forked from OSchip/llvm-project
783 lines
29 KiB
C++
783 lines
29 KiB
C++
//===- AffineMap.cpp - MLIR Affine Map Classes ----------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "AffineMapDetail.h"
|
|
#include "mlir/IR/BuiltinAttributes.h"
|
|
#include "mlir/IR/BuiltinTypes.h"
|
|
#include "mlir/Support/LogicalResult.h"
|
|
#include "mlir/Support/MathExtras.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace mlir;
|
|
|
|
namespace {
|
|
|
|
// AffineExprConstantFolder evaluates an affine expression using constant
|
|
// operands passed in 'operandConsts'. Returns an IntegerAttr attribute
|
|
// representing the constant value of the affine expression evaluated on
|
|
// constant 'operandConsts', or nullptr if it can't be folded.
|
|
class AffineExprConstantFolder {
|
|
public:
|
|
AffineExprConstantFolder(unsigned numDims, ArrayRef<Attribute> operandConsts)
|
|
: numDims(numDims), operandConsts(operandConsts) {}
|
|
|
|
/// Attempt to constant fold the specified affine expr, or return null on
|
|
/// failure.
|
|
IntegerAttr constantFold(AffineExpr expr) {
|
|
if (auto result = constantFoldImpl(expr))
|
|
return IntegerAttr::get(IndexType::get(expr.getContext()), *result);
|
|
return nullptr;
|
|
}
|
|
|
|
private:
|
|
Optional<int64_t> constantFoldImpl(AffineExpr expr) {
|
|
switch (expr.getKind()) {
|
|
case AffineExprKind::Add:
|
|
return constantFoldBinExpr(
|
|
expr, [](int64_t lhs, int64_t rhs) { return lhs + rhs; });
|
|
case AffineExprKind::Mul:
|
|
return constantFoldBinExpr(
|
|
expr, [](int64_t lhs, int64_t rhs) { return lhs * rhs; });
|
|
case AffineExprKind::Mod:
|
|
return constantFoldBinExpr(
|
|
expr, [](int64_t lhs, int64_t rhs) { return mod(lhs, rhs); });
|
|
case AffineExprKind::FloorDiv:
|
|
return constantFoldBinExpr(
|
|
expr, [](int64_t lhs, int64_t rhs) { return floorDiv(lhs, rhs); });
|
|
case AffineExprKind::CeilDiv:
|
|
return constantFoldBinExpr(
|
|
expr, [](int64_t lhs, int64_t rhs) { return ceilDiv(lhs, rhs); });
|
|
case AffineExprKind::Constant:
|
|
return expr.cast<AffineConstantExpr>().getValue();
|
|
case AffineExprKind::DimId:
|
|
if (auto attr = operandConsts[expr.cast<AffineDimExpr>().getPosition()]
|
|
.dyn_cast_or_null<IntegerAttr>())
|
|
return attr.getInt();
|
|
return llvm::None;
|
|
case AffineExprKind::SymbolId:
|
|
if (auto attr = operandConsts[numDims +
|
|
expr.cast<AffineSymbolExpr>().getPosition()]
|
|
.dyn_cast_or_null<IntegerAttr>())
|
|
return attr.getInt();
|
|
return llvm::None;
|
|
}
|
|
llvm_unreachable("Unknown AffineExpr");
|
|
}
|
|
|
|
// TODO: Change these to operate on APInts too.
|
|
Optional<int64_t> constantFoldBinExpr(AffineExpr expr,
|
|
int64_t (*op)(int64_t, int64_t)) {
|
|
auto binOpExpr = expr.cast<AffineBinaryOpExpr>();
|
|
if (auto lhs = constantFoldImpl(binOpExpr.getLHS()))
|
|
if (auto rhs = constantFoldImpl(binOpExpr.getRHS()))
|
|
return op(*lhs, *rhs);
|
|
return llvm::None;
|
|
}
|
|
|
|
// The number of dimension operands in AffineMap containing this expression.
|
|
unsigned numDims;
|
|
// The constant valued operands used to evaluate this AffineExpr.
|
|
ArrayRef<Attribute> operandConsts;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
/// Returns a single constant result affine map.
|
|
AffineMap AffineMap::getConstantMap(int64_t val, MLIRContext *context) {
|
|
return get(/*dimCount=*/0, /*symbolCount=*/0,
|
|
{getAffineConstantExpr(val, context)});
|
|
}
|
|
|
|
/// Returns an identity affine map (d0, ..., dn) -> (dp, ..., dn) on the most
|
|
/// minor dimensions.
