llvm-project/mlir/lib/IR/AffineMap.cpp

783 lines
29 KiB
C++

//===- AffineMap.cpp - MLIR Affine Map Classes ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/AffineMap.h"
#include "AffineMapDetail.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
namespace {
// AffineExprConstantFolder evaluates an affine expression using constant
// operands passed in 'operandConsts'. Returns an IntegerAttr attribute
// representing the constant value of the affine expression evaluated on
// constant 'operandConsts', or nullptr if it can't be folded.
class AffineExprConstantFolder {
public:
AffineExprConstantFolder(unsigned numDims, ArrayRef<Attribute> operandConsts)
: numDims(numDims), operandConsts(operandConsts) {}
/// Attempt to constant fold the specified affine expr, or return null on
/// failure.
IntegerAttr constantFold(AffineExpr expr) {
if (auto result = constantFoldImpl(expr))
return IntegerAttr::get(IndexType::get(expr.getContext()), *result);
return nullptr;
}
private:
Optional<int64_t> constantFoldImpl(AffineExpr expr) {
switch (expr.getKind()) {
case AffineExprKind::Add:
return constantFoldBinExpr(
expr, [](int64_t lhs, int64_t rhs) { return lhs + rhs; });
case AffineExprKind::Mul:
return constantFoldBinExpr(
expr, [](int64_t lhs, int64_t rhs) { return lhs * rhs; });
case AffineExprKind::Mod:
return constantFoldBinExpr(
expr, [](int64_t lhs, int64_t rhs) { return mod(lhs, rhs); });
case AffineExprKind::FloorDiv:
return constantFoldBinExpr(
expr, [](int64_t lhs, int64_t rhs) { return floorDiv(lhs, rhs); });
case AffineExprKind::CeilDiv:
return constantFoldBinExpr(
expr, [](int64_t lhs, int64_t rhs) { return ceilDiv(lhs, rhs); });
case AffineExprKind::Constant:
return expr.cast<AffineConstantExpr>().getValue();
case AffineExprKind::DimId:
if (auto attr = operandConsts[expr.cast<AffineDimExpr>().getPosition()]
.dyn_cast_or_null<IntegerAttr>())
return attr.getInt();
return llvm::None;
case AffineExprKind::SymbolId:
if (auto attr = operandConsts[numDims +
expr.cast<AffineSymbolExpr>().getPosition()]
.dyn_cast_or_null<IntegerAttr>())
return attr.getInt();
return llvm::None;
}
llvm_unreachable("Unknown AffineExpr");
}
// TODO: Change these to operate on APInts too.
Optional<int64_t> constantFoldBinExpr(AffineExpr expr,
int64_t (*op)(int64_t, int64_t)) {
auto binOpExpr = expr.cast<AffineBinaryOpExpr>();
if (auto lhs = constantFoldImpl(binOpExpr.getLHS()))
if (auto rhs = constantFoldImpl(binOpExpr.getRHS()))
return op(*lhs, *rhs);
return llvm::None;
}
// The number of dimension operands in AffineMap containing this expression.
unsigned numDims;
// The constant valued operands used to evaluate this AffineExpr.
ArrayRef<Attribute> operandConsts;
};
} // namespace
/// Returns a single constant result affine map.
AffineMap AffineMap::getConstantMap(int64_t val, MLIRContext *context) {
return get(/*dimCount=*/0, /*symbolCount=*/0,
{getAffineConstantExpr(val, context)});
}
/// Returns an identity affine map (d0, ..., dn) -> (dp, ..., dn) on the most
/// minor dimensions.
AffineMap AffineMap::getMinorIdentityMap(unsigned dims, unsigned results,
MLIRContext *context) {
assert(dims >= results && "Dimension mismatch");
auto id = AffineMap::getMultiDimIdentityMap(dims, context);
return AffineMap::get(dims, 0, id.getResults().take_back(results), context);
}
bool AffineMap::isMinorIdentity() const {
return getNumDims() >= getNumResults() &&
*this ==
getMinorIdentityMap(getNumDims(), getNumResults(), getContext());
}
/// Returns true if this affine map is a minor identity up to broadcasted
/// dimensions which are indicated by value 0 in the result.
