forked from OSchip/llvm-project
791 lines
30 KiB
C++
791 lines
30 KiB
C++
//===-- ProfileGenerator.cpp - Profile Generator ---------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ProfileGenerator.h"
|
|
#include "ProfiledBinary.h"
|
|
#include "llvm/ProfileData/ProfileCommon.h"
|
|
#include <unordered_set>
|
|
|
|
cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
|
|
cl::Required,
|
|
cl::desc("Output profile file"));
|
|
static cl::alias OutputA("o", cl::desc("Alias for --output"),
|
|
cl::aliasopt(OutputFilename));
|
|
|
|
static cl::opt<SampleProfileFormat> OutputFormat(
|
|
"format", cl::desc("Format of output profile"), cl::init(SPF_Ext_Binary),
|
|
cl::values(
|
|
clEnumValN(SPF_Binary, "binary", "Binary encoding (default)"),
|
|
clEnumValN(SPF_Compact_Binary, "compbinary", "Compact binary encoding"),
|
|
clEnumValN(SPF_Ext_Binary, "extbinary", "Extensible binary encoding"),
|
|
clEnumValN(SPF_Text, "text", "Text encoding"),
|
|
clEnumValN(SPF_GCC, "gcc",
|
|
"GCC encoding (only meaningful for -sample)")));
|
|
|
|
cl::opt<bool> UseMD5(
|
|
"use-md5", cl::init(false), cl::Hidden,
|
|
cl::desc("Use md5 to represent function names in the output profile (only "
|
|
"meaningful for -extbinary)"));
|
|
|
|
static cl::opt<int32_t, true> RecursionCompression(
|
|
"compress-recursion",
|
|
cl::desc("Compressing recursion by deduplicating adjacent frame "
|
|
"sequences up to the specified size. -1 means no size limit."),
|
|
cl::Hidden,
|
|
cl::location(llvm::sampleprof::CSProfileGenerator::MaxCompressionSize));
|
|
|
|
static cl::opt<bool> CSProfMergeColdContext(
|
|
"csprof-merge-cold-context", cl::init(true), cl::ZeroOrMore,
|
|
cl::desc("If the total count of context profile is smaller than "
|
|
"the threshold, it will be merged into context-less base "
|
|
"profile."));
|
|
|
|
static cl::opt<bool> CSProfTrimColdContext(
|
|
"csprof-trim-cold-context", cl::init(false), cl::ZeroOrMore,
|
|
cl::desc("If the total count of the profile after all merge is done "
|
|
"is still smaller than threshold, it will be trimmed."));
|
|
|
|
static cl::opt<uint32_t> CSProfMaxColdContextDepth(
|
|
"csprof-max-cold-context-depth", cl::init(1), cl::ZeroOrMore,
|
|
cl::desc("Keep the last K contexts while merging cold profile. 1 means the "
|
|
"context-less base profile"));
|
|
|
|
static cl::opt<int, true> CSProfMaxContextDepth(
|
|
"csprof-max-context-depth", cl::ZeroOrMore,
|
|
cl::desc("Keep the last K contexts while merging profile. -1 means no "
|
|
"depth limit."),
|
|
cl::location(llvm::sampleprof::CSProfileGenerator::MaxContextDepth));
|
|
|
|
extern cl::opt<int> ProfileSummaryCutoffCold;
|
|
|
|
using namespace llvm;
|
|
using namespace sampleprof;
|
|
|
|
namespace llvm {
|
|
namespace sampleprof {
|
|
|
|
// Initialize the MaxCompressionSize to -1 which means no size limit
|
|
int32_t CSProfileGenerator::MaxCompressionSize = -1;
|
|
|
|
int CSProfileGenerator::MaxContextDepth = -1;
|
|
|
|
std::unique_ptr<ProfileGeneratorBase>
|
|
ProfileGeneratorBase::create(ProfiledBinary *Binary,
|
|
const ContextSampleCounterMap &SampleCounters,
|
|
enum PerfScriptType SampleType) {
|
|
std::unique_ptr<ProfileGeneratorBase> Generator;
|
|
if (SampleType == PERF_LBR) {
|
|
// TODO: Support probe based profile generation
|
|
Generator.reset(new ProfileGenerator(Binary, SampleCounters));
|
|
} else if (SampleType == PERF_LBR_STACK) {
|
|
Generator.reset(new CSProfileGenerator(Binary, SampleCounters));
|
|
} else {
|
|
llvm_unreachable("Unsupported perfscript!");
|
|
}
|
|
|
|
return Generator;
|
|
}
|
|
|
|
void ProfileGeneratorBase::write(std::unique_ptr<SampleProfileWriter> Writer,
|
|
SampleProfileMap &ProfileMap) {
|
|
if (std::error_code EC = Writer->write(ProfileMap))
|
|
exitWithError(std::move(EC));
|
|
}
|
|
|
|
void ProfileGeneratorBase::write() {
|
|
auto WriterOrErr = SampleProfileWriter::create(OutputFilename, OutputFormat);
|
|
if (std::error_code EC = WriterOrErr.getError())
|
|
exitWithError(EC, OutputFilename);
|
|
|
|
if (UseMD5) {
|
|
if (OutputFormat != SPF_Ext_Binary)
|
|
WithColor::warning() << "-use-md5 is ignored. Specify "
|
|
"--format=extbinary to enable it\n";
|
|
else
|
|
WriterOrErr.get()->setUseMD5();
|
|
}
|
|
|
|
write(std::move(WriterOrErr.get()), ProfileMap);
|
|
}
|
|
|
|
void ProfileGeneratorBase::findDisjointRanges(RangeSample &DisjointRanges,
|
|
const RangeSample &Ranges) {
|
|
|
|
/*
|
|
Regions may overlap with each other. Using the boundary info, find all
|
|
disjoint ranges and their sample count. BoundaryPoint contains the count
|
|
multiple samples begin/end at this points.
