llvm-project/llvm/lib/Target/PowerPC/PPCISelLowering.cpp

11173 lines
438 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the PPCISelLowering class.
//
//===----------------------------------------------------------------------===//
#include "PPCISelLowering.h"
#include "MCTargetDesc/PPCPredicates.h"
#include "PPCCallingConv.h"
#include "PPCMachineFunctionInfo.h"
#include "PPCPerfectShuffle.h"
#include "PPCTargetMachine.h"
#include "PPCTargetObjectFile.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
// FIXME: Remove this once soft-float is supported.
static cl::opt<bool> DisablePPCFloatInVariadic("disable-ppc-float-in-variadic",
cl::desc("disable saving float registers for va_start on PPC"), cl::Hidden);
static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
// FIXME: Remove this once the bug has been fixed!
extern cl::opt<bool> ANDIGlueBug;
PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
const PPCSubtarget &STI)
: TargetLowering(TM), Subtarget(STI) {
// Use _setjmp/_longjmp instead of setjmp/longjmp.
setUseUnderscoreSetJmp(true);
setUseUnderscoreLongJmp(true);
// On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
// arguments are at least 4/8 bytes aligned.
bool isPPC64 = Subtarget.isPPC64();
setMinStackArgumentAlignment(isPPC64 ? 8:4);
// Set up the register classes.
addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
// PowerPC has an i16 but no i8 (or i1) SEXTLOAD
for (MVT VT : MVT::integer_valuetypes()) {
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
}
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
// PowerPC has pre-inc load and store's.
setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
if (Subtarget.useCRBits()) {
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
if (isPPC64 || Subtarget.hasFPCVT()) {
setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
isPPC64 ? MVT::i64 : MVT::i32);
setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
AddPromotedToType (ISD::UINT_TO_FP, MVT::i1,
isPPC64 ? MVT::i64 : MVT::i32);
} else {
setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
}
// PowerPC does not support direct load / store of condition registers
setOperationAction(ISD::LOAD, MVT::i1, Custom);
setOperationAction(ISD::STORE, MVT::i1, Custom);
// FIXME: Remove this once the ANDI glue bug is fixed:
if (ANDIGlueBug)
setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
for (MVT VT : MVT::integer_valuetypes()) {
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
setTruncStoreAction(VT, MVT::i1, Expand);
}
addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
}
// This is used in the ppcf128->int sequence. Note it has different semantics
// from FP_ROUND: that rounds to nearest, this rounds to zero.
setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
// We do not currently implement these libm ops for PowerPC.
setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand);
setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
setOperationAction(ISD::FRINT, MVT::ppcf128, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
// PowerPC has no SREM/UREM instructions
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::UREM, MVT::i32, Expand);
setOperationAction(ISD::SREM, MVT::i64, Expand);
setOperationAction(ISD::UREM, MVT::i64, Expand);
// Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
// We don't support sin/cos/sqrt/fmod/pow
setOperationAction(ISD::FSIN , MVT::f64, Expand);
setOperationAction(ISD::FCOS , MVT::f64, Expand);
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
setOperationAction(ISD::FREM , MVT::f64, Expand);
setOperationAction(ISD::FPOW , MVT::f64, Expand);
setOperationAction(ISD::FMA , MVT::f64, Legal);
setOperationAction(ISD::FSIN , MVT::f32, Expand);
setOperationAction(ISD::FCOS , MVT::f32, Expand);
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
setOperationAction(ISD::FREM , MVT::f32, Expand);
setOperationAction(ISD::FPOW , MVT::f32, Expand);
setOperationAction(ISD::FMA , MVT::f32, Legal);
setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
// If we're enabling GP optimizations, use hardware square root
if (!Subtarget.hasFSQRT() &&
!(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
Subtarget.hasFRE()))
setOperationAction(ISD::FSQRT, MVT::f64, Expand);
if (!Subtarget.hasFSQRT() &&
!(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
Subtarget.hasFRES()))
setOperationAction(ISD::FSQRT, MVT::f32, Expand);
if (Subtarget.hasFCPSGN()) {
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
} else {
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
}
if (Subtarget.hasFPRND()) {
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
setOperationAction(ISD::FROUND, MVT::f64, Legal);
setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
setOperationAction(ISD::FCEIL, MVT::f32, Legal);
setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
setOperationAction(ISD::FROUND, MVT::f32, Legal);
}
// PowerPC does not have BSWAP, CTPOP or CTTZ
setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
if (Subtarget.hasPOPCNTD()) {
setOperationAction(ISD::CTPOP, MVT::i32 , Legal);
setOperationAction(ISD::CTPOP, MVT::i64 , Legal);
} else {
setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
}
// PowerPC does not have ROTR
setOperationAction(ISD::ROTR, MVT::i32 , Expand);
setOperationAction(ISD::ROTR, MVT::i64 , Expand);
if (!Subtarget.useCRBits()) {
// PowerPC does not have Select
setOperationAction(ISD::SELECT, MVT::i32, Expand);
setOperationAction(ISD::SELECT, MVT::i64, Expand);
setOperationAction(ISD::SELECT, MVT::f32, Expand);
setOperationAction(ISD::SELECT, MVT::f64, Expand);
}
// PowerPC wants to turn select_cc of FP into fsel when possible.
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
// PowerPC wants to optimize integer setcc a bit
if (!Subtarget.useCRBits())
setOperationAction(ISD::SETCC, MVT::i32, Custom);
// PowerPC does not have BRCOND which requires SetCC
if (!Subtarget.useCRBits())
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
// PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
// PowerPC does not have [U|S]INT_TO_FP
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
setOperationAction(ISD::BITCAST, MVT::f32, Expand);
setOperationAction(ISD::BITCAST, MVT::i32, Expand);
setOperationAction(ISD::BITCAST, MVT::i64, Expand);
setOperationAction(ISD::BITCAST, MVT::f64, Expand);
// We cannot sextinreg(i1). Expand to shifts.
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
// NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
// SjLj exception handling but a light-weight setjmp/longjmp replacement to
// support continuation, user-level threading, and etc.. As a result, no
// other SjLj exception interfaces are implemented and please don't build
// your own exception handling based on them.
// LLVM/Clang supports zero-cost DWARF exception handling.
setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
// We want to legalize GlobalAddress and ConstantPool nodes into the
// appropriate instructions to materialize the address.
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
setOperationAction(ISD::JumpTable, MVT::i32, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
setOperationAction(ISD::JumpTable, MVT::i64, Custom);
// TRAP is legal.
setOperationAction(ISD::TRAP, MVT::Other, Legal);
// TRAMPOLINE is custom lowered.
setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
// VASTART needs to be custom lowered to use the VarArgsFrameIndex
setOperationAction(ISD::VASTART , MVT::Other, Custom);
if (Subtarget.isSVR4ABI()) {
if (isPPC64) {
// VAARG always uses double-word chunks, so promote anything smaller.
setOperationAction(ISD::VAARG, MVT::i1, Promote);
AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
setOperationAction(ISD::VAARG, MVT::i8, Promote);
AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
setOperationAction(ISD::VAARG, MVT::i16, Promote);
AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
setOperationAction(ISD::VAARG, MVT::i32, Promote);
AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
setOperationAction(ISD::VAARG, MVT::Other, Expand);
} else {
// VAARG is custom lowered with the 32-bit SVR4 ABI.
setOperationAction(ISD::VAARG, MVT::Other, Custom);
setOperationAction(ISD::VAARG, MVT::i64, Custom);
}
} else
setOperationAction(ISD::VAARG, MVT::Other, Expand);
if (Subtarget.isSVR4ABI() && !isPPC64)
// VACOPY is custom lowered with the 32-bit SVR4 ABI.
setOperationAction(ISD::VACOPY , MVT::Other, Custom);
else
setOperationAction(ISD::VACOPY , MVT::Other, Expand);
// Use the default implementation.
setOperationAction(ISD::VAEND , MVT::Other, Expand);
setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
// We want to custom lower some of our intrinsics.
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
// To handle counter-based loop conditions.
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
// Comparisons that require checking two conditions.
setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
if (Subtarget.has64BitSupport()) {
// They also have instructions for converting between i64 and fp.
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
// This is just the low 32 bits of a (signed) fp->i64 conversion.
// We cannot do this with Promote because i64 is not a legal type.
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
} else {
// PowerPC does not have FP_TO_UINT on 32-bit implementations.
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
}
// With the instructions enabled under FPCVT, we can do everything.
if (Subtarget.hasFPCVT()) {
if (Subtarget.has64BitSupport()) {
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
}
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
}
if (Subtarget.use64BitRegs()) {
// 64-bit PowerPC implementations can support i64 types directly
addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
// BUILD_PAIR can't be handled natively, and should be expanded to shl/or
setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
// 64-bit PowerPC wants to expand i128 shifts itself.
setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
} else {
// 32-bit PowerPC wants to expand i64 shifts itself.
setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
}
if (Subtarget.hasAltivec()) {
// First set operation action for all vector types to expand. Then we
// will selectively turn on ones that can be effectively codegen'd.
for (MVT VT : MVT::vector_valuetypes()) {
// add/sub are legal for all supported vector VT's.
setOperationAction(ISD::ADD , VT, Legal);
setOperationAction(ISD::SUB , VT, Legal);
// Vector instructions introduced in P8
if (Subtarget.hasP8Altivec()) {
setOperationAction(ISD::CTPOP, VT, Legal);
setOperationAction(ISD::CTLZ, VT, Legal);
}
else {
setOperationAction(ISD::CTPOP, VT, Expand);
setOperationAction(ISD::CTLZ, VT, Expand);
}
// We promote all shuffles to v16i8.
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
// We promote all non-typed operations to v4i32.
setOperationAction(ISD::AND , VT, Promote);
AddPromotedToType (ISD::AND , VT, MVT::v4i32);
setOperationAction(ISD::OR , VT, Promote);
AddPromotedToType (ISD::OR , VT, MVT::v4i32);
setOperationAction(ISD::XOR , VT, Promote);
AddPromotedToType (ISD::XOR , VT, MVT::v4i32);
setOperationAction(ISD::LOAD , VT, Promote);
AddPromotedToType (ISD::LOAD , VT, MVT::v4i32);
setOperationAction(ISD::SELECT, VT, Promote);
AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
setOperationAction(ISD::STORE, VT, Promote);
AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
// No other operations are legal.
setOperationAction(ISD::MUL , VT, Expand);
setOperationAction(ISD::SDIV, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::UREM, VT, Expand);
setOperationAction(ISD::FDIV, VT, Expand);
setOperationAction(ISD::FREM, VT, Expand);
setOperationAction(ISD::FNEG, VT, Expand);
setOperationAction(ISD::FSQRT, VT, Expand);
setOperationAction(ISD::FLOG, VT, Expand);
setOperationAction(ISD::FLOG10, VT, Expand);
setOperationAction(ISD::FLOG2, VT, Expand);
setOperationAction(ISD::FEXP, VT, Expand);
setOperationAction(ISD::FEXP2, VT, Expand);
setOperationAction(ISD::FSIN, VT, Expand);
setOperationAction(ISD::FCOS, VT, Expand);
setOperationAction(ISD::FABS, VT, Expand);
setOperationAction(ISD::FPOWI, VT, Expand);
setOperationAction(ISD::FFLOOR, VT, Expand);
setOperationAction(ISD::FCEIL, VT, Expand);
setOperationAction(ISD::FTRUNC, VT, Expand);
setOperationAction(ISD::FRINT, VT, Expand);
setOperationAction(ISD::FNEARBYINT, VT, Expand);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
setOperationAction(ISD::MULHU, VT, Expand);
setOperationAction(ISD::MULHS, VT, Expand);
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
setOperationAction(ISD::UDIVREM, VT, Expand);
setOperationAction(ISD::SDIVREM, VT, Expand);
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
setOperationAction(ISD::FPOW, VT, Expand);
setOperationAction(ISD::BSWAP, VT, Expand);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
setOperationAction(ISD::CTTZ, VT, Expand);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
setOperationAction(ISD::VSELECT, VT, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
for (MVT InnerVT : MVT::vector_valuetypes()) {
setTruncStoreAction(VT, InnerVT, Expand);
setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
}
}
// We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
// with merges, splats, etc.
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
setOperationAction(ISD::AND , MVT::v4i32, Legal);
setOperationAction(ISD::OR , MVT::v4i32, Legal);
setOperationAction(ISD::XOR , MVT::v4i32, Legal);
setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
setOperationAction(ISD::SELECT, MVT::v4i32,
Subtarget.useCRBits() ? Legal : Expand);
setOperationAction(ISD::STORE , MVT::v4i32, Legal);
setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
setOperationAction(ISD::MUL, MVT::v4f32, Legal);
setOperationAction(ISD::FMA, MVT::v4f32, Legal);
if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
}
if (Subtarget.hasP8Altivec())
setOperationAction(ISD::MUL, MVT::v4i32, Legal);
else
setOperationAction(ISD::MUL, MVT::v4i32, Custom);
setOperationAction(ISD::MUL, MVT::v8i16, Custom);
setOperationAction(ISD::MUL, MVT::v16i8, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
// Altivec does not contain unordered floating-point compare instructions
setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
setCondCodeAction(ISD::SETO, MVT::v4f32, Expand);
setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
if (Subtarget.hasVSX()) {
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
setOperationAction(ISD::MUL, MVT::v2f64, Legal);
setOperationAction(ISD::FMA, MVT::v2f64, Legal);
setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
// Share the Altivec comparison restrictions.
setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
setCondCodeAction(ISD::SETO, MVT::v2f64, Expand);
setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
setOperationAction(ISD::STORE, MVT::v2f64, Legal);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
if (Subtarget.hasP8Altivec()) {
setOperationAction(ISD::SHL, MVT::v2i64, Legal);
setOperationAction(ISD::SRA, MVT::v2i64, Legal);
setOperationAction(ISD::SRL, MVT::v2i64, Legal);
setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
}
else {
setOperationAction(ISD::SHL, MVT::v2i64, Expand);
setOperationAction(ISD::SRA, MVT::v2i64, Expand);
setOperationAction(ISD::SRL, MVT::v2i64, Expand);
setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
// VSX v2i64 only supports non-arithmetic operations.
setOperationAction(ISD::ADD, MVT::v2i64, Expand);
setOperationAction(ISD::SUB, MVT::v2i64, Expand);
}
setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
setOperationAction(ISD::STORE, MVT::v2i64, Promote);
AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
// Vector operation legalization checks the result type of
// SIGN_EXTEND_INREG, overall legalization checks the inner type.
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
}
if (Subtarget.hasP8Altivec())
addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
}
if (Subtarget.hasQPX()) {
setOperationAction(ISD::FADD, MVT::v4f64, Legal);
setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
setOperationAction(ISD::FREM, MVT::v4f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
setOperationAction(ISD::LOAD , MVT::v4f64, Custom);
setOperationAction(ISD::STORE , MVT::v4f64, Custom);
setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
if (!Subtarget.useCRBits())
setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
setOperationAction(ISD::FABS , MVT::v4f64, Legal);
setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
setOperationAction(ISD::FPOWI , MVT::v4f64, Expand);
setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
setOperationAction(ISD::FADD, MVT::v4f32, Legal);
setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
setOperationAction(ISD::FREM, MVT::v4f32, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
setOperationAction(ISD::LOAD , MVT::v4f32, Custom);
setOperationAction(ISD::STORE , MVT::v4f32, Custom);
if (!Subtarget.useCRBits())
setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
setOperationAction(ISD::FABS , MVT::v4f32, Legal);
setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
setOperationAction(ISD::FPOWI , MVT::v4f32, Expand);
setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
setOperationAction(ISD::AND , MVT::v4i1, Legal);
setOperationAction(ISD::OR , MVT::v4i1, Legal);
setOperationAction(ISD::XOR , MVT::v4i1, Legal);
if (!Subtarget.useCRBits())
setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
setOperationAction(ISD::LOAD , MVT::v4i1, Custom);
setOperationAction(ISD::STORE , MVT::v4i1, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
setOperationAction(ISD::FCEIL, MVT::v4f64, Legal);
setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
// These need to set FE_INEXACT, and so cannot be vectorized here.
setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
if (TM.Options.UnsafeFPMath) {
setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
} else {
setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
}
}
if (Subtarget.has64BitSupport())
setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
if (!isPPC64) {
setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand);
setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
}
setBooleanContents(ZeroOrOneBooleanContent);
if (Subtarget.hasAltivec()) {
// Altivec instructions set fields to all zeros or all ones.
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
}
if (!isPPC64) {
// These libcalls are not available in 32-bit.
setLibcallName(RTLIB::SHL_I128, nullptr);
setLibcallName(RTLIB::SRL_I128, nullptr);
setLibcallName(RTLIB::SRA_I128, nullptr);
}
if (isPPC64) {
setStackPointerRegisterToSaveRestore(PPC::X1);
setExceptionPointerRegister(PPC::X3);
setExceptionSelectorRegister(PPC::X4);
} else {
setStackPointerRegisterToSaveRestore(PPC::R1);
setExceptionPointerRegister(PPC::R3);
setExceptionSelectorRegister(PPC::R4);
}
// We have target-specific dag combine patterns for the following nodes:
setTargetDAGCombine(ISD::SINT_TO_FP);
if (Subtarget.hasFPCVT())
setTargetDAGCombine(ISD::UINT_TO_FP);
setTargetDAGCombine(ISD::LOAD);
setTargetDAGCombine(ISD::STORE);
setTargetDAGCombine(ISD::BR_CC);
if (Subtarget.useCRBits())
setTargetDAGCombine(ISD::BRCOND);
setTargetDAGCombine(ISD::BSWAP);
setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
setTargetDAGCombine(ISD::INTRINSIC_VOID);
setTargetDAGCombine(ISD::SIGN_EXTEND);
setTargetDAGCombine(ISD::ZERO_EXTEND);
setTargetDAGCombine(ISD::ANY_EXTEND);
if (Subtarget.useCRBits()) {
setTargetDAGCombine(ISD::TRUNCATE);
setTargetDAGCombine(ISD::SETCC);
setTargetDAGCombine(ISD::SELECT_CC);
}
// Use reciprocal estimates.
if (TM.Options.UnsafeFPMath) {
setTargetDAGCombine(ISD::FDIV);
setTargetDAGCombine(ISD::FSQRT);
}
// Darwin long double math library functions have $LDBL128 appended.
if (Subtarget.isDarwin()) {
setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
}
// With 32 condition bits, we don't need to sink (and duplicate) compares
// aggressively in CodeGenPrep.
if (Subtarget.useCRBits()) {
setHasMultipleConditionRegisters();
setJumpIsExpensive();
}
setMinFunctionAlignment(2);
if (Subtarget.isDarwin())
setPrefFunctionAlignment(4);
switch (Subtarget.getDarwinDirective()) {
default: break;
case PPC::DIR_970:
case PPC::DIR_A2:
case PPC::DIR_E500mc:
case PPC::DIR_E5500:
case PPC::DIR_PWR4:
case PPC::DIR_PWR5:
case PPC::DIR_PWR5X:
case PPC::DIR_PWR6:
case PPC::DIR_PWR6X:
case PPC::DIR_PWR7:
case PPC::DIR_PWR8:
setPrefFunctionAlignment(4);
setPrefLoopAlignment(4);
break;
}
setInsertFencesForAtomic(true);
if (Subtarget.enableMachineScheduler())
setSchedulingPreference(Sched::Source);
else
setSchedulingPreference(Sched::Hybrid);
computeRegisterProperties(STI.getRegisterInfo());
// The Freescale cores do better with aggressive inlining of memcpy and
// friends. GCC uses same threshold of 128 bytes (= 32 word stores).
if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
MaxStoresPerMemset = 32;
MaxStoresPerMemsetOptSize = 16;
MaxStoresPerMemcpy = 32;
MaxStoresPerMemcpyOptSize = 8;
MaxStoresPerMemmove = 32;
MaxStoresPerMemmoveOptSize = 8;
} else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
// The A2 also benefits from (very) aggressive inlining of memcpy and
// friends. The overhead of a the function call, even when warm, can be
// over one hundred cycles.
MaxStoresPerMemset = 128;
MaxStoresPerMemcpy = 128;
MaxStoresPerMemmove = 128;
}
}
/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
/// the desired ByVal argument alignment.
static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
unsigned MaxMaxAlign) {
if (MaxAlign == MaxMaxAlign)
return;
if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
MaxAlign = 32;
else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
MaxAlign = 16;
} else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
unsigned EltAlign = 0;
getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
if (EltAlign > MaxAlign)
MaxAlign = EltAlign;
} else if (StructType *STy = dyn_cast<StructType>(Ty)) {
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
unsigned EltAlign = 0;
getMaxByValAlign(STy->getElementType(i), EltAlign, MaxMaxAlign);
if (EltAlign > MaxAlign)
MaxAlign = EltAlign;
if (MaxAlign == MaxMaxAlign)
break;
}
}
}
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area.
unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
// Darwin passes everything on 4 byte boundary.
if (Subtarget.isDarwin())
return 4;
// 16byte and wider vectors are passed on 16byte boundary.