bool AffineMap::isMinorIdentityWithBroadcasting(
SmallVectorImpl<unsigned> *broadcastedDims) const {
if (broadcastedDims)
broadcastedDims->clear();
if (getNumDims() < getNumResults())
return false;
unsigned suffixStart = getNumDims() - getNumResults();
for (const auto &idxAndExpr : llvm::enumerate(getResults())) {
unsigned resIdx = idxAndExpr.index();
AffineExpr expr = idxAndExpr.value();
if (auto constExpr = expr.dyn_cast<AffineConstantExpr>()) {
// Each result may be either a constant 0 (broadcasted dimension).
if (constExpr.getValue() != 0)
return false;
if (broadcastedDims)
broadcastedDims->push_back(resIdx);
} else if (auto dimExpr = expr.dyn_cast<AffineDimExpr>()) {
// Or it may be the input dimension corresponding to this result position.
if (dimExpr.getPosition() != suffixStart + resIdx)
return false;
} else {
return false;
}
}
return true;
}
/// Return true if this affine map can be converted to a minor identity with
/// broadcast by doing a permute. Return a permutation (there may be
/// several) to apply to get to a minor identity with broadcasts.
/// Ex:
/// * (d0, d1, d2) -> (0, d1) maps to minor identity (d1, 0 = d2) with
/// perm = [1, 0] and broadcast d2
/// * (d0, d1, d2) -> (d0, 0) cannot be mapped to a minor identity by
/// permutation + broadcast
/// * (d0, d1, d2, d3) -> (0, d1, d3) maps to minor identity (d1, 0 = d2, d3)
/// with perm = [1, 0, 2] and broadcast d2
/// * (d0, d1) -> (d1, 0, 0, d0) maps to minor identity (d0, d1) with extra
/// leading broadcat dimensions. The map returned would be (0, 0, d0, d1) with
/// perm = [3, 0, 1, 2]
bool AffineMap::isPermutationOfMinorIdentityWithBroadcasting(
SmallVectorImpl<unsigned> &permutedDims) const {
unsigned projectionStart =
getNumResults() < getNumInputs() ? getNumInputs() - getNumResults() : 0;
permutedDims.clear();
SmallVector<unsigned> broadcastDims;
permutedDims.resize(getNumResults(), 0);
// If there are more results than input dimensions we want the new map to
// start with broadcast dimensions in order to be a minor identity with
// broadcasting.
unsigned leadingBroadcast =
getNumResults() > getNumInputs() ? getNumResults() - getNumInputs() : 0;
llvm::SmallBitVector dimFound(std::max(getNumInputs(), getNumResults()),
false);
for (const auto &idxAndExpr : llvm::enumerate(getResults())) {
unsigned resIdx = idxAndExpr.index();
AffineExpr expr = idxAndExpr.value();
// Each result may be either a constant 0 (broadcast dimension) or a
// dimension.
if (auto constExpr = expr.dyn_cast<AffineConstantExpr>()) {
if (constExpr.getValue() != 0)
return false;
broadcastDims.push_back(resIdx);
} else if (auto dimExpr = expr.dyn_cast<AffineDimExpr>()) {
if (dimExpr.getPosition() < projectionStart)
return false;
unsigned newPosition =
dimExpr.getPosition() - projectionStart + leadingBroadcast;
permutedDims[resIdx] = newPosition;
dimFound[newPosition] = true;
} else {
return false;
}
}
// Find a permuation for the broadcast dimension. Since they are broadcasted
// any valid permutation is acceptable. We just permute the dim into a slot
// without an existing dimension.
unsigned pos = 0;
for (auto dim : broadcastDims) {
while (pos < dimFound.size() && dimFound[pos]) {
pos++;
}
permutedDims[dim] = pos++;
}
return true;
}
/// Returns an AffineMap representing a permutation.
