forked from OSchip/llvm-project
559 lines
19 KiB
C++
559 lines
19 KiB
C++
//===- SymbolTable.cpp ----------------------------------------------------===//
|
|
//
|
|
// The LLVM Linker
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Symbol table is a bag of all known symbols. We put all symbols of
|
|
// all input files to the symbol table. The symbol table is basically
|
|
// a hash table with the logic to resolve symbol name conflicts using
|
|
// the symbol types.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SymbolTable.h"
|
|
#include "Config.h"
|
|
#include "Error.h"
|
|
#include "Symbols.h"
|
|
#include "llvm/Bitcode/ReaderWriter.h"
|
|
#include "llvm/Support/StringSaver.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::object;
|
|
using namespace llvm::ELF;
|
|
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
// All input object files must be for the same architecture
|
|
// (e.g. it does not make sense to link x86 object files with
|
|
// MIPS object files.) This function checks for that error.
|
|
template <class ELFT> static bool isCompatible(InputFile *FileP) {
|
|
auto *F = dyn_cast<ELFFileBase<ELFT>>(FileP);
|
|
if (!F)
|
|
return true;
|
|
if (F->getELFKind() == Config->EKind && F->getEMachine() == Config->EMachine)
|
|
return true;
|
|
StringRef A = F->getName();
|
|
StringRef B = Config->Emulation;
|
|
if (B.empty())
|
|
B = Config->FirstElf->getName();
|
|
error(A + " is incompatible with " + B);
|
|
return false;
|
|
}
|
|
|
|
// Add symbols in File to the symbol table.
|
|
template <class ELFT>
|
|
void SymbolTable<ELFT>::addFile(std::unique_ptr<InputFile> File) {
|
|
InputFile *FileP = File.get();
|
|
if (!isCompatible<ELFT>(FileP))
|
|
return;
|
|
|
|
// .a file
|
|
if (auto *F = dyn_cast<ArchiveFile>(FileP)) {
|
|
ArchiveFiles.emplace_back(cast<ArchiveFile>(File.release()));
|
|
F->parse<ELFT>();
|
|
return;
|
|
}
|
|
|
|
// Lazy object file
|
|
if (auto *F = dyn_cast<LazyObjectFile>(FileP)) {
|
|
LazyObjectFiles.emplace_back(cast<LazyObjectFile>(File.release()));
|
|
F->parse<ELFT>();
|
|
return;
|
|
}
|
|
|
|
if (Config->Trace)
|
|
llvm::outs() << getFilename(FileP) << "\n";
|
|
|
|
// .so file
|
|
if (auto *F = dyn_cast<SharedFile<ELFT>>(FileP)) {
|
|
// DSOs are uniquified not by filename but by soname.
|
|
F->parseSoName();
|
|
if (!SoNames.insert(F->getSoName()).second)
|
|
return;
|
|
|
|
SharedFiles.emplace_back(cast<SharedFile<ELFT>>(File.release()));
|
|
F->parseRest();
|
|
return;
|
|
}
|
|
|
|
// LLVM bitcode file
|
|
if (auto *F = dyn_cast<BitcodeFile>(FileP)) {
|
|
BitcodeFiles.emplace_back(cast<BitcodeFile>(File.release()));
|
|
F->parse<ELFT>(ComdatGroups);
|
|
return;
|
|
}
|
|
|
|
// Regular object file
|
|
auto *F = cast<ObjectFile<ELFT>>(FileP);
|
|
ObjectFiles.emplace_back(cast<ObjectFile<ELFT>>(File.release()));
|
|
F->parse(ComdatGroups);
|
|
}
|
|
|
|
// This function is where all the optimizations of link-time
|
|
// optimization happens. When LTO is in use, some input files are
|
|
// not in native object file format but in the LLVM bitcode format.
|
|
// This function compiles bitcode files into a few big native files
|
|
// using LLVM functions and replaces bitcode symbols with the results.
|
|
// Because all bitcode files that consist of a program are passed
|
|
// to the compiler at once, it can do whole-program optimization.
|
|
template <class ELFT> void SymbolTable<ELFT>::addCombinedLtoObject() {
|
|
if (BitcodeFiles.empty())
|
|
return;
|
|
|
|
// Compile bitcode files.