|
|
AffineMap AffineMap::getMinorIdentityMap(unsigned dims, unsigned results,
|
|
MLIRContext *context) {
|
|
assert(dims >= results && "Dimension mismatch");
|
|
auto id = AffineMap::getMultiDimIdentityMap(dims, context);
|
|
return AffineMap::get(dims, 0, id.getResults().take_back(results), context);
|
|
}
|
|
|
|
bool AffineMap::isMinorIdentity() const {
|
|
return getNumDims() >= getNumResults() &&
|
|
*this ==
|
|
getMinorIdentityMap(getNumDims(), getNumResults(), getContext());
|
|
}
|
|
|
|
/// Returns true if this affine map is a minor identity up to broadcasted
|
|
/// dimensions which are indicated by value 0 in the result.
|
|
bool AffineMap::isMinorIdentityWithBroadcasting(
|
|
SmallVectorImpl<unsigned> *broadcastedDims) const {
|
|
if (broadcastedDims)
|
|
broadcastedDims->clear();
|
|
if (getNumDims() < getNumResults())
|
|
return false;
|
|
unsigned suffixStart = getNumDims() - getNumResults();
|
|
for (const auto &idxAndExpr : llvm::enumerate(getResults())) {
|
|
unsigned resIdx = idxAndExpr.index();
|
|
AffineExpr expr = idxAndExpr.value();
|
|
if (auto constExpr = expr.dyn_cast<AffineConstantExpr>()) {
|
|
// Each result may be either a constant 0 (broadcasted dimension).
|
|
if (constExpr.getValue() != 0)
|
|
return false;
|
|
if (broadcastedDims)
|
|
broadcastedDims->push_back(resIdx);
|
|
} else if (auto dimExpr = expr.dyn_cast<AffineDimExpr>()) {
|
|
// Or it may be the input dimension corresponding to this result position.
|
|
if (dimExpr.getPosition() != suffixStart + resIdx)
|
|
return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Return true if this affine map can be converted to a minor identity with
|
|
/// broadcast by doing a permute. Return a permutation (there may be
|
|
/// several) to apply to get to a minor identity with broadcasts.
|
|
/// Ex:
|
|
/// * (d0, d1, d2) -> (0, d1) maps to minor identity (d1, 0 = d2) with
|
|
/// perm = [1, 0] and broadcast d2
|
|
/// * (d0, d1, d2) -> (d0, 0) cannot be mapped to a minor identity by
|
|
/// permutation + broadcast
|
|
/// * (d0, d1, d2, d3) -> (0, d1, d3) maps to minor identity (d1, 0 = d2, d3)
|
|
/// with perm = [1, 0, 2] and broadcast d2
|
|
/// * (d0, d1) -> (d1, 0, 0, d0) maps to minor identity (d0, d1) with extra
|
|
/// leading broadcat dimensions. The map returned would be (0, 0, d0, d1) with
|
|
/// perm = [3, 0, 1, 2]
|
|
bool AffineMap::isPermutationOfMinorIdentityWithBroadcasting(
|
|
SmallVectorImpl<unsigned> &permutedDims) const {
|
|
unsigned projectionStart =
|
|
getNumResults() < getNumInputs() ? getNumInputs() - getNumResults() : 0;
|
|
permutedDims.clear();
|
|
SmallVector<unsigned> broadcastDims;
|
|
permutedDims.resize(getNumResults(), 0);
|
|
// If there are more results than input dimensions we want the new map to
|
|
// start with broadcast dimensions in order to be a minor identity with
|
|
// broadcasting.
|
|
unsigned leadingBroadcast =
|
|
getNumResults() > getNumInputs() ? getNumResults() - getNumInputs() : 0;
|
|
llvm::SmallBitVector dimFound(std::max(getNumInputs(), getNumResults()),
|
|
false);
|
|
for (const auto &idxAndExpr : llvm::enumerate(getResults())) {
|
|
unsigned resIdx = idxAndExpr.index();
|
|
AffineExpr expr = idxAndExpr.value();
|
|
// Each result may be either a constant 0 (broadcast dimension) or a
|
|
// dimension.
|
|
if (auto constExpr = expr.dyn_cast<AffineConstantExpr>()) {
|
|
if (constExpr.getValue() != 0)
|
|
return false;
|
|
broadcastDims.push_back(resIdx);
|
|
} else if (auto dimExpr = expr.dyn_cast<AffineDimExpr>()) {
|
|
if (dimExpr.getPosition() < projectionStart)
|
|
return false;
|
|
unsigned newPosition =
|
|
dimExpr.getPosition() - projectionStart + leadingBroadcast;
|
|
permutedDims[resIdx] = newPosition;
|
|
dimFound[newPosition] = true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
// Find a permuation for the broadcast dimension. Since they are broadcasted
|
|
// any valid permutation is acceptable. We just permute the dim into a slot
|
|
// without an existing dimension.