|
|
|
|
|<--100-->| Sample1
|
|
|<------200------>| Sample2
|
|
A B C
|
|
|
|
In the example above,
|
|
Sample1 begins at A, ends at B, its value is 100.
|
|
Sample2 beings at A, ends at C, its value is 200.
|
|
For A, BeginCount is the sum of sample begins at A, which is 300 and no
|
|
samples ends at A, so EndCount is 0.
|
|
Then boundary points A, B, and C with begin/end counts are:
|
|
A: (300, 0)
|
|
B: (0, 100)
|
|
C: (0, 200)
|
|
*/
|
|
struct BoundaryPoint {
|
|
// Sum of sample counts beginning at this point
|
|
uint64_t BeginCount = UINT64_MAX;
|
|
// Sum of sample counts ending at this point
|
|
uint64_t EndCount = UINT64_MAX;
|
|
// Is the begin point of a zero range.
|
|
bool IsZeroRangeBegin = false;
|
|
// Is the end point of a zero range.
|
|
bool IsZeroRangeEnd = false;
|
|
|
|
void addBeginCount(uint64_t Count) {
|
|
if (BeginCount == UINT64_MAX)
|
|
BeginCount = 0;
|
|
BeginCount += Count;
|
|
}
|
|
|
|
void addEndCount(uint64_t Count) {
|
|
if (EndCount == UINT64_MAX)
|
|
EndCount = 0;
|
|
EndCount += Count;
|
|
}
|
|
};
|
|
|
|
/*
|
|
For the above example. With boundary points, follwing logic finds two
|
|
disjoint region of
|
|
|
|
[A,B]: 300
|
|
[B+1,C]: 200
|
|
|
|
If there is a boundary point that both begin and end, the point itself
|
|
becomes a separate disjoint region. For example, if we have original
|
|
ranges of
|
|
|
|
|<--- 100 --->|
|
|
|<--- 200 --->|
|
|
A B C
|
|
|
|
there are three boundary points with their begin/end counts of
|
|
|
|
A: (100, 0)
|
|
B: (200, 100)
|
|
C: (0, 200)
|
|
|
|
the disjoint ranges would be
|
|
|
|
[A, B-1]: 100
|
|
[B, B]: 300
|
|
[B+1, C]: 200.
|
|
|
|
Example for zero value range:
|
|
|
|
|<--- 100 --->|
|
|
|<--- 200 --->|
|
|
|<--------------- 0 ----------------->|
|
|
A B C D E F
|
|
|
|
[A, B-1] : 0
|
|
[B, C] : 100
|
|
[C+1, D-1]: 0
|
|
[D, E] : 200
|
|
[E+1, F] : 0
|
|
*/
|
|
std::map<uint64_t, BoundaryPoint> Boundaries;
|
|
|
|
for (auto Item : Ranges) {
|
|
assert(Item.first.first <= Item.first.second &&
|
|
"Invalid instruction range");
|
|
auto &BeginPoint = Boundaries[Item.first.first];
|
|
auto &EndPoint = Boundaries[Item.first.second];
|
|
uint64_t Count = Item.second;
|
|
|
|
BeginPoint.addBeginCount(Count);
|
|
EndPoint.addEndCount(Count);
|
|
if (Count == 0) {
|
|
BeginPoint.IsZeroRangeBegin = true;
|
|
EndPoint.IsZeroRangeEnd = true;
|
|
}
|
|
}
|
|
|
|
// Use UINT64_MAX to indicate there is no existing range between BeginAddress
|
|
// and the next valid address
|
|
uint64_t BeginAddress = UINT64_MAX;
|
|
int ZeroRangeDepth = 0;
|
|
uint64_t Count = 0;
|
|
for (auto Item : Boundaries) {
|
|
uint64_t Address = Item.first;
|
|
BoundaryPoint &Point = Item.second;
|
|
if (Point.BeginCount != UINT64_MAX) {
|
|
if (BeginAddress != UINT64_MAX)
|
|
DisjointRanges[{BeginAddress, Address - 1}] = Count;
|
|
Count += Point.BeginCount;
|
|
BeginAddress = Address;
|
|
ZeroRangeDepth += Point.IsZeroRangeBegin;
|
|
}
|
|
if (Point.EndCount != UINT64_MAX) {
|
|
assert((BeginAddress != UINT64_MAX) &&
|
|
"First boundary point cannot be 'end' point");
|
|
DisjointRanges[{BeginAddress, Address}] = Count;
|
|
assert(Count >= Point.EndCount && "Mismatched live ranges");
|
|
Count -= Point.EndCount;
|
|
BeginAddress = Address + 1;
|
|
ZeroRangeDepth -= Point.IsZeroRangeEnd;
|
|
// If the remaining count is zero and it's no longer in a zero range, this
|
|
// means we consume all the ranges before, thus mark BeginAddress as
|
|
// UINT64_MAX. e.g. supposing we have two non-overlapping ranges:
|
|
// [<---- 10 ---->]
|
|
// [<---- 20 ---->]
|
|
// A B C D
|
|
// The BeginAddress(B+1) will reset to invalid(UINT64_MAX), so we won't
|
|
// have the [B+1, C-1] zero range.