|
|
Lto.reset(new BitcodeCompiler);
|
|
for (const std::unique_ptr<BitcodeFile> &F : BitcodeFiles)
|
|
Lto->add(*F);
|
|
std::vector<std::unique_ptr<InputFile>> IFs = Lto->compile();
|
|
|
|
// Replace bitcode symbols.
|
|
for (auto &IF : IFs) {
|
|
ObjectFile<ELFT> *Obj = cast<ObjectFile<ELFT>>(IF.release());
|
|
|
|
llvm::DenseSet<StringRef> DummyGroups;
|
|
Obj->parse(DummyGroups);
|
|
ObjectFiles.emplace_back(Obj);
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
DefinedRegular<ELFT> *SymbolTable<ELFT>::addAbsolute(StringRef Name,
|
|
uint8_t Visibility) {
|
|
return cast<DefinedRegular<ELFT>>(
|
|
addRegular(Name, STB_GLOBAL, Visibility)->body());
|
|
}
|
|
|
|
// Add Name as an "ignored" symbol. An ignored symbol is a regular
|
|
// linker-synthesized defined symbol, but is only defined if needed.
|
|
template <class ELFT>
|
|
DefinedRegular<ELFT> *SymbolTable<ELFT>::addIgnored(StringRef Name,
|
|
uint8_t Visibility) {
|
|
if (!find(Name))
|
|
return nullptr;
|
|
return addAbsolute(Name, Visibility);
|
|
}
|
|
|
|
// Rename SYM as __wrap_SYM. The original symbol is preserved as __real_SYM.
|
|
// Used to implement --wrap.
|
|
template <class ELFT> void SymbolTable<ELFT>::wrap(StringRef Name) {
|
|
SymbolBody *B = find(Name);
|
|
if (!B)
|
|
return;
|
|
StringSaver Saver(Alloc);
|
|
Symbol *Sym = B->symbol();
|
|
Symbol *Real = addUndefined(Saver.save("__real_" + Name));
|
|
Symbol *Wrap = addUndefined(Saver.save("__wrap_" + Name));
|
|
// We rename symbols by replacing the old symbol's SymbolBody with the new
|
|
// symbol's SymbolBody. This causes all SymbolBody pointers referring to the
|
|
// old symbol to instead refer to the new symbol.
|
|
memcpy(Real->Body.buffer, Sym->Body.buffer, sizeof(Sym->Body));
|
|
memcpy(Sym->Body.buffer, Wrap->Body.buffer, sizeof(Wrap->Body));
|
|
}
|
|
|
|
static uint8_t getMinVisibility(uint8_t VA, uint8_t VB) {
|
|
if (VA == STV_DEFAULT)
|
|
return VB;
|
|
if (VB == STV_DEFAULT)
|
|
return VA;
|
|
return std::min(VA, VB);
|
|
}
|
|
|
|
// Find an existing symbol or create and insert a new one.
|
|
template <class ELFT>
|
|
std::pair<Symbol *, bool> SymbolTable<ELFT>::insert(StringRef Name) {
|
|
unsigned NumSyms = SymVector.size();
|
|
auto P = Symtab.insert(std::make_pair(Name, NumSyms));
|
|
Symbol *Sym;
|
|
if (P.second) {
|
|
Sym = new (Alloc) Symbol;
|
|
Sym->Binding = STB_WEAK;
|
|
Sym->Visibility = STV_DEFAULT;
|
|
Sym->IsUsedInRegularObj = false;
|
|
Sym->ExportDynamic = false;
|
|
if (Config->VersionScriptGlobalByDefault)
|
|
Sym->VersionId = VER_NDX_GLOBAL;
|
|
else
|
|
Sym->VersionId = VER_NDX_LOCAL;
|
|
SymVector.push_back(Sym);
|
|
} else {
|
|
Sym = SymVector[P.first->second];
|
|
}
|
|
return {Sym, P.second};
|
|
}
|
|
|
|
// Find an existing symbol or create and insert a new one, then apply the given
|
|
// attributes.
|
|
template <class ELFT>
|
|
std::pair<Symbol *, bool>
|
|
SymbolTable<ELFT>::insert(StringRef Name, uint8_t Type, uint8_t Visibility,
|
|
bool CanOmitFromDynSym, bool IsUsedInRegularObj,
|
|
InputFile *File) {
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
std::tie(S, WasInserted) = insert(Name);
|
|
|
|
// Merge in the new symbol's visibility.