AffineMap AffineMap::getPermutationMap(ArrayRef<unsigned> permutation,
MLIRContext *context) {
assert(!permutation.empty() &&
"Cannot create permutation map from empty permutation vector");
SmallVector<AffineExpr, 4> affExprs;
for (auto index : permutation)
affExprs.push_back(getAffineDimExpr(index, context));
const auto *m = std::max_element(permutation.begin(), permutation.end());
auto permutationMap = AffineMap::get(*m + 1, 0, affExprs, context);
assert(permutationMap.isPermutation() && "Invalid permutation vector");
return permutationMap;
}
template <typename AffineExprContainer>
static SmallVector<AffineMap, 4>
inferFromExprList(ArrayRef<AffineExprContainer> exprsList) {
assert(!exprsList.empty());
assert(!exprsList[0].empty());
auto context = exprsList[0][0].getContext();
int64_t maxDim = -1, maxSym = -1;
getMaxDimAndSymbol(exprsList, maxDim, maxSym);
SmallVector<AffineMap, 4> maps;
maps.reserve(exprsList.size());
for (const auto &exprs : exprsList)
maps.push_back(AffineMap::get(/*dimCount=*/maxDim + 1,
/*symbolCount=*/maxSym + 1, exprs, context));
return maps;
}
SmallVector<AffineMap, 4>
AffineMap::inferFromExprList(ArrayRef<ArrayRef<AffineExpr>> exprsList) {
return ::inferFromExprList(exprsList);
}
SmallVector<AffineMap, 4>
AffineMap::inferFromExprList(ArrayRef<SmallVector<AffineExpr, 4>> exprsList) {
return ::inferFromExprList(exprsList);
}
AffineMap AffineMap::getMultiDimIdentityMap(unsigned numDims,
MLIRContext *context) {
SmallVector<AffineExpr, 4> dimExprs;
dimExprs.reserve(numDims);
for (unsigned i = 0; i < numDims; ++i)
dimExprs.push_back(mlir::getAffineDimExpr(i, context));
return get(/*dimCount=*/numDims, /*symbolCount=*/0, dimExprs, context);
}
MLIRContext *AffineMap::getContext() const { return map->context; }
bool AffineMap::isIdentity() const {
if (getNumDims() != getNumResults())
return false;
ArrayRef<AffineExpr> results = getResults();
for (unsigned i = 0, numDims = getNumDims(); i < numDims; ++i) {
auto expr = results[i].dyn_cast<AffineDimExpr>();
if (!expr || expr.getPosition() != i)
return false;
}
return true;
}
bool AffineMap::isEmpty() const {
return getNumDims() == 0 && getNumSymbols() == 0 && getNumResults() == 0;
}
bool AffineMap::isSingleConstant() const {
return getNumResults() == 1 && getResult(0).isa<AffineConstantExpr>();
}
bool AffineMap::isConstant() const {
return llvm::all_of(getResults(), [](AffineExpr expr) {
return expr.isa<AffineConstantExpr>();
});
}
int64_t AffineMap::getSingleConstantResult() const {
assert(isSingleConstant() && "map must have a single constant result");
return getResult(0).cast<AffineConstantExpr>().getValue();
}
SmallVector<int64_t> AffineMap::getConstantResults() const {
assert(isConstant() && "map must have only constant results");
SmallVector<int64_t> result;
for (auto expr : getResults())
result.emplace_back(expr.cast<AffineConstantExpr>().getValue());
return result;
}
unsigned AffineMap::getNumDims() const {
assert(map && "uninitialized map storage");
return map->numDims;
}
unsigned AffineMap::getNumSymbols() const {
assert(map && "uninitialized map storage");
return map->numSymbols;
}
unsigned AffineMap::getNumResults() const {
assert(map && "uninitialized map storage");
return map->results.size();
}
unsigned AffineMap::getNumInputs() const {
assert(map && "uninitialized map storage");
return map->numDims + map->numSymbols;
}
ArrayRef<AffineExpr> AffineMap::getResults() const {
assert(map && "uninitialized map storage");
return map->results;
}
AffineExpr AffineMap::getResult(unsigned idx) const {
assert(map && "uninitialized map storage");
return map->results[idx];
}
unsigned AffineMap::getDimPosition(unsigned idx) const {
return getResult(idx).cast<AffineDimExpr>().getPosition();
}
unsigned AffineMap::getPermutedPosition(unsigned input) const {
assert(isPermutation() && "invalid permutation request");
for (unsigned i = 0, numResults = getNumResults(); i < numResults; i++)
if (getDimPosition(i) == input)
return i;
llvm_unreachable("incorrect permutation request");
}
/// Folds the results of the application of an affine map on the provided
/// operands to a constant if possible. Returns false if the folding happens,
/// true otherwise.
LogicalResult
AffineMap::constantFold(ArrayRef<Attribute> operandConstants,
SmallVectorImpl<Attribute> &results) const {
// Attempt partial folding.