|
|
if (Count == 0 && ZeroRangeDepth == 0)
|
|
BeginAddress = UINT64_MAX;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ProfileGeneratorBase::updateBodySamplesforFunctionProfile(
|
|
FunctionSamples &FunctionProfile, const SampleContextFrame &LeafLoc,
|
|
uint64_t Count) {
|
|
// Filter out invalid negative(int type) lineOffset
|
|
if (LeafLoc.Callsite.LineOffset & 0x80000000)
|
|
return;
|
|
// Use the maximum count of samples with same line location
|
|
ErrorOr<uint64_t> R = FunctionProfile.findSamplesAt(
|
|
LeafLoc.Callsite.LineOffset, LeafLoc.Callsite.Discriminator);
|
|
uint64_t PreviousCount = R ? R.get() : 0;
|
|
if (PreviousCount <= Count) {
|
|
FunctionProfile.addBodySamples(LeafLoc.Callsite.LineOffset,
|
|
LeafLoc.Callsite.Discriminator,
|
|
Count - PreviousCount);
|
|
}
|
|
}
|
|
|
|
FunctionSamples &
|
|
ProfileGenerator::getTopLevelFunctionProfile(StringRef FuncName) {
|
|
SampleContext Context(FuncName);
|
|
auto Ret = ProfileMap.emplace(Context, FunctionSamples());
|
|
if (Ret.second) {
|
|
FunctionSamples &FProfile = Ret.first->second;
|
|
FProfile.setContext(Context);
|
|
}
|
|
return Ret.first->second;
|
|
}
|
|
|
|
void ProfileGenerator::generateProfile() {
|
|
if (Binary->usePseudoProbes()) {
|
|
// TODO: Support probe based profile generation
|
|
} else {
|
|
generateLineNumBasedProfile();
|
|
}
|
|
}
|
|
|
|
void ProfileGenerator::generateLineNumBasedProfile() {
|
|
assert(SampleCounters.size() == 1 &&
|
|
"Must have one entry for profile generation.");
|
|
const SampleCounter &SC = SampleCounters.begin()->second;
|
|
// Fill in function body samples
|
|
populateBodySamplesForAllFunctions(SC.RangeCounter);
|
|
// Fill in boundary sample counts as well as call site samples for calls
|
|
populateBoundarySamplesForAllFunctions(SC.BranchCounter);
|
|
}
|
|
|
|
FunctionSamples &ProfileGenerator::getLeafProfileAndAddTotalSamples(
|
|
const SampleContextFrameVector &FrameVec, uint64_t Count) {
|
|
// Get top level profile
|
|
FunctionSamples *FunctionProfile =
|
|
&getTopLevelFunctionProfile(FrameVec[0].CallerName);
|
|
FunctionProfile->addTotalSamples(Count);
|
|
|
|
for (size_t I = 1; I < FrameVec.size(); I++) {
|
|
FunctionSamplesMap &SamplesMap =
|
|
FunctionProfile->functionSamplesAt(FrameVec[I - 1].Callsite);
|
|
auto Ret =
|
|
SamplesMap.emplace(FrameVec[I].CallerName.str(), FunctionSamples());
|
|
if (Ret.second) {
|
|
SampleContext Context(FrameVec[I].CallerName);
|
|
Ret.first->second.setContext(Context);
|
|
}
|
|
FunctionProfile = &Ret.first->second;
|
|
FunctionProfile->addTotalSamples(Count);
|
|
}
|
|
|
|
return *FunctionProfile;
|
|
}
|
|
|
|
RangeSample
|
|
ProfileGenerator::preprocessRangeCounter(const RangeSample &RangeCounter) {
|
|
RangeSample Ranges(RangeCounter.begin(), RangeCounter.end());
|
|
// For each range, we search for the range of the function it belongs to and
|
|
// initialize it with zero count, so it remains zero if doesn't hit any
|
|
// samples. This is to be consistent with compiler that interpret zero count
|
|
// as unexecuted(cold).
