forked from OSchip/llvm-project
360 lines
15 KiB
C++
360 lines
15 KiB
C++
//===- ConcatOutputSection.cpp --------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ConcatOutputSection.h"
|
|
#include "Config.h"
|
|
#include "OutputSegment.h"
|
|
#include "SymbolTable.h"
|
|
#include "Symbols.h"
|
|
#include "SyntheticSections.h"
|
|
#include "Target.h"
|
|
#include "lld/Common/ErrorHandler.h"
|
|
#include "lld/Common/Memory.h"
|
|
#include "llvm/BinaryFormat/MachO.h"
|
|
#include "llvm/Support/ScopedPrinter.h"
|
|
|
|
#include <algorithm>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::MachO;
|
|
using namespace lld;
|
|
using namespace lld::macho;
|
|
|
|
void ConcatOutputSection::addInput(ConcatInputSection *input) {
|
|
if (inputs.empty()) {
|
|
align = input->align;
|
|
flags = input->flags;
|
|
} else {
|
|
align = std::max(align, input->align);
|
|
mergeFlags(input);
|
|
}
|
|
inputs.push_back(input);
|
|
input->parent = this;
|
|
}
|
|
|
|
// Branch-range extension can be implemented in two ways, either through ...
|
|
//
|
|
// (1) Branch islands: Single branch instructions (also of limited range),
|
|
// that might be chained in multiple hops to reach the desired
|
|
// destination. On ARM64, as 16 branch islands are needed to hop between
|
|
// opposite ends of a 2 GiB program. LD64 uses branch islands exclusively,
|
|
// even when it needs excessive hops.
|
|
//
|
|
// (2) Thunks: Instruction(s) to load the destination address into a scratch
|
|
// register, followed by a register-indirect branch. Thunks are
|
|
// constructed to reach any arbitrary address, so need not be
|
|
// chained. Although thunks need not be chained, a program might need
|
|
// multiple thunks to the same destination distributed throughout a large
|
|
// program so that all call sites can have one within range.
|
|
//
|
|
// The optimal approach is to mix islands for distinations within two hops,
|
|
// and use thunks for destinations at greater distance. For now, we only
|
|
// implement thunks. TODO: Adding support for branch islands!
|
|
//
|
|
// Internally -- as expressed in LLD's data structures -- a
|
|
// branch-range-extension thunk comprises ...
|
|
//
|
|
// (1) new Defined privateExtern symbol for the thunk named
|
|
// <FUNCTION>.thunk.<SEQUENCE>, which references ...
|
|
// (2) new InputSection, which contains ...
|
|
// (3.1) new data for the instructions to load & branch to the far address +
|
|
// (3.2) new Relocs on instructions to load the far address, which reference ...
|
|
// (4.1) existing Defined extern symbol for the real function in __text, or
|
|
// (4.2) existing DylibSymbol for the real function in a dylib
|
|
//
|
|
// Nearly-optimal thunk-placement algorithm features:
|
|
//
|
|
// * Single pass: O(n) on the number of call sites.
|
|
//
|
|
// * Accounts for the exact space overhead of thunks - no heuristics
|
|
//
|
|
// * Exploits the full range of call instructions - forward & backward
|
|
//
|
|
// Data:
|
|
//
|
|
// * DenseMap<Symbol *, ThunkInfo> thunkMap: Maps the function symbol
|
|
// to its thunk bookkeeper.
|
|
//
|
|
// * struct ThunkInfo (bookkeeper): Call instructions have limited range, and
|
|
// distant call sites might be unable to reach the same thunk, so multiple
|
|
// thunks are necessary to serve all call sites in a very large program. A
|
|
// thunkInfo stores state for all thunks associated with a particular
|
|
// function: (a) thunk symbol, (b) input section containing stub code, and
|
|
// (c) sequence number for the active thunk incarnation. When an old thunk
|
|
// goes out of range, we increment the sequence number and create a new
|
|
// thunk named <FUNCTION>.thunk.<SEQUENCE>.
|
|
//
|
|
// * A thunk incarnation comprises (a) private-extern Defined symbol pointing
|
|
// to (b) an InputSection holding machine instructions (similar to a MachO
|
|
// stub), and (c) Reloc(s) that reference the real function for fixing-up
|
|
// the stub code.
|
|
//
|
|
// * std::vector<InputSection *> MergedInputSection::thunks: A vector parallel
|
|
// to the inputs vector. We store new thunks via cheap vector append, rather
|
|
// than costly insertion into the inputs vector.