// The rest is 8 on PPC64 and 4 on PPC32 boundary.
unsigned Align = Subtarget.isPPC64() ? 8 : 4;
if (Subtarget.hasAltivec() || Subtarget.hasQPX())
getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
return Align;
}
const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
default: return nullptr;
case PPCISD::FSEL: return "PPCISD::FSEL";
case PPCISD::FCFID: return "PPCISD::FCFID";
case PPCISD::FCFIDU: return "PPCISD::FCFIDU";
case PPCISD::FCFIDS: return "PPCISD::FCFIDS";
case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS";
case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ";
case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ";
case PPCISD::FRE: return "PPCISD::FRE";
case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE";
case PPCISD::STFIWX: return "PPCISD::STFIWX";
case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
case PPCISD::VPERM: return "PPCISD::VPERM";
case PPCISD::CMPB: return "PPCISD::CMPB";
case PPCISD::Hi: return "PPCISD::Hi";
case PPCISD::Lo: return "PPCISD::Lo";
case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY";
case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
case PPCISD::SRL: return "PPCISD::SRL";
case PPCISD::SRA: return "PPCISD::SRA";
case PPCISD::SHL: return "PPCISD::SHL";
case PPCISD::CALL: return "PPCISD::CALL";
case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP";
case PPCISD::MTCTR: return "PPCISD::MTCTR";
case PPCISD::BCTRL: return "PPCISD::BCTRL";
case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC";
case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE";
case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP";
case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
case PPCISD::MFOCRF: return "PPCISD::MFOCRF";
case PPCISD::VCMP: return "PPCISD::VCMP";
case PPCISD::VCMPo: return "PPCISD::VCMPo";
case PPCISD::LBRX: return "PPCISD::LBRX";
case PPCISD::STBRX: return "PPCISD::STBRX";
case PPCISD::LFIWAX: return "PPCISD::LFIWAX";
case PPCISD::LFIWZX: return "PPCISD::LFIWZX";
case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
case PPCISD::BDNZ: return "PPCISD::BDNZ";
case PPCISD::BDZ: return "PPCISD::BDZ";
case PPCISD::MFFS: return "PPCISD::MFFS";
case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ";
case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN";
case PPCISD::CR6SET: return "PPCISD::CR6SET";
case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET";
case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT";
case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L";
case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS";
case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA";
case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L";
case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR";
case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA";
case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L";
case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR";
case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L";
case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT";
case PPCISD::SC: return "PPCISD::SC";
case PPCISD::QVFPERM: return "PPCISD::QVFPERM";
case PPCISD::QVGPCI: return "PPCISD::QVGPCI";
case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI";
case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI";
case PPCISD::QBFLT: return "PPCISD::QBFLT";
case PPCISD::QVLFSb: return "PPCISD::QVLFSb";
}
}
EVT PPCTargetLowering::getSetCCResultType(LLVMContext &C, EVT VT) const {
if (!VT.isVector())
return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
if (Subtarget.hasQPX())
return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
return VT.changeVectorElementTypeToInteger();
}
bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
return true;
}
//===----------------------------------------------------------------------===//
// Node matching predicates, for use by the tblgen matching code.
//===----------------------------------------------------------------------===//
/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
static bool isFloatingPointZero(SDValue Op) {
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
return CFP->getValueAPF().isZero();
else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
// Maybe this has already been legalized into the constant pool?
if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
return CFP->getValueAPF().isZero();
}
return false;
}
/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
/// true if Op is undef or if it matches the specified value.
static bool isConstantOrUndef(int Op, int Val) {
return Op < 0 || Op == Val;
}
/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
/// VPKUHUM instruction.
/// The ShuffleKind distinguishes between big-endian operations with
/// two different inputs (0), either-endian operations with two identical
/// inputs (1), and little-endian operantion with two different inputs (2).
/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
SelectionDAG &DAG) {
bool IsLE = DAG.getTarget().getDataLayout()->isLittleEndian();
if (ShuffleKind == 0) {
if (IsLE)
return false;
for (unsigned i = 0; i != 16; ++i)
if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
return false;
} else if (ShuffleKind == 2) {
if (!IsLE)
return false;
for (unsigned i = 0; i != 16; ++i)
if (!isConstantOrUndef(N->getMaskElt(i), i*2))
return false;
} else if (ShuffleKind == 1) {
unsigned j = IsLE ? 0 : 1;
for (unsigned i = 0; i != 8; ++i)
if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) ||
!isConstantOrUndef(N->getMaskElt(i+8), i*2+j))
return false;
}
return true;
}
/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
/// VPKUWUM instruction.
/// The ShuffleKind distinguishes between big-endian operations with
/// two different inputs (0), either-endian operations with two identical
/// inputs (1), and little-endian operantion with two different inputs (2).
/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
SelectionDAG &DAG) {
bool IsLE = DAG.getTarget().getDataLayout()->isLittleEndian();
if (ShuffleKind == 0) {
if (IsLE)
return false;
for (unsigned i = 0; i != 16; i += 2)
if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) ||
!isConstantOrUndef(N->getMaskElt(i+1), i*2+3))
return false;
} else if (ShuffleKind == 2) {
if (!IsLE)
return false;
for (unsigned i = 0; i != 16; i += 2)
if (!isConstantOrUndef(N->getMaskElt(i ), i*2) ||
!isConstantOrUndef(N->getMaskElt(i+1), i*2+1))
return false;
} else if (ShuffleKind == 1) {
unsigned j = IsLE ? 0 : 2;
for (unsigned i = 0; i != 8; i += 2)
if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) ||
!isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) ||
!isConstantOrUndef(N->getMaskElt(i+8), i*2+j) ||
!isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1))
return false;
}
return true;
}
/// isVMerge - Common function, used to match vmrg* shuffles.
///
static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
unsigned LHSStart, unsigned RHSStart) {
if (N->getValueType(0) != MVT::v16i8)
return false;
assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
"Unsupported merge size!");
for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
LHSStart+j+i*UnitSize) ||
!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
RHSStart+j+i*UnitSize))
return false;
}
return true;
}
/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
/// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
/// The ShuffleKind distinguishes between big-endian merges with two
/// different inputs (0), either-endian merges with two identical inputs (1),
/// and little-endian merges with two different inputs (2). For the latter,
/// the input operands are swapped (see PPCInstrAltivec.td).
bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
unsigned ShuffleKind, SelectionDAG &DAG) {
if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
if (ShuffleKind == 1) // unary
return isVMerge(N, UnitSize, 0, 0);
else if (ShuffleKind == 2) // swapped
return isVMerge(N, UnitSize, 0, 16);
else
return false;
} else {
if (ShuffleKind == 1) // unary
return isVMerge(N, UnitSize, 8, 8);
else if (ShuffleKind == 0) // normal
return isVMerge(N, UnitSize, 8, 24);
else
return false;
}
}
/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
/// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
/// The ShuffleKind distinguishes between big-endian merges with two
/// different inputs (0), either-endian merges with two identical inputs (1),
/// and little-endian merges with two different inputs (2). For the latter,
/// the input operands are swapped (see PPCInstrAltivec.td).
bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
unsigned ShuffleKind, SelectionDAG &DAG) {
if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
if (ShuffleKind == 1) // unary
return isVMerge(N, UnitSize, 8, 8);
else if (ShuffleKind == 2) // swapped
return isVMerge(N, UnitSize, 8, 24);
else
return false;
} else {
if (ShuffleKind == 1) // unary
return isVMerge(N, UnitSize, 0, 0);
else if (ShuffleKind == 0) // normal
return isVMerge(N, UnitSize, 0, 16);
else
return false;
}
}
/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
/// amount, otherwise return -1.
/// The ShuffleKind distinguishes between big-endian operations with two
/// different inputs (0), either-endian operations with two identical inputs
/// (1), and little-endian operations with two different inputs (2). For the
/// latter, the input operands are swapped (see PPCInstrAltivec.td).
int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
SelectionDAG &DAG) {
if (N->getValueType(0) != MVT::v16i8)
return -1;
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
// Find the first non-undef value in the shuffle mask.
unsigned i;
for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
/*search*/;
if (i == 16) return -1; // all undef.
// Otherwise, check to see if the rest of the elements are consecutively
// numbered from this value.
unsigned ShiftAmt = SVOp->getMaskElt(i);
if (ShiftAmt < i) return -1;
ShiftAmt -= i;
bool isLE = DAG.getTarget().getDataLayout()->isLittleEndian();
if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
// Check the rest of the elements to see if they are consecutive.
for (++i; i != 16; ++i)
if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
return -1;
} else if (ShuffleKind == 1) {
// Check the rest of the elements to see if they are consecutive.
for (++i; i != 16; ++i)
if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
return -1;
} else
return -1;
if (ShuffleKind == 2 && isLE)
ShiftAmt = 16 - ShiftAmt;
return ShiftAmt;
}
/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a splat of a single element that is suitable for input to
/// VSPLTB/VSPLTH/VSPLTW.
bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
assert(N->getValueType(0) == MVT::v16i8 &&
(EltSize == 1 || EltSize == 2 || EltSize == 4));
// This is a splat operation if each element of the permute is the same, and
// if the value doesn't reference the second vector.
unsigned ElementBase = N->getMaskElt(0);
// FIXME: Handle UNDEF elements too!
if (ElementBase >= 16)
return false;
// Check that the indices are consecutive, in the case of a multi-byte element
// splatted with a v16i8 mask.
for (unsigned i = 1; i != EltSize; ++i)
if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
return false;
for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
if (N->getMaskElt(i) < 0) continue;
for (unsigned j = 0; j != EltSize; ++j)
if (N->getMaskElt(i+j) != N->getMaskElt(j))
return false;
}
return true;
}
/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
SelectionDAG &DAG) {
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
assert(isSplatShuffleMask(SVOp, EltSize));
if (DAG.getTarget().getDataLayout()->isLittleEndian())
return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
else
return SVOp->getMaskElt(0) / EltSize;
}
/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
/// by using a vspltis[bhw] instruction of the specified element size, return
/// the constant being splatted. The ByteSize field indicates the number of
/// bytes of each element [124] -> [bhw].
SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
SDValue OpVal(nullptr, 0);
// If ByteSize of the splat is bigger than the element size of the
// build_vector, then we have a case where we are checking for a splat where
// multiple elements of the buildvector are folded together into a single
// logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
unsigned EltSize = 16/N->getNumOperands();
if (EltSize < ByteSize) {
unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
SDValue UniquedVals[4];
assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
// See if all of the elements in the buildvector agree across.
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
// If the element isn't a constant, bail fully out.
if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
if (!UniquedVals[i&(Multiple-1)].getNode())
UniquedVals[i&(Multiple-1)] = N->getOperand(i);
else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
return SDValue(); // no match.
}
// Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
// either constant or undef values that are identical for each chunk. See
// if these chunks can form into a larger vspltis*.
// Check to see if all of the leading entries are either 0 or -1. If
// neither, then this won't fit into the immediate field.
bool LeadingZero = true;
bool LeadingOnes = true;
for (unsigned i = 0; i != Multiple-1; ++i) {
if (!UniquedVals[i].getNode()) continue; // Must have been undefs.
LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
}
// Finally, check the least significant entry.
if (LeadingZero) {
if (!UniquedVals[Multiple-1].getNode())
return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
if (Val < 16)
return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
}
if (LeadingOnes) {
if (!UniquedVals[Multiple-1].getNode())
return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
return DAG.getTargetConstant(Val, MVT::i32);
}
return SDValue();
}
// Check to see if this buildvec has a single non-undef value in its elements.
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
if (!OpVal.getNode())
OpVal = N->getOperand(i);
else if (OpVal != N->getOperand(i))
return SDValue();
}
if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def.
unsigned ValSizeInBytes = EltSize;
uint64_t Value = 0;
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
Value = CN->getZExtValue();
} else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
Value = FloatToBits(CN->getValueAPF().convertToFloat());
}
// If the splat value is larger than the element value, then we can never do
// this splat. The only case that we could fit the replicated bits into our
// immediate field for would be zero, and we prefer to use vxor for it.
if (ValSizeInBytes < ByteSize) return SDValue();
// If the element value is larger than the splat value, check if it consists
// of a repeated bit pattern of size ByteSize.
if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
return SDValue();
// Properly sign extend the value.
int MaskVal = SignExtend32(Value, ByteSize * 8);
// If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
if (MaskVal == 0) return SDValue();
// Finally, if this value fits in a 5 bit sext field, return it
if (SignExtend32<5>(MaskVal) == MaskVal)
return DAG.getTargetConstant(MaskVal, MVT::i32);
return SDValue();
}
/// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
/// amount, otherwise return -1.
int PPC::isQVALIGNIShuffleMask(SDNode *N) {
EVT VT = N->getValueType(0);
if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
return -1;
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
// Find the first non-undef value in the shuffle mask.
unsigned i;
for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
/*search*/;
if (i == 4) return -1; // all undef.
// Otherwise, check to see if the rest of the elements are consecutively
// numbered from this value.
unsigned ShiftAmt = SVOp->getMaskElt(i);
if (ShiftAmt < i) return -1;
ShiftAmt -= i;
// Check the rest of the elements to see if they are consecutive.
for (++i; i != 4; ++i)
if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
return -1;
return ShiftAmt;
}
//===----------------------------------------------------------------------===//
// Addressing Mode Selection
//===----------------------------------------------------------------------===//
/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
/// or 64-bit immediate, and if the value can be accurately represented as a
/// sign extension from a 16-bit value. If so, this returns true and the
/// immediate.
static bool isIntS16Immediate(SDNode *N, short &Imm) {
if (!isa<ConstantSDNode>(N))
return false;
Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
if (N->getValueType(0) == MVT::i32)
return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
else
return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
}
static bool isIntS16Immediate(SDValue Op, short &Imm) {
return isIntS16Immediate(Op.getNode(), Imm);
}
/// SelectAddressRegReg - Given the specified addressed, check to see if it
/// can be represented as an indexed [r+r] operation. Returns false if it
/// can be more efficiently represented with [r+imm].
bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
SDValue &Index,
SelectionDAG &DAG) const {
short imm = 0;
if (N.getOpcode() == ISD::ADD) {
if (isIntS16Immediate(N.getOperand(1), imm))
return false; // r+i
if (N.getOperand(1).getOpcode() == PPCISD::Lo)
return false; // r+i
Base = N.getOperand(0);
Index = N.getOperand(1);
return true;
} else if (N.getOpcode() == ISD::OR) {
if (isIntS16Immediate(N.getOperand(1), imm))
return false; // r+i can fold it if we can.
// If this is an or of disjoint bitfields, we can codegen this as an add
// (for better address arithmetic) if the LHS and RHS of the OR are provably
// disjoint.
APInt LHSKnownZero, LHSKnownOne;
APInt RHSKnownZero, RHSKnownOne;
DAG.computeKnownBits(N.getOperand(0),
LHSKnownZero, LHSKnownOne);
if (LHSKnownZero.getBoolValue()) {
DAG.computeKnownBits(N.getOperand(1),
RHSKnownZero, RHSKnownOne);
// If all of the bits are known zero on the LHS or RHS, the add won't
// carry.
if (~(LHSKnownZero | RHSKnownZero) == 0) {
Base = N.getOperand(0);
Index = N.getOperand(1);
return true;
}
}
}
return false;
}
// If we happen to be doing an i64 load or store into a stack slot that has
// less than a 4-byte alignment, then the frame-index elimination may need to
// use an indexed load or store instruction (because the offset may not be a
// multiple of 4). The extra register needed to hold the offset comes from the
// register scavenger, and it is possible that the scavenger will need to use
// an emergency spill slot. As a result, we need to make sure that a spill slot
// is allocated when doing an i64 load/store into a less-than-4-byte-aligned
// stack slot.
static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
// FIXME: This does not handle the LWA case.
if (VT != MVT::i64)
return;
// NOTE: We'll exclude negative FIs here, which come from argument
// lowering, because there are no known test cases triggering this problem
// using packed structures (or similar). We can remove this exclusion if
// we find such a test case. The reason why this is so test-case driven is
// because this entire 'fixup' is only to prevent crashes (from the
// register scavenger) on not-really-valid inputs. For example, if we have:
// %a = alloca i1
// %b = bitcast i1* %a to i64*
// store i64* a, i64 b
// then the store should really be marked as 'align 1', but is not. If it
// were marked as 'align 1' then the indexed form would have been
// instruction-selected initially, and the problem this 'fixup' is preventing
// won't happen regardless.
if (FrameIdx < 0)
return;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
unsigned Align = MFI->getObjectAlignment(FrameIdx);
if (Align >= 4)
return;
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
FuncInfo->setHasNonRISpills();
}
/// Returns true if the address N can be represented by a base register plus
/// a signed 16-bit displacement [r+imm], and if it is not better
/// represented as reg+reg. If Aligned is true, only accept displacements
/// suitable for STD and friends, i.e. multiples of 4.
bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
SDValue &Base,
SelectionDAG &DAG,
bool Aligned) const {
// FIXME dl should come from parent load or store, not from address
SDLoc dl(N);
// If this can be more profitably realized as r+r, fail.
if (SelectAddressRegReg(N, Disp, Base, DAG))
return false;
if (N.getOpcode() == ISD::ADD) {
short imm = 0;
if (isIntS16Immediate(N.getOperand(1), imm) &&
(!Aligned || (imm & 3) == 0)) {
Disp = DAG.getTargetConstant(imm, N.getValueType());
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
} else {
Base = N.getOperand(0);
}
return true; // [r+i]
} else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
// Match LOAD (ADD (X, Lo(G))).
assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
&& "Cannot handle constant offsets yet!");
Disp = N.getOperand(1).getOperand(0); // The global address.
assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
Disp.getOpcode() == ISD::TargetConstantPool ||
Disp.getOpcode() == ISD::TargetJumpTable);
Base = N.getOperand(0);
return true; // [&g+r]
}
} else if (N.getOpcode() == ISD::OR) {
short imm = 0;
if (isIntS16Immediate(N.getOperand(1), imm) &&
(!Aligned || (imm & 3) == 0)) {
// If this is an or of disjoint bitfields, we can codegen this as an add
// (for better address arithmetic) if the LHS and RHS of the OR are
// provably disjoint.
APInt LHSKnownZero, LHSKnownOne;
DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
// If all of the bits are known zero on the LHS or RHS, the add won't
// carry.
if (FrameIndexSDNode *FI =
dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
} else {
Base = N.getOperand(0);
}
Disp = DAG.getTargetConstant(imm, N.getValueType());
return true;
}
}
} else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
// Loading from a constant address.
// If this address fits entirely in a 16-bit sext immediate field, codegen
// this as "d, 0"
short Imm;
if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
CN->getValueType(0));
return true;
}
// Handle 32-bit sext immediates with LIS + addr mode.
if ((CN->getValueType(0) == MVT::i32 ||
(int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
(!Aligned || (CN->getZExtValue() & 3) == 0)) {
int Addr = (int)CN->getZExtValue();
// Otherwise, break this down into an LIS + disp.
Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
return true;
}
}
Disp = DAG.getTargetConstant(0, getPointerTy());
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
} else
Base = N;
return true; // [r+0]
}
/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
/// represented as an indexed [r+r] operation.
bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
SDValue &Index,
SelectionDAG &DAG) const {
// Check to see if we can easily represent this as an [r+r] address. This
// will fail if it thinks that the address is more profitably represented as
// reg+imm, e.g. where imm = 0.
if (SelectAddressRegReg(N, Base, Index, DAG))
return true;
// If the operand is an addition, always emit this as [r+r], since this is
// better (for code size, and execution, as the memop does the add for free)
// than emitting an explicit add.
if (N.getOpcode() == ISD::ADD) {
Base = N.getOperand(0);
Index = N.getOperand(1);
return true;
}
// Otherwise, do it the hard way, using R0 as the base register.
Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
N.getValueType());
Index = N;
return true;
}
/// getPreIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if the node's address
/// can be legally represented as pre-indexed load / store address.
bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
SDValue &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const {
if (DisablePPCPreinc) return false;
bool isLoad = true;
SDValue Ptr;
EVT VT;
unsigned Alignment;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
Ptr = LD->getBasePtr();
VT = LD->getMemoryVT();
Alignment = LD->getAlignment();
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
Ptr = ST->getBasePtr();
VT = ST->getMemoryVT();
Alignment = ST->getAlignment();
isLoad = false;
} else
return false;
// PowerPC doesn't have preinc load/store instructions for vectors (except
// for QPX, which does have preinc r+r forms).
if (VT.isVector()) {
if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
return false;
} else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
AM = ISD::PRE_INC;
return true;
}
}
if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
// Common code will reject creating a pre-inc form if the base pointer
// is a frame index, or if N is a store and the base pointer is either
// the same as or a predecessor of the value being stored. Check for
// those situations here, and try with swapped Base/Offset instead.
bool Swap = false;
if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
Swap = true;
else if (!isLoad) {
SDValue Val = cast<StoreSDNode>(N)->getValue();
if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
Swap = true;
}
if (Swap)
std::swap(Base, Offset);
AM = ISD::PRE_INC;
return true;
}
// LDU/STU can only handle immediates that are a multiple of 4.
if (VT != MVT::i64) {
if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
return false;
} else {
// LDU/STU need an address with at least 4-byte alignment.
if (Alignment < 4)
return false;
if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
return false;
}
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
// PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
// sext i32 to i64 when addr mode is r+i.
if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
LD->getExtensionType() == ISD::SEXTLOAD &&
isa<ConstantSDNode>(Offset))
return false;
}
AM = ISD::PRE_INC;
return true;
}
//===----------------------------------------------------------------------===//
// LowerOperation implementation
//===----------------------------------------------------------------------===//
/// GetLabelAccessInfo - Return true if we should reference labels using a
/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
static bool GetLabelAccessInfo(const TargetMachine &TM,
const PPCSubtarget &Subtarget,
unsigned &HiOpFlags, unsigned &LoOpFlags,
const GlobalValue *GV = nullptr) {
HiOpFlags = PPCII::MO_HA;
LoOpFlags = PPCII::MO_LO;
// Don't use the pic base if not in PIC relocation model.
bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
if (isPIC) {
HiOpFlags |= PPCII::MO_PIC_FLAG;
LoOpFlags |= PPCII::MO_PIC_FLAG;
}
// If this is a reference to a global value that requires a non-lazy-ptr, make
// sure that instruction lowering adds it.
if (GV && Subtarget.hasLazyResolverStub(GV)) {
HiOpFlags |= PPCII::MO_NLP_FLAG;
LoOpFlags |= PPCII::MO_NLP_FLAG;
if (GV->hasHiddenVisibility()) {
HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
}
}
return isPIC;
}
static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
SelectionDAG &DAG) {
EVT PtrVT = HiPart.getValueType();
SDValue Zero = DAG.getConstant(0, PtrVT);
SDLoc DL(HiPart);
SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
// With PIC, the first instruction is actually "GR+hi(&G)".
if (isPIC)
Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
// Generate non-pic code that has direct accesses to the constant pool.