|
|
for (auto I : RangeCounter) {
|
|
uint64_t RangeBegin = I.first.first;
|
|
uint64_t RangeEnd = I.first.second;
|
|
// Find the function offset range the current range begin belongs to.
|
|
auto FuncRange = Binary->findFuncOffsetRange(RangeBegin);
|
|
if (FuncRange.second == 0)
|
|
WithColor::warning()
|
|
<< "[" << format("%8" PRIx64, RangeBegin) << " - "
|
|
<< format("%8" PRIx64, RangeEnd)
|
|
<< "]: Invalid range or disassembling error in profiled binary.\n";
|
|
else if (RangeEnd > FuncRange.second)
|
|
WithColor::warning() << "[" << format("%8" PRIx64, RangeBegin) << " - "
|
|
<< format("%8" PRIx64, RangeEnd)
|
|
<< "]: Range is across different functions.\n";
|
|
else
|
|
Ranges[FuncRange] += 0;
|
|
}
|
|
RangeSample DisjointRanges;
|
|
findDisjointRanges(DisjointRanges, Ranges);
|
|
return DisjointRanges;
|
|
}
|
|
|
|
void ProfileGenerator::populateBodySamplesForAllFunctions(
|
|
const RangeSample &RangeCounter) {
|
|
for (auto Range : preprocessRangeCounter(RangeCounter)) {
|
|
uint64_t RangeBegin = Binary->offsetToVirtualAddr(Range.first.first);
|
|
uint64_t RangeEnd = Binary->offsetToVirtualAddr(Range.first.second);
|
|
uint64_t Count = Range.second;
|
|
|
|
InstructionPointer IP(Binary, RangeBegin, true);
|
|
// Disjoint ranges may have range in the middle of two instr,
|
|
// e.g. If Instr1 at Addr1, and Instr2 at Addr2, disjoint range
|
|
// can be Addr1+1 to Addr2-1. We should ignore such range.
|
|
while (IP.Address <= RangeEnd) {
|
|
uint64_t Offset = Binary->virtualAddrToOffset(IP.Address);
|
|
const SampleContextFrameVector &FrameVec =
|
|
Binary->getFrameLocationStack(Offset);
|
|
if (!FrameVec.empty()) {
|
|
FunctionSamples &FunctionProfile =
|
|
getLeafProfileAndAddTotalSamples(FrameVec, Count);
|
|
updateBodySamplesforFunctionProfile(FunctionProfile, FrameVec.back(),
|
|
Count);
|
|
}
|
|
// Move to next IP within the range.
|
|
IP.advance();
|
|
}
|
|
}
|
|
}
|
|
|
|
void ProfileGenerator::populateBoundarySamplesForAllFunctions(
|
|
const BranchSample &BranchCounters) {
|
|
for (auto Entry : BranchCounters) {
|
|
uint64_t SourceOffset = Entry.first.first;
|
|
uint64_t TargetOffset = Entry.first.second;
|
|
uint64_t Count = Entry.second;
|
|
assert(Count != 0 && "Unexpected zero weight branch");
|
|
|
|
// Get the callee name by branch target if it's a call branch.
|
|
StringRef CalleeName = FunctionSamples::getCanonicalFnName(
|
|
Binary->getFuncFromStartOffset(TargetOffset));
|
|
if (CalleeName.size() == 0)
|
|
continue;
|
|
// Record called target sample and its count.
|
|
const SampleContextFrameVector &FrameVec =
|
|
Binary->getFrameLocationStack(SourceOffset);
|
|
if (!FrameVec.empty()) {
|
|
FunctionSamples &FunctionProfile =
|
|
getLeafProfileAndAddTotalSamples(FrameVec, Count);
|
|
FunctionProfile.addCalledTargetSamples(
|
|
FrameVec.back().Callsite.LineOffset,
|
|
FrameVec.back().Callsite.Discriminator, CalleeName, Count);
|
|
}
|
|
// Add head samples for callee.
|
|
FunctionSamples &CalleeProfile = getTopLevelFunctionProfile(CalleeName);
|
|
CalleeProfile.addHeadSamples(Count);
|
|
}
|
|
}
|
|
|
|
FunctionSamples &CSProfileGenerator::getFunctionProfileForContext(
|
|
const SampleContextFrameVector &Context, bool WasLeafInlined) {
|
|
auto I = ProfileMap.find(SampleContext(Context));
|
|
if (I == ProfileMap.end()) {
|
|
// Save the new context for future references.