|
|
S->Visibility = getMinVisibility(S->Visibility, Visibility);
|
|
if (!CanOmitFromDynSym && (Config->Shared || Config->ExportDynamic))
|
|
S->ExportDynamic = true;
|
|
if (IsUsedInRegularObj)
|
|
S->IsUsedInRegularObj = true;
|
|
if (!WasInserted && S->body()->Type != SymbolBody::UnknownType &&
|
|
((Type == STT_TLS) != S->body()->isTls()))
|
|
error("TLS attribute mismatch for symbol: " +
|
|
conflictMsg(S->body(), File));
|
|
|
|
return {S, WasInserted};
|
|
}
|
|
|
|
// Construct a string in the form of "Sym in File1 and File2".
|
|
// Used to construct an error message.
|
|
template <typename ELFT>
|
|
std::string SymbolTable<ELFT>::conflictMsg(SymbolBody *Existing,
|
|
InputFile *NewFile) {
|
|
StringRef Sym = Existing->getName();
|
|
return demangle(Sym) + " in " + getFilename(Existing->getSourceFile<ELFT>()) +
|
|
" and " + getFilename(NewFile);
|
|
}
|
|
|
|
template <class ELFT> Symbol *SymbolTable<ELFT>::addUndefined(StringRef Name) {
|
|
return addUndefined(Name, STB_GLOBAL, STV_DEFAULT, /*Type*/ 0,
|
|
/*CanOmitFromDynSym*/ false, /*File*/ nullptr);
|
|
}
|
|
|
|
template <class ELFT>
|
|
Symbol *SymbolTable<ELFT>::addUndefined(StringRef Name, uint8_t Binding,
|
|
uint8_t StOther, uint8_t Type,
|
|
bool CanOmitFromDynSym,
|
|
InputFile *File) {
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
std::tie(S, WasInserted) =
|
|
insert(Name, Type, StOther & 3, CanOmitFromDynSym,
|
|
/*IsUsedInRegularObj*/ !File || !isa<BitcodeFile>(File), File);
|
|
if (WasInserted) {
|
|
S->Binding = Binding;
|
|
replaceBody<Undefined>(S, Name, StOther, Type);
|
|
cast<Undefined>(S->body())->File = File;
|
|
return S;
|
|
}
|
|
if (Binding != STB_WEAK) {
|
|
if (S->body()->isShared() || S->body()->isLazy())
|
|
S->Binding = Binding;
|
|
if (auto *SS = dyn_cast<SharedSymbol<ELFT>>(S->body()))
|
|
SS->File->IsUsed = true;
|
|
}
|
|
if (auto *L = dyn_cast<Lazy>(S->body())) {
|
|
// An undefined weak will not fetch archive members, but we have to remember
|
|
// its type. See also comment in addLazyArchive.
|
|
if (S->isWeak())
|
|
L->Type = Type;
|
|
else if (auto F = L->getFile())
|
|
addFile(std::move(F));
|
|
}
|
|
return S;
|
|
}
|
|
|
|
// We have a new defined symbol with the specified binding. Return 1 if the new
|
|
// symbol should win, -1 if the new symbol should lose, or 0 if both symbols are
|
|
// strong defined symbols.
|
|
static int compareDefined(Symbol *S, bool WasInserted, uint8_t Binding) {
|
|
if (WasInserted)
|
|
return 1;
|
|
SymbolBody *Body = S->body();
|
|
if (Body->isLazy() || Body->isUndefined() || Body->isShared())
|
|
return 1;
|
|
if (Binding == STB_WEAK)
|
|
return -1;
|
|
if (S->isWeak())
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
// We have a new non-common defined symbol with the specified binding. Return 1
|
|
// if the new symbol should win, -1 if the new symbol should lose, or 0 if there
|
|
// is a conflict. If the new symbol wins, also update the binding.
|
|
static int compareDefinedNonCommon(Symbol *S, bool WasInserted, uint8_t Binding) {
|
|
if (int Cmp = compareDefined(S, WasInserted, Binding)) {
|
|
if (Cmp > 0)
|
|
S->Binding = Binding;
|
|
return Cmp;
|
|
}
|
|
if (isa<DefinedCommon>(S->body())) {
|
|
// Non-common symbols take precedence over common symbols.