|
|
unsigned pos = 0;
|
|
for (auto dim : broadcastDims) {
|
|
while (pos < dimFound.size() && dimFound[pos]) {
|
|
pos++;
|
|
}
|
|
permutedDims[dim] = pos++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Returns an AffineMap representing a permutation.
|
|
AffineMap AffineMap::getPermutationMap(ArrayRef<unsigned> permutation,
|
|
MLIRContext *context) {
|
|
assert(!permutation.empty() &&
|
|
"Cannot create permutation map from empty permutation vector");
|
|
SmallVector<AffineExpr, 4> affExprs;
|
|
for (auto index : permutation)
|
|
affExprs.push_back(getAffineDimExpr(index, context));
|
|
const auto *m = std::max_element(permutation.begin(), permutation.end());
|
|
auto permutationMap = AffineMap::get(*m + 1, 0, affExprs, context);
|
|
assert(permutationMap.isPermutation() && "Invalid permutation vector");
|
|
return permutationMap;
|
|
}
|
|
|
|
template <typename AffineExprContainer>
|
|
static SmallVector<AffineMap, 4>
|
|
inferFromExprList(ArrayRef<AffineExprContainer> exprsList) {
|
|
assert(!exprsList.empty());
|
|
assert(!exprsList[0].empty());
|
|
auto context = exprsList[0][0].getContext();
|
|
int64_t maxDim = -1, maxSym = -1;
|
|
getMaxDimAndSymbol(exprsList, maxDim, maxSym);
|
|
SmallVector<AffineMap, 4> maps;
|
|
maps.reserve(exprsList.size());
|
|
for (const auto &exprs : exprsList)
|
|
maps.push_back(AffineMap::get(/*dimCount=*/maxDim + 1,
|
|
/*symbolCount=*/maxSym + 1, exprs, context));
|
|
return maps;
|
|
}
|
|
|
|
SmallVector<AffineMap, 4>
|
|
AffineMap::inferFromExprList(ArrayRef<ArrayRef<AffineExpr>> exprsList) {
|
|
return ::inferFromExprList(exprsList);
|
|
}
|
|
|
|
SmallVector<AffineMap, 4>
|
|
AffineMap::inferFromExprList(ArrayRef<SmallVector<AffineExpr, 4>> exprsList) {
|
|
return ::inferFromExprList(exprsList);
|
|
}
|
|
|
|
AffineMap AffineMap::getMultiDimIdentityMap(unsigned numDims,
|
|
MLIRContext *context) {
|
|
SmallVector<AffineExpr, 4> dimExprs;
|
|
dimExprs.reserve(numDims);
|
|
for (unsigned i = 0; i < numDims; ++i)
|
|
dimExprs.push_back(mlir::getAffineDimExpr(i, context));
|
|
return get(/*dimCount=*/numDims, /*symbolCount=*/0, dimExprs, context);
|
|
}
|
|
|
|
MLIRContext *AffineMap::getContext() const { return map->context; }
|
|
|
|
bool AffineMap::isIdentity() const {
|
|
if (getNumDims() != getNumResults())
|
|
return false;
|
|
ArrayRef<AffineExpr> results = getResults();
|
|
for (unsigned i = 0, numDims = getNumDims(); i < numDims; ++i) {
|
|
auto expr = results[i].dyn_cast<AffineDimExpr>();
|
|
if (!expr || expr.getPosition() != i)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool AffineMap::isEmpty() const {
|
|
return getNumDims() == 0 && getNumSymbols() == 0 && getNumResults() == 0;
|
|
}
|
|
|
|
bool AffineMap::isSingleConstant() const {
|
|
return getNumResults() == 1 && getResult(0).isa<AffineConstantExpr>();
|
|
}
|
|
|
|
bool AffineMap::isConstant() const {
|
|
return llvm::all_of(getResults(), [](AffineExpr expr) {
|
|
return expr.isa<AffineConstantExpr>();
|
|
});
|
|
}
|
|
|
|
int64_t AffineMap::getSingleConstantResult() const {
|
|
assert(isSingleConstant() && "map must have a single constant result");
|
|
return getResult(0).cast<AffineConstantExpr>().getValue();
|
|
}
|
|
|
|
SmallVector<int64_t> AffineMap::getConstantResults() const {
|
|
assert(isConstant() && "map must have only constant results");
|
|
SmallVector<int64_t> result;
|
|
for (auto expr : getResults())
|
|
result.emplace_back(expr.cast<AffineConstantExpr>().getValue());
|
|
return result;
|
|
}
|
|
|
|
unsigned AffineMap::getNumDims() const {
|
|
assert(map && "uninitialized map storage");
|
|
return map->numDims;
|
|
}
|
|
unsigned AffineMap::getNumSymbols() const {
|
|
assert(map && "uninitialized map storage");
|
|
return map->numSymbols;
|
|
}
|
|
unsigned AffineMap::getNumResults() const {
|
|
assert(map && "uninitialized map storage");
|
|
return map->results.size();
|
|
}
|
|
unsigned AffineMap::getNumInputs() const {
|
|