|
|
SampleContextFrames NewContext = *Contexts.insert(Context).first;
|
|
SampleContext FContext(NewContext, RawContext);
|
|
auto Ret = ProfileMap.emplace(FContext, FunctionSamples());
|
|
if (WasLeafInlined)
|
|
FContext.setAttribute(ContextWasInlined);
|
|
FunctionSamples &FProfile = Ret.first->second;
|
|
FProfile.setContext(FContext);
|
|
return Ret.first->second;
|
|
}
|
|
return I->second;
|
|
}
|
|
|
|
void CSProfileGenerator::generateProfile() {
|
|
FunctionSamples::ProfileIsCS = true;
|
|
if (Binary->usePseudoProbes()) {
|
|
// Enable pseudo probe functionalities in SampleProf
|
|
FunctionSamples::ProfileIsProbeBased = true;
|
|
generateProbeBasedProfile();
|
|
} else {
|
|
generateLineNumBasedProfile();
|
|
}
|
|
postProcessProfiles();
|
|
}
|
|
|
|
void CSProfileGenerator::generateLineNumBasedProfile() {
|
|
for (const auto &CI : SampleCounters) {
|
|
const StringBasedCtxKey *CtxKey =
|
|
dyn_cast<StringBasedCtxKey>(CI.first.getPtr());
|
|
// Get or create function profile for the range
|
|
FunctionSamples &FunctionProfile =
|
|
getFunctionProfileForContext(CtxKey->Context, CtxKey->WasLeafInlined);
|
|
|
|
// Fill in function body samples
|
|
populateBodySamplesForFunction(FunctionProfile, CI.second.RangeCounter);
|
|
// Fill in boundary sample counts as well as call site samples for calls
|
|
populateBoundarySamplesForFunction(CtxKey->Context, FunctionProfile,
|
|
CI.second.BranchCounter);
|
|
}
|
|
// Fill in call site value sample for inlined calls and also use context to
|
|
// infer missing samples. Since we don't have call count for inlined
|
|
// functions, we estimate it from inlinee's profile using the entry of the
|
|
// body sample.
|
|
populateInferredFunctionSamples();
|
|
}
|
|
|
|
void CSProfileGenerator::populateBodySamplesForFunction(
|
|
FunctionSamples &FunctionProfile, const RangeSample &RangeCounter) {
|
|
// Compute disjoint ranges first, so we can use MAX
|
|
// for calculating count for each location.
|
|
RangeSample Ranges;
|
|
findDisjointRanges(Ranges, RangeCounter);
|
|
for (auto Range : Ranges) {
|
|
uint64_t RangeBegin = Binary->offsetToVirtualAddr(Range.first.first);
|
|
uint64_t RangeEnd = Binary->offsetToVirtualAddr(Range.first.second);
|
|
uint64_t Count = Range.second;
|
|
// Disjoint ranges have introduce zero-filled gap that
|
|
// doesn't belong to current context, filter them out.
|
|
if (Count == 0)
|
|
continue;
|
|
|
|
InstructionPointer IP(Binary, RangeBegin, true);
|
|
// Disjoint ranges may have range in the middle of two instr,
|
|
// e.g. If Instr1 at Addr1, and Instr2 at Addr2, disjoint range
|
|
// can be Addr1+1 to Addr2-1. We should ignore such range.
|
|
while (IP.Address <= RangeEnd) {
|
|
uint64_t Offset = Binary->virtualAddrToOffset(IP.Address);
|
|
auto LeafLoc = Binary->getInlineLeafFrameLoc(Offset);
|
|
if (LeafLoc.hasValue()) {
|
|
// Recording body sample for this specific context
|
|
updateBodySamplesforFunctionProfile(FunctionProfile, *LeafLoc, Count);
|
|
}
|
|
// Accumulate total sample count even it's a line with invalid debug info
|
|
FunctionProfile.addTotalSamples(Count);
|
|
// Move to next IP within the range
|
|
IP.advance();
|
|
}
|
|
}
|
|
}
|
|
|
|
void CSProfileGenerator::populateBoundarySamplesForFunction(
|
|
SampleContextFrames ContextId, FunctionSamples &FunctionProfile,
|
|
const BranchSample &BranchCounters) {
|
|
|
|
for (auto Entry : BranchCounters) {
|
|
uint64_t SourceOffset = Entry.first.first;
|
|
uint64_t TargetOffset = Entry.first.second;
|
|
uint64_t Count = Entry.second;
|
|
assert(Count != 0 && "Unexpected zero weight branch");
|
|
|
|
// Get the callee name by branch target if it's a call branch
|
|
StringRef CalleeName = FunctionSamples::getCanonicalFnName(
|
|
Binary->getFuncFromStartOffset(TargetOffset));
|
|
if (CalleeName.size() == 0)
|
|
continue;
|
|
|
|