SmallVector<int64_t, 2> integers;
partialConstantFold(operandConstants, &integers);
// If all expressions folded to a constant, populate results with attributes
// containing those constants.
if (integers.empty())
return failure();
auto range = llvm::map_range(integers, [this](int64_t i) {
return IntegerAttr::get(IndexType::get(getContext()), i);
});
results.append(range.begin(), range.end());
return success();
}
AffineMap
AffineMap::partialConstantFold(ArrayRef<Attribute> operandConstants,
SmallVectorImpl<int64_t> *results) const {
assert(getNumInputs() == operandConstants.size());
// Fold each of the result expressions.
AffineExprConstantFolder exprFolder(getNumDims(), operandConstants);
SmallVector<AffineExpr, 4> exprs;
exprs.reserve(getNumResults());
for (auto expr : getResults()) {
auto folded = exprFolder.constantFold(expr);
// If did not fold to a constant, keep the original expression, and clear
// the integer results vector.
if (folded) {
exprs.push_back(
getAffineConstantExpr(folded.getInt(), folded.getContext()));
if (results)
results->push_back(folded.getInt());
} else {
exprs.push_back(expr);
if (results) {
results->clear();
results = nullptr;
}
}
}
return get(getNumDims(), getNumSymbols(), exprs, getContext());
}
/// Walk all of the AffineExpr's in this mapping. Each node in an expression
/// tree is visited in postorder.
void AffineMap::walkExprs(llvm::function_ref<void(AffineExpr)> callback) const {
for (auto expr : getResults())
expr.walk(callback);
}
/// This method substitutes any uses of dimensions and symbols (e.g.
/// dim#0 with dimReplacements[0]) in subexpressions and returns the modified
/// expression mapping. Because this can be used to eliminate dims and
/// symbols, the client needs to specify the number of dims and symbols in
/// the result. The returned map always has the same number of results.
AffineMap AffineMap::replaceDimsAndSymbols(ArrayRef<AffineExpr> dimReplacements,
ArrayRef<AffineExpr> symReplacements,
unsigned numResultDims,
unsigned numResultSyms) const {
SmallVector<AffineExpr, 8> results;
results.reserve(getNumResults());
for (auto expr : getResults())
results.push_back(
expr.replaceDimsAndSymbols(dimReplacements, symReplacements));
return get(numResultDims, numResultSyms, results, getContext());
}
/// Sparse replace method. Apply AffineExpr::replace(`expr`, `replacement`) to
/// each of the results and return a new AffineMap with the new results and
/// with the specified number of dims and symbols.
AffineMap AffineMap::replace(AffineExpr expr, AffineExpr replacement,
unsigned numResultDims,
unsigned numResultSyms) const {
SmallVector<AffineExpr, 4> newResults;
newResults.reserve(getNumResults());
for (AffineExpr e : getResults())
newResults.push_back(e.replace(expr, replacement));
return AffineMap::get(numResultDims, numResultSyms, newResults, getContext());
}
/// Sparse replace method. Apply AffineExpr::replace(`map`) to each of the
/// results and return a new AffineMap with the new results and with the
/// specified number of dims and symbols.
AffineMap AffineMap::replace(const DenseMap<AffineExpr, AffineExpr> &map,
unsigned numResultDims,
unsigned numResultSyms) const {
SmallVector<AffineExpr, 4> newResults;
newResults.reserve(getNumResults());
for (AffineExpr e : getResults())
newResults.push_back(e.replace(map));
return AffineMap::get(numResultDims, numResultSyms, newResults, getContext());
}
AffineMap
AffineMap::replace(const DenseMap<AffineExpr, AffineExpr> &map) const {
SmallVector<AffineExpr, 4> newResults;
newResults.reserve(getNumResults());
for (AffineExpr e : getResults())
newResults.push_back(e.replace(map));
return AffineMap::inferFromExprList(newResults).front();
}
AffineMap AffineMap::compose(AffineMap map) const {
assert(getNumDims() == map.getNumResults() && "Number of results mismatch");
// Prepare `map` by concatenating the symbols and rewriting its exprs.