assert(map && "uninitialized map storage");
|
|
return map->numDims + map->numSymbols;
|
|
}
|
|
|
|
ArrayRef<AffineExpr> AffineMap::getResults() const {
|
|
assert(map && "uninitialized map storage");
|
|
return map->results;
|
|
}
|
|
AffineExpr AffineMap::getResult(unsigned idx) const {
|
|
assert(map && "uninitialized map storage");
|
|
return map->results[idx];
|
|
}
|
|
|
|
unsigned AffineMap::getDimPosition(unsigned idx) const {
|
|
return getResult(idx).cast<AffineDimExpr>().getPosition();
|
|
}
|
|
|
|
unsigned AffineMap::getPermutedPosition(unsigned input) const {
|
|
assert(isPermutation() && "invalid permutation request");
|
|
for (unsigned i = 0, numResults = getNumResults(); i < numResults; i++)
|
|
if (getDimPosition(i) == input)
|
|
return i;
|
|
llvm_unreachable("incorrect permutation request");
|
|
}
|
|
|
|
/// Folds the results of the application of an affine map on the provided
|
|
/// operands to a constant if possible. Returns false if the folding happens,
|
|
/// true otherwise.
|
|
LogicalResult
|
|
AffineMap::constantFold(ArrayRef<Attribute> operandConstants,
|
|
SmallVectorImpl<Attribute> &results) const {
|
|
// Attempt partial folding.
|
|
SmallVector<int64_t, 2> integers;
|
|
partialConstantFold(operandConstants, &integers);
|
|
|
|
// If all expressions folded to a constant, populate results with attributes
|
|
// containing those constants.
|
|
if (integers.empty())
|
|
return failure();
|
|
|
|
auto range = llvm::map_range(integers, [this](int64_t i) {
|
|
return IntegerAttr::get(IndexType::get(getContext()), i);
|
|
});
|
|
results.append(range.begin(), range.end());
|
|
return success();
|
|
}
|
|
|
|
AffineMap
|
|
AffineMap::partialConstantFold(ArrayRef<Attribute> operandConstants,
|
|
SmallVectorImpl<int64_t> *results) const {
|
|
assert(getNumInputs() == operandConstants.size());
|
|
|
|
// Fold each of the result expressions.
|
|
AffineExprConstantFolder exprFolder(getNumDims(), operandConstants);
|
|
SmallVector<AffineExpr, 4> exprs;
|
|
exprs.reserve(getNumResults());
|
|
|
|
for (auto expr : getResults()) {
|
|
auto folded = exprFolder.constantFold(expr);
|
|
// If did not fold to a constant, keep the original expression, and clear
|
|
// the integer results vector.
|
|
if (folded) {
|
|
exprs.push_back(
|
|
getAffineConstantExpr(folded.getInt(), folded.getContext()));
|
|
if (results)
|
|
results->push_back(folded.getInt());
|
|
} else {
|
|
exprs.push_back(expr);
|
|
if (results) {
|
|
results->clear();
|
|
results = nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
return get(getNumDims(), getNumSymbols(), exprs, getContext());
|
|
}
|
|
|
|
/// Walk all of the AffineExpr's in this mapping. Each node in an expression
|
|
/// tree is visited in postorder.
|
|
void AffineMap::walkExprs(llvm::function_ref<void(AffineExpr)> callback) const {
|
|
for (auto expr : getResults())
|
|
expr.walk(callback);
|
|
}
|
|
|
|
/// This method substitutes any uses of dimensions and symbols (e.g.
|
|
/// dim#0 with dimReplacements[0]) in subexpressions and returns the modified
|
|
/// expression mapping. Because this can be used to eliminate dims and
|
|
/// symbols, the client needs to specify the number of dims and symbols in
|
|
/// the result. The returned map always has the same number of results.
|
|
AffineMap AffineMap::replaceDimsAndSymbols(ArrayRef<AffineExpr> dimReplacements,
|
|
ArrayRef<AffineExpr> symReplacements,
|
|
unsigned numResultDims,
|
|
unsigned numResultSyms) const {
|
|
SmallVector<AffineExpr, 8> results;
|
|
results.reserve(getNumResults());
|
|
for (auto expr : getResults())
|
|
results.push_back(
|
|
expr.replaceDimsAndSymbols(dimReplacements, symReplacements));
|
|
return get(numResultDims, numResultSyms, results, getContext());
|
|
}
|
|
|
|
/// Sparse replace method. Apply AffineExpr::replace(`expr`, `replacement`) to
|
|
/// each of the results and return a new AffineMap with the new results and
|
|
/// with the specified number of dims and symbols.