// Record called target sample and its count
|
|
auto LeafLoc = Binary->getInlineLeafFrameLoc(SourceOffset);
|
|
if (!LeafLoc.hasValue())
|
|
continue;
|
|
FunctionProfile.addCalledTargetSamples(LeafLoc->Callsite.LineOffset,
|
|
LeafLoc->Callsite.Discriminator,
|
|
CalleeName, Count);
|
|
|
|
// Record head sample for called target(callee)
|
|
SampleContextFrameVector CalleeCtx(ContextId.begin(), ContextId.end());
|
|
assert(CalleeCtx.back().CallerName == LeafLoc->CallerName &&
|
|
"Leaf function name doesn't match");
|
|
CalleeCtx.back() = *LeafLoc;
|
|
CalleeCtx.emplace_back(CalleeName, LineLocation(0, 0));
|
|
FunctionSamples &CalleeProfile = getFunctionProfileForContext(CalleeCtx);
|
|
CalleeProfile.addHeadSamples(Count);
|
|
}
|
|
}
|
|
|
|
static SampleContextFrame
|
|
getCallerContext(SampleContextFrames CalleeContext,
|
|
SampleContextFrameVector &CallerContext) {
|
|
assert(CalleeContext.size() > 1 && "Unexpected empty context");
|
|
CalleeContext = CalleeContext.drop_back();
|
|
CallerContext.assign(CalleeContext.begin(), CalleeContext.end());
|
|
SampleContextFrame CallerFrame = CallerContext.back();
|
|
CallerContext.back().Callsite = LineLocation(0, 0);
|
|
return CallerFrame;
|
|
}
|
|
|
|
void CSProfileGenerator::populateInferredFunctionSamples() {
|
|
for (const auto &Item : ProfileMap) {
|
|
const auto &CalleeContext = Item.first;
|
|
const FunctionSamples &CalleeProfile = Item.second;
|
|
|
|
// If we already have head sample counts, we must have value profile
|
|
// for call sites added already. Skip to avoid double counting.
|
|
if (CalleeProfile.getHeadSamples())
|
|
continue;
|
|
// If we don't have context, nothing to do for caller's call site.
|
|
// This could happen for entry point function.
|
|
if (CalleeContext.isBaseContext())
|
|
continue;
|
|
|
|
// Infer Caller's frame loc and context ID through string splitting
|
|
SampleContextFrameVector CallerContextId;
|
|
SampleContextFrame &&CallerLeafFrameLoc =
|
|
getCallerContext(CalleeContext.getContextFrames(), CallerContextId);
|
|
SampleContextFrames CallerContext(CallerContextId);
|
|
|
|
// It's possible that we haven't seen any sample directly in the caller,
|
|
// in which case CallerProfile will not exist. But we can't modify
|
|
// ProfileMap while iterating it.
|
|
// TODO: created function profile for those callers too
|
|
if (ProfileMap.find(CallerContext) == ProfileMap.end())
|
|
continue;
|
|
FunctionSamples &CallerProfile = ProfileMap[CallerContext];
|
|
|
|
// Since we don't have call count for inlined functions, we
|
|
// estimate it from inlinee's profile using entry body sample.
|
|
uint64_t EstimatedCallCount = CalleeProfile.getEntrySamples();
|
|
// If we don't have samples with location, use 1 to indicate live.
|
|
if (!EstimatedCallCount && !CalleeProfile.getBodySamples().size())
|
|
EstimatedCallCount = 1;
|
|
CallerProfile.addCalledTargetSamples(
|
|
CallerLeafFrameLoc.Callsite.LineOffset,
|
|
CallerLeafFrameLoc.Callsite.Discriminator,
|
|
CalleeProfile.getContext().getName(), EstimatedCallCount);
|
|
CallerProfile.addBodySamples(CallerLeafFrameLoc.Callsite.LineOffset,
|
|
CallerLeafFrameLoc.Callsite.Discriminator,
|
|
EstimatedCallCount);
|
|
CallerProfile.addTotalSamples(EstimatedCallCount);
|
|
}
|
|
}
|
|
|
|
void CSProfileGenerator::postProcessProfiles() {
|
|
// Compute hot/cold threshold based on profile. This will be used for cold
|
|
// context profile merging/trimming.
|
|
computeSummaryAndThreshold();
|
|
|
|
// Run global pre-inliner to adjust/merge context profile based on estimated
|
|
// inline decisions.
|
|
if (EnableCSPreInliner) {
|
|
CSPreInliner(ProfileMap, *Binary, HotCountThreshold, ColdCountThreshold)
|
|
.run();
|
|
}
|
|
|
|
// Trim and merge cold context profile using cold threshold above. By default,
|
|
// we skip such merging and trimming when preinliner is on.