|
|
if (Config->WarnCommon)
|
|
warning("common " + S->body()->getName() + " is overridden");
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
template <class ELFT>
|
|
Symbol *SymbolTable<ELFT>::addCommon(StringRef N, uint64_t Size,
|
|
uint64_t Alignment, uint8_t Binding,
|
|
uint8_t StOther, uint8_t Type,
|
|
InputFile *File) {
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
std::tie(S, WasInserted) =
|
|
insert(N, Type, StOther & 3, /*CanOmitFromDynSym*/ false,
|
|
/*IsUsedInRegularObj*/ true, File);
|
|
int Cmp = compareDefined(S, WasInserted, Binding);
|
|
if (Cmp > 0) {
|
|
S->Binding = Binding;
|
|
replaceBody<DefinedCommon>(S, N, Size, Alignment, StOther, Type);
|
|
} else if (Cmp == 0) {
|
|
auto *C = dyn_cast<DefinedCommon>(S->body());
|
|
if (!C) {
|
|
// Non-common symbols take precedence over common symbols.
|
|
if (Config->WarnCommon)
|
|
warning("common " + S->body()->getName() + " is overridden");
|
|
return S;
|
|
}
|
|
|
|
if (Config->WarnCommon)
|
|
warning("multiple common of " + S->body()->getName());
|
|
|
|
C->Size = std::max(C->Size, Size);
|
|
C->Alignment = std::max(C->Alignment, Alignment);
|
|
}
|
|
return S;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void SymbolTable<ELFT>::reportDuplicate(SymbolBody *Existing,
|
|
InputFile *NewFile) {
|
|
std::string Msg = "duplicate symbol: " + conflictMsg(Existing, NewFile);
|
|
if (Config->AllowMultipleDefinition)
|
|
warning(Msg);
|
|
else
|
|
error(Msg);
|
|
}
|
|
|
|
template <typename ELFT>
|
|
Symbol *SymbolTable<ELFT>::addRegular(StringRef Name, const Elf_Sym &Sym,
|
|
InputSectionBase<ELFT> *Section) {
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
std::tie(S, WasInserted) =
|
|
insert(Name, Sym.getType(), Sym.getVisibility(),
|
|
/*CanOmitFromDynSym*/ false, /*IsUsedInRegularObj*/ true,
|
|
Section ? Section->getFile() : nullptr);
|
|
int Cmp = compareDefinedNonCommon(S, WasInserted, Sym.getBinding());
|
|
if (Cmp > 0)
|
|
replaceBody<DefinedRegular<ELFT>>(S, Name, Sym, Section);
|
|
else if (Cmp == 0)
|
|
reportDuplicate(S->body(), Section->getFile());
|
|
return S;
|
|
}
|
|
|
|
template <typename ELFT>
|
|
Symbol *SymbolTable<ELFT>::addRegular(StringRef Name, uint8_t Binding,
|
|
uint8_t StOther) {
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
std::tie(S, WasInserted) =
|
|
insert(Name, STT_NOTYPE, StOther & 3, /*CanOmitFromDynSym*/ false,
|
|
/*IsUsedInRegularObj*/ true, nullptr);
|
|
int Cmp = compareDefinedNonCommon(S, WasInserted, Binding);
|
|
if (Cmp > 0)
|
|
replaceBody<DefinedRegular<ELFT>>(S, Name, StOther);
|
|
else if (Cmp == 0)
|
|
reportDuplicate(S->body(), nullptr);
|
|
return S;
|
|
}
|
|
|
|
template <typename ELFT>
|
|
Symbol *SymbolTable<ELFT>::addSynthetic(StringRef N,
|
|
OutputSectionBase<ELFT> *Section,
|
|
uintX_t Value) {
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
std::tie(S, WasInserted) =
|
|
insert(N, STT_NOTYPE, STV_HIDDEN, /*CanOmitFromDynSym*/ false,
|
|
/*IsUsedInRegularObj*/ true, nullptr);
|
|
int Cmp = compareDefinedNonCommon(S, WasInserted, STB_GLOBAL);
|
|
if (Cmp > 0)
|
|
replaceBody<DefinedSynthetic<ELFT>>(S, N, Value, Section);
|
|
else if (Cmp == 0)
|
|
reportDuplicate(S->body(), nullptr);
|
|
return S;
|
|
}
|
|
|
|
template <typename ELFT>
|
|
void SymbolTable<ELFT>::addShared(SharedFile<ELFT> *F, StringRef Name,
|
|
const Elf_Sym &Sym,
|
|
const typename ELFT::Verdef *Verdef) {
|
|
// DSO symbols do not affect visibility in the output, so we pass STV_DEFAULT
|
|
// as the visibility, which will leave the visibility in the symbol table
|
|
// unchanged.