unsigned numDims = map.getNumDims();
unsigned numSymbolsThisMap = getNumSymbols();
unsigned numSymbols = numSymbolsThisMap + map.getNumSymbols();
SmallVector<AffineExpr, 8> newDims(numDims);
for (unsigned idx = 0; idx < numDims; ++idx) {
newDims[idx] = getAffineDimExpr(idx, getContext());
}
SmallVector<AffineExpr, 8> newSymbols(numSymbols - numSymbolsThisMap);
for (unsigned idx = numSymbolsThisMap; idx < numSymbols; ++idx) {
newSymbols[idx - numSymbolsThisMap] =
getAffineSymbolExpr(idx, getContext());
}
auto newMap =
map.replaceDimsAndSymbols(newDims, newSymbols, numDims, numSymbols);
SmallVector<AffineExpr, 8> exprs;
exprs.reserve(getResults().size());
for (auto expr : getResults())
exprs.push_back(expr.compose(newMap));
return AffineMap::get(numDims, numSymbols, exprs, map.getContext());
}
SmallVector<int64_t, 4> AffineMap::compose(ArrayRef<int64_t> values) const {
assert(getNumSymbols() == 0 && "Expected symbol-less map");
SmallVector<AffineExpr, 4> exprs;
exprs.reserve(values.size());
MLIRContext *ctx = getContext();
for (auto v : values)
exprs.push_back(getAffineConstantExpr(v, ctx));
auto resMap = compose(AffineMap::get(0, 0, exprs, ctx));
SmallVector<int64_t, 4> res;
res.reserve(resMap.getNumResults());
for (auto e : resMap.getResults())
res.push_back(e.cast<AffineConstantExpr>().getValue());
return res;
}
bool AffineMap::isProjectedPermutation(bool allowZeroInResults) const {
if (getNumSymbols() > 0)
return false;
// Having more results than inputs means that results have duplicated dims or
// zeros that can't be mapped to input dims.
if (getNumResults() > getNumInputs())
return false;
SmallVector<bool, 8> seen(getNumInputs(), false);
// A projected permutation can have, at most, only one instance of each input
// dimension in the result expressions. Zeros are allowed as long as the
// number of result expressions is lower or equal than the number of input
// expressions.
for (auto expr : getResults()) {
if (auto dim = expr.dyn_cast<AffineDimExpr>()) {
if (seen[dim.getPosition()])
return false;
seen[dim.getPosition()] = true;
} else {
auto constExpr = expr.dyn_cast<AffineConstantExpr>();
if (!allowZeroInResults || !constExpr || constExpr.getValue() != 0)
return false;
}
}
// Results are either dims or zeros and zeros can be mapped to input dims.
return true;
}
bool AffineMap::isPermutation() const {
if (getNumDims() != getNumResults())
return false;
return isProjectedPermutation();
}
AffineMap AffineMap::getSubMap(ArrayRef<unsigned> resultPos) const {
SmallVector<AffineExpr, 4> exprs;
exprs.reserve(resultPos.size());
for (auto idx : resultPos)
exprs.push_back(getResult(idx));
return AffineMap::get(getNumDims(), getNumSymbols(), exprs, getContext());
}
AffineMap AffineMap::getSliceMap(unsigned start, unsigned length) const {
return AffineMap::get(getNumDims(), getNumSymbols(),
getResults().slice(start, length), getContext());
}
AffineMap AffineMap::getMajorSubMap(unsigned numResults) const {
if (numResults == 0)
return AffineMap();
if (numResults > getNumResults())
return *this;
return getSubMap(llvm::to_vector<4>(llvm::seq<unsigned>(0, numResults)));
}
AffineMap AffineMap::getMinorSubMap(unsigned numResults) const {
if (numResults == 0)
return AffineMap();
if (numResults > getNumResults())
return *this;
return getSubMap(llvm::to_vector<4>(
llvm::seq<unsigned>(getNumResults() - numResults, getNumResults())));
}
AffineMap mlir::compressDims(AffineMap map,
const llvm::SmallDenseSet<unsigned> &unusedDims) {
unsigned numDims = 0;
SmallVector<AffineExpr> dimReplacements;
dimReplacements.reserve(map.getNumDims());
MLIRContext *context = map.getContext();
for (unsigned dim = 0, e = map.getNumDims(); dim < e; ++dim) {
if (unusedDims.contains(dim))
dimReplacements.push_back(getAffineConstantExpr(0, context));
else
dimReplacements.push_back(getAffineDimExpr(numDims++, context));
}
SmallVector<AffineExpr> resultExprs;
resultExprs.reserve(map.getNumResults());
for (auto e : map.getResults())
resultExprs.push_back(e.replaceDims(dimReplacements));