|
|
if (!EnableCSPreInliner || CSProfTrimColdContext.getNumOccurrences() ||
|
|
CSProfMergeColdContext.getNumOccurrences()) {
|
|
SampleContextTrimmer(ProfileMap)
|
|
.trimAndMergeColdContextProfiles(
|
|
HotCountThreshold, CSProfTrimColdContext, CSProfMergeColdContext,
|
|
CSProfMaxColdContextDepth);
|
|
}
|
|
}
|
|
|
|
void CSProfileGenerator::computeSummaryAndThreshold() {
|
|
SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
|
|
auto Summary = Builder.computeSummaryForProfiles(ProfileMap);
|
|
HotCountThreshold = ProfileSummaryBuilder::getHotCountThreshold(
|
|
(Summary->getDetailedSummary()));
|
|
ColdCountThreshold = ProfileSummaryBuilder::getColdCountThreshold(
|
|
(Summary->getDetailedSummary()));
|
|
}
|
|
|
|
// Helper function to extract context prefix string stack
|
|
// Extract context stack for reusing, leaf context stack will
|
|
// be added compressed while looking up function profile
|
|
static void extractPrefixContextStack(
|
|
SampleContextFrameVector &ContextStack,
|
|
const SmallVectorImpl<const MCDecodedPseudoProbe *> &Probes,
|
|
ProfiledBinary *Binary) {
|
|
for (const auto *P : Probes) {
|
|
Binary->getInlineContextForProbe(P, ContextStack, true);
|
|
}
|
|
}
|
|
|
|
void CSProfileGenerator::generateProbeBasedProfile() {
|
|
for (const auto &CI : SampleCounters) {
|
|
const ProbeBasedCtxKey *CtxKey =
|
|
dyn_cast<ProbeBasedCtxKey>(CI.first.getPtr());
|
|
SampleContextFrameVector ContextStack;
|
|
extractPrefixContextStack(ContextStack, CtxKey->Probes, Binary);
|
|
// Fill in function body samples from probes, also infer caller's samples
|
|
// from callee's probe
|
|
populateBodySamplesWithProbes(CI.second.RangeCounter, ContextStack);
|
|
// Fill in boundary samples for a call probe
|
|
populateBoundarySamplesWithProbes(CI.second.BranchCounter, ContextStack);
|
|
}
|
|
}
|
|
|
|
void CSProfileGenerator::extractProbesFromRange(const RangeSample &RangeCounter,
|
|
ProbeCounterMap &ProbeCounter) {
|
|
RangeSample Ranges;
|
|
findDisjointRanges(Ranges, RangeCounter);
|
|
for (const auto &Range : Ranges) {
|
|
uint64_t RangeBegin = Binary->offsetToVirtualAddr(Range.first.first);
|
|
uint64_t RangeEnd = Binary->offsetToVirtualAddr(Range.first.second);
|
|
uint64_t Count = Range.second;
|
|
// Disjoint ranges have introduce zero-filled gap that
|
|
// doesn't belong to current context, filter them out.
|
|
if (Count == 0)
|
|
continue;
|
|
|
|
InstructionPointer IP(Binary, RangeBegin, true);
|
|
|
|
// Disjoint ranges may have range in the middle of two instr,
|
|
// e.g. If Instr1 at Addr1, and Instr2 at Addr2, disjoint range
|
|
// can be Addr1+1 to Addr2-1. We should ignore such range.
|
|
if (IP.Address > RangeEnd)
|
|
continue;
|
|
|
|
while (IP.Address <= RangeEnd) {
|
|
const AddressProbesMap &Address2ProbesMap =
|
|
Binary->getAddress2ProbesMap();
|
|
auto It = Address2ProbesMap.find(IP.Address);
|
|
if (It != Address2ProbesMap.end()) {
|
|
for (const auto &Probe : It->second) {
|
|
if (!Probe.isBlock())
|
|
continue;
|
|
ProbeCounter[&Probe] += Count;
|
|
}
|
|
}
|
|
|
|
IP.advance();
|
|
}
|
|
}
|
|
}
|
|
|
|
void CSProfileGenerator::populateBodySamplesWithProbes(
|
|
const RangeSample &RangeCounter, SampleContextFrames ContextStack) {
|
|
ProbeCounterMap ProbeCounter;
|
|
// Extract the top frame probes by looking up each address among the range in
|
|
// the Address2ProbeMap
|
|
extractProbesFromRange(RangeCounter, ProbeCounter);
|
|
std::unordered_map<MCDecodedPseudoProbeInlineTree *,
|
|
std::unordered_set<FunctionSamples *>>
|
|
FrameSamples;
|
|
for (auto PI : ProbeCounter) {
|
|
const MCDecodedPseudoProbe *Probe = PI.first;
|
|
uint64_t Count = PI.second;
|
|
FunctionSamples &FunctionProfile =
|
|
getFunctionProfileForLeafProbe(ContextStack, Probe);
|
|
// Record the current frame and FunctionProfile whenever samples are
|
|
// collected for non-danglie probes. This is for reporting all of the
|
|
// zero count probes of the frame later.