// The address of the global is just (hi(&g)+lo(&g)).
return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
}
static void setUsesTOCBasePtr(MachineFunction &MF) {
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
FuncInfo->setUsesTOCBasePtr();
}
static void setUsesTOCBasePtr(SelectionDAG &DAG) {
setUsesTOCBasePtr(DAG.getMachineFunction());
}
static SDValue getTOCEntry(SelectionDAG &DAG, SDLoc dl, bool Is64Bit,
SDValue GA) {
EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
SDValue Ops[] = { GA, Reg };
return DAG.getMemIntrinsicNode(PPCISD::TOC_ENTRY, dl,
DAG.getVTList(VT, MVT::Other), Ops, VT,
MachinePointerInfo::getGOT(), 0, false, true,
false, 0);
}
SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
SelectionDAG &DAG) const {
EVT PtrVT = Op.getValueType();
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
const Constant *C = CP->getConstVal();
// 64-bit SVR4 ABI code is always position-independent.
// The actual address of the GlobalValue is stored in the TOC.
if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
setUsesTOCBasePtr(DAG);
SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
return getTOCEntry(DAG, SDLoc(CP), true, GA);
}
unsigned MOHiFlag, MOLoFlag;
bool isPIC =
GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
if (isPIC && Subtarget.isSVR4ABI()) {
SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
PPCII::MO_PIC_FLAG);
return getTOCEntry(DAG, SDLoc(CP), false, GA);
}
SDValue CPIHi =
DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
SDValue CPILo =
DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
}
SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
EVT PtrVT = Op.getValueType();
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
// 64-bit SVR4 ABI code is always position-independent.
// The actual address of the GlobalValue is stored in the TOC.
if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
setUsesTOCBasePtr(DAG);
SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
return getTOCEntry(DAG, SDLoc(JT), true, GA);
}
unsigned MOHiFlag, MOLoFlag;
bool isPIC =
GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
if (isPIC && Subtarget.isSVR4ABI()) {
SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
PPCII::MO_PIC_FLAG);
return getTOCEntry(DAG, SDLoc(GA), false, GA);
}
SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
}
SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
SelectionDAG &DAG) const {
EVT PtrVT = Op.getValueType();
BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
const BlockAddress *BA = BASDN->getBlockAddress();
// 64-bit SVR4 ABI code is always position-independent.
// The actual BlockAddress is stored in the TOC.
if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
setUsesTOCBasePtr(DAG);
SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
return getTOCEntry(DAG, SDLoc(BASDN), true, GA);
}
unsigned MOHiFlag, MOLoFlag;
bool isPIC =
GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
}
SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) const {
// FIXME: TLS addresses currently use medium model code sequences,
// which is the most useful form. Eventually support for small and
// large models could be added if users need it, at the cost of
// additional complexity.
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
SDLoc dl(GA);
const GlobalValue *GV = GA->getGlobal();
EVT PtrVT = getPointerTy();
bool is64bit = Subtarget.isPPC64();
const Module *M = DAG.getMachineFunction().getFunction()->getParent();
PICLevel::Level picLevel = M->getPICLevel();
TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
if (Model == TLSModel::LocalExec) {
SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
PPCII::MO_TPREL_HA);
SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
PPCII::MO_TPREL_LO);
SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
is64bit ? MVT::i64 : MVT::i32);
SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
}
if (Model == TLSModel::InitialExec) {
SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
PPCII::MO_TLS);
SDValue GOTPtr;
if (is64bit) {
setUsesTOCBasePtr(DAG);
SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
PtrVT, GOTReg, TGA);
} else
GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
PtrVT, TGA, GOTPtr);
return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
}
if (Model == TLSModel::GeneralDynamic) {
SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
SDValue GOTPtr;
if (is64bit) {
setUsesTOCBasePtr(DAG);
SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
GOTReg, TGA);
} else {
if (picLevel == PICLevel::Small)
GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
else
GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
}
return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
GOTPtr, TGA, TGA);
}
if (Model == TLSModel::LocalDynamic) {
SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
SDValue GOTPtr;
if (is64bit) {
setUsesTOCBasePtr(DAG);
SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
GOTReg, TGA);
} else {
if (picLevel == PICLevel::Small)
GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
else
GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
}
SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
PtrVT, GOTPtr, TGA, TGA);
SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
PtrVT, TLSAddr, TGA);
return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
}
llvm_unreachable("Unknown TLS model!");
}
SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
EVT PtrVT = Op.getValueType();
GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
SDLoc DL(GSDN);
const GlobalValue *GV = GSDN->getGlobal();
// 64-bit SVR4 ABI code is always position-independent.
// The actual address of the GlobalValue is stored in the TOC.
if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
setUsesTOCBasePtr(DAG);
SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
return getTOCEntry(DAG, DL, true, GA);
}
unsigned MOHiFlag, MOLoFlag;
bool isPIC =
GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag, GV);
if (isPIC && Subtarget.isSVR4ABI()) {
SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
GSDN->getOffset(),
PPCII::MO_PIC_FLAG);
return getTOCEntry(DAG, DL, false, GA);
}
SDValue GAHi =
DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
SDValue GALo =
DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
// If the global reference is actually to a non-lazy-pointer, we have to do an
// extra load to get the address of the global.
if (MOHiFlag & PPCII::MO_NLP_FLAG)
Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
false, false, false, 0);
return Ptr;
}
SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
SDLoc dl(Op);
if (Op.getValueType() == MVT::v2i64) {
// When the operands themselves are v2i64 values, we need to do something
// special because VSX has no underlying comparison operations for these.
if (Op.getOperand(0).getValueType() == MVT::v2i64) {
// Equality can be handled by casting to the legal type for Altivec
// comparisons, everything else needs to be expanded.
if (CC == ISD::SETEQ || CC == ISD::SETNE) {
return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
DAG.getSetCC(dl, MVT::v4i32,
DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
CC));
}
return SDValue();
}
// We handle most of these in the usual way.
return Op;
}
// If we're comparing for equality to zero, expose the fact that this is
// implented as a ctlz/srl pair on ppc, so that the dag combiner can
// fold the new nodes.
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
if (C->isNullValue() && CC == ISD::SETEQ) {
EVT VT = Op.getOperand(0).getValueType();
SDValue Zext = Op.getOperand(0);
if (VT.bitsLT(MVT::i32)) {
VT = MVT::i32;
Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
}
unsigned Log2b = Log2_32(VT.getSizeInBits());
SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
DAG.getConstant(Log2b, MVT::i32));
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
}
// Leave comparisons against 0 and -1 alone for now, since they're usually
// optimized. FIXME: revisit this when we can custom lower all setcc
// optimizations.
if (C->isAllOnesValue() || C->isNullValue())
return SDValue();
}
// If we have an integer seteq/setne, turn it into a compare against zero
// by xor'ing the rhs with the lhs, which is faster than setting a
// condition register, reading it back out, and masking the correct bit. The
// normal approach here uses sub to do this instead of xor. Using xor exposes
// the result to other bit-twiddling opportunities.
EVT LHSVT = Op.getOperand(0).getValueType();
if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
EVT VT = Op.getValueType();
SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
Op.getOperand(1));
return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
}
return SDValue();
}
SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
const PPCSubtarget &Subtarget) const {
SDNode *Node = Op.getNode();
EVT VT = Node->getValueType(0);
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
SDValue InChain = Node->getOperand(0);
SDValue VAListPtr = Node->getOperand(1);
const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
SDLoc dl(Node);
assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
// gpr_index
SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
VAListPtr, MachinePointerInfo(SV), MVT::i8,
false, false, false, 0);
InChain = GprIndex.getValue(1);
if (VT == MVT::i64) {
// Check if GprIndex is even
SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
DAG.getConstant(1, MVT::i32));
SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
DAG.getConstant(0, MVT::i32), ISD::SETNE);
SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
DAG.getConstant(1, MVT::i32));
// Align GprIndex to be even if it isn't
GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
GprIndex);
}
// fpr index is 1 byte after gpr
SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
DAG.getConstant(1, MVT::i32));
// fpr
SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
FprPtr, MachinePointerInfo(SV), MVT::i8,
false, false, false, 0);
InChain = FprIndex.getValue(1);
SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
DAG.getConstant(8, MVT::i32));
SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
DAG.getConstant(4, MVT::i32));
// areas
SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
MachinePointerInfo(), false, false,
false, 0);
InChain = OverflowArea.getValue(1);
SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
MachinePointerInfo(), false, false,
false, 0);
InChain = RegSaveArea.getValue(1);
// select overflow_area if index > 8
SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
DAG.getConstant(8, MVT::i32), ISD::SETLT);
// adjustment constant gpr_index * 4/8
SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
VT.isInteger() ? GprIndex : FprIndex,
DAG.getConstant(VT.isInteger() ? 4 : 8,
MVT::i32));
// OurReg = RegSaveArea + RegConstant
SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
RegConstant);
// Floating types are 32 bytes into RegSaveArea
if (VT.isFloatingPoint())
OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
DAG.getConstant(32, MVT::i32));
// increase {f,g}pr_index by 1 (or 2 if VT is i64)
SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
VT.isInteger() ? GprIndex : FprIndex,
DAG.getConstant(VT == MVT::i64 ? 2 : 1,
MVT::i32));
InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
VT.isInteger() ? VAListPtr : FprPtr,
MachinePointerInfo(SV),
MVT::i8, false, false, 0);
// determine if we should load from reg_save_area or overflow_area
SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
// increase overflow_area by 4/8 if gpr/fpr > 8
SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
DAG.getConstant(VT.isInteger() ? 4 : 8,
MVT::i32));
OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
OverflowAreaPlusN);
InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
OverflowAreaPtr,
MachinePointerInfo(),
MVT::i32, false, false, 0);
return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
false, false, false, 0);
}
SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG,
const PPCSubtarget &Subtarget) const {
assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
// We have to copy the entire va_list struct:
// 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
return DAG.getMemcpy(Op.getOperand(0), Op,
Op.getOperand(1), Op.getOperand(2),
DAG.getConstant(12, MVT::i32), 8, false, true,
MachinePointerInfo(), MachinePointerInfo());
}
SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
SelectionDAG &DAG) const {
return Op.getOperand(0);
}
SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue Trmp = Op.getOperand(1); // trampoline
SDValue FPtr = Op.getOperand(2); // nested function
SDValue Nest = Op.getOperand(3); // 'nest' parameter value
SDLoc dl(Op);
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
bool isPPC64 = (PtrVT == MVT::i64);
Type *IntPtrTy =
DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
*DAG.getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = IntPtrTy;
Entry.Node = Trmp; Args.push_back(Entry);
// TrampSize == (isPPC64 ? 48 : 40);
Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
isPPC64 ? MVT::i64 : MVT::i32);
Args.push_back(Entry);
Entry.Node = FPtr; Args.push_back(Entry);
Entry.Node = Nest; Args.push_back(Entry);
// Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl).setChain(Chain)
.setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
DAG.getExternalSymbol("__trampoline_setup", PtrVT),
std::move(Args), 0);
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
return CallResult.second;
}
SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
const PPCSubtarget &Subtarget) const {
MachineFunction &MF = DAG.getMachineFunction();
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
SDLoc dl(Op);
if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
MachinePointerInfo(SV),
false, false, 0);
}
// For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
// We suppose the given va_list is already allocated.
//
// typedef struct {
// char gpr; /* index into the array of 8 GPRs
// * stored in the register save area
// * gpr=0 corresponds to r3,
// * gpr=1 to r4, etc.
// */
// char fpr; /* index into the array of 8 FPRs
// * stored in the register save area
// * fpr=0 corresponds to f1,
// * fpr=1 to f2, etc.
// */
// char *overflow_arg_area;
// /* location on stack that holds
// * the next overflow argument
// */
// char *reg_save_area;
// /* where r3:r10 and f1:f8 (if saved)
// * are stored
// */
// } va_list[1];
SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
PtrVT);
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
PtrVT);
uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
uint64_t FPROffset = 1;
SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
// Store first byte : number of int regs
SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
Op.getOperand(1),
MachinePointerInfo(SV),
MVT::i8, false, false, 0);
uint64_t nextOffset = FPROffset;
SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
ConstFPROffset);
// Store second byte : number of float regs
SDValue secondStore =
DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
MachinePointerInfo(SV, nextOffset), MVT::i8,
false, false, 0);
nextOffset += StackOffset;
nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
// Store second word : arguments given on stack
SDValue thirdStore =
DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
MachinePointerInfo(SV, nextOffset),
false, false, 0);
nextOffset += FrameOffset;
nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
// Store third word : arguments given in registers
return DAG.getStore(thirdStore, dl, FR, nextPtr,
MachinePointerInfo(SV, nextOffset),
false, false, 0);
}
#include "PPCGenCallingConv.inc"
// Function whose sole purpose is to kill compiler warnings
// stemming from unused functions included from PPCGenCallingConv.inc.
CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
}
bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State) {
return true;
}
bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
MVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State) {
static const MCPhysReg ArgRegs[] = {
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
};
const unsigned NumArgRegs = array_lengthof(ArgRegs);
unsigned RegNum = State.getFirstUnallocated(ArgRegs);
// Skip one register if the first unallocated register has an even register
// number and there are still argument registers available which have not been
// allocated yet. RegNum is actually an index into ArgRegs, which means we
// need to skip a register if RegNum is odd.
if (RegNum != NumArgRegs && RegNum % 2 == 1) {
State.AllocateReg(ArgRegs[RegNum]);
}
// Always return false here, as this function only makes sure that the first
// unallocated register has an odd register number and does not actually
// allocate a register for the current argument.
return false;
}
bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
MVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State) {
static const MCPhysReg ArgRegs[] = {
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
PPC::F8
};
const unsigned NumArgRegs = array_lengthof(ArgRegs);
unsigned RegNum = State.getFirstUnallocated(ArgRegs);
// If there is only one Floating-point register left we need to put both f64
// values of a split ppc_fp128 value on the stack.
if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
State.AllocateReg(ArgRegs[RegNum]);
}
// Always return false here, as this function only makes sure that the two f64
// values a ppc_fp128 value is split into are both passed in registers or both
// passed on the stack and does not actually allocate a register for the
// current argument.
return false;
}
/// FPR - The set of FP registers that should be allocated for arguments,
/// on Darwin.
static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5,
PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10,
PPC::F11, PPC::F12, PPC::F13};
/// QFPR - The set of QPX registers that should be allocated for arguments.
static const MCPhysReg QFPR[] = {
PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7,
PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
/// CalculateStackSlotSize - Calculates the size reserved for this argument on
/// the stack.
static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
unsigned PtrByteSize) {
unsigned ArgSize = ArgVT.getStoreSize();
if (Flags.isByVal())
ArgSize = Flags.getByValSize();
// Round up to multiples of the pointer size, except for array members,
// which are always packed.
if (!Flags.isInConsecutiveRegs())
ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
return ArgSize;
}
/// CalculateStackSlotAlignment - Calculates the alignment of this argument
/// on the stack.
static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
ISD::ArgFlagsTy Flags,
unsigned PtrByteSize) {
unsigned Align = PtrByteSize;
// Altivec parameters are padded to a 16 byte boundary.
if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64)
Align = 16;
// QPX vector types stored in double-precision are padded to a 32 byte
// boundary.
else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
Align = 32;
// ByVal parameters are aligned as requested.
if (Flags.isByVal()) {
unsigned BVAlign = Flags.getByValAlign();
if (BVAlign > PtrByteSize) {
if (BVAlign % PtrByteSize != 0)
llvm_unreachable(
"ByVal alignment is not a multiple of the pointer size");
Align = BVAlign;
}
}
// Array members are always packed to their original alignment.
if (Flags.isInConsecutiveRegs()) {
// If the array member was split into multiple registers, the first
// needs to be aligned to the size of the full type. (Except for
// ppcf128, which is only aligned as its f64 components.)
if (Flags.isSplit() && OrigVT != MVT::ppcf128)
Align = OrigVT.getStoreSize();
else
Align = ArgVT.getStoreSize();
}
return Align;
}
/// CalculateStackSlotUsed - Return whether this argument will use its
/// stack slot (instead of being passed in registers). ArgOffset,
/// AvailableFPRs, and AvailableVRs must hold the current argument
/// position, and will be updated to account for this argument.
static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
ISD::ArgFlagsTy Flags,
unsigned PtrByteSize,
unsigned LinkageSize,
unsigned ParamAreaSize,
unsigned &ArgOffset,
unsigned &AvailableFPRs,
unsigned &AvailableVRs, bool HasQPX) {
bool UseMemory = false;
// Respect alignment of argument on the stack.
unsigned Align =
CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
// If there's no space left in the argument save area, we must
// use memory (this check also catches zero-sized arguments).
if (ArgOffset >= LinkageSize + ParamAreaSize)
UseMemory = true;
// Allocate argument on the stack.
ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
if (Flags.isInConsecutiveRegsLast())
ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
// If we overran the argument save area, we must use memory
// (this check catches arguments passed partially in memory)
if (ArgOffset > LinkageSize + ParamAreaSize)
UseMemory = true;
// However, if the argument is actually passed in an FPR or a VR,
// we don't use memory after all.
if (!Flags.isByVal()) {
if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
// QPX registers overlap with the scalar FP registers.
(HasQPX && (ArgVT == MVT::v4f32 ||
ArgVT == MVT::v4f64 ||
ArgVT == MVT::v4i1)))
if (AvailableFPRs > 0) {
--AvailableFPRs;
return false;
}
if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64)
if (AvailableVRs > 0) {
--AvailableVRs;
return false;
}
}
return UseMemory;
}
/// EnsureStackAlignment - Round stack frame size up from NumBytes to
/// ensure minimum alignment required for target.
static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
unsigned NumBytes) {
unsigned TargetAlign = Lowering->getStackAlignment();
unsigned AlignMask = TargetAlign - 1;
NumBytes = (NumBytes + AlignMask) & ~AlignMask;
return NumBytes;
}
SDValue
PPCTargetLowering::LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg>
&Ins,
SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals)
const {
if (Subtarget.isSVR4ABI()) {
if (Subtarget.isPPC64())
return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
dl, DAG, InVals);
else
return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
dl, DAG, InVals);
} else {
return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
dl, DAG, InVals);
}
}
SDValue
PPCTargetLowering::LowerFormalArguments_32SVR4(
SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg>
&Ins,
SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
// 32-bit SVR4 ABI Stack Frame Layout:
// +-----------------------------------+
// +--> | Back chain |
// | +-----------------------------------+
// | | Floating-point register save area |
// | +-----------------------------------+
// | | General register save area |
// | +-----------------------------------+
// | | CR save word |
// | +-----------------------------------+
// | | VRSAVE save word |
// | +-----------------------------------+
// | | Alignment padding |
// | +-----------------------------------+
// | | Vector register save area |
// | +-----------------------------------+
// | | Local variable space |
// | +-----------------------------------+
// | | Parameter list area |
// | +-----------------------------------+
// | | LR save word |
// | +-----------------------------------+
// SP--> +--- | Back chain |
// +-----------------------------------+
//
// Specifications:
// System V Application Binary Interface PowerPC Processor Supplement
// AltiVec Technology Programming Interface Manual
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
// Potential tail calls could cause overwriting of argument stack slots.
bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
(CallConv == CallingConv::Fast));
unsigned PtrByteSize = 4;
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
// Reserve space for the linkage area on the stack.
unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
CCInfo.AllocateStack(LinkageSize, PtrByteSize);
CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
// Arguments stored in registers.
if (VA.isRegLoc()) {
const TargetRegisterClass *RC;
EVT ValVT = VA.getValVT();
switch (ValVT.getSimpleVT().SimpleTy) {
default:
llvm_unreachable("ValVT not supported by formal arguments Lowering");
case MVT::i1:
case MVT::i32:
RC = &PPC::GPRCRegClass;
break;
case MVT::f32:
RC = &PPC::F4RCRegClass;
break;
case MVT::f64:
if (Subtarget.hasVSX())
RC = &PPC::VSFRCRegClass;
else
RC = &PPC::F8RCRegClass;
break;
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
RC = &PPC::VRRCRegClass;
break;
case MVT::v4f32:
RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
break;
case MVT::v2f64:
case MVT::v2i64:
RC = &PPC::VSHRCRegClass;
break;
case MVT::v4f64:
RC = &PPC::QFRCRegClass;
break;
case MVT::v4i1:
RC = &PPC::QBRCRegClass;
break;
}
// Transform the arguments stored in physical registers into virtual ones.