|
|
//
|
|
// Control Flow:
|
|
//
|
|
// * During address assignment, MergedInputSection::finalize() examines call
|
|
// sites by ascending address and creates thunks. When a function is beyond
|
|
// the range of a call site, we need a thunk. Place it at the largest
|
|
// available forward address from the call site. Call sites increase
|
|
// monotonically and thunks are always placed as far forward as possible;
|
|
// thus, we place thunks at monotonically increasing addresses. Once a thunk
|
|
// is placed, it and all previous input-section addresses are final.
|
|
//
|
|
// * MergedInputSection::finalize() and MergedInputSection::writeTo() merge
|
|
// the inputs and thunks vectors (both ordered by ascending address), which
|
|
// is simple and cheap.
|
|
|
|
DenseMap<Symbol *, ThunkInfo> lld::macho::thunkMap;
|
|
|
|
// Determine whether we need thunks, which depends on the target arch -- RISC
|
|
// (i.e., ARM) generally does because it has limited-range branch/call
|
|
// instructions, whereas CISC (i.e., x86) generally doesn't. RISC only needs
|
|
// thunks for programs so large that branch source & destination addresses
|
|
// might differ more than the range of branch instruction(s).
|
|
bool ConcatOutputSection::needsThunks() const {
|
|
if (!target->usesThunks())
|
|
return false;
|
|
uint64_t isecAddr = addr;
|
|
for (InputSection *isec : inputs)
|
|
isecAddr = alignTo(isecAddr, isec->align) + isec->getSize();
|
|
if (isecAddr - addr + in.stubs->getSize() <= target->branchRange)
|
|
return false;
|
|
// Yes, this program is large enough to need thunks.
|
|
for (InputSection *isec : inputs) {
|
|
for (Reloc &r : isec->relocs) {
|
|
if (!target->hasAttr(r.type, RelocAttrBits::BRANCH))
|
|
continue;
|
|
auto *sym = r.referent.get<Symbol *>();
|
|
// Pre-populate the thunkMap and memoize call site counts for every
|
|
// InputSection and ThunkInfo. We do this for the benefit of
|
|
// ConcatOutputSection::estimateStubsInRangeVA()
|
|
ThunkInfo &thunkInfo = thunkMap[sym];
|
|
// Knowing ThunkInfo call site count will help us know whether or not we
|
|
// might need to create more for this referent at the time we are
|
|
// estimating distance to __stubs in .
|
|
++thunkInfo.callSiteCount;
|
|
// Knowing InputSection call site count will help us avoid work on those
|
|
// that have no BRANCH relocs.
|
|
++isec->callSiteCount;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Since __stubs is placed after __text, we must estimate the address
|
|
// beyond which stubs are within range of a simple forward branch.
|
|
uint64_t ConcatOutputSection::estimateStubsInRangeVA(size_t callIdx) const {
|
|
uint64_t branchRange = target->branchRange;
|
|
size_t endIdx = inputs.size();
|
|
ConcatInputSection *isec = inputs[callIdx];
|
|
uint64_t isecVA = isec->getVA();
|
|
// Tally the non-stub functions which still have call sites
|
|
// remaining to process, which yields the maximum number
|
|
// of thunks we might yet place.
|
|
size_t maxPotentialThunks = 0;
|
|
for (auto &tp : thunkMap) {
|
|
ThunkInfo &ti = tp.second;
|
|
maxPotentialThunks +=
|
|
!tp.first->isInStubs() && ti.callSitesUsed < ti.callSiteCount;
|
|
}
|
|
// Tally the total size of input sections remaining to process.
|
|
uint64_t isecEnd = isec->getVA();
|
|
for (size_t i = callIdx; i < endIdx; i++) {
|
|
InputSection *isec = inputs[i];
|
|
isecEnd = alignTo(isecEnd, isec->align) + isec->getSize();
|
|
}
|
|
// Estimate the address after which call sites can safely call stubs
|
|
// directly rather than through intermediary thunks.