|
|
AffineMap AffineMap::replace(AffineExpr expr, AffineExpr replacement,
|
|
unsigned numResultDims,
|
|
unsigned numResultSyms) const {
|
|
SmallVector<AffineExpr, 4> newResults;
|
|
newResults.reserve(getNumResults());
|
|
for (AffineExpr e : getResults())
|
|
newResults.push_back(e.replace(expr, replacement));
|
|
return AffineMap::get(numResultDims, numResultSyms, newResults, getContext());
|
|
}
|
|
|
|
/// Sparse replace method. Apply AffineExpr::replace(`map`) to each of the
|
|
/// results and return a new AffineMap with the new results and with the
|
|
/// specified number of dims and symbols.
|
|
AffineMap AffineMap::replace(const DenseMap<AffineExpr, AffineExpr> &map,
|
|
unsigned numResultDims,
|
|
unsigned numResultSyms) const {
|
|
SmallVector<AffineExpr, 4> newResults;
|
|
newResults.reserve(getNumResults());
|
|
for (AffineExpr e : getResults())
|
|
newResults.push_back(e.replace(map));
|
|
return AffineMap::get(numResultDims, numResultSyms, newResults, getContext());
|
|
}
|
|
|
|
AffineMap
|
|
AffineMap::replace(const DenseMap<AffineExpr, AffineExpr> &map) const {
|
|
SmallVector<AffineExpr, 4> newResults;
|
|
newResults.reserve(getNumResults());
|
|
for (AffineExpr e : getResults())
|
|
newResults.push_back(e.replace(map));
|
|
return AffineMap::inferFromExprList(newResults).front();
|
|
}
|
|
|
|
AffineMap AffineMap::compose(AffineMap map) const {
|
|
assert(getNumDims() == map.getNumResults() && "Number of results mismatch");
|
|
// Prepare `map` by concatenating the symbols and rewriting its exprs.
|
|
unsigned numDims = map.getNumDims();
|
|
unsigned numSymbolsThisMap = getNumSymbols();
|
|
unsigned numSymbols = numSymbolsThisMap + map.getNumSymbols();
|
|
SmallVector<AffineExpr, 8> newDims(numDims);
|
|
for (unsigned idx = 0; idx < numDims; ++idx) {
|
|
newDims[idx] = getAffineDimExpr(idx, getContext());
|
|
}
|
|
SmallVector<AffineExpr, 8> newSymbols(numSymbols - numSymbolsThisMap);
|
|
for (unsigned idx = numSymbolsThisMap; idx < numSymbols; ++idx) {
|
|
newSymbols[idx - numSymbolsThisMap] =
|
|
getAffineSymbolExpr(idx, getContext());
|
|
}
|
|
auto newMap =
|
|
map.replaceDimsAndSymbols(newDims, newSymbols, numDims, numSymbols);
|
|
SmallVector<AffineExpr, 8> exprs;
|
|
exprs.reserve(getResults().size());
|
|
for (auto expr : getResults())
|
|
exprs.push_back(expr.compose(newMap));
|
|
return AffineMap::get(numDims, numSymbols, exprs, map.getContext());
|
|
}
|
|
|
|
SmallVector<int64_t, 4> AffineMap::compose(ArrayRef<int64_t> values) const {
|
|
assert(getNumSymbols() == 0 && "Expected symbol-less map");
|
|
SmallVector<AffineExpr, 4> exprs;
|
|
exprs.reserve(values.size());
|
|
MLIRContext *ctx = getContext();
|
|
for (auto v : values)
|
|
exprs.push_back(getAffineConstantExpr(v, ctx));
|
|
auto resMap = compose(AffineMap::get(0, 0, exprs, ctx));
|
|
SmallVector<int64_t, 4> res;
|
|
res.reserve(resMap.getNumResults());
|
|
for (auto e : resMap.getResults())
|
|
res.push_back(e.cast<AffineConstantExpr>().getValue());
|
|
return res;
|
|
}
|
|
|
|
bool AffineMap::isProjectedPermutation(bool allowZeroInResults) const {
|
|
if (getNumSymbols() > 0)
|
|
return false;
|
|
|
|
// Having more results than inputs means that results have duplicated dims or
|
|
// zeros that can't be mapped to input dims.
|
|
if (getNumResults() > getNumInputs())
|
|
return false;
|
|
|
|
SmallVector<bool, 8> seen(getNumInputs(), false);
|
|
// A projected permutation can have, at most, only one instance of each input
|
|
// dimension in the result expressions. Zeros are allowed as long as the
|
|
// number of result expressions is lower or equal than the number of input
|
|
// expressions.