|
|
FrameSamples[Probe->getInlineTreeNode()].insert(&FunctionProfile);
|
|
FunctionProfile.addBodySamplesForProbe(Probe->getIndex(), Count);
|
|
FunctionProfile.addTotalSamples(Count);
|
|
if (Probe->isEntry()) {
|
|
FunctionProfile.addHeadSamples(Count);
|
|
// Look up for the caller's function profile
|
|
const auto *InlinerDesc = Binary->getInlinerDescForProbe(Probe);
|
|
if (InlinerDesc != nullptr) {
|
|
// Since the context id will be compressed, we have to use callee's
|
|
// context id to infer caller's context id to ensure they share the
|
|
// same context prefix.
|
|
SampleContextFrames CalleeContextId =
|
|
FunctionProfile.getContext().getContextFrames();
|
|
SampleContextFrameVector CallerContextId;
|
|
SampleContextFrame &&CallerLeafFrameLoc =
|
|
getCallerContext(CalleeContextId, CallerContextId);
|
|
uint64_t CallerIndex = CallerLeafFrameLoc.Callsite.LineOffset;
|
|
assert(CallerIndex &&
|
|
"Inferred caller's location index shouldn't be zero!");
|
|
FunctionSamples &CallerProfile =
|
|
getFunctionProfileForContext(CallerContextId);
|
|
CallerProfile.setFunctionHash(InlinerDesc->FuncHash);
|
|
CallerProfile.addBodySamples(CallerIndex, 0, Count);
|
|
CallerProfile.addTotalSamples(Count);
|
|
CallerProfile.addCalledTargetSamples(
|
|
CallerIndex, 0, FunctionProfile.getContext().getName(), Count);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Assign zero count for remaining probes without sample hits to
|
|
// differentiate from probes optimized away, of which the counts are unknown
|
|
// and will be inferred by the compiler.
|
|
for (auto &I : FrameSamples) {
|
|
for (auto *FunctionProfile : I.second) {
|
|
for (auto *Probe : I.first->getProbes()) {
|
|
FunctionProfile->addBodySamplesForProbe(Probe->getIndex(), 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CSProfileGenerator::populateBoundarySamplesWithProbes(
|
|
const BranchSample &BranchCounter, SampleContextFrames ContextStack) {
|
|
for (auto BI : BranchCounter) {
|
|
uint64_t SourceOffset = BI.first.first;
|
|
uint64_t TargetOffset = BI.first.second;
|
|
uint64_t Count = BI.second;
|
|
uint64_t SourceAddress = Binary->offsetToVirtualAddr(SourceOffset);
|
|
const MCDecodedPseudoProbe *CallProbe =
|
|
Binary->getCallProbeForAddr(SourceAddress);
|
|
if (CallProbe == nullptr)
|
|
continue;
|
|
FunctionSamples &FunctionProfile =
|
|
getFunctionProfileForLeafProbe(ContextStack, CallProbe);
|
|
FunctionProfile.addBodySamples(CallProbe->getIndex(), 0, Count);
|
|
FunctionProfile.addTotalSamples(Count);
|
|
StringRef CalleeName = FunctionSamples::getCanonicalFnName(
|
|
Binary->getFuncFromStartOffset(TargetOffset));
|
|
if (CalleeName.size() == 0)
|
|
continue;
|
|
FunctionProfile.addCalledTargetSamples(CallProbe->getIndex(), 0, CalleeName,
|
|
Count);
|
|
}
|
|
}
|
|
|
|
FunctionSamples &CSProfileGenerator::getFunctionProfileForLeafProbe(
|
|
SampleContextFrames ContextStack, const MCDecodedPseudoProbe *LeafProbe) {
|
|
|
|
// Explicitly copy the context for appending the leaf context
|
|
SampleContextFrameVector NewContextStack(ContextStack.begin(),
|
|
ContextStack.end());
|
|
Binary->getInlineContextForProbe(LeafProbe, NewContextStack, true);
|
|
// For leaf inlined context with the top frame, we should strip off the top
|
|
// frame's probe id, like:
|
|
// Inlined stack: [foo:1, bar:2], the ContextId will be "foo:1 @ bar"
|
|
auto LeafFrame = NewContextStack.back();
|
|
LeafFrame.Callsite = LineLocation(0, 0);
|
|
NewContextStack.pop_back();
|
|
// Compress the context string except for the leaf frame
|
|
CSProfileGenerator::compressRecursionContext(NewContextStack);
|
|
CSProfileGenerator::trimContext(NewContextStack);
|
|
NewContextStack.push_back(LeafFrame);
|
|
|
|
const auto *FuncDesc = Binary->getFuncDescForGUID(LeafProbe->getGuid());
|
|
bool WasLeafInlined = LeafProbe->getInlineTreeNode()->hasInlineSite();
|
|
FunctionSamples &FunctionProile =
|
|
getFunctionProfileForContext(NewContextStack, WasLeafInlined);
|
|
FunctionProile.setFunctionHash(FuncDesc->FuncHash);
|
|
return FunctionProile;
|
|
}
|
|
|
|
} // end namespace sampleprof
|
|
} // end namespace llvm
|