|
|
uint64_t stubsInRangeVA = isecEnd + maxPotentialThunks * target->thunkSize +
|
|
in.stubs->getSize() - branchRange;
|
|
log("thunks = " + std::to_string(thunkMap.size()) +
|
|
", potential = " + std::to_string(maxPotentialThunks) +
|
|
", stubs = " + std::to_string(in.stubs->getSize()) + ", isecVA = " +
|
|
to_hexString(isecVA) + ", threshold = " + to_hexString(stubsInRangeVA) +
|
|
", isecEnd = " + to_hexString(isecEnd) +
|
|
", tail = " + to_hexString(isecEnd - isecVA) +
|
|
", slop = " + to_hexString(branchRange - (isecEnd - isecVA)));
|
|
return stubsInRangeVA;
|
|
}
|
|
|
|
void ConcatOutputSection::finalize() {
|
|
uint64_t isecAddr = addr;
|
|
uint64_t isecFileOff = fileOff;
|
|
auto finalizeOne = [&](ConcatInputSection *isec) {
|
|
isecAddr = alignTo(isecAddr, isec->align);
|
|
isecFileOff = alignTo(isecFileOff, isec->align);
|
|
isec->outSecOff = isecAddr - addr;
|
|
isec->isFinal = true;
|
|
isecAddr += isec->getSize();
|
|
isecFileOff += isec->getFileSize();
|
|
};
|
|
|
|
if (!needsThunks()) {
|
|
for (ConcatInputSection *isec : inputs)
|
|
finalizeOne(isec);
|
|
size = isecAddr - addr;
|
|
fileSize = isecFileOff - fileOff;
|
|
return;
|
|
}
|
|
|
|
uint64_t branchRange = target->branchRange;
|
|
uint64_t stubsInRangeVA = TargetInfo::outOfRangeVA;
|
|
size_t thunkSize = target->thunkSize;
|
|
size_t relocCount = 0;
|
|
size_t callSiteCount = 0;
|
|
size_t thunkCallCount = 0;
|
|
size_t thunkCount = 0;
|
|
|
|
// inputs[finalIdx] is for finalization (address-assignment)
|
|
size_t finalIdx = 0;
|
|
// Kick-off by ensuring that the first input section has an address
|
|
for (size_t callIdx = 0, endIdx = inputs.size(); callIdx < endIdx;
|
|
++callIdx) {
|
|
if (finalIdx == callIdx)
|
|
finalizeOne(inputs[finalIdx++]);
|
|
ConcatInputSection *isec = inputs[callIdx];
|
|
assert(isec->isFinal);
|
|
uint64_t isecVA = isec->getVA();
|
|
// Assign addresses up-to the forward branch-range limit
|
|
while (finalIdx < endIdx &&
|
|
isecAddr + inputs[finalIdx]->getSize() < isecVA + branchRange)
|
|
finalizeOne(inputs[finalIdx++]);
|
|
if (isec->callSiteCount == 0)
|
|
continue;
|
|
if (finalIdx == endIdx && stubsInRangeVA == TargetInfo::outOfRangeVA) {
|
|
// When we have finalized all input sections, __stubs (destined
|
|
// to follow __text) comes within range of forward branches and
|
|
// we can estimate the threshold address after which we can
|
|
// reach any stub with a forward branch. Note that although it
|
|
// sits in the middle of a loop, this code executes only once.
|
|
// It is in the loop because we need to call it at the proper
|
|
// time: the earliest call site from which the end of __text
|
|
// (and start of __stubs) comes within range of a forward branch.
|
|
stubsInRangeVA = estimateStubsInRangeVA(callIdx);
|
|
}
|
|
// Process relocs by ascending address, i.e., ascending offset within isec
|
|
std::vector<Reloc> &relocs = isec->relocs;
|
|
assert(is_sorted(relocs,
|
|
[](Reloc &a, Reloc &b) { return a.offset > b.offset; }));
|
|
for (Reloc &r : reverse(relocs)) {
|
|
++relocCount;
|
|
if (!target->hasAttr(r.type, RelocAttrBits::BRANCH))
|
|
continue;
|
|
++callSiteCount;
|
|
// Calculate branch reachability boundaries
|
|
uint64_t callVA = isecVA + r.offset;
|
|
uint64_t lowVA = branchRange < callVA ? callVA - branchRange : 0;
|
|
uint64_t highVA = callVA + branchRange;
|
|
// Calculate our call referent address
|
|
auto *funcSym = r.referent.get<Symbol *>();
|
|
ThunkInfo &thunkInfo = thunkMap[funcSym];
|
|
// The referent is not reachable, so we need to use a thunk ...
|
|
if (funcSym->isInStubs() && callVA >= stubsInRangeVA) {
|
|
// ... Oh, wait! We are close enough to the end that __stubs
|
|
// are now within range of a simple forward branch.
|
|
continue;
|
|
}
|
|
uint64_t funcVA = funcSym->resolveBranchVA();
|
|
++thunkInfo.callSitesUsed;
|
|
if (lowVA < funcVA && funcVA < highVA) {
|
|
// The referent is reachable with a simple call instruction.
|
|
continue;
|
|
}
|
|
++thunkInfo.thunkCallCount;
|
|
++thunkCallCount;
|
|
// If an existing thunk is reachable, use it ...