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
ValVT == MVT::i1 ? MVT::i32 : ValVT);
if (ValVT == MVT::i1)
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
InVals.push_back(ArgValue);
} else {
// Argument stored in memory.
assert(VA.isMemLoc());
unsigned ArgSize = VA.getLocVT().getStoreSize();
int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
isImmutable);
// Create load nodes to retrieve arguments from the stack.
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
MachinePointerInfo(),
false, false, false, 0));
}
}
// Assign locations to all of the incoming aggregate by value arguments.
// Aggregates passed by value are stored in the local variable space of the
// caller's stack frame, right above the parameter list area.
SmallVector<CCValAssign, 16> ByValArgLocs;
CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
ByValArgLocs, *DAG.getContext());
// Reserve stack space for the allocations in CCInfo.
CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
// Area that is at least reserved in the caller of this function.
unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
MinReservedArea = std::max(MinReservedArea, LinkageSize);
// Set the size that is at least reserved in caller of this function. Tail
// call optimized function's reserved stack space needs to be aligned so that
// taking the difference between two stack areas will result in an aligned
// stack.
MinReservedArea =
EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
FuncInfo->setMinReservedArea(MinReservedArea);
SmallVector<SDValue, 8> MemOps;
// If the function takes variable number of arguments, make a frame index for
// the start of the first vararg value... for expansion of llvm.va_start.
if (isVarArg) {
static const MCPhysReg GPArgRegs[] = {
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
};
const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
static const MCPhysReg FPArgRegs[] = {
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
PPC::F8
};
unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
if (DisablePPCFloatInVariadic)
NumFPArgRegs = 0;
FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
// Make room for NumGPArgRegs and NumFPArgRegs.
int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
FuncInfo->setVarArgsStackOffset(
MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
CCInfo.getNextStackOffset(), true));
FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
// The fixed integer arguments of a variadic function are stored to the
// VarArgsFrameIndex on the stack so that they may be loaded by deferencing
// the result of va_next.
for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
// Get an existing live-in vreg, or add a new one.
unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
if (!VReg)
VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
MachinePointerInfo(), false, false, 0);
MemOps.push_back(Store);
// Increment the address by four for the next argument to store
SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
}
// FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
// is set.
// The double arguments are stored to the VarArgsFrameIndex
// on the stack.
for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
// Get an existing live-in vreg, or add a new one.
unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
if (!VReg)
VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
MachinePointerInfo(), false, false, 0);
MemOps.push_back(Store);
// Increment the address by eight for the next argument to store
SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
PtrVT);
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
}
}
if (!MemOps.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
return Chain;
}
// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
// value to MVT::i64 and then truncate to the correct register size.
SDValue
PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
SelectionDAG &DAG, SDValue ArgVal,
SDLoc dl) const {
if (Flags.isSExt())
ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
DAG.getValueType(ObjectVT));
else if (Flags.isZExt())
ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
DAG.getValueType(ObjectVT));
return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
}
SDValue
PPCTargetLowering::LowerFormalArguments_64SVR4(
SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg>
&Ins,
SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
// TODO: add description of PPC stack frame format, or at least some docs.
//
bool isELFv2ABI = Subtarget.isELFv2ABI();
bool isLittleEndian = Subtarget.isLittleEndian();
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
assert(!(CallConv == CallingConv::Fast && isVarArg) &&
"fastcc not supported on varargs functions");
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
// Potential tail calls could cause overwriting of argument stack slots.
bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
(CallConv == CallingConv::Fast));
unsigned PtrByteSize = 8;
unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
static const MCPhysReg GPR[] = {
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
};
static const MCPhysReg VR[] = {
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
};
static const MCPhysReg VSRH[] = {
PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
};
const unsigned Num_GPR_Regs = array_lengthof(GPR);
const unsigned Num_FPR_Regs = 13;
const unsigned Num_VR_Regs = array_lengthof(VR);
const unsigned Num_QFPR_Regs = Num_FPR_Regs;
// Do a first pass over the arguments to determine whether the ABI
// guarantees that our caller has allocated the parameter save area
// on its stack frame. In the ELFv1 ABI, this is always the case;
// in the ELFv2 ABI, it is true if this is a vararg function or if
// any parameter is located in a stack slot.
bool HasParameterArea = !isELFv2ABI || isVarArg;
unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
unsigned NumBytes = LinkageSize;
unsigned AvailableFPRs = Num_FPR_Regs;
unsigned AvailableVRs = Num_VR_Regs;
for (unsigned i = 0, e = Ins.size(); i != e; ++i)
if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
PtrByteSize, LinkageSize, ParamAreaSize,
NumBytes, AvailableFPRs, AvailableVRs,
Subtarget.hasQPX()))
HasParameterArea = true;
// Add DAG nodes to load the arguments or copy them out of registers. On
// entry to a function on PPC, the arguments start after the linkage area,
// although the first ones are often in registers.
unsigned ArgOffset = LinkageSize;
unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
unsigned &QFPR_idx = FPR_idx;
SmallVector<SDValue, 8> MemOps;
Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
unsigned CurArgIdx = 0;
for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
SDValue ArgVal;
bool needsLoad = false;
EVT ObjectVT = Ins[ArgNo].VT;
EVT OrigVT = Ins[ArgNo].ArgVT;
unsigned ObjSize = ObjectVT.getStoreSize();
unsigned ArgSize = ObjSize;
ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
if (Ins[ArgNo].isOrigArg()) {
std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
CurArgIdx = Ins[ArgNo].getOrigArgIndex();
}
// We re-align the argument offset for each argument, except when using the
// fast calling convention, when we need to make sure we do that only when
// we'll actually use a stack slot.
unsigned CurArgOffset, Align;
auto ComputeArgOffset = [&]() {
/* Respect alignment of argument on the stack. */
Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
CurArgOffset = ArgOffset;
};
if (CallConv != CallingConv::Fast) {
ComputeArgOffset();
/* Compute GPR index associated with argument offset. */
GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
}
// FIXME the codegen can be much improved in some cases.
// We do not have to keep everything in memory.
if (Flags.isByVal()) {
assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
if (CallConv == CallingConv::Fast)
ComputeArgOffset();
// ObjSize is the true size, ArgSize rounded up to multiple of registers.
ObjSize = Flags.getByValSize();
ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
// Empty aggregate parameters do not take up registers. Examples:
// struct { } a;
// union { } b;
// int c[0];
// etc. However, we have to provide a place-holder in InVals, so
// pretend we have an 8-byte item at the current address for that
// purpose.
if (!ObjSize) {
int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
InVals.push_back(FIN);
continue;
}
// Create a stack object covering all stack doublewords occupied
// by the argument. If the argument is (fully or partially) on
// the stack, or if the argument is fully in registers but the
// caller has allocated the parameter save anyway, we can refer
// directly to the caller's stack frame. Otherwise, create a
// local copy in our own frame.
int FI;
if (HasParameterArea ||
ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true);
else
FI = MFI->CreateStackObject(ArgSize, Align, false);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
// Handle aggregates smaller than 8 bytes.
if (ObjSize < PtrByteSize) {
// The value of the object is its address, which differs from the
// address of the enclosing doubleword on big-endian systems.
SDValue Arg = FIN;
if (!isLittleEndian) {
SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, PtrVT);
Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
}
InVals.push_back(Arg);
if (GPR_idx != Num_GPR_Regs) {
unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
SDValue Store;
if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
EVT ObjType = (ObjSize == 1 ? MVT::i8 :
(ObjSize == 2 ? MVT::i16 : MVT::i32));
Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
MachinePointerInfo(FuncArg),
ObjType, false, false, 0);
} else {
// For sizes that don't fit a truncating store (3, 5, 6, 7),
// store the whole register as-is to the parameter save area
// slot.
Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
MachinePointerInfo(FuncArg),
false, false, 0);
}
MemOps.push_back(Store);
}
// Whether we copied from a register or not, advance the offset
// into the parameter save area by a full doubleword.
ArgOffset += PtrByteSize;
continue;
}
// The value of the object is its address, which is the address of
// its first stack doubleword.
InVals.push_back(FIN);
// Store whatever pieces of the object are in registers to memory.
for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
if (GPR_idx == Num_GPR_Regs)
break;
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
SDValue Addr = FIN;
if (j) {
SDValue Off = DAG.getConstant(j, PtrVT);
Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
}
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
MachinePointerInfo(FuncArg, j),
false, false, 0);
MemOps.push_back(Store);
++GPR_idx;
}
ArgOffset += ArgSize;
continue;
}
switch (ObjectVT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("Unhandled argument type!");
case MVT::i1:
case MVT::i32:
case MVT::i64:
// These can be scalar arguments or elements of an integer array type
// passed directly. Clang may use those instead of "byval" aggregate
// types to avoid forcing arguments to memory unnecessarily.
if (GPR_idx != Num_GPR_Regs) {
unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
// value to MVT::i64 and then truncate to the correct register size.
ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
} else {
if (CallConv == CallingConv::Fast)
ComputeArgOffset();
needsLoad = true;
ArgSize = PtrByteSize;
}
if (CallConv != CallingConv::Fast || needsLoad)
ArgOffset += 8;
break;
case MVT::f32:
case MVT::f64:
// These can be scalar arguments or elements of a float array type
// passed directly. The latter are used to implement ELFv2 homogenous
// float aggregates.
if (FPR_idx != Num_FPR_Regs) {
unsigned VReg;
if (ObjectVT == MVT::f32)
VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
else
VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
? &PPC::VSFRCRegClass
: &PPC::F8RCRegClass);
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
++FPR_idx;
} else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
// FIXME: We may want to re-enable this for CallingConv::Fast on the P8
// once we support fp <-> gpr moves.
// This can only ever happen in the presence of f32 array types,
// since otherwise we never run out of FPRs before running out
// of GPRs.
unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
if (ObjectVT == MVT::f32) {
if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
DAG.getConstant(32, MVT::i32));
ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
}
ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
} else {
if (CallConv == CallingConv::Fast)
ComputeArgOffset();
needsLoad = true;
}
// When passing an array of floats, the array occupies consecutive
// space in the argument area; only round up to the next doubleword
// at the end of the array. Otherwise, each float takes 8 bytes.
if (CallConv != CallingConv::Fast || needsLoad) {
ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
ArgOffset += ArgSize;
if (Flags.isInConsecutiveRegsLast())
ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
}
break;
case MVT::v4f32:
case MVT::v4i32:
case MVT::v8i16:
case MVT::v16i8:
case MVT::v2f64:
case MVT::v2i64:
if (!Subtarget.hasQPX()) {
// These can be scalar arguments or elements of a vector array type
// passed directly. The latter are used to implement ELFv2 homogenous
// vector aggregates.
if (VR_idx != Num_VR_Regs) {
unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ?
MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) :
MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
++VR_idx;
} else {
if (CallConv == CallingConv::Fast)
ComputeArgOffset();
needsLoad = true;
}
if (CallConv != CallingConv::Fast || needsLoad)
ArgOffset += 16;
break;
} // not QPX
assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
"Invalid QPX parameter type");
/* fall through */
case MVT::v4f64:
case MVT::v4i1:
// QPX vectors are treated like their scalar floating-point subregisters
// (except that they're larger).
unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
if (QFPR_idx != Num_QFPR_Regs) {
const TargetRegisterClass *RC;
switch (ObjectVT.getSimpleVT().SimpleTy) {
case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
default: RC = &PPC::QBRCRegClass; break;
}
unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
++QFPR_idx;
} else {
if (CallConv == CallingConv::Fast)
ComputeArgOffset();
needsLoad = true;
}
if (CallConv != CallingConv::Fast || needsLoad)
ArgOffset += Sz;
break;
}
// We need to load the argument to a virtual register if we determined
// above that we ran out of physical registers of the appropriate type.
if (needsLoad) {
if (ObjSize < ArgSize && !isLittleEndian)
CurArgOffset += ArgSize - ObjSize;
int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
false, false, false, 0);
}
InVals.push_back(ArgVal);
}
// Area that is at least reserved in the caller of this function.
unsigned MinReservedArea;
if (HasParameterArea)
MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
else
MinReservedArea = LinkageSize;
// Set the size that is at least reserved in caller of this function. Tail
// call optimized functions' reserved stack space needs to be aligned so that
// taking the difference between two stack areas will result in an aligned
// stack.
MinReservedArea =
EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
FuncInfo->setMinReservedArea(MinReservedArea);
// If the function takes variable number of arguments, make a frame index for
// the start of the first vararg value... for expansion of llvm.va_start.
if (isVarArg) {
int Depth = ArgOffset;
FuncInfo->setVarArgsFrameIndex(
MFI->CreateFixedObject(PtrByteSize, Depth, true));
SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
// If this function is vararg, store any remaining integer argument regs
// to their spots on the stack so that they may be loaded by deferencing the
// result of va_next.
for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
GPR_idx < Num_GPR_Regs; ++GPR_idx) {
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
MachinePointerInfo(), false, false, 0);
MemOps.push_back(Store);
// Increment the address by four for the next argument to store
SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
}
}
if (!MemOps.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
return Chain;
}
SDValue
PPCTargetLowering::LowerFormalArguments_Darwin(
SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg>
&Ins,
SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
// TODO: add description of PPC stack frame format, or at least some docs.
//
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
bool isPPC64 = PtrVT == MVT::i64;
// Potential tail calls could cause overwriting of argument stack slots.
bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
(CallConv == CallingConv::Fast));
unsigned PtrByteSize = isPPC64 ? 8 : 4;
unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
unsigned ArgOffset = LinkageSize;
// Area that is at least reserved in caller of this function.
unsigned MinReservedArea = ArgOffset;
static const MCPhysReg GPR_32[] = { // 32-bit registers.
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
};
static const MCPhysReg GPR_64[] = { // 64-bit registers.
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
};
static const MCPhysReg VR[] = {
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
};
const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
const unsigned Num_FPR_Regs = 13;
const unsigned Num_VR_Regs = array_lengthof( VR);
unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
// In 32-bit non-varargs functions, the stack space for vectors is after the
// stack space for non-vectors. We do not use this space unless we have
// too many vectors to fit in registers, something that only occurs in
// constructed examples:), but we have to walk the arglist to figure
// that out...for the pathological case, compute VecArgOffset as the
// start of the vector parameter area. Computing VecArgOffset is the
// entire point of the following loop.
unsigned VecArgOffset = ArgOffset;
if (!isVarArg && !isPPC64) {
for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
++ArgNo) {
EVT ObjectVT = Ins[ArgNo].VT;
ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
if (Flags.isByVal()) {
// ObjSize is the true size, ArgSize rounded up to multiple of regs.
unsigned ObjSize = Flags.getByValSize();
unsigned ArgSize =
((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
VecArgOffset += ArgSize;
continue;
}
switch(ObjectVT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("Unhandled argument type!");
case MVT::i1:
case MVT::i32:
case MVT::f32:
VecArgOffset += 4;
break;
case MVT::i64: // PPC64
case MVT::f64:
// FIXME: We are guaranteed to be !isPPC64 at this point.
// Does MVT::i64 apply?
VecArgOffset += 8;
break;
case MVT::v4f32:
case MVT::v4i32:
case MVT::v8i16:
case MVT::v16i8:
// Nothing to do, we're only looking at Nonvector args here.
break;
}
}
}
// We've found where the vector parameter area in memory is. Skip the
// first 12 parameters; these don't use that memory.
VecArgOffset = ((VecArgOffset+15)/16)*16;
VecArgOffset += 12*16;
// Add DAG nodes to load the arguments or copy them out of registers. On
// entry to a function on PPC, the arguments start after the linkage area,
// although the first ones are often in registers.
SmallVector<SDValue, 8> MemOps;
unsigned nAltivecParamsAtEnd = 0;
Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
unsigned CurArgIdx = 0;
for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
SDValue ArgVal;
bool needsLoad = false;
EVT ObjectVT = Ins[ArgNo].VT;
unsigned ObjSize = ObjectVT.getSizeInBits()/8;
unsigned ArgSize = ObjSize;
ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
if (Ins[ArgNo].isOrigArg()) {
std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
CurArgIdx = Ins[ArgNo].getOrigArgIndex();
}
unsigned CurArgOffset = ArgOffset;
// Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
if (isVarArg || isPPC64) {
MinReservedArea = ((MinReservedArea+15)/16)*16;
MinReservedArea += CalculateStackSlotSize(ObjectVT,
Flags,
PtrByteSize);
} else nAltivecParamsAtEnd++;
} else
// Calculate min reserved area.
MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
Flags,
PtrByteSize);
// FIXME the codegen can be much improved in some cases.
// We do not have to keep everything in memory.
if (Flags.isByVal()) {
assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
// ObjSize is the true size, ArgSize rounded up to multiple of registers.
ObjSize = Flags.getByValSize();
ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
// Objects of size 1 and 2 are right justified, everything else is
// left justified. This means the memory address is adjusted forwards.
if (ObjSize==1 || ObjSize==2) {
CurArgOffset = CurArgOffset + (4 - ObjSize);
}
// The value of the object is its address.
int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
InVals.push_back(FIN);
if (ObjSize==1 || ObjSize==2) {
if (GPR_idx != Num_GPR_Regs) {
unsigned VReg;
if (isPPC64)
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
else
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
MachinePointerInfo(FuncArg),
ObjType, false, false, 0);
MemOps.push_back(Store);
++GPR_idx;
}
ArgOffset += PtrByteSize;
continue;
}
for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
// Store whatever pieces of the object are in registers
// to memory. ArgOffset will be the address of the beginning
// of the object.
if (GPR_idx != Num_GPR_Regs) {
unsigned VReg;
if (isPPC64)
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
else
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
MachinePointerInfo(FuncArg, j),
false, false, 0);
MemOps.push_back(Store);
++GPR_idx;
ArgOffset += PtrByteSize;
} else {
ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
break;
}
}
continue;
}
switch (ObjectVT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("Unhandled argument type!");
case MVT::i1:
case MVT::i32:
if (!isPPC64) {
if (GPR_idx != Num_GPR_Regs) {
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
if (ObjectVT == MVT::i1)
ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
++GPR_idx;
} else {
needsLoad = true;
ArgSize = PtrByteSize;
}
// All int arguments reserve stack space in the Darwin ABI.
ArgOffset += PtrByteSize;
break;
}
// FALLTHROUGH
case MVT::i64: // PPC64
if (GPR_idx != Num_GPR_Regs) {
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
// value to MVT::i64 and then truncate to the correct register size.
ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
++GPR_idx;
} else {
needsLoad = true;
ArgSize = PtrByteSize;
}
// All int arguments reserve stack space in the Darwin ABI.
ArgOffset += 8;
break;
case MVT::f32:
case MVT::f64:
// Every 4 bytes of argument space consumes one of the GPRs available for
// argument passing.
if (GPR_idx != Num_GPR_Regs) {
++GPR_idx;
if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
++GPR_idx;
}
if (FPR_idx != Num_FPR_Regs) {
unsigned VReg;
if (ObjectVT == MVT::f32)
VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
else
VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
++FPR_idx;
} else {
needsLoad = true;
}
// All FP arguments reserve stack space in the Darwin ABI.
ArgOffset += isPPC64 ? 8 : ObjSize;
break;
case MVT::v4f32:
case MVT::v4i32:
case MVT::v8i16:
case MVT::v16i8:
// Note that vector arguments in registers don't reserve stack space,
// except in varargs functions.
if (VR_idx != Num_VR_Regs) {
unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
if (isVarArg) {
while ((ArgOffset % 16) != 0) {
ArgOffset += PtrByteSize;
if (GPR_idx != Num_GPR_Regs)
GPR_idx++;
}
ArgOffset += 16;
GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
}
++VR_idx;
} else {
if (!isVarArg && !isPPC64) {
// Vectors go after all the nonvectors.
CurArgOffset = VecArgOffset;
VecArgOffset += 16;
} else {
// Vectors are aligned.
ArgOffset = ((ArgOffset+15)/16)*16;
CurArgOffset = ArgOffset;
ArgOffset += 16;
}
needsLoad = true;
}
break;
}
// We need to load the argument to a virtual register if we determined above
// that we ran out of physical registers of the appropriate type.
if (needsLoad) {
int FI = MFI->CreateFixedObject(ObjSize,
CurArgOffset + (ArgSize - ObjSize),
isImmutable);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
false, false, false, 0);
}
InVals.push_back(ArgVal);
}
// Allow for Altivec parameters at the end, if needed.
if (nAltivecParamsAtEnd) {
MinReservedArea = ((MinReservedArea+15)/16)*16;
MinReservedArea += 16*nAltivecParamsAtEnd;
}
// Area that is at least reserved in the caller of this function.
MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
// Set the size that is at least reserved in caller of this function. Tail
// call optimized functions' reserved stack space needs to be aligned so that
// taking the difference between two stack areas will result in an aligned
// stack.