|
|
for (auto expr : getResults()) {
|
|
if (auto dim = expr.dyn_cast<AffineDimExpr>()) {
|
|
if (seen[dim.getPosition()])
|
|
return false;
|
|
seen[dim.getPosition()] = true;
|
|
} else {
|
|
auto constExpr = expr.dyn_cast<AffineConstantExpr>();
|
|
if (!allowZeroInResults || !constExpr || constExpr.getValue() != 0)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Results are either dims or zeros and zeros can be mapped to input dims.
|
|
return true;
|
|
}
|
|
|
|
bool AffineMap::isPermutation() const {
|
|
if (getNumDims() != getNumResults())
|
|
return false;
|
|
return isProjectedPermutation();
|
|
}
|
|
|
|
AffineMap AffineMap::getSubMap(ArrayRef<unsigned> resultPos) const {
|
|
SmallVector<AffineExpr, 4> exprs;
|
|
exprs.reserve(resultPos.size());
|
|
for (auto idx : resultPos)
|
|
exprs.push_back(getResult(idx));
|
|
return AffineMap::get(getNumDims(), getNumSymbols(), exprs, getContext());
|
|
}
|
|
|
|
AffineMap AffineMap::getSliceMap(unsigned start, unsigned length) const {
|
|
return AffineMap::get(getNumDims(), getNumSymbols(),
|
|
getResults().slice(start, length), getContext());
|
|
}
|
|
|
|
AffineMap AffineMap::getMajorSubMap(unsigned numResults) const {
|
|
if (numResults == 0)
|
|
return AffineMap();
|
|
if (numResults > getNumResults())
|
|
return *this;
|
|
return getSubMap(llvm::to_vector<4>(llvm::seq<unsigned>(0, numResults)));
|
|
}
|
|
|
|
AffineMap AffineMap::getMinorSubMap(unsigned numResults) const {
|
|
if (numResults == 0)
|
|
return AffineMap();
|
|
if (numResults > getNumResults())
|
|
return *this;
|
|
return getSubMap(llvm::to_vector<4>(
|
|
llvm::seq<unsigned>(getNumResults() - numResults, getNumResults())));
|
|
}
|
|
|
|
AffineMap mlir::compressDims(AffineMap map,
|
|
const llvm::SmallDenseSet<unsigned> &unusedDims) {
|
|
unsigned numDims = 0;
|
|
SmallVector<AffineExpr> dimReplacements;
|
|
dimReplacements.reserve(map.getNumDims());
|
|
MLIRContext *context = map.getContext();
|
|
for (unsigned dim = 0, e = map.getNumDims(); dim < e; ++dim) {
|
|
if (unusedDims.contains(dim))
|
|
dimReplacements.push_back(getAffineConstantExpr(0, context));
|
|
else
|
|
dimReplacements.push_back(getAffineDimExpr(numDims++, context));
|
|
}
|
|
SmallVector<AffineExpr> resultExprs;
|
|
resultExprs.reserve(map.getNumResults());
|
|
for (auto e : map.getResults())
|
|
resultExprs.push_back(e.replaceDims(dimReplacements));
|
|
return AffineMap::get(numDims, map.getNumSymbols(), resultExprs, context);
|
|
}
|
|
|
|
AffineMap mlir::compressUnusedDims(AffineMap map) {
|
|
llvm::SmallDenseSet<unsigned> usedDims;
|
|
map.walkExprs([&](AffineExpr expr) {
|
|
if (auto dimExpr = expr.dyn_cast<AffineDimExpr>())
|
|
usedDims.insert(dimExpr.getPosition());
|
|
});
|
|
llvm::SmallDenseSet<unsigned> unusedDims;
|
|
for (unsigned d = 0, e = map.getNumDims(); d != e; ++d)
|
|
if (!usedDims.contains(d))
|
|
unusedDims.insert(d);
|
|
return compressDims(map, unusedDims);
|
|
}
|
|
|
|
static SmallVector<AffineMap>
|
|
compressUnusedImpl(ArrayRef<AffineMap> maps,
|
|
llvm::function_ref<AffineMap(AffineMap)> compressionFun) {
|
|
if (maps.empty())
|
|
return SmallVector<AffineMap>();
|
|
SmallVector<AffineExpr> allExprs;
|
|
allExprs.reserve(maps.size() * maps.front().getNumResults());
|
|
unsigned numDims = maps.front().getNumDims(),
|
|
numSymbols = maps.front().getNumSymbols();
|
|
for (auto m : maps) {
|
|
assert(numDims == m.getNumDims() && numSymbols == m.getNumSymbols() &&
|
|