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
std::tie(S, WasInserted) =
|
|
insert(Name, Sym.getType(), STV_DEFAULT, /*CanOmitFromDynSym*/ true,
|
|
/*IsUsedInRegularObj*/ false, F);
|
|
// Make sure we preempt DSO symbols with default visibility.
|
|
if (Sym.getVisibility() == STV_DEFAULT)
|
|
S->ExportDynamic = true;
|
|
if (WasInserted || isa<Undefined>(S->body())) {
|
|
replaceBody<SharedSymbol<ELFT>>(S, F, Name, Sym, Verdef);
|
|
if (!S->isWeak())
|
|
F->IsUsed = true;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
Symbol *SymbolTable<ELFT>::addBitcode(StringRef Name, bool IsWeak,
|
|
uint8_t StOther, uint8_t Type,
|
|
bool CanOmitFromDynSym, BitcodeFile *F) {
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
std::tie(S, WasInserted) = insert(Name, Type, StOther & 3, CanOmitFromDynSym,
|
|
/*IsUsedInRegularObj*/ false, F);
|
|
int Cmp =
|
|
compareDefinedNonCommon(S, WasInserted, IsWeak ? STB_WEAK : STB_GLOBAL);
|
|
if (Cmp > 0)
|
|
replaceBody<DefinedBitcode>(S, Name, StOther, Type, F);
|
|
else if (Cmp == 0)
|
|
reportDuplicate(S->body(), F);
|
|
return S;
|
|
}
|
|
|
|
template <class ELFT> SymbolBody *SymbolTable<ELFT>::find(StringRef Name) {
|
|
auto It = Symtab.find(Name);
|
|
if (It == Symtab.end())
|
|
return nullptr;
|
|
return SymVector[It->second]->body();
|
|
}
|
|
|
|
template <class ELFT>
|
|
void SymbolTable<ELFT>::addLazyArchive(
|
|
ArchiveFile *F, const llvm::object::Archive::Symbol Sym) {
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
std::tie(S, WasInserted) = insert(Sym.getName());
|
|
if (WasInserted) {
|
|
replaceBody<LazyArchive>(S, *F, Sym, SymbolBody::UnknownType);
|
|
return;
|
|
}
|
|
if (!S->body()->isUndefined())
|
|
return;
|
|
|
|
// Weak undefined symbols should not fetch members from archives. If we were
|
|
// to keep old symbol we would not know that an archive member was available
|
|
// if a strong undefined symbol shows up afterwards in the link. If a strong
|
|
// undefined symbol never shows up, this lazy symbol will get to the end of
|
|
// the link and must be treated as the weak undefined one. We already marked
|
|
// this symbol as used when we added it to the symbol table, but we also need
|
|
// to preserve its type. FIXME: Move the Type field to Symbol.
|
|
if (S->isWeak()) {
|
|
replaceBody<LazyArchive>(S, *F, Sym, S->body()->Type);
|
|
return;
|
|
}
|
|
MemoryBufferRef MBRef = F->getMember(&Sym);
|
|
if (!MBRef.getBuffer().empty())
|
|
addFile(createObjectFile(MBRef, F->getName()));
|
|
}
|
|
|
|
template <class ELFT>
|
|
void SymbolTable<ELFT>::addLazyObject(StringRef Name, LazyObjectFile &Obj) {
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
std::tie(S, WasInserted) = insert(Name);
|
|
if (WasInserted) {
|
|
replaceBody<LazyObject>(S, Name, Obj, SymbolBody::UnknownType);
|
|
return;
|
|
}
|
|
if (!S->body()->isUndefined())
|
|
return;
|
|
|
|
// See comment for addLazyArchive above.