return AffineMap::get(numDims, map.getNumSymbols(), resultExprs, context);
}
AffineMap mlir::compressUnusedDims(AffineMap map) {
llvm::SmallDenseSet<unsigned> usedDims;
map.walkExprs([&](AffineExpr expr) {
if (auto dimExpr = expr.dyn_cast<AffineDimExpr>())
usedDims.insert(dimExpr.getPosition());
});
llvm::SmallDenseSet<unsigned> unusedDims;
for (unsigned d = 0, e = map.getNumDims(); d != e; ++d)
if (!usedDims.contains(d))
unusedDims.insert(d);
return compressDims(map, unusedDims);
}
static SmallVector<AffineMap>
compressUnusedImpl(ArrayRef<AffineMap> maps,
llvm::function_ref<AffineMap(AffineMap)> compressionFun) {
if (maps.empty())
return SmallVector<AffineMap>();
SmallVector<AffineExpr> allExprs;
allExprs.reserve(maps.size() * maps.front().getNumResults());
unsigned numDims = maps.front().getNumDims(),
numSymbols = maps.front().getNumSymbols();
for (auto m : maps) {
assert(numDims == m.getNumDims() && numSymbols == m.getNumSymbols() &&
"expected maps with same num dims and symbols");
llvm::append_range(allExprs, m.getResults());
}
AffineMap unifiedMap = compressionFun(
AffineMap::get(numDims, numSymbols, allExprs, maps.front().getContext()));
unsigned unifiedNumDims = unifiedMap.getNumDims(),
unifiedNumSymbols = unifiedMap.getNumSymbols();
ArrayRef<AffineExpr> unifiedResults = unifiedMap.getResults();
SmallVector<AffineMap> res;
res.reserve(maps.size());
for (auto m : maps) {
res.push_back(AffineMap::get(unifiedNumDims, unifiedNumSymbols,
unifiedResults.take_front(m.getNumResults()),
m.getContext()));
unifiedResults = unifiedResults.drop_front(m.getNumResults());
}
return res;
}
SmallVector<AffineMap> mlir::compressUnusedDims(ArrayRef<AffineMap> maps) {
return compressUnusedImpl(maps,
[](AffineMap m) { return compressUnusedDims(m); });
}
AffineMap
mlir::compressSymbols(AffineMap map,
const llvm::SmallDenseSet<unsigned> &unusedSymbols) {
unsigned numSymbols = 0;
SmallVector<AffineExpr> symReplacements;
symReplacements.reserve(map.getNumSymbols());
MLIRContext *context = map.getContext();
for (unsigned sym = 0, e = map.getNumSymbols(); sym < e; ++sym) {
if (unusedSymbols.contains(sym))
symReplacements.push_back(getAffineConstantExpr(0, context));
else
symReplacements.push_back(getAffineSymbolExpr(numSymbols++, context));
}
SmallVector<AffineExpr> resultExprs;
resultExprs.reserve(map.getNumResults());
for (auto e : map.getResults())
resultExprs.push_back(e.replaceSymbols(symReplacements));
return AffineMap::get(map.getNumDims(), numSymbols, resultExprs, context);
}
AffineMap mlir::compressUnusedSymbols(AffineMap map) {
llvm::SmallDenseSet<unsigned> usedSymbols;
map.walkExprs([&](AffineExpr expr) {
if (auto symExpr = expr.dyn_cast<AffineSymbolExpr>())
usedSymbols.insert(symExpr.getPosition());
});
llvm::SmallDenseSet<unsigned> unusedSymbols;
for (unsigned d = 0, e = map.getNumSymbols(); d != e; ++d)
if (!usedSymbols.contains(d))
unusedSymbols.insert(d);
return compressSymbols(map, unusedSymbols);
}
SmallVector<AffineMap> mlir::compressUnusedSymbols(ArrayRef<AffineMap> maps) {
return compressUnusedImpl(
maps, [](AffineMap m) { return compressUnusedSymbols(m); });
}
AffineMap mlir::simplifyAffineMap(AffineMap map) {
SmallVector<AffineExpr, 8> exprs;
for (auto e : map.getResults()) {
exprs.push_back(
simplifyAffineExpr(e, map.getNumDims(), map.getNumSymbols()));
}
return AffineMap::get(map.getNumDims(), map.getNumSymbols(), exprs,
map.getContext());
}
AffineMap mlir::removeDuplicateExprs(AffineMap map) {
auto results = map.getResults();
SmallVector<AffineExpr, 4> uniqueExprs(results.begin(), results.end());
uniqueExprs.erase(std::unique(uniqueExprs.begin(), uniqueExprs.end()),
uniqueExprs.end());
return AffineMap::get(map.getNumDims(), map.getNumSymbols(), uniqueExprs,
map.getContext());
}
AffineMap mlir::inversePermutation(AffineMap map) {
if (map.isEmpty())
return map;
assert(map.getNumSymbols() == 0 && "expected map without symbols");
SmallVector<AffineExpr, 4> exprs(map.getNumDims());
for (const auto &en : llvm::enumerate(map.getResults())) {
auto expr = en.value();
// Skip non-permutations.