"expected maps with same num dims and symbols");
|
|
llvm::append_range(allExprs, m.getResults());
|
|
}
|
|
AffineMap unifiedMap = compressionFun(
|
|
AffineMap::get(numDims, numSymbols, allExprs, maps.front().getContext()));
|
|
unsigned unifiedNumDims = unifiedMap.getNumDims(),
|
|
unifiedNumSymbols = unifiedMap.getNumSymbols();
|
|
ArrayRef<AffineExpr> unifiedResults = unifiedMap.getResults();
|
|
SmallVector<AffineMap> res;
|
|
res.reserve(maps.size());
|
|
for (auto m : maps) {
|
|
res.push_back(AffineMap::get(unifiedNumDims, unifiedNumSymbols,
|
|
unifiedResults.take_front(m.getNumResults()),
|
|
m.getContext()));
|
|
unifiedResults = unifiedResults.drop_front(m.getNumResults());
|
|
}
|
|
return res;
|
|
}
|
|
|
|
SmallVector<AffineMap> mlir::compressUnusedDims(ArrayRef<AffineMap> maps) {
|
|
return compressUnusedImpl(maps,
|
|
[](AffineMap m) { return compressUnusedDims(m); });
|
|
}
|
|
|
|
AffineMap
|
|
mlir::compressSymbols(AffineMap map,
|
|
const llvm::SmallDenseSet<unsigned> &unusedSymbols) {
|
|
unsigned numSymbols = 0;
|
|
SmallVector<AffineExpr> symReplacements;
|
|
symReplacements.reserve(map.getNumSymbols());
|
|
MLIRContext *context = map.getContext();
|
|
for (unsigned sym = 0, e = map.getNumSymbols(); sym < e; ++sym) {
|
|
if (unusedSymbols.contains(sym))
|
|
symReplacements.push_back(getAffineConstantExpr(0, context));
|
|
else
|
|
symReplacements.push_back(getAffineSymbolExpr(numSymbols++, context));
|
|
}
|
|
SmallVector<AffineExpr> resultExprs;
|
|
resultExprs.reserve(map.getNumResults());
|
|
for (auto e : map.getResults())
|
|
resultExprs.push_back(e.replaceSymbols(symReplacements));
|
|
return AffineMap::get(map.getNumDims(), numSymbols, resultExprs, context);
|
|
}
|
|
|
|
AffineMap mlir::compressUnusedSymbols(AffineMap map) {
|
|
llvm::SmallDenseSet<unsigned> usedSymbols;
|
|
map.walkExprs([&](AffineExpr expr) {
|
|
if (auto symExpr = expr.dyn_cast<AffineSymbolExpr>())
|
|
usedSymbols.insert(symExpr.getPosition());
|
|
});
|
|
llvm::SmallDenseSet<unsigned> unusedSymbols;
|
|
for (unsigned d = 0, e = map.getNumSymbols(); d != e; ++d)
|
|
if (!usedSymbols.contains(d))
|
|
unusedSymbols.insert(d);
|
|
return compressSymbols(map, unusedSymbols);
|
|
}
|
|
|
|
SmallVector<AffineMap> mlir::compressUnusedSymbols(ArrayRef<AffineMap> maps) {
|
|
return compressUnusedImpl(
|
|
maps, [](AffineMap m) { return compressUnusedSymbols(m); });
|
|
}
|
|
|
|
AffineMap mlir::simplifyAffineMap(AffineMap map) {
|
|
SmallVector<AffineExpr, 8> exprs;
|
|
for (auto e : map.getResults()) {
|
|
exprs.push_back(
|
|
simplifyAffineExpr(e, map.getNumDims(), map.getNumSymbols()));
|
|
}
|
|
return AffineMap::get(map.getNumDims(), map.getNumSymbols(), exprs,
|
|
map.getContext());
|
|
}
|
|
|
|
AffineMap mlir::removeDuplicateExprs(AffineMap map) {
|
|
auto results = map.getResults();
|
|
SmallVector<AffineExpr, 4> uniqueExprs(results.begin(), results.end());
|
|
uniqueExprs.erase(std::unique(uniqueExprs.begin(), uniqueExprs.end()),
|
|
uniqueExprs.end());
|
|
return AffineMap::get(map.getNumDims(), map.getNumSymbols(), uniqueExprs,
|
|
map.getContext());
|
|
}
|
|
|
|
AffineMap mlir::inversePermutation(AffineMap map) {
|
|
if (map.isEmpty())
|
|
return map;
|
|
assert(map.getNumSymbols() == 0 && "expected map without symbols");
|
|
SmallVector<AffineExpr, 4> exprs(map.getNumDims());
|
|
for (const auto &en : llvm::enumerate(map.getResults())) {
|
|
auto expr = en.value();
|
|
// Skip non-permutations.
