter(const Function &F,
|
|
DominatorTree &DT, LoopInfo &LI) {
|
|
for (auto &I: instructions(F)) {
|
|
Loop *L = LI.getLoopFor(I.getParent());
|
|
while (L) {
|
|
if (isMustExecuteIn(I, L, &DT)) {
|
|
MustExec[&I].push_back(L);
|
|
}
|
|
L = L->getParentLoop();
|
|
};
|
|
}
|
|
}
|
|
MustExecuteAnnotatedWriter(const Module &M,
|
|
DominatorTree &DT, LoopInfo &LI) {
|
|
for (auto &F : M)
|
|
for (auto &I: instructions(F)) {
|
|
Loop *L = LI.getLoopFor(I.getParent());
|
|
while (L) {
|
|
if (isMustExecuteIn(I, L, &DT)) {
|
|
MustExec[&I].push_back(L);
|
|
}
|
|
L = L->getParentLoop();
|
|
};
|
|
}
|
|
}
|
|
|
|
|
|
void printInfoComment(const Value &V, formatted_raw_ostream &OS) override {
|
|
if (!MustExec.count(&V))
|
|
return;
|
|
|
|
const auto &Loops = MustExec.lookup(&V);
|
|
const auto NumLoops = Loops.size();
|
|
if (NumLoops > 1)
|
|
OS << " ; (mustexec in " << NumLoops << " loops: ";
|
|
else
|
|
OS << " ; (mustexec in: ";
|
|
|
|
bool first = true;
|
|
for (const Loop *L : Loops) {
|
|
if (!first)
|
|
OS << ", ";
|
|
first = false;
|
|
OS << L->getHeader()->getName();
|
|
}
|
|
OS << ")";
|
|
}
|
|
};
|
|
|
|
bool MustExecutePrinter::runOnFunction(Function &F) {
|
|
auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
|
|
MustExecuteAnnotatedWriter Writer(F, DT, LI);
|
|
F.print(dbgs(), &Writer);
|
|
|
|
return false;
|
|
}
|