|
|
if (S->isWeak()) {
|
|
replaceBody<LazyObject>(S, Name, Obj, S->body()->Type);
|
|
} else {
|
|
MemoryBufferRef MBRef = Obj.getBuffer();
|
|
if (!MBRef.getBuffer().empty())
|
|
addFile(createObjectFile(MBRef));
|
|
}
|
|
}
|
|
|
|
// Process undefined (-u) flags by loading lazy symbols named by those flags.
|
|
template <class ELFT> void SymbolTable<ELFT>::scanUndefinedFlags() {
|
|
for (StringRef S : Config->Undefined)
|
|
if (auto *L = dyn_cast_or_null<Lazy>(find(S)))
|
|
if (std::unique_ptr<InputFile> File = L->getFile())
|
|
addFile(std::move(File));
|
|
}
|
|
|
|
// This function takes care of the case in which shared libraries depend on
|
|
// the user program (not the other way, which is usual). Shared libraries
|
|
// may have undefined symbols, expecting that the user program provides
|
|
// the definitions for them. An example is BSD's __progname symbol.
|
|
// We need to put such symbols to the main program's .dynsym so that
|
|
// shared libraries can find them.
|
|
// Except this, we ignore undefined symbols in DSOs.
|
|
template <class ELFT> void SymbolTable<ELFT>::scanShlibUndefined() {
|
|
for (std::unique_ptr<SharedFile<ELFT>> &File : SharedFiles)
|
|
for (StringRef U : File->getUndefinedSymbols())
|
|
if (SymbolBody *Sym = find(U))
|
|
if (Sym->isDefined())
|
|
Sym->symbol()->ExportDynamic = true;
|
|
}
|
|
|
|
// This function process the dynamic list option by marking all the symbols
|
|
// to be exported in the dynamic table.
|
|
template <class ELFT> void SymbolTable<ELFT>::scanDynamicList() {
|
|
for (StringRef S : Config->DynamicList)
|
|
if (SymbolBody *B = find(S))
|
|
B->symbol()->ExportDynamic = true;
|
|
}
|
|
|
|
// This function processes the --version-script option by marking all global
|
|
// symbols with the VersionScriptGlobal flag, which acts as a filter on the
|
|
// dynamic symbol table.
|
|
template <class ELFT> void SymbolTable<ELFT>::scanVersionScript() {
|
|
// If version script does not contain versions declarations,
|
|
// we just should mark global symbols.
|
|
if (!Config->VersionScriptGlobals.empty()) {
|
|
for (StringRef S : Config->VersionScriptGlobals)
|
|
if (SymbolBody *B = find(S))
|
|
B->symbol()->VersionId = VER_NDX_GLOBAL;
|
|
return;
|
|
}
|
|
|
|
// If we have symbols version declarations, we should
|
|
// assign version references for each symbol.
|
|
size_t I = 2;
|
|
for (Version &V : Config->SymbolVersions) {
|
|
for (StringRef Name : V.Globals)
|
|
if (SymbolBody *B = find(Name)) {
|
|
if (B->symbol()->VersionId != VER_NDX_GLOBAL &&
|
|
B->symbol()->VersionId != VER_NDX_LOCAL)
|
|
error("duplicate symbol " + Name + " in version script");
|
|
B->symbol()->VersionId = I;
|
|
}
|
|
++I;
|
|
}
|
|
}
|
|
|
|
// Print the module names which define the notified
|
|
// symbols provided through -y or --trace-symbol option.
|
|
template <class ELFT> void SymbolTable<ELFT>::traceDefined() {
|
|
for (const auto &Symbol : Config->TraceSymbol)
|
|
if (SymbolBody *B = find(Symbol.getKey()))
|
|
if (B->isDefined() || B->isCommon())
|
|
if (InputFile *File = B->getSourceFile<ELFT>())
|
|
outs() << getFilename(File) << ": definition of "
|
|
<< B->getName() << "\n";
|
|
}
|
|
|
|
template class elf::SymbolTable<ELF32LE>;
|
|
template class elf::SymbolTable<ELF32BE>;
|
|
template class elf::SymbolTable<ELF64LE>;
|
|
template class elf::SymbolTable<ELF64BE>;
|