MinReservedArea =
EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
FuncInfo->setMinReservedArea(MinReservedArea);
// If the function takes variable number of arguments, make a frame index for
// the start of the first vararg value... for expansion of llvm.va_start.
if (isVarArg) {
int Depth = ArgOffset;
FuncInfo->setVarArgsFrameIndex(
MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
Depth, true));
SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
// If this function is vararg, store any remaining integer argument regs
// to their spots on the stack so that they may be loaded by deferencing the
// result of va_next.
for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
unsigned VReg;
if (isPPC64)
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
else
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
MachinePointerInfo(), false, false, 0);
MemOps.push_back(Store);
// Increment the address by four for the next argument to store
SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
}
}
if (!MemOps.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
return Chain;
}
/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
/// adjusted to accommodate the arguments for the tailcall.
static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
unsigned ParamSize) {
if (!isTailCall) return 0;
PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
unsigned CallerMinReservedArea = FI->getMinReservedArea();
int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
// Remember only if the new adjustement is bigger.
if (SPDiff < FI->getTailCallSPDelta())
FI->setTailCallSPDelta(SPDiff);
return SPDiff;
}
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
/// for tail call optimization. Targets which want to do tail call
/// optimization should implement this function.
bool
PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
CallingConv::ID CalleeCC,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SelectionDAG& DAG) const {
if (!getTargetMachine().Options.GuaranteedTailCallOpt)
return false;
// Variable argument functions are not supported.
if (isVarArg)
return false;
MachineFunction &MF = DAG.getMachineFunction();
CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
// Functions containing by val parameters are not supported.
for (unsigned i = 0; i != Ins.size(); i++) {
ISD::ArgFlagsTy Flags = Ins[i].Flags;
if (Flags.isByVal()) return false;
}
// Non-PIC/GOT tail calls are supported.
if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
return true;
// At the moment we can only do local tail calls (in same module, hidden
// or protected) if we are generating PIC.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
return G->getGlobal()->hasHiddenVisibility()
|| G->getGlobal()->hasProtectedVisibility();
}
return false;
}
/// isCallCompatibleAddress - Return the immediate to use if the specified
/// 32-bit value is representable in the immediate field of a BxA instruction.
static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
if (!C) return nullptr;
int Addr = C->getZExtValue();
if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
SignExtend32<26>(Addr) != Addr)
return nullptr; // Top 6 bits have to be sext of immediate.
return DAG.getConstant((int)C->getZExtValue() >> 2,
DAG.getTargetLoweringInfo().getPointerTy()).getNode();
}
namespace {
struct TailCallArgumentInfo {
SDValue Arg;
SDValue FrameIdxOp;
int FrameIdx;
TailCallArgumentInfo() : FrameIdx(0) {}
};
}
/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
static void
StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
SDValue Chain,
const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
SmallVectorImpl<SDValue> &MemOpChains,
SDLoc dl) {
for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
SDValue Arg = TailCallArgs[i].Arg;
SDValue FIN = TailCallArgs[i].FrameIdxOp;
int FI = TailCallArgs[i].FrameIdx;
// Store relative to framepointer.
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
MachinePointerInfo::getFixedStack(FI),
false, false, 0));
}
}
/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
/// the appropriate stack slot for the tail call optimized function call.
static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
MachineFunction &MF,
SDValue Chain,
SDValue OldRetAddr,
SDValue OldFP,
int SPDiff,
bool isPPC64,
bool isDarwinABI,
SDLoc dl) {
if (SPDiff) {
// Calculate the new stack slot for the return address.
int SlotSize = isPPC64 ? 8 : 4;
const PPCFrameLowering *FL =
MF.getSubtarget<PPCSubtarget>().getFrameLowering();
int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
NewRetAddrLoc, true);
EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
MachinePointerInfo::getFixedStack(NewRetAddr),
false, false, 0);
// When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
// slot as the FP is never overwritten.
if (isDarwinABI) {
int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
true);
SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
MachinePointerInfo::getFixedStack(NewFPIdx),
false, false, 0);
}
}
return Chain;
}
/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
/// the position of the argument.
static void
CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
SDValue Arg, int SPDiff, unsigned ArgOffset,
SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
int Offset = ArgOffset + SPDiff;
uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
SDValue FIN = DAG.getFrameIndex(FI, VT);
TailCallArgumentInfo Info;
Info.Arg = Arg;
Info.FrameIdxOp = FIN;
Info.FrameIdx = FI;
TailCallArguments.push_back(Info);
}
/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
/// stack slot. Returns the chain as result and the loaded frame pointers in
/// LROpOut/FPOpout. Used when tail calling.
SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
int SPDiff,
SDValue Chain,
SDValue &LROpOut,
SDValue &FPOpOut,
bool isDarwinABI,
SDLoc dl) const {
if (SPDiff) {
// Load the LR and FP stack slot for later adjusting.
EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
LROpOut = getReturnAddrFrameIndex(DAG);
LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
false, false, false, 0);
Chain = SDValue(LROpOut.getNode(), 1);
// When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
// slot as the FP is never overwritten.
if (isDarwinABI) {
FPOpOut = getFramePointerFrameIndex(DAG);
FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
false, false, false, 0);
Chain = SDValue(FPOpOut.getNode(), 1);
}
}
return Chain;
}
/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
/// by "Src" to address "Dst" of size "Size". Alignment information is
/// specified by the specific parameter attribute. The copy will be passed as
/// a byval function parameter.
/// Sometimes what we are copying is the end of a larger object, the part that
/// does not fit in registers.
static SDValue
CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
SDLoc dl) {
SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
false, false, MachinePointerInfo(),
MachinePointerInfo());
}
/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
/// tail calls.
static void
LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
SDValue Arg, SDValue PtrOff, int SPDiff,
unsigned ArgOffset, bool isPPC64, bool isTailCall,
bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments,
SDLoc dl) {
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
if (!isTailCall) {
if (isVector) {
SDValue StackPtr;
if (isPPC64)
StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
else
StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
DAG.getConstant(ArgOffset, PtrVT));
}
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
MachinePointerInfo(), false, false, 0));
// Calculate and remember argument location.
} else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
TailCallArguments);
}
static
void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
SDValue LROp, SDValue FPOp, bool isDarwinABI,
SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
MachineFunction &MF = DAG.getMachineFunction();
// Emit a sequence of copyto/copyfrom virtual registers for arguments that
// might overwrite each other in case of tail call optimization.
SmallVector<SDValue, 8> MemOpChains2;
// Do not flag preceding copytoreg stuff together with the following stuff.
InFlag = SDValue();
StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
MemOpChains2, dl);
if (!MemOpChains2.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
// Store the return address to the appropriate stack slot.
Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
isPPC64, isDarwinABI, dl);
// Emit callseq_end just before tailcall node.
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
DAG.getIntPtrConstant(0, true), InFlag, dl);
InFlag = Chain.getValue(1);
}
// Is this global address that of a function that can be called by name? (as
// opposed to something that must hold a descriptor for an indirect call).
static bool isFunctionGlobalAddress(SDValue Callee) {
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
return false;
return G->getGlobal()->getType()->getElementType()->isFunctionTy();
}
return false;
}
static
unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
SDValue &Chain, SDValue CallSeqStart, SDLoc dl, int SPDiff,
bool isTailCall, bool IsPatchPoint,
SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass,
SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
ImmutableCallSite *CS, const PPCSubtarget &Subtarget) {
bool isPPC64 = Subtarget.isPPC64();
bool isSVR4ABI = Subtarget.isSVR4ABI();
bool isELFv2ABI = Subtarget.isELFv2ABI();
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
NodeTys.push_back(MVT::Other); // Returns a chain
NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use.
unsigned CallOpc = PPCISD::CALL;
bool needIndirectCall = true;
if (!isSVR4ABI || !isPPC64)
if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
// If this is an absolute destination address, use the munged value.
Callee = SDValue(Dest, 0);
needIndirectCall = false;
}
if (isFunctionGlobalAddress(Callee)) {
GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
// A call to a TLS address is actually an indirect call to a
// thread-specific pointer.
unsigned OpFlags = 0;
if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
(Subtarget.getTargetTriple().isMacOSX() &&
Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
(G->getGlobal()->isDeclaration() ||
G->getGlobal()->isWeakForLinker())) ||
(Subtarget.isTargetELF() && !isPPC64 &&
!G->getGlobal()->hasLocalLinkage() &&
DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
// PC-relative references to external symbols should go through $stub,
// unless we're building with the leopard linker or later, which
// automatically synthesizes these stubs.
OpFlags = PPCII::MO_PLT_OR_STUB;
}
// If the callee is a GlobalAddress/ExternalSymbol node (quite common,
// every direct call is) turn it into a TargetGlobalAddress /
// TargetExternalSymbol node so that legalize doesn't hack it.
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
Callee.getValueType(), 0, OpFlags);
needIndirectCall = false;
}
if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
unsigned char OpFlags = 0;
if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
(Subtarget.getTargetTriple().isMacOSX() &&
Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) ||
(Subtarget.isTargetELF() && !isPPC64 &&
DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
// PC-relative references to external symbols should go through $stub,
// unless we're building with the leopard linker or later, which
// automatically synthesizes these stubs.
OpFlags = PPCII::MO_PLT_OR_STUB;
}
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
OpFlags);
needIndirectCall = false;
}
if (IsPatchPoint) {
// We'll form an invalid direct call when lowering a patchpoint; the full
// sequence for an indirect call is complicated, and many of the
// instructions introduced might have side effects (and, thus, can't be
// removed later). The call itself will be removed as soon as the
// argument/return lowering is complete, so the fact that it has the wrong
// kind of operands should not really matter.
needIndirectCall = false;
}
if (needIndirectCall) {
// Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
// to do the call, we can't use PPCISD::CALL.
SDValue MTCTROps[] = {Chain, Callee, InFlag};
if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
// Function pointers in the 64-bit SVR4 ABI do not point to the function
// entry point, but to the function descriptor (the function entry point
// address is part of the function descriptor though).
// The function descriptor is a three doubleword structure with the
// following fields: function entry point, TOC base address and
// environment pointer.
// Thus for a call through a function pointer, the following actions need
// to be performed:
// 1. Save the TOC of the caller in the TOC save area of its stack
// frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
// 2. Load the address of the function entry point from the function
// descriptor.
// 3. Load the TOC of the callee from the function descriptor into r2.
// 4. Load the environment pointer from the function descriptor into
// r11.
// 5. Branch to the function entry point address.
// 6. On return of the callee, the TOC of the caller needs to be
// restored (this is done in FinishCall()).
//
// The loads are scheduled at the beginning of the call sequence, and the
// register copies are flagged together to ensure that no other
// operations can be scheduled in between. E.g. without flagging the
// copies together, a TOC access in the caller could be scheduled between
// the assignment of the callee TOC and the branch to the callee, which
// results in the TOC access going through the TOC of the callee instead
// of going through the TOC of the caller, which leads to incorrect code.
// Load the address of the function entry point from the function
// descriptor.
SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
if (LDChain.getValueType() == MVT::Glue)
LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors();
MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr);
SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
false, false, LoadsInv, 8);
// Load environment pointer into r11.
SDValue PtrOff = DAG.getIntPtrConstant(16);
SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr,
MPI.getWithOffset(16), false, false,
LoadsInv, 8);
SDValue TOCOff = DAG.getIntPtrConstant(8);
SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC,
MPI.getWithOffset(8), false, false,
LoadsInv, 8);
setUsesTOCBasePtr(DAG);
SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
InFlag);
Chain = TOCVal.getValue(0);
InFlag = TOCVal.getValue(1);
SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
InFlag);
Chain = EnvVal.getValue(0);
InFlag = EnvVal.getValue(1);
MTCTROps[0] = Chain;
MTCTROps[1] = LoadFuncPtr;
MTCTROps[2] = InFlag;
}
Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
InFlag = Chain.getValue(1);
NodeTys.clear();
NodeTys.push_back(MVT::Other);
NodeTys.push_back(MVT::Glue);
Ops.push_back(Chain);
CallOpc = PPCISD::BCTRL;
Callee.setNode(nullptr);
// Add use of X11 (holding environment pointer)
if (isSVR4ABI && isPPC64 && !isELFv2ABI)
Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
// Add CTR register as callee so a bctr can be emitted later.
if (isTailCall)
Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
}
// If this is a direct call, pass the chain and the callee.
if (Callee.getNode()) {
Ops.push_back(Chain);
Ops.push_back(Callee);
}
// If this is a tail call add stack pointer delta.
if (isTailCall)
Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
// Add argument registers to the end of the list so that they are known live
// into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
// All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
// into the call.
if (isSVR4ABI && isPPC64 && !IsPatchPoint) {
setUsesTOCBasePtr(DAG);
Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
}
return CallOpc;
}
static
bool isLocalCall(const SDValue &Callee)
{
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
return !G->getGlobal()->isDeclaration() &&
!G->getGlobal()->isWeakForLinker();
return false;
}
SDValue
PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
SDValue Val = DAG.getCopyFromReg(Chain, dl,
VA.getLocReg(), VA.getLocVT(), InFlag);
Chain = Val.getValue(1);
InFlag = Val.getValue(2);
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::AExt:
Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
break;
case CCValAssign::ZExt:
Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
DAG.getValueType(VA.getValVT()));
Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
break;
case CCValAssign::SExt:
Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
DAG.getValueType(VA.getValVT()));
Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
break;
}
InVals.push_back(Val);
}
return Chain;
}
SDValue
PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
bool isTailCall, bool isVarArg, bool IsPatchPoint,
SelectionDAG &DAG,
SmallVector<std::pair<unsigned, SDValue>, 8>
&RegsToPass,
SDValue InFlag, SDValue Chain,
SDValue CallSeqStart, SDValue &Callee,
int SPDiff, unsigned NumBytes,
const SmallVectorImpl<ISD::InputArg> &Ins,
SmallVectorImpl<SDValue> &InVals,
ImmutableCallSite *CS) const {
std::vector<EVT> NodeTys;
SmallVector<SDValue, 8> Ops;
unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
SPDiff, isTailCall, IsPatchPoint, RegsToPass,
Ops, NodeTys, CS, Subtarget);
// Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
// When performing tail call optimization the callee pops its arguments off
// the stack. Account for this here so these bytes can be pushed back on in
// PPCFrameLowering::eliminateCallFramePseudoInstr.
int BytesCalleePops =
(CallConv == CallingConv::Fast &&
getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
// Add a register mask operand representing the call-preserved registers.
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
const uint32_t *Mask =
TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
if (InFlag.getNode())
Ops.push_back(InFlag);
// Emit tail call.
if (isTailCall) {
assert(((Callee.getOpcode() == ISD::Register &&
cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
Callee.getOpcode() == ISD::TargetExternalSymbol ||
Callee.getOpcode() == ISD::TargetGlobalAddress ||
isa<ConstantSDNode>(Callee)) &&
"Expecting an global address, external symbol, absolute value or register");
return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
}
// Add a NOP immediately after the branch instruction when using the 64-bit
// SVR4 ABI. At link time, if caller and callee are in a different module and
// thus have a different TOC, the call will be replaced with a call to a stub
// function which saves the current TOC, loads the TOC of the callee and
// branches to the callee. The NOP will be replaced with a load instruction
// which restores the TOC of the caller from the TOC save slot of the current
// stack frame. If caller and callee belong to the same module (and have the
// same TOC), the NOP will remain unchanged.
if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
!IsPatchPoint) {
if (CallOpc == PPCISD::BCTRL) {
// This is a call through a function pointer.
// Restore the caller TOC from the save area into R2.
// See PrepareCall() for more information about calls through function
// pointers in the 64-bit SVR4 ABI.
// We are using a target-specific load with r2 hard coded, because the
// result of a target-independent load would never go directly into r2,
// since r2 is a reserved register (which prevents the register allocator
// from allocating it), resulting in an additional register being
// allocated and an unnecessary move instruction being generated.
CallOpc = PPCISD::BCTRL_LOAD_TOC;
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset);
SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
// The address needs to go after the chain input but before the flag (or
// any other variadic arguments).
Ops.insert(std::next(Ops.begin()), AddTOC);
} else if ((CallOpc == PPCISD::CALL) &&
(!isLocalCall(Callee) ||
DAG.getTarget().getRelocationModel() == Reloc::PIC_))
// Otherwise insert NOP for non-local calls.
CallOpc = PPCISD::CALL_NOP;
}
Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
InFlag = Chain.getValue(1);
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
DAG.getIntPtrConstant(BytesCalleePops, true),
InFlag, dl);
if (!Ins.empty())
InFlag = Chain.getValue(1);
return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
Ins, dl, DAG, InVals);
}
SDValue
PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &dl = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &isTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool isVarArg = CLI.IsVarArg;
bool IsPatchPoint = CLI.IsPatchPoint;
ImmutableCallSite *CS = CLI.CS;
if (isTailCall)
isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
Ins, DAG);
if (!isTailCall && CS && CS->isMustTailCall())
report_fatal_error("failed to perform tail call elimination on a call "
"site marked musttail");
if (Subtarget.isSVR4ABI()) {
if (Subtarget.isPPC64())
return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
isTailCall, IsPatchPoint, Outs, OutVals, Ins,
dl, DAG, InVals, CS);
else
return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
isTailCall, IsPatchPoint, Outs, OutVals, Ins,
dl, DAG, InVals, CS);
}
return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
isTailCall, IsPatchPoint, Outs, OutVals, Ins,
dl, DAG, InVals, CS);
}
SDValue
PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv, bool isVarArg,
bool isTailCall, bool IsPatchPoint,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals,
ImmutableCallSite *CS) const {
// See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
// of the 32-bit SVR4 ABI stack frame layout.
assert((CallConv == CallingConv::C ||
CallConv == CallingConv::Fast) && "Unknown calling convention!");
unsigned PtrByteSize = 4;
MachineFunction &MF = DAG.getMachineFunction();
// Mark this function as potentially containing a function that contains a
// tail call. As a consequence the frame pointer will be used for dynamicalloc
// and restoring the callers stack pointer in this functions epilog. This is
// done because by tail calling the called function might overwrite the value
// in this function's (MF) stack pointer stack slot 0(SP).
if (getTargetMachine().Options.GuaranteedTailCallOpt &&
CallConv == CallingConv::Fast)
MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
// Count how many bytes are to be pushed on the stack, including the linkage
// area, parameter list area and the part of the local variable space which
// contains copies of aggregates which are passed by value.
// Assign locations to all of the outgoing arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
// Reserve space for the linkage area on the stack.
CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
PtrByteSize);
if (isVarArg) {
// Handle fixed and variable vector arguments differently.
// Fixed vector arguments go into registers as long as registers are
// available. Variable vector arguments always go into memory.
unsigned NumArgs = Outs.size();
for (unsigned i = 0; i != NumArgs; ++i) {
MVT ArgVT = Outs[i].VT;
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
bool Result;
if (Outs[i].IsFixed) {
Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
CCInfo);
} else {
Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
ArgFlags, CCInfo);
}
if (Result) {
#ifndef NDEBUG
errs() << "Call operand #" << i << " has unhandled type "
<< EVT(ArgVT).getEVTString() << "\n";
#endif
llvm_unreachable(nullptr);
}
}
} else {
// All arguments are treated the same.
CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
}
// Assign locations to all of the outgoing aggregate by value arguments.
SmallVector<CCValAssign, 16> ByValArgLocs;
CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
ByValArgLocs, *DAG.getContext());
// Reserve stack space for the allocations in CCInfo.
CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
// Size of the linkage area, parameter list area and the part of the local
// space variable where copies of aggregates which are passed by value are
// stored.
unsigned NumBytes = CCByValInfo.getNextStackOffset();
// Calculate by how many bytes the stack has to be adjusted in case of tail
// call optimization.
int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
// Adjust the stack pointer for the new arguments...
// These operations are automatically eliminated by the prolog/epilog pass
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
dl);
SDValue CallSeqStart = Chain;
// Load the return address and frame pointer so it can be moved somewhere else
// later.
SDValue LROp, FPOp;
Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
dl);
// Set up a copy of the stack pointer for use loading and storing any
// arguments that may not fit in the registers available for argument
// passing.
SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
SmallVector<SDValue, 8> MemOpChains;
bool seenFloatArg = false;
// Walk the register/memloc assignments, inserting copies/loads.
for (unsigned i = 0, j = 0, e = ArgLocs.size();
i != e;
++i) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = OutVals[i];
ISD::ArgFlagsTy Flags = Outs[i].Flags;
if (Flags.isByVal()) {
// Argument is an aggregate which is passed by value, thus we need to
// create a copy of it in the local variable space of the current stack
// frame (which is the stack frame of the caller) and pass the address of
// this copy to the callee.
assert((j < ByValArgLocs.size()) && "Index out of bounds!");
CCValAssign &ByValVA = ByValArgLocs[j++];
assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
// Memory reserved in the local variable space of the callers stack frame.
unsigned LocMemOffset = ByValVA.getLocMemOffset();
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
// Create a copy of the argument in the local area of the current
// stack frame.
SDValue MemcpyCall =
CreateCopyOfByValArgument(Arg, PtrOff,
CallSeqStart.getNode()->getOperand(0),
Flags, DAG, dl);
// This must go outside the CALLSEQ_START..END.
SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
CallSeqStart.getNode()->getOperand(1),
SDLoc(MemcpyCall));
DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
NewCallSeqStart.getNode());
Chain = CallSeqStart = NewCallSeqStart;
// Pass the address of the aggregate copy on the stack either in a
// physical register or in the parameter list area of the current stack
// frame to the callee.
Arg = PtrOff;
}
if (VA.isRegLoc()) {
if (Arg.getValueType() == MVT::i1)
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
seenFloatArg |= VA.getLocVT().isFloatingPoint();
// Put argument in a physical register.
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
} else {
// Put argument in the parameter list area of the current stack frame.
assert(VA.isMemLoc());
unsigned LocMemOffset = VA.getLocMemOffset();
if (!isTailCall) {
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
MachinePointerInfo(),
false, false, 0));
} else {
// Calculate and remember argument location.
CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
TailCallArguments);
}
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into the appropriate regs.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
// Set CR bit 6 to true if this is a vararg call with floating args passed in
// registers.
if (isVarArg) {
SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, InFlag };
Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
InFlag = Chain.getValue(1);
}
if (isTailCall)
PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
false, TailCallArguments);
return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, DAG,
RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
NumBytes, Ins, InVals, CS);
}
// Copy an argument into memory, being careful to do this outside the
// call sequence for the call to which the argument belongs.
SDValue
PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
SDValue CallSeqStart,
ISD::ArgFlagsTy Flags,
SelectionDAG &DAG,
SDLoc dl) const {
SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
CallSeqStart.getNode()->getOperand(0),
Flags, DAG, dl);
// The MEMCPY must go outside the CALLSEQ_START..END.
SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
CallSeqStart.getNode()->getOperand(1),
SDLoc(MemcpyCall));
DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
NewCallSeqStart.getNode());
return NewCallSeqStart;
}
SDValue
PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv, bool isVarArg,
bool isTailCall, bool IsPatchPoint,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals,
ImmutableCallSite *CS) const {
bool isELFv2ABI = Subtarget.isELFv2ABI();
bool isLittleEndian = Subtarget.isLittleEndian();
unsigned NumOps = Outs.size();
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
unsigned PtrByteSize = 8;
MachineFunction &MF = DAG.getMachineFunction();
// Mark this function as potentially containing a function that contains a
// tail call. As a consequence the frame pointer will be used for dynamicalloc
// and restoring the callers stack pointer in this functions epilog. This is
// done because by tail calling the called function might overwrite the value
// in this function's (MF) stack pointer stack slot 0(SP).
if (getTargetMachine().Options.GuaranteedTailCallOpt &&
CallConv == CallingConv::Fast)
MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
assert(!(CallConv == CallingConv::Fast && isVarArg) &&
"fastcc not supported on varargs functions");
// Count how many bytes are to be pushed on the stack, including the linkage
// area, and parameter passing area. On ELFv1, the linkage area is 48 bytes
// reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
// area is 32 bytes reserved space for [SP][CR][LR][TOC].
unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
unsigned NumBytes = LinkageSize;
unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
unsigned &QFPR_idx = FPR_idx;
static const MCPhysReg GPR[] = {
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
};
static const MCPhysReg VR[] = {
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
};
static const MCPhysReg VSRH[] = {
PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
};
const unsigned NumGPRs = array_lengthof(GPR);
const unsigned NumFPRs = 13;
const unsigned NumVRs = array_lengthof(VR);
const unsigned NumQFPRs = NumFPRs;
// When using the fast calling convention, we don't provide backing for
// arguments that will be in registers.
unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
// Add up all the space actually used.
for (unsigned i = 0; i != NumOps; ++i) {
ISD::ArgFlagsTy Flags = Outs[i].Flags;
EVT ArgVT = Outs[i].VT;
EVT OrigVT = Outs[i].ArgVT;
if (CallConv == CallingConv::Fast) {
if (Flags.isByVal())
NumGPRsUsed += (Flags.getByValSize()+7)/8;
else
switch (ArgVT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("Unexpected ValueType for argument!");
case MVT::i1:
case MVT::i32:
case MVT::i64:
if (++NumGPRsUsed <= NumGPRs)
continue;
break;
case MVT::v4i32:
case MVT::v8i16:
case MVT::v16i8:
case MVT::v2f64:
case MVT::v2i64:
if (++NumVRsUsed <= NumVRs)
continue;
break;
case MVT::v4f32:
// When using QPX, this is handled like a FP register, otherwise, it
// is an Altivec register.
if (Subtarget.hasQPX()) {
if (++NumFPRsUsed <= NumFPRs)
continue;
} else {
if (++NumVRsUsed <= NumVRs)
continue;
}
break;
case MVT::f32:
case MVT::f64:
case MVT::v4f64: // QPX
case MVT::v4i1: // QPX
if (++NumFPRsUsed <= NumFPRs)
continue;
break;
}
}
/* Respect alignment of argument on the stack. */
unsigned Align =
CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
NumBytes = ((NumBytes + Align - 1) / Align) * Align;
NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
if (Flags.isInConsecutiveRegsLast())
NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
}
unsigned NumBytesActuallyUsed = NumBytes;
// The prolog code of the callee may store up to 8 GPR argument registers to
// the stack, allowing va_start to index over them in memory if its varargs.
// Because we cannot tell if this is needed on the caller side, we have to
// conservatively assume that it is needed. As such, make sure we have at
// least enough stack space for the caller to store the 8 GPRs.
// FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
// Tail call needs the stack to be aligned.
if (getTargetMachine().Options.GuaranteedTailCallOpt &&
CallConv == CallingConv::Fast)
NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
// Calculate by how many bytes the stack has to be adjusted in case of tail
// call optimization.
int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
// To protect arguments on the stack from being clobbered in a tail call,
// force all the loads to happen before doing any other lowering.
if (isTailCall)
Chain = DAG.getStackArgumentTokenFactor(Chain);
// Adjust the stack pointer for the new arguments...
// These operations are automatically eliminated by the prolog/epilog pass
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
dl);
SDValue CallSeqStart = Chain;
// Load the return address and frame pointer so it can be move somewhere else
// later.
SDValue LROp, FPOp;
Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
dl);
// Set up a copy of the stack pointer for use loading and storing any
// arguments that may not fit in the registers available for argument
// passing.
SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
// Figure out which arguments are going to go in registers, and which in
// memory. Also, if this is a vararg function, floating point operations
// must be stored to our stack, and loaded into integer regs as well, if
// any integer regs are available for argument passing.
unsigned ArgOffset = LinkageSize;
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
SmallVector<SDValue, 8> MemOpChains;
for (unsigned i = 0; i != NumOps; ++i) {
SDValue Arg = OutVals[i];
ISD::ArgFlagsTy Flags = Outs[i].Flags;
EVT ArgVT = Outs[i].VT;
EVT OrigVT = Outs[i].ArgVT;
// PtrOff will be used to store the current argument to the stack if a
// register cannot be found for it.
SDValue PtrOff;
// We re-align the argument offset for each argument, except when using the
// fast calling convention, when we need to make sure we do that only when
// we'll actually use a stack slot.
auto ComputePtrOff = [&]() {
/* Respect alignment of argument on the stack. */
unsigned Align =
CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
};
if (CallConv != CallingConv::Fast) {
ComputePtrOff();
/* Compute GPR index associated with argument offset. */
GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
GPR_idx = std::min(GPR_idx, NumGPRs);
}
// Promote integers to 64-bit values.
if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
// FIXME: Should this use ANY_EXTEND if neither sext nor zext?
unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
}
// FIXME memcpy is used way more than necessary. Correctness first.
// Note: "by value" is code for passing a structure by value, not
// basic types.
if (Flags.isByVal()) {
// Note: Size includes alignment padding, so
// struct x { short a; char b; }
// will have Size = 4. With #pragma pack(1), it will have Size = 3.
// These are the proper values we need for right-justifying the
// aggregate in a parameter register.
unsigned Size = Flags.getByValSize();
// An empty aggregate parameter takes up no storage and no
// registers.
if (Size == 0)
continue;
if (CallConv == CallingConv::Fast)
ComputePtrOff();
// All aggregates smaller than 8 bytes must be passed right-justified.
if (Size==1 || Size==2 || Size==4) {
EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
if (GPR_idx != NumGPRs) {
SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
MachinePointerInfo(), VT,
false, false, false, 0);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
ArgOffset += PtrByteSize;
continue;
}
}
if (GPR_idx == NumGPRs && Size < 8) {
SDValue AddPtr = PtrOff;
if (!isLittleEndian) {
SDValue Const = DAG.getConstant(PtrByteSize - Size,
PtrOff.getValueType());
AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
}
Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
CallSeqStart,
Flags, DAG, dl);
ArgOffset += PtrByteSize;
continue;
}
// Copy entire object into memory. There are cases where gcc-generated
// code assumes it is there, even if it could be put entirely into
// registers. (This is not what the doc says.)
// FIXME: The above statement is likely due to a misunderstanding of the
// documents. All arguments must be copied into the parameter area BY
// THE CALLEE in the event that the callee takes the address of any
// formal argument. That has not yet been implemented. However, it is
// reasonable to use the stack area as a staging area for the register
// load.
// Skip this for small aggregates, as we will use the same slot for a
// right-justified copy, below.
if (Size >= 8)
Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
CallSeqStart,
Flags, DAG, dl);
// When a register is available, pass a small aggregate right-justified.
if (Size < 8 && GPR_idx != NumGPRs) {
// The easiest way to get this right-justified in a register
// is to copy the structure into the rightmost portion of a
// local variable slot, then load the whole slot into the
// register.
// FIXME: The memcpy seems to produce pretty awful code for
// small aggregates, particularly for packed ones.
// FIXME: It would be preferable to use the slot in the
// parameter save area instead of a new local variable.
SDValue AddPtr = PtrOff;
if (!isLittleEndian) {
SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
}
Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
CallSeqStart,
Flags, DAG, dl);
// Load the slot into the register.
SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
MachinePointerInfo(),
false, false, false, 0);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
// Done with this argument.
ArgOffset += PtrByteSize;
continue;
}
// For aggregates larger than PtrByteSize, copy the pieces of the
// object that fit into registers from the parameter save area.
for (unsigned j=0; j<Size; j+=PtrByteSize) {
SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
if (GPR_idx != NumGPRs) {
SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
MachinePointerInfo(),
false, false, false, 0);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
ArgOffset += PtrByteSize;
} else {
ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
break;
}
}
continue;
}
switch (Arg.getSimpleValueType().SimpleTy) {
default: llvm_unreachable("Unexpected ValueType for argument!");
case MVT::i1:
case MVT::i32:
case MVT::i64:
// These can be scalar arguments or elements of an integer array type
// passed directly. Clang may use those instead of "byval" aggregate
// types to avoid forcing arguments to memory unnecessarily.
if (GPR_idx != NumGPRs) {
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
} else {
if (CallConv == CallingConv::Fast)
ComputePtrOff();
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
true, isTailCall, false, MemOpChains,
TailCallArguments, dl);
if (CallConv == CallingConv::Fast)
ArgOffset += PtrByteSize;
}
if (CallConv != CallingConv::Fast)
ArgOffset += PtrByteSize;
break;
case MVT::f32:
case MVT::f64: {
// These can be scalar arguments or elements of a float array type
// passed directly. The latter are used to implement ELFv2 homogenous
// float aggregates.
// Named arguments go into FPRs first, and once they overflow, the
// remaining arguments go into GPRs and then the parameter save area.
// Unnamed arguments for vararg functions always go to GPRs and
// then the parameter save area. For now, put all arguments to vararg
// routines always in both locations (FPR *and* GPR or stack slot).
bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
bool NeededLoad = false;
// First load the argument into the next available FPR.
if (FPR_idx != NumFPRs)
RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
// Next, load the argument into GPR or stack slot if needed.
if (!NeedGPROrStack)
;
else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
// FIXME: We may want to re-enable this for CallingConv::Fast on the P8
// once we support fp <-> gpr moves.
// In the non-vararg case, this can only ever happen in the
// presence of f32 array types, since otherwise we never run
// out of FPRs before running out of GPRs.
SDValue ArgVal;
// Double values are always passed in a single GPR.
if (Arg.getValueType() != MVT::f32) {
ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
// Non-array float values are extended and passed in a GPR.
} else if (!Flags.isInConsecutiveRegs()) {
ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
// If we have an array of floats, we collect every odd element
// together with its predecessor into one GPR.
} else if (ArgOffset % PtrByteSize != 0) {
SDValue Lo, Hi;
Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
if (!isLittleEndian)
std::swap(Lo, Hi);
ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
// The final element, if even, goes into the first half of a GPR.
} else if (Flags.isInConsecutiveRegsLast()) {
ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
if (!isLittleEndian)
ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
DAG.getConstant(32, MVT::i32));
// Non-final even elements are skipped; they will be handled
// together the with subsequent argument on the next go-around.
} else
ArgVal = SDValue();
if (ArgVal.getNode())
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
} else {
if (CallConv == CallingConv::Fast)
ComputePtrOff();
// Single-precision floating-point values are mapped to the
// second (rightmost) word of the stack doubleword.
if (Arg.getValueType() == MVT::f32 &&
!isLittleEndian && !Flags.isInConsecutiveRegs()) {
SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
}
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
true, isTailCall, false, MemOpChains,
TailCallArguments, dl);
NeededLoad = true;
}
// When passing an array of floats, the array occupies consecutive
// space in the argument area; only round up to the next doubleword
// at the end of the array. Otherwise, each float takes 8 bytes.
if (CallConv != CallingConv::Fast || NeededLoad) {
ArgOffset += (Arg.getValueType() == MVT::f32 &&
Flags.isInConsecutiveRegs()) ? 4 : 8;
if (Flags.isInConsecutiveRegsLast())
ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
}
break;
}
case MVT::v4f32:
case MVT::v4i32:
case MVT::v8i16:
case MVT::v16i8:
case MVT::v2f64:
case MVT::v2i64:
if (!Subtarget.hasQPX()) {
// These can be scalar arguments or elements of a vector array type
// passed directly. The latter are used to implement ELFv2 homogenous
// vector aggregates.
// For a varargs call, named arguments go into VRs or on the stack as
// usual; unnamed arguments always go to the stack or the corresponding
// GPRs when within range. For now, we always put the value in both
// locations (or even all three).
if (isVarArg) {
// We could elide this store in the case where the object fits
// entirely in R registers. Maybe later.
SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
MachinePointerInfo(), false, false, 0);
MemOpChains.push_back(Store);
if (VR_idx != NumVRs) {
SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
MachinePointerInfo(),
false, false, false, 0);
MemOpChains.push_back(Load.getValue(1));
unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
Arg.getSimpleValueType() == MVT::v2i64) ?
VSRH[VR_idx] : VR[VR_idx];
++VR_idx;
RegsToPass.push_back(std::make_pair(VReg, Load));
}
ArgOffset += 16;
for (unsigned i=0; i<16; i+=PtrByteSize) {
if (GPR_idx == NumGPRs)
break;
SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
DAG.getConstant(i, PtrVT));
SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
false, false, false, 0);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
}
break;
}
// Non-varargs Altivec params go into VRs or on the stack.
if (VR_idx != NumVRs) {
unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
Arg.getSimpleValueType() == MVT::v2i64) ?
VSRH[VR_idx] : VR[VR_idx];
++VR_idx;
RegsToPass.push_back(std::make_pair(VReg, Arg));
} else {
if (CallConv == CallingConv::Fast)
ComputePtrOff();
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
true, isTailCall, true, MemOpChains,
TailCallArguments, dl);
if (CallConv == CallingConv::Fast)
ArgOffset += 16;
}
if (CallConv != CallingConv::Fast)
ArgOffset += 16;
break;
} // not QPX
assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
"Invalid QPX parameter type");
/* fall through */
case MVT::v4f64:
case MVT::v4i1: {
bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
if (isVarArg) {
// We could elide this store in the case where the object fits
// entirely in R registers. Maybe later.
SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
MachinePointerInfo(), false, false, 0);
MemOpChains.push_back(Store);
if (QFPR_idx != NumQFPRs) {
SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl,
Store, PtrOff, MachinePointerInfo(),
false, false, false, 0);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
}
ArgOffset += (IsF32 ? 16 : 32);
for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
if (GPR_idx == NumGPRs)
break;
SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
DAG.getConstant(i, PtrVT));
SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
false, false, false, 0);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
}
break;
}
// Non-varargs QPX params go into registers or on the stack.
if (QFPR_idx != NumQFPRs) {
RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
} else {
if (CallConv == CallingConv::Fast)
ComputePtrOff();
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
true, isTailCall, true, MemOpChains,
TailCallArguments, dl);
if (CallConv == CallingConv::Fast)
ArgOffset += (IsF32 ? 16 : 32);
}
if (CallConv != CallingConv::Fast)
ArgOffset += (IsF32 ? 16 : 32);
break;
}
}
}
assert(NumBytesActuallyUsed == ArgOffset);
(void)NumBytesActuallyUsed;
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
// Check if this is an indirect call (MTCTR/BCTRL).
// See PrepareCall() for more information about calls through function
// pointers in the 64-bit SVR4 ABI.
if (!isTailCall && !IsPatchPoint &&
!isFunctionGlobalAddress(Callee) &&
!isa<ExternalSymbolSDNode>(Callee)) {
// Load r2 into a virtual register and store it to the TOC save area.
setUsesTOCBasePtr(DAG);
SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
// TOC save area offset.
unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset);
SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
MachinePointerInfo::getStack(TOCSaveOffset),
false, false, 0);
// In the ELFv2 ABI, R12 must contain the address of an indirect callee.
// This does not mean the MTCTR instruction must use R12; it's easier
// to model this as an extra parameter, so do that.
if (isELFv2ABI && !IsPatchPoint)
RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
}
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into the appropriate regs.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
if (isTailCall)
PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
FPOp, true, TailCallArguments);
return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, DAG,
RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
NumBytes, Ins, InVals, CS);
}
SDValue
PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv, bool isVarArg,
bool isTailCall, bool IsPatchPoint,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals,
ImmutableCallSite *CS) const {
unsigned NumOps = Outs.size();
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
bool isPPC64 = PtrVT == MVT::i64;
unsigned PtrByteSize = isPPC64 ? 8 : 4;
MachineFunction &MF = DAG.getMachineFunction();
// Mark this function as potentially containing a function that contains a
// tail call. As a consequence the frame pointer will be used for dynamicalloc
// and restoring the callers stack pointer in this functions epilog. This is
// done because by tail calling the called function might overwrite the value
// in this function's (MF) stack pointer stack slot 0(SP).
if (getTargetMachine().Options.GuaranteedTailCallOpt &&
CallConv == CallingConv::Fast)
MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
// Count how many bytes are to be pushed on the stack, including the linkage
// area, and parameter passing area. We start with 24/48 bytes, which is
// prereserved space for [SP][CR][LR][3 x unused].
unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
unsigned NumBytes = LinkageSize;
// Add up all the space actually used.
// In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
// they all go in registers, but we must reserve stack space for them for
// possible use by the caller. In varargs or 64-bit calls, parameters are
// assigned stack space in order, with padding so Altivec parameters are
// 16-byte aligned.
unsigned nAltivecParamsAtEnd = 0;
for (unsigned i = 0; i != NumOps; ++i) {
ISD::ArgFlagsTy Flags = Outs[i].Flags;
EVT ArgVT = Outs[i].VT;
// Varargs Altivec parameters are padded to a 16 byte boundary.
if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
if (!isVarArg && !isPPC64) {
// Non-varargs Altivec parameters go after all the non-Altivec
// parameters; handle those later so we know how much padding we need.
nAltivecParamsAtEnd++;
continue;
}
// Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
NumBytes = ((NumBytes+15)/16)*16;
}
NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
}
// Allow for Altivec parameters at the end, if needed.
if (nAltivecParamsAtEnd) {
NumBytes = ((NumBytes+15)/16)*16;
NumBytes += 16*nAltivecParamsAtEnd;
}
// The prolog code of the callee may store up to 8 GPR argument registers to
// the stack, allowing va_start to index over them in memory if its varargs.
// Because we cannot tell if this is needed on the caller side, we have to
// conservatively assume that it is needed. As such, make sure we have at
// least enough stack space for the caller to store the 8 GPRs.
NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
// Tail call needs the stack to be aligned.
if (getTargetMachine().Options.GuaranteedTailCallOpt &&
CallConv == CallingConv::Fast)
NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
// Calculate by how many bytes the stack has to be adjusted in case of tail
// call optimization.
int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
// To protect arguments on the stack from being clobbered in a tail call,
// force all the loads to happen before doing any other lowering.
if (isTailCall)
Chain = DAG.getStackArgumentTokenFactor(Chain);
// Adjust the stack pointer for the new arguments...
// These operations are automatically eliminated by the prolog/epilog pass
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
dl);
SDValue CallSeqStart = Chain;
// Load the return address and frame pointer so it can be move somewhere else
// later.
SDValue LROp, FPOp;
Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
dl);
// Set up a copy of the stack pointer for use loading and storing any
// arguments that may not fit in the registers available for argument
// passing.
SDValue StackPtr;
if (isPPC64)
StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
else
StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
// Figure out which arguments are going to go in registers, and which in
// memory. Also, if this is a vararg function, floating point operations
// must be stored to our stack, and loaded into integer regs as well, if
// any integer regs are available for argument passing.
unsigned ArgOffset = LinkageSize;
unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
static const MCPhysReg GPR_32[] = { // 32-bit registers.