if (auto d = expr.dyn_cast<AffineDimExpr>()) {
if (exprs[d.getPosition()])
continue;
exprs[d.getPosition()] = getAffineDimExpr(en.index(), d.getContext());
}
}
SmallVector<AffineExpr, 4> seenExprs;
seenExprs.reserve(map.getNumDims());
for (auto expr : exprs)
if (expr)
seenExprs.push_back(expr);
if (seenExprs.size() != map.getNumInputs())
return AffineMap();
return AffineMap::get(map.getNumResults(), 0, seenExprs, map.getContext());
}
AffineMap mlir::inverseAndBroadcastProjectedPermuation(AffineMap map) {
assert(map.isProjectedPermutation(/*allowZeroInResults=*/true));
MLIRContext *context = map.getContext();
AffineExpr zero = mlir::getAffineConstantExpr(0, context);
// Start with all the results as 0.
SmallVector<AffineExpr, 4> exprs(map.getNumInputs(), zero);
for (unsigned i : llvm::seq(unsigned(0), map.getNumResults())) {
// Skip zeros from input map. 'exprs' is already initialized to zero.
if (auto constExpr = map.getResult(i).dyn_cast<AffineConstantExpr>()) {
assert(constExpr.getValue() == 0 &&
"Unexpected constant in projected permutation");
(void)constExpr;
continue;
}
// Reverse each dimension existing in the original map result.
exprs[map.getDimPosition(i)] = getAffineDimExpr(i, context);
}
return AffineMap::get(map.getNumResults(), /*symbolCount=*/0, exprs, context);
}
AffineMap mlir::concatAffineMaps(ArrayRef<AffineMap> maps) {
unsigned numResults = 0, numDims = 0, numSymbols = 0;
for (auto m : maps)
numResults += m.getNumResults();
SmallVector<AffineExpr, 8> results;
results.reserve(numResults);
for (auto m : maps) {
for (auto res : m.getResults())
results.push_back(res.shiftSymbols(m.getNumSymbols(), numSymbols));
numSymbols += m.getNumSymbols();
numDims = std::max(m.getNumDims(), numDims);
}
return AffineMap::get(numDims, numSymbols, results,
maps.front().getContext());
}
AffineMap
mlir::getProjectedMap(AffineMap map,
const llvm::SmallDenseSet<unsigned> &unusedDims) {
return compressUnusedSymbols(compressDims(map, unusedDims));
}
//===----------------------------------------------------------------------===//
// MutableAffineMap.
//===----------------------------------------------------------------------===//
MutableAffineMap::MutableAffineMap(AffineMap map)
: numDims(map.getNumDims()), numSymbols(map.getNumSymbols()),
context(map.getContext()) {
for (auto result : map.getResults())
results.push_back(result);
}
void MutableAffineMap::reset(AffineMap map) {
results.clear();
numDims = map.getNumDims();
numSymbols = map.getNumSymbols();
context = map.getContext();
for (auto result : map.getResults())
results.push_back(result);
}
bool MutableAffineMap::isMultipleOf(unsigned idx, int64_t factor) const {
if (results[idx].isMultipleOf(factor))
return true;
// TODO: use simplifyAffineExpr and FlatAffineConstraints to
// complete this (for a more powerful analysis).
return false;
}
// Simplifies the result affine expressions of this map. The expressions have to
// be pure for the simplification implemented.
void MutableAffineMap::simplify() {
// Simplify each of the results if possible.
// TODO: functional-style map
for (unsigned i = 0, e = getNumResults(); i < e; i++) {
results[i] = simplifyAffineExpr(getResult(i), numDims, numSymbols);
}
}
AffineMap MutableAffineMap::getAffineMap() const {
return AffineMap::get(numDims, numSymbols, results, context);
}