|
|
if (auto d = expr.dyn_cast<AffineDimExpr>()) {
|
|
if (exprs[d.getPosition()])
|
|
continue;
|
|
exprs[d.getPosition()] = getAffineDimExpr(en.index(), d.getContext());
|
|
}
|
|
}
|
|
SmallVector<AffineExpr, 4> seenExprs;
|
|
seenExprs.reserve(map.getNumDims());
|
|
for (auto expr : exprs)
|
|
if (expr)
|
|
seenExprs.push_back(expr);
|
|
if (seenExprs.size() != map.getNumInputs())
|
|
return AffineMap();
|
|
return AffineMap::get(map.getNumResults(), 0, seenExprs, map.getContext());
|
|
}
|
|
|
|
AffineMap mlir::inverseAndBroadcastProjectedPermuation(AffineMap map) {
|
|
assert(map.isProjectedPermutation(/*allowZeroInResults=*/true));
|
|
MLIRContext *context = map.getContext();
|
|
AffineExpr zero = mlir::getAffineConstantExpr(0, context);
|
|
// Start with all the results as 0.
|
|
SmallVector<AffineExpr, 4> exprs(map.getNumInputs(), zero);
|
|
for (unsigned i : llvm::seq(unsigned(0), map.getNumResults())) {
|
|
// Skip zeros from input map. 'exprs' is already initialized to zero.
|
|
if (auto constExpr = map.getResult(i).dyn_cast<AffineConstantExpr>()) {
|
|
assert(constExpr.getValue() == 0 &&
|
|
"Unexpected constant in projected permutation");
|
|
(void)constExpr;
|
|
continue;
|
|
}
|
|
|
|
// Reverse each dimension existing in the original map result.
|
|
exprs[map.getDimPosition(i)] = getAffineDimExpr(i, context);
|
|
}
|
|
return AffineMap::get(map.getNumResults(), /*symbolCount=*/0, exprs, context);
|
|
}
|
|
|
|
AffineMap mlir::concatAffineMaps(ArrayRef<AffineMap> maps) {
|
|
unsigned numResults = 0, numDims = 0, numSymbols = 0;
|
|
for (auto m : maps)
|
|
numResults += m.getNumResults();
|
|
SmallVector<AffineExpr, 8> results;
|
|
results.reserve(numResults);
|
|
for (auto m : maps) {
|
|
for (auto res : m.getResults())
|
|
results.push_back(res.shiftSymbols(m.getNumSymbols(), numSymbols));
|
|
|
|
numSymbols += m.getNumSymbols();
|
|
numDims = std::max(m.getNumDims(), numDims);
|
|
}
|
|
return AffineMap::get(numDims, numSymbols, results,
|
|
maps.front().getContext());
|
|
}
|
|
|
|
AffineMap
|
|
mlir::getProjectedMap(AffineMap map,
|
|
const llvm::SmallDenseSet<unsigned> &unusedDims) {
|
|
return compressUnusedSymbols(compressDims(map, unusedDims));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MutableAffineMap.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
MutableAffineMap::MutableAffineMap(AffineMap map)
|
|
: numDims(map.getNumDims()), numSymbols(map.getNumSymbols()),
|
|
context(map.getContext()) {
|
|
for (auto result : map.getResults())
|
|
results.push_back(result);
|
|
}
|
|
|
|
void MutableAffineMap::reset(AffineMap map) {
|
|
results.clear();
|
|
numDims = map.getNumDims();
|
|
numSymbols = map.getNumSymbols();
|
|
context = map.getContext();
|
|
for (auto result : map.getResults())
|
|
results.push_back(result);
|
|
}
|
|
|
|
bool MutableAffineMap::isMultipleOf(unsigned idx, int64_t factor) const {
|
|
if (results[idx].isMultipleOf(factor))
|
|
return true;
|
|
|
|
// TODO: use simplifyAffineExpr and FlatAffineConstraints to
|
|
// complete this (for a more powerful analysis).
|
|
return false;
|
|
}
|
|
|
|
// Simplifies the result affine expressions of this map. The expressions have to
|
|
// be pure for the simplification implemented.
|
|
void MutableAffineMap::simplify() {
|
|
// Simplify each of the results if possible.
|
|
// TODO: functional-style map
|
|
for (unsigned i = 0, e = getNumResults(); i < e; i++) {
|
|
results[i] = simplifyAffineExpr(getResult(i), numDims, numSymbols);
|
|
}
|
|
}
|
|
|
|
AffineMap MutableAffineMap::getAffineMap() const {
|
|
return AffineMap::get(numDims, numSymbols, results, context);
|
|
}
|