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
};
static const MCPhysReg GPR_64[] = { // 64-bit registers.
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
};
static const MCPhysReg VR[] = {
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
};
const unsigned NumGPRs = array_lengthof(GPR_32);
const unsigned NumFPRs = 13;
const unsigned NumVRs = array_lengthof(VR);
const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
SmallVector<SDValue, 8> MemOpChains;
for (unsigned i = 0; i != NumOps; ++i) {
SDValue Arg = OutVals[i];
ISD::ArgFlagsTy Flags = Outs[i].Flags;
// PtrOff will be used to store the current argument to the stack if a
// register cannot be found for it.
SDValue PtrOff;
PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
// On PPC64, promote integers to 64-bit values.
if (isPPC64 && Arg.getValueType() == MVT::i32) {
// FIXME: Should this use ANY_EXTEND if neither sext nor zext?
unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
}
// FIXME memcpy is used way more than necessary. Correctness first.
// Note: "by value" is code for passing a structure by value, not
// basic types.
if (Flags.isByVal()) {
unsigned Size = Flags.getByValSize();
// Very small objects are passed right-justified. Everything else is
// passed left-justified.
if (Size==1 || Size==2) {
EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
if (GPR_idx != NumGPRs) {
SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
MachinePointerInfo(), VT,
false, false, false, 0);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
ArgOffset += PtrByteSize;
} else {
SDValue Const = DAG.getConstant(PtrByteSize - Size,
PtrOff.getValueType());
SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
CallSeqStart,
Flags, DAG, dl);
ArgOffset += PtrByteSize;
}
continue;
}
// Copy entire object into memory. There are cases where gcc-generated
// code assumes it is there, even if it could be put entirely into
// registers. (This is not what the doc says.)
Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
CallSeqStart,
Flags, DAG, dl);
// For small aggregates (Darwin only) and aggregates >= PtrByteSize,
// copy the pieces of the object that fit into registers from the
// parameter save area.
for (unsigned j=0; j<Size; j+=PtrByteSize) {
SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
if (GPR_idx != NumGPRs) {
SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
MachinePointerInfo(),
false, false, false, 0);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
ArgOffset += PtrByteSize;
} else {
ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
break;
}
}
continue;
}
switch (Arg.getSimpleValueType().SimpleTy) {
default: llvm_unreachable("Unexpected ValueType for argument!");
case MVT::i1:
case MVT::i32:
case MVT::i64:
if (GPR_idx != NumGPRs) {
if (Arg.getValueType() == MVT::i1)
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
} else {
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
isPPC64, isTailCall, false, MemOpChains,
TailCallArguments, dl);
}
ArgOffset += PtrByteSize;
break;
case MVT::f32:
case MVT::f64:
if (FPR_idx != NumFPRs) {
RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
if (isVarArg) {
SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
MachinePointerInfo(), false, false, 0);
MemOpChains.push_back(Store);
// Float varargs are always shadowed in available integer registers
if (GPR_idx != NumGPRs) {
SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
MachinePointerInfo(), false, false,
false, 0);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
}
if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
MachinePointerInfo(),
false, false, false, 0);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
}
} else {
// If we have any FPRs remaining, we may also have GPRs remaining.
// Args passed in FPRs consume either 1 (f32) or 2 (f64) available
// GPRs.
if (GPR_idx != NumGPRs)
++GPR_idx;
if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
!isPPC64) // PPC64 has 64-bit GPR's obviously :)
++GPR_idx;
}
} else
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
isPPC64, isTailCall, false, MemOpChains,
TailCallArguments, dl);
if (isPPC64)
ArgOffset += 8;
else
ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
break;
case MVT::v4f32:
case MVT::v4i32:
case MVT::v8i16:
case MVT::v16i8:
if (isVarArg) {
// These go aligned on the stack, or in the corresponding R registers
// when within range. The Darwin PPC ABI doc claims they also go in
// V registers; in fact gcc does this only for arguments that are
// prototyped, not for those that match the ... We do it for all
// arguments, seems to work.
while (ArgOffset % 16 !=0) {
ArgOffset += PtrByteSize;
if (GPR_idx != NumGPRs)
GPR_idx++;
}
// We could elide this store in the case where the object fits
// entirely in R registers. Maybe later.
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
DAG.getConstant(ArgOffset, PtrVT));
SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
MachinePointerInfo(), false, false, 0);
MemOpChains.push_back(Store);
if (VR_idx != NumVRs) {
SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
MachinePointerInfo(),
false, false, false, 0);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
}
ArgOffset += 16;
for (unsigned i=0; i<16; i+=PtrByteSize) {
if (GPR_idx == NumGPRs)
break;
SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
DAG.getConstant(i, PtrVT));
SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
false, false, false, 0);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
}
break;
}
// Non-varargs Altivec params generally go in registers, but have
// stack space allocated at the end.
if (VR_idx != NumVRs) {
// Doesn't have GPR space allocated.
RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
} else if (nAltivecParamsAtEnd==0) {
// We are emitting Altivec params in order.
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
isPPC64, isTailCall, true, MemOpChains,
TailCallArguments, dl);
ArgOffset += 16;
}
break;
}
}
// If all Altivec parameters fit in registers, as they usually do,
// they get stack space following the non-Altivec parameters. We
// don't track this here because nobody below needs it.
// If there are more Altivec parameters than fit in registers emit
// the stores here.
if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
unsigned j = 0;
// Offset is aligned; skip 1st 12 params which go in V registers.
ArgOffset = ((ArgOffset+15)/16)*16;
ArgOffset += 12*16;
for (unsigned i = 0; i != NumOps; ++i) {
SDValue Arg = OutVals[i];
EVT ArgType = Outs[i].VT;
if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
if (++j > NumVRs) {
SDValue PtrOff;
// We are emitting Altivec params in order.
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
isPPC64, isTailCall, true, MemOpChains,
TailCallArguments, dl);
ArgOffset += 16;
}
}
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
// On Darwin, R12 must contain the address of an indirect callee. This does
// not mean the MTCTR instruction must use R12; it's easier to model this as
// an extra parameter, so do that.
if (!isTailCall &&
!isFunctionGlobalAddress(Callee) &&
!isa<ExternalSymbolSDNode>(Callee) &&
!isBLACompatibleAddress(Callee, DAG))
RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
PPC::R12), Callee));
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into the appropriate regs.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
if (isTailCall)
PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
FPOp, true, TailCallArguments);
return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, DAG,
RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
NumBytes, Ins, InVals, CS);
}
bool
PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
MachineFunction &MF, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
return CCInfo.CheckReturn(Outs, RetCC_PPC);
}
SDValue
PPCTargetLowering::LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
SDLoc dl, SelectionDAG &DAG) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
SDValue Flag;
SmallVector<SDValue, 4> RetOps(1, Chain);
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
SDValue Arg = OutVals[i];
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
break;
}
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
RetOps[0] = Chain; // Update chain.
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
}
SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
const PPCSubtarget &Subtarget) const {
// When we pop the dynamic allocation we need to restore the SP link.
SDLoc dl(Op);
// Get the corect type for pointers.
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
// Construct the stack pointer operand.
bool isPPC64 = Subtarget.isPPC64();
unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
SDValue StackPtr = DAG.getRegister(SP, PtrVT);
// Get the operands for the STACKRESTORE.
SDValue Chain = Op.getOperand(0);
SDValue SaveSP = Op.getOperand(1);
// Load the old link SP.
SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
MachinePointerInfo(),
false, false, false, 0);
// Restore the stack pointer.
Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
// Store the old link SP.
return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
false, false, 0);
}
SDValue
PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
bool isPPC64 = Subtarget.isPPC64();
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
// Get current frame pointer save index. The users of this index will be
// primarily DYNALLOC instructions.
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
int RASI = FI->getReturnAddrSaveIndex();
// If the frame pointer save index hasn't been defined yet.
if (!RASI) {
// Find out what the fix offset of the frame pointer save area.
int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
// Allocate the frame index for frame pointer save area.
RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
// Save the result.
FI->setReturnAddrSaveIndex(RASI);
}
return DAG.getFrameIndex(RASI, PtrVT);
}
SDValue
PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
bool isPPC64 = Subtarget.isPPC64();
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
// Get current frame pointer save index. The users of this index will be
// primarily DYNALLOC instructions.
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
int FPSI = FI->getFramePointerSaveIndex();
// If the frame pointer save index hasn't been defined yet.
if (!FPSI) {
// Find out what the fix offset of the frame pointer save area.
int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
// Allocate the frame index for frame pointer save area.
FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
// Save the result.
FI->setFramePointerSaveIndex(FPSI);
}
return DAG.getFrameIndex(FPSI, PtrVT);
}
SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
SelectionDAG &DAG,
const PPCSubtarget &Subtarget) const {
// Get the inputs.
SDValue Chain = Op.getOperand(0);
SDValue Size = Op.getOperand(1);
SDLoc dl(Op);
// Get the corect type for pointers.
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
// Negate the size.
SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
DAG.getConstant(0, PtrVT), Size);
// Construct a node for the frame pointer save index.
SDValue FPSIdx = getFramePointerFrameIndex(DAG);
// Build a DYNALLOC node.
SDValue Ops[3] = { Chain, NegSize, FPSIdx };
SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
}
SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
DAG.getVTList(MVT::i32, MVT::Other),
Op.getOperand(0), Op.getOperand(1));
}
SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
Op.getOperand(0), Op.getOperand(1));
}
SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
if (Op.getValueType().isVector())
return LowerVectorLoad(Op, DAG);
assert(Op.getValueType() == MVT::i1 &&
"Custom lowering only for i1 loads");
// First, load 8 bits into 32 bits, then truncate to 1 bit.
SDLoc dl(Op);
LoadSDNode *LD = cast<LoadSDNode>(Op);
SDValue Chain = LD->getChain();
SDValue BasePtr = LD->getBasePtr();
MachineMemOperand *MMO = LD->getMemOperand();
SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(), Chain,
BasePtr, MVT::i8, MMO);
SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
return DAG.getMergeValues(Ops, dl);
}
SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
if (Op.getOperand(1).getValueType().isVector())
return LowerVectorStore(Op, DAG);
assert(Op.getOperand(1).getValueType() == MVT::i1 &&
"Custom lowering only for i1 stores");
// First, zero extend to 32 bits, then use a truncating store to 8 bits.
SDLoc dl(Op);
StoreSDNode *ST = cast<StoreSDNode>(Op);
SDValue Chain = ST->getChain();
SDValue BasePtr = ST->getBasePtr();
SDValue Value = ST->getValue();
MachineMemOperand *MMO = ST->getMemOperand();
Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(), Value);
return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
}
// FIXME: Remove this once the ANDI glue bug is fixed:
SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
assert(Op.getValueType() == MVT::i1 &&
"Custom lowering only for i1 results");
SDLoc DL(Op);
return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
Op.getOperand(0));
}
/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
/// possible.
SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
// Not FP? Not a fsel.
if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
!Op.getOperand(2).getValueType().isFloatingPoint())
return Op;
// We might be able to do better than this under some circumstances, but in
// general, fsel-based lowering of select is a finite-math-only optimization.
// For more information, see section F.3 of the 2.06 ISA specification.
if (!DAG.getTarget().Options.NoInfsFPMath ||
!DAG.getTarget().Options.NoNaNsFPMath)
return Op;
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
EVT ResVT = Op.getValueType();
EVT CmpVT = Op.getOperand(0).getValueType();
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
SDValue TV = Op.getOperand(2), FV = Op.getOperand(3);
SDLoc dl(Op);
// If the RHS of the comparison is a 0.0, we don't need to do the
// subtraction at all.
SDValue Sel1;
if (isFloatingPointZero(RHS))
switch (CC) {
default: break; // SETUO etc aren't handled by fsel.
case ISD::SETNE:
std::swap(TV, FV);
case ISD::SETEQ:
if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits
Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
return DAG.getNode(PPCISD::FSEL, dl, ResVT,
DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
case ISD::SETULT:
case ISD::SETLT:
std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
case ISD::SETOGE:
case ISD::SETGE:
if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
case ISD::SETUGT:
case ISD::SETGT:
std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
case ISD::SETOLE:
case ISD::SETLE:
if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
return DAG.getNode(PPCISD::FSEL, dl, ResVT,
DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
}
SDValue Cmp;
switch (CC) {
default: break; // SETUO etc aren't handled by fsel.
case ISD::SETNE:
std::swap(TV, FV);
case ISD::SETEQ:
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits
Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
return DAG.getNode(PPCISD::FSEL, dl, ResVT,
DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
case ISD::SETULT:
case ISD::SETLT:
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
case ISD::SETOGE:
case ISD::SETGE:
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
case ISD::SETUGT:
case ISD::SETGT:
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
case ISD::SETOLE:
case ISD::SETLE:
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
}
return Op;
}
void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
SelectionDAG &DAG,
SDLoc dl) const {
assert(Op.getOperand(0).getValueType().isFloatingPoint());
SDValue Src = Op.getOperand(0);
if (Src.getValueType() == MVT::f32)
Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
SDValue Tmp;
switch (Op.getSimpleValueType().SimpleTy) {
default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
case MVT::i32:
Tmp = DAG.getNode(
Op.getOpcode() == ISD::FP_TO_SINT
? PPCISD::FCTIWZ
: (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
dl, MVT::f64, Src);
break;
case MVT::i64:
assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
"i64 FP_TO_UINT is supported only with FPCVT");
Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
PPCISD::FCTIDUZ,
dl, MVT::f64, Src);
break;
}
// Convert the FP value to an int value through memory.
bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
(Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI);
// Emit a store to the stack slot.
SDValue Chain;
if (i32Stack) {
MachineFunction &MF = DAG.getMachineFunction();
MachineMemOperand *MMO =
MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
} else
Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
MPI, false, false, 0);
// Result is a load from the stack slot. If loading 4 bytes, make sure to
// add in a bias.
if (Op.getValueType() == MVT::i32 && !i32Stack) {
FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
DAG.getConstant(4, FIPtr.getValueType()));
MPI = MPI.getWithOffset(4);
}
RLI.Chain = Chain;
RLI.Ptr = FIPtr;
RLI.MPI = MPI;
}
SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
SDLoc dl) const {
ReuseLoadInfo RLI;
LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
RLI.Ranges);
}
// We're trying to insert a regular store, S, and then a load, L. If the
// incoming value, O, is a load, we might just be able to have our load use the
// address used by O. However, we don't know if anything else will store to
// that address before we can load from it. To prevent this situation, we need
// to insert our load, L, into the chain as a peer of O. To do this, we give L
// the same chain operand as O, we create a token factor from the chain results
// of O and L, and we replace all uses of O's chain result with that token
// factor (see spliceIntoChain below for this last part).
bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
ReuseLoadInfo &RLI,
SelectionDAG &DAG,
ISD::LoadExtType ET) const {
SDLoc dl(Op);
if (ET == ISD::NON_EXTLOAD &&
(Op.getOpcode() == ISD::FP_TO_UINT ||
Op.getOpcode() == ISD::FP_TO_SINT) &&
isOperationLegalOrCustom(Op.getOpcode(),
Op.getOperand(0).getValueType())) {
LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
return true;
}
LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
LD->isNonTemporal())
return false;
if (LD->getMemoryVT() != MemVT)
return false;
RLI.Ptr = LD->getBasePtr();
if (LD->isIndexed() && LD->getOffset().getOpcode() != ISD::UNDEF) {
assert(LD->getAddressingMode() == ISD::PRE_INC &&
"Non-pre-inc AM on PPC?");
RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
LD->getOffset());
}
RLI.Chain = LD->getChain();
RLI.MPI = LD->getPointerInfo();
RLI.IsInvariant = LD->isInvariant();
RLI.Alignment = LD->getAlignment();
RLI.AAInfo = LD->getAAInfo();
RLI.Ranges = LD->getRanges();
RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
return true;
}
// Given the head of the old chain, ResChain, insert a token factor containing
// it and NewResChain, and make users of ResChain now be users of that token
// factor.
void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
SDValue NewResChain,
SelectionDAG &DAG) const {
if (!ResChain)
return;
SDLoc dl(NewResChain);
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
NewResChain, DAG.getUNDEF(MVT::Other));
assert(TF.getNode() != NewResChain.getNode() &&
"A new TF really is required here");
DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
}
SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
return SDValue();
SDValue Value = Op.getOperand(0);
// The values are now known to be -1 (false) or 1 (true). To convert this
// into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
// This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
SDValue FPHalfs = DAG.getConstantFP(0.5, MVT::f64);
FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64,
FPHalfs, FPHalfs, FPHalfs, FPHalfs);
Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
if (Op.getValueType() != MVT::v4f64)
Value = DAG.getNode(ISD::FP_ROUND, dl,
Op.getValueType(), Value, DAG.getIntPtrConstant(1));
return Value;
}
// Don't handle ppc_fp128 here; let it be lowered to a libcall.
if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
return SDValue();
if (Op.getOperand(0).getValueType() == MVT::i1)
return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
DAG.getConstantFP(1.0, Op.getValueType()),
DAG.getConstantFP(0.0, Op.getValueType()));
assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
"UINT_TO_FP is supported only with FPCVT");
// If we have FCFIDS, then use it when converting to single-precision.
// Otherwise, convert to double-precision and then round.
unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
: PPCISD::FCFIDS)
: (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
: PPCISD::FCFID);
MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
? MVT::f32
: MVT::f64;
if (Op.getOperand(0).getValueType() == MVT::i64) {
SDValue SINT = Op.getOperand(0);
// When converting to single-precision, we actually need to convert
// to double-precision first and then round to single-precision.
// To avoid double-rounding effects during that operation, we have
// to prepare the input operand. Bits that might be truncated when
// converting to double-precision are replaced by a bit that won't
// be lost at this stage, but is below the single-precision rounding
// position.
//
// However, if -enable-unsafe-fp-math is in effect, accept double
// rounding to avoid the extra overhead.
if (Op.getValueType() == MVT::f32 &&
!Subtarget.hasFPCVT() &&
!DAG.getTarget().Options.UnsafeFPMath) {
// Twiddle input to make sure the low 11 bits are zero. (If this
// is the case, we are guaranteed the value will fit into the 53 bit
// mantissa of an IEEE double-precision value without rounding.)
// If any of those low 11 bits were not zero originally, make sure
// bit 12 (value 2048) is set instead, so that the final rounding
// to single-precision gets the correct result.
SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
SINT, DAG.getConstant(2047, MVT::i64));
Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
Round, DAG.getConstant(2047, MVT::i64));
Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
Round = DAG.getNode(ISD::AND, dl, MVT::i64,
Round, DAG.getConstant(-2048, MVT::i64));
// However, we cannot use that value unconditionally: if the magnitude
// of the input value is small, the bit-twiddling we did above might
// end up visibly changing the output. Fortunately, in that case, we
// don't need to twiddle bits since the original input will convert
// exactly to double-precision floating-point already. Therefore,
// construct a conditional to use the original value if the top 11
// bits are all sign-bit copies, and use the rounded value computed
// above otherwise.
SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
SINT, DAG.getConstant(53, MVT::i32));
Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
Cond, DAG.getConstant(1, MVT::i64));
Cond = DAG.getSetCC(dl, MVT::i32,
Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
}
ReuseLoadInfo RLI;
SDValue Bits;
MachineFunction &MF = DAG.getMachineFunction();
if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
RLI.Ranges);
spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
} else if (Subtarget.hasLFIWAX() &&
canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
MachineMemOperand *MMO =
MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
RLI.Alignment, RLI.AAInfo, RLI.Ranges);
SDValue Ops[] = { RLI.Chain, RLI.Ptr };
Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
DAG.getVTList(MVT::f64, MVT::Other),
Ops, MVT::i32, MMO);
spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
} else if (Subtarget.hasFPCVT() &&
canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
MachineMemOperand *MMO =
MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
RLI.Alignment, RLI.AAInfo, RLI.Ranges);
SDValue Ops[] = { RLI.Chain, RLI.Ptr };
Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
DAG.getVTList(MVT::f64, MVT::Other),
Ops, MVT::i32, MMO);
spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
} else if (((Subtarget.hasLFIWAX() &&
SINT.getOpcode() == ISD::SIGN_EXTEND) ||
(Subtarget.hasFPCVT() &&
SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
SINT.getOperand(0).getValueType() == MVT::i32) {
MachineFrameInfo *FrameInfo = MF.getFrameInfo();
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
SDValue Store =
DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
MachinePointerInfo::getFixedStack(FrameIdx),
false, false, 0);
assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
"Expected an i32 store");
RLI.Ptr = FIdx;
RLI.Chain = Store;
RLI.MPI = MachinePointerInfo::getFixedStack(FrameIdx);
RLI.Alignment = 4;
MachineMemOperand *MMO =
MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
RLI.Alignment, RLI.AAInfo, RLI.Ranges);
SDValue Ops[] = { RLI.Chain, RLI.Ptr };
Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
PPCISD::LFIWZX : PPCISD::LFIWAX,
dl, DAG.getVTList(MVT::f64, MVT::Other),
Ops, MVT::i32, MMO);
} else
Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
FP = DAG.getNode(ISD::FP_ROUND, dl,
MVT::f32, FP, DAG.getIntPtrConstant(0));
return FP;
}
assert(Op.getOperand(0).getValueType() == MVT::i32 &&
"Unhandled INT_TO_FP type in custom expander!");
// Since we only generate this in 64-bit mode, we can take advantage of
// 64-bit registers. In particular, sign extend the input value into the
// 64-bit register with extsw, store the WHOLE 64-bit value into the stack
// then lfd it and fcfid it.