|
|
if (thunkInfo.sym) {
|
|
uint64_t thunkVA = thunkInfo.isec->getVA();
|
|
if (lowVA < thunkVA && thunkVA < highVA) {
|
|
r.referent = thunkInfo.sym;
|
|
continue;
|
|
}
|
|
}
|
|
// ... otherwise, create a new thunk
|
|
if (isecAddr > highVA) {
|
|
// When there is small-to-no margin between highVA and
|
|
// isecAddr and the distance between subsequent call sites is
|
|
// smaller than thunkSize, then a new thunk can go out of
|
|
// range. Fix by unfinalizing inputs[finalIdx] to reduce the
|
|
// distance between callVA and highVA, then shift some thunks
|
|
// to occupy address-space formerly occupied by the
|
|
// unfinalized inputs[finalIdx].
|
|
fatal(Twine(__FUNCTION__) + ": FIXME: thunk range overrun");
|
|
}
|
|
thunkInfo.isec = make<ConcatInputSection>(isec->segname, isec->name);
|
|
thunkInfo.isec->parent = this;
|
|
StringRef thunkName = saver.save(funcSym->getName() + ".thunk." +
|
|
std::to_string(thunkInfo.sequence++));
|
|
r.referent = thunkInfo.sym = symtab->addDefined(
|
|
thunkName, /*file=*/nullptr, thunkInfo.isec, /*value=*/0,
|
|
/*size=*/thunkSize, /*isWeakDef=*/false, /*isPrivateExtern=*/true,
|
|
/*isThumb=*/false, /*isReferencedDynamically=*/false,
|
|
/*noDeadStrip=*/false);
|
|
target->populateThunk(thunkInfo.isec, funcSym);
|
|
finalizeOne(thunkInfo.isec);
|
|
thunks.push_back(thunkInfo.isec);
|
|
++thunkCount;
|
|
}
|
|
}
|
|
size = isecAddr - addr;
|
|
fileSize = isecFileOff - fileOff;
|
|
|
|
log("thunks for " + parent->name + "," + name +
|
|
": funcs = " + std::to_string(thunkMap.size()) +
|
|
", relocs = " + std::to_string(relocCount) +
|
|
", all calls = " + std::to_string(callSiteCount) +
|
|
", thunk calls = " + std::to_string(thunkCallCount) +
|
|
", thunks = " + std::to_string(thunkCount));
|
|
}
|
|
|
|
void ConcatOutputSection::writeTo(uint8_t *buf) const {
|
|
// Merge input sections from thunk & ordinary vectors
|
|
size_t i = 0, ie = inputs.size();
|
|
size_t t = 0, te = thunks.size();
|
|
while (i < ie || t < te) {
|
|
while (i < ie && (t == te || inputs[i]->getSize() == 0 ||
|
|
inputs[i]->outSecOff < thunks[t]->outSecOff)) {
|
|
inputs[i]->writeTo(buf + inputs[i]->outSecOff);
|
|
++i;
|
|
}
|
|
while (t < te && (i == ie || thunks[t]->outSecOff < inputs[i]->outSecOff)) {
|
|
thunks[t]->writeTo(buf + thunks[t]->outSecOff);
|
|
++t;
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO: this is most likely wrong; reconsider how section flags
|
|
// are actually merged. The logic presented here was written without
|
|
// any form of informed research.
|
|
void ConcatOutputSection::mergeFlags(InputSection *input) {
|
|
uint8_t baseType = sectionType(flags);
|
|
uint8_t inputType = sectionType(input->flags);
|
|
if (baseType != inputType)
|
|
error("Cannot merge section " + input->name + " (type=0x" +
|
|
to_hexString(inputType) + ") into " + name + " (type=0x" +
|
|
to_hexString(baseType) + "): inconsistent types");
|
|
|
|
constexpr uint32_t strictFlags = S_ATTR_DEBUG | S_ATTR_STRIP_STATIC_SYMS |
|
|
S_ATTR_NO_DEAD_STRIP | S_ATTR_LIVE_SUPPORT;
|
|
if ((input->flags ^ flags) & strictFlags)
|
|
error("Cannot merge section " + input->name + " (flags=0x" +
|
|
to_hexString(input->flags) + ") into " + name + " (flags=0x" +
|
|
to_hexString(flags) + "): strict flags differ");
|
|
|
|
// Negate pure instruction presence if any section isn't pure.
|
|
uint32_t pureMask = ~S_ATTR_PURE_INSTRUCTIONS | (input->flags & flags);
|
|
|
|
// Merge the rest
|
|
flags |= input->flags;
|
|
flags &= pureMask;
|
|
}
|