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *FrameInfo = MF.getFrameInfo();
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
SDValue Ld;
if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
ReuseLoadInfo RLI;
bool ReusingLoad;
if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
DAG))) {
int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
MachinePointerInfo::getFixedStack(FrameIdx),
false, false, 0);
assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
"Expected an i32 store");
RLI.Ptr = FIdx;
RLI.Chain = Store;
RLI.MPI = MachinePointerInfo::getFixedStack(FrameIdx);
RLI.Alignment = 4;
}
MachineMemOperand *MMO =
MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
RLI.Alignment, RLI.AAInfo, RLI.Ranges);
SDValue Ops[] = { RLI.Chain, RLI.Ptr };
Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
PPCISD::LFIWZX : PPCISD::LFIWAX,
dl, DAG.getVTList(MVT::f64, MVT::Other),
Ops, MVT::i32, MMO);
if (ReusingLoad)
spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
} else {
assert(Subtarget.isPPC64() &&
"i32->FP without LFIWAX supported only on PPC64");
int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
Op.getOperand(0));
// STD the extended value into the stack slot.
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx,
MachinePointerInfo::getFixedStack(FrameIdx),
false, false, 0);
// Load the value as a double.
Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx,
MachinePointerInfo::getFixedStack(FrameIdx),
false, false, false, 0);
}
// FCFID it and return it.
SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
return FP;
}
SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
/*
The rounding mode is in bits 30:31 of FPSR, and has the following
settings:
00 Round to nearest
01 Round to 0
10 Round to +inf
11 Round to -inf
FLT_ROUNDS, on the other hand, expects the following:
-1 Undefined
0 Round to 0
1 Round to nearest
2 Round to +inf
3 Round to -inf
To perform the conversion, we do:
((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
*/
MachineFunction &MF = DAG.getMachineFunction();
EVT VT = Op.getValueType();
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
// Save FP Control Word to register
EVT NodeTys[] = {
MVT::f64, // return register
MVT::Glue // unused in this context
};
SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
// Save FP register to stack slot
int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
StackSlot, MachinePointerInfo(), false, false,0);
// Load FP Control Word from low 32 bits of stack slot.
SDValue Four = DAG.getConstant(4, PtrVT);
SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
false, false, false, 0);
// Transform as necessary
SDValue CWD1 =
DAG.getNode(ISD::AND, dl, MVT::i32,
CWD, DAG.getConstant(3, MVT::i32));
SDValue CWD2 =
DAG.getNode(ISD::SRL, dl, MVT::i32,
DAG.getNode(ISD::AND, dl, MVT::i32,
DAG.getNode(ISD::XOR, dl, MVT::i32,
CWD, DAG.getConstant(3, MVT::i32)),
DAG.getConstant(3, MVT::i32)),
DAG.getConstant(1, MVT::i32));
SDValue RetVal =
DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
return DAG.getNode((VT.getSizeInBits() < 16 ?
ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
}
SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
unsigned BitWidth = VT.getSizeInBits();
SDLoc dl(Op);
assert(Op.getNumOperands() == 3 &&
VT == Op.getOperand(1).getValueType() &&
"Unexpected SHL!");
// Expand into a bunch of logical ops. Note that these ops
// depend on the PPC behavior for oversized shift amounts.
SDValue Lo = Op.getOperand(0);
SDValue Hi = Op.getOperand(1);
SDValue Amt = Op.getOperand(2);
EVT AmtVT = Amt.getValueType();
SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
DAG.getConstant(BitWidth, AmtVT), Amt);
SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
DAG.getConstant(-BitWidth, AmtVT));
SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
SDValue OutOps[] = { OutLo, OutHi };
return DAG.getMergeValues(OutOps, dl);
}
SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc dl(Op);
unsigned BitWidth = VT.getSizeInBits();
assert(Op.getNumOperands() == 3 &&
VT == Op.getOperand(1).getValueType() &&
"Unexpected SRL!");
// Expand into a bunch of logical ops. Note that these ops
// depend on the PPC behavior for oversized shift amounts.
SDValue Lo = Op.getOperand(0);
SDValue Hi = Op.getOperand(1);
SDValue Amt = Op.getOperand(2);
EVT AmtVT = Amt.getValueType();
SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
DAG.getConstant(BitWidth, AmtVT), Amt);
SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
DAG.getConstant(-BitWidth, AmtVT));
SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
SDValue OutOps[] = { OutLo, OutHi };
return DAG.getMergeValues(OutOps, dl);
}
SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
EVT VT = Op.getValueType();
unsigned BitWidth = VT.getSizeInBits();
assert(Op.getNumOperands() == 3 &&
VT == Op.getOperand(1).getValueType() &&
"Unexpected SRA!");
// Expand into a bunch of logical ops, followed by a select_cc.
SDValue Lo = Op.getOperand(0);
SDValue Hi = Op.getOperand(1);
SDValue Amt = Op.getOperand(2);
EVT AmtVT = Amt.getValueType();
SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
DAG.getConstant(BitWidth, AmtVT), Amt);
SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
DAG.getConstant(-BitWidth, AmtVT));
SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
Tmp4, Tmp6, ISD::SETLE);
SDValue OutOps[] = { OutLo, OutHi };
return DAG.getMergeValues(OutOps, dl);
}
//===----------------------------------------------------------------------===//
// Vector related lowering.
//
/// BuildSplatI - Build a canonical splati of Val with an element size of
/// SplatSize. Cast the result to VT.
static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
SelectionDAG &DAG, SDLoc dl) {
assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
static const MVT VTys[] = { // canonical VT to use for each size.
MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
};
EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
// Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
if (Val == -1)
SplatSize = 1;
EVT CanonicalVT = VTys[SplatSize-1];
// Build a canonical splat for this value.
SDValue Elt = DAG.getConstant(Val, MVT::i32);
SmallVector<SDValue, 8> Ops;
Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, Ops);
return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
}
/// BuildIntrinsicOp - Return a unary operator intrinsic node with the
/// specified intrinsic ID.
static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op,
SelectionDAG &DAG, SDLoc dl,
EVT DestVT = MVT::Other) {
if (DestVT == MVT::Other) DestVT = Op.getValueType();
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
DAG.getConstant(IID, MVT::i32), Op);
}
/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
/// specified intrinsic ID.
static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
SelectionDAG &DAG, SDLoc dl,
EVT DestVT = MVT::Other) {
if (DestVT == MVT::Other) DestVT = LHS.getValueType();
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
DAG.getConstant(IID, MVT::i32), LHS, RHS);
}
/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
/// specified intrinsic ID.
static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
SDValue Op2, SelectionDAG &DAG,
SDLoc dl, EVT DestVT = MVT::Other) {
if (DestVT == MVT::Other) DestVT = Op0.getValueType();
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
}
/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
/// amount. The result has the specified value type.
static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
EVT VT, SelectionDAG &DAG, SDLoc dl) {
// Force LHS/RHS to be the right type.
LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
int Ops[16];
for (unsigned i = 0; i != 16; ++i)
Ops[i] = i + Amt;
SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
return DAG.getNode(ISD::BITCAST, dl, VT, T);
}
// If this is a case we can't handle, return null and let the default
// expansion code take care of it. If we CAN select this case, and if it
// selects to a single instruction, return Op. Otherwise, if we can codegen
// this case more efficiently than a constant pool load, lower it to the
// sequence of ops that should be used.
SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
// We first build an i32 vector, load it into a QPX register,
// then convert it to a floating-point vector and compare it
// to a zero vector to get the boolean result.
MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FrameIdx);
EVT PtrVT = getPointerTy();
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
assert(BVN->getNumOperands() == 4 &&
"BUILD_VECTOR for v4i1 does not have 4 operands");
bool IsConst = true;
for (unsigned i = 0; i < 4; ++i) {
if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue;
if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
IsConst = false;
break;
}
}
if (IsConst) {
Constant *One =
ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
Constant *NegOne =
ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
SmallVector<Constant*, 4> CV(4, NegOne);
for (unsigned i = 0; i < 4; ++i) {
if (BVN->getOperand(i).getOpcode() == ISD::UNDEF)
CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
else if (cast<ConstantSDNode>(BVN->getOperand(i))->
getConstantIntValue()->isZero())
continue;
else
CV[i] = One;
}
Constant *CP = ConstantVector::get(CV);
SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(),
16 /* alignment */);
SmallVector<SDValue, 2> Ops;
Ops.push_back(DAG.getEntryNode());
Ops.push_back(CPIdx);
SmallVector<EVT, 2> ValueVTs;
ValueVTs.push_back(MVT::v4i1);
ValueVTs.push_back(MVT::Other); // chain
SDVTList VTs = DAG.getVTList(ValueVTs);
return DAG.getMemIntrinsicNode(PPCISD::QVLFSb,
dl, VTs, Ops, MVT::v4f32,
MachinePointerInfo::getConstantPool());
}
SmallVector<SDValue, 4> Stores;
for (unsigned i = 0; i < 4; ++i) {
if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue;
unsigned Offset = 4*i;
SDValue Idx = DAG.getConstant(Offset, FIdx.getValueType());
Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
if (StoreSize > 4) {
Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
BVN->getOperand(i), Idx,
PtrInfo.getWithOffset(Offset),
MVT::i32, false, false, 0));
} else {
SDValue StoreValue = BVN->getOperand(i);
if (StoreSize < 4)
StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
StoreValue, Idx,
PtrInfo.getWithOffset(Offset),
false, false, 0));
}
}
SDValue StoreChain;
if (!Stores.empty())
StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
else
StoreChain = DAG.getEntryNode();
// Now load from v4i32 into the QPX register; this will extend it to
// v4i64 but not yet convert it to a floating point. Nevertheless, this
// is typed as v4f64 because the QPX register integer states are not
// explicitly represented.
SmallVector<SDValue, 2> Ops;
Ops.push_back(StoreChain);
Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, MVT::i32));
Ops.push_back(FIdx);
SmallVector<EVT, 2> ValueVTs;
ValueVTs.push_back(MVT::v4f64);
ValueVTs.push_back(MVT::Other); // chain
SDVTList VTs = DAG.getVTList(ValueVTs);
SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
dl, VTs, Ops, MVT::v4i32, PtrInfo);
LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, MVT::i32),
LoadedVect);
SDValue FPZeros = DAG.getConstantFP(0.0, MVT::f64);
FPZeros = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64,
FPZeros, FPZeros, FPZeros, FPZeros);
return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
}
// All other QPX vectors are handled by generic code.
if (Subtarget.hasQPX())
return SDValue();
// Check if this is a splat of a constant value.
APInt APSplatBits, APSplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
SplatBitSize > 32)
return SDValue();
unsigned SplatBits = APSplatBits.getZExtValue();
unsigned SplatUndef = APSplatUndef.getZExtValue();
unsigned SplatSize = SplatBitSize / 8;
// First, handle single instruction cases.
// All zeros?
if (SplatBits == 0) {
// Canonicalize all zero vectors to be v4i32.
if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
SDValue Z = DAG.getConstant(0, MVT::i32);
Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
}
return Op;
}
// If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
(32-SplatBitSize));
if (SextVal >= -16 && SextVal <= 15)
return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
// Two instruction sequences.
// If this value is in the range [-32,30] and is even, use:
// VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
// If this value is in the range [17,31] and is odd, use:
// VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
// If this value is in the range [-31,-17] and is odd, use:
// VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
// Note the last two are three-instruction sequences.
if (SextVal >= -32 && SextVal <= 31) {
// To avoid having these optimizations undone by constant folding,
// we convert to a pseudo that will be expanded later into one of
// the above forms.
SDValue Elt = DAG.getConstant(SextVal, MVT::i32);
EVT VT = (SplatSize == 1 ? MVT::v16i8 :
(SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
SDValue EltSize = DAG.getConstant(SplatSize, MVT::i32);
SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
if (VT == Op.getValueType())
return RetVal;
else
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
}
// If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
// 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
// for fneg/fabs.
if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
// Make -1 and vspltisw -1:
SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
// Make the VSLW intrinsic, computing 0x8000_0000.
SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
OnesV, DAG, dl);
// xor by OnesV to invert it.
Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
}
// Check to see if this is a wide variety of vsplti*, binop self cases.
static const signed char SplatCsts[] = {
-1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
-8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
};
for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
// Indirect through the SplatCsts array so that we favor 'vsplti -1' for
// cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
int i = SplatCsts[idx];
// Figure out what shift amount will be used by altivec if shifted by i in
// this splat size.
unsigned TypeShiftAmt = i & (SplatBitSize-1);
// vsplti + shl self.
if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
static const unsigned IIDs[] = { // Intrinsic to use for each size.
Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
Intrinsic::ppc_altivec_vslw
};
Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
}
// vsplti + srl self.
if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
static const unsigned IIDs[] = { // Intrinsic to use for each size.
Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
Intrinsic::ppc_altivec_vsrw
};
Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
}
// vsplti + sra self.
if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
static const unsigned IIDs[] = { // Intrinsic to use for each size.
Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
Intrinsic::ppc_altivec_vsraw
};
Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
}
// vsplti + rol self.
if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
static const unsigned IIDs[] = { // Intrinsic to use for each size.
Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
Intrinsic::ppc_altivec_vrlw
};
Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
}
// t = vsplti c, result = vsldoi t, t, 1
if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
}
// t = vsplti c, result = vsldoi t, t, 2
if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
}
// t = vsplti c, result = vsldoi t, t, 3
if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
}
}
return SDValue();
}
/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
/// the specified operations to build the shuffle.
static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
SDValue RHS, SelectionDAG &DAG,
SDLoc dl) {
unsigned OpNum = (PFEntry >> 26) & 0x0F;
unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
enum {
OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
OP_VMRGHW,
OP_VMRGLW,
OP_VSPLTISW0,
OP_VSPLTISW1,
OP_VSPLTISW2,
OP_VSPLTISW3,
OP_VSLDOI4,
OP_VSLDOI8,
OP_VSLDOI12
};
if (OpNum == OP_COPY) {
if (LHSID == (1*9+2)*9+3) return LHS;
assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
return RHS;
}
SDValue OpLHS, OpRHS;
OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
int ShufIdxs[16];
switch (OpNum) {
default: llvm_unreachable("Unknown i32 permute!");
case OP_VMRGHW:
ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
break;
case OP_VMRGLW:
ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
break;
case OP_VSPLTISW0:
for (unsigned i = 0; i != 16; ++i)
ShufIdxs[i] = (i&3)+0;
break;
case OP_VSPLTISW1:
for (unsigned i = 0; i != 16; ++i)
ShufIdxs[i] = (i&3)+4;
break;
case OP_VSPLTISW2:
for (unsigned i = 0; i != 16; ++i)
ShufIdxs[i] = (i&3)+8;
break;
case OP_VSPLTISW3:
for (unsigned i = 0; i != 16; ++i)
ShufIdxs[i] = (i&3)+12;
break;
case OP_VSLDOI4:
return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
case OP_VSLDOI8:
return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
case OP_VSLDOI12:
return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
}
EVT VT = OpLHS.getValueType();
OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
return DAG.getNode(ISD::BITCAST, dl, VT, T);
}
/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
/// is a shuffle we can handle in a single instruction, return it. Otherwise,
/// return the code it can be lowered into. Worst case, it can always be
/// lowered into a vperm.
SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
EVT VT = Op.getValueType();
bool isLittleEndian = Subtarget.isLittleEndian();
if (Subtarget.hasQPX()) {
if (VT.getVectorNumElements() != 4)
return SDValue();
if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
if (AlignIdx != -1) {
return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
DAG.getConstant(AlignIdx, MVT::i32));
} else if (SVOp->isSplat()) {
int SplatIdx = SVOp->getSplatIndex();
if (SplatIdx >= 4) {
std::swap(V1, V2);
SplatIdx -= 4;
}
// FIXME: If SplatIdx == 0 and the input came from a load, then there is
// nothing to do.
return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
DAG.getConstant(SplatIdx, MVT::i32));
}
// Lower this into a qvgpci/qvfperm pair.
// Compute the qvgpci literal
unsigned idx = 0;
for (unsigned i = 0; i < 4; ++i) {
int m = SVOp->getMaskElt(i);
unsigned mm = m >= 0 ? (unsigned) m : i;
idx |= mm << (3-i)*3;
}
SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
DAG.getConstant(idx, MVT::i32));
return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
}
// Cases that are handled by instructions that take permute immediates
// (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
// selected by the instruction selector.
if (V2.getOpcode() == ISD::UNDEF) {
if (PPC::isSplatShuffleMask(SVOp, 1) ||
PPC::isSplatShuffleMask(SVOp, 2) ||
PPC::isSplatShuffleMask(SVOp, 4) ||
PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG)) {
return Op;
}
}
// Altivec has a variety of "shuffle immediates" that take two vector inputs
// and produce a fixed permutation. If any of these match, do not lower to
// VPERM.
unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG))
return Op;
// Check to see if this is a shuffle of 4-byte values. If so, we can use our
// perfect shuffle table to emit an optimal matching sequence.
ArrayRef<int> PermMask = SVOp->getMask();
unsigned PFIndexes[4];
bool isFourElementShuffle = true;
for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
unsigned EltNo = 8; // Start out undef.
for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
if (PermMask[i*4+j] < 0)
continue; // Undef, ignore it.
unsigned ByteSource = PermMask[i*4+j];
if ((ByteSource & 3) != j) {
isFourElementShuffle = false;
break;
}
if (EltNo == 8) {
EltNo = ByteSource/4;
} else if (EltNo != ByteSource/4) {
isFourElementShuffle = false;
break;
}
}
PFIndexes[i] = EltNo;
}
// If this shuffle can be expressed as a shuffle of 4-byte elements, use the
// perfect shuffle vector to determine if it is cost effective to do this as
// discrete instructions, or whether we should use a vperm.
// For now, we skip this for little endian until such time as we have a
// little-endian perfect shuffle table.
if (isFourElementShuffle && !isLittleEndian) {
// Compute the index in the perfect shuffle table.
unsigned PFTableIndex =
PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
unsigned Cost = (PFEntry >> 30);
// Determining when to avoid vperm is tricky. Many things affect the cost
// of vperm, particularly how many times the perm mask needs to be computed.
// For example, if the perm mask can be hoisted out of a loop or is already
// used (perhaps because there are multiple permutes with the same shuffle
// mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
// the loop requires an extra register.
//
// As a compromise, we only emit discrete instructions if the shuffle can be
// generated in 3 or fewer operations. When we have loop information
// available, if this block is within a loop, we should avoid using vperm
// for 3-operation perms and use a constant pool load instead.
if (Cost < 3)
return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
}
// Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
// vector that will get spilled to the constant pool.
if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
// The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
// that it is in input element units, not in bytes. Convert now.
// For little endian, the order of the input vectors is reversed, and
// the permutation mask is complemented with respect to 31. This is
// necessary to produce proper semantics with the big-endian-biased vperm
// instruction.
EVT EltVT = V1.getValueType().getVectorElementType();
unsigned BytesPerElement = EltVT.getSizeInBits()/8;
SmallVector<SDValue, 16> ResultMask;
for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
for (unsigned j = 0; j != BytesPerElement; ++j)
if (isLittleEndian)
ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement+j),
MVT::i32));
else
ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
MVT::i32));
}
SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
ResultMask);
if (isLittleEndian)
return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
V2, V1, VPermMask);
else
return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
V1, V2, VPermMask);
}
/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
/// altivec comparison. If it is, return true and fill in Opc/isDot with
/// information about the intrinsic.
static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
bool &isDot, const PPCSubtarget &Subtarget) {
unsigned IntrinsicID =
cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
CompareOpc = -1;
isDot = false;
switch (IntrinsicID) {
default: return false;
// Comparison predicates.
case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpequd_p:
if (Subtarget.hasP8Altivec()) {
CompareOpc = 199;
isDot = 1;
}
else
return false;
break;
case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpgtsd_p:
if (Subtarget.hasP8Altivec()) {
CompareOpc = 967;
isDot = 1;
}
else
return false;
break;
case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpgtud_p:
if (Subtarget.hasP8Altivec()) {
CompareOpc = 711;
isDot = 1;
}
else
return false;
break;
// Normal Comparisons.
case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpequd:
if (Subtarget.hasP8Altivec()) {
CompareOpc = 199;
isDot = 0;
}
else
return false;
break;
case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpgtsd:
if (Subtarget.hasP8Altivec()) {
CompareOpc = 967;
isDot = 0;
}
else
return false;
break;
case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpgtud:
if (Subtarget.hasP8Altivec()) {
CompareOpc = 711;
isDot = 0;
}
else
return false;
break;
}
return true;
}
/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
/// lower, do it, otherwise return null.
SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
// If this is a lowered altivec predicate compare, CompareOpc is set to the
// opcode number of the comparison.
SDLoc dl(Op);
int CompareOpc;
bool isDot;
if (!getAltivecCompareInfo(Op, CompareOpc, isDot, Subtarget))
return SDValue(); // Don't custom lower most intrinsics.
// If this is a non-dot comparison, make the VCMP node and we are done.
if (!isDot) {
SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
Op.getOperand(1), Op.getOperand(2),
DAG.getConstant(CompareOpc, MVT::i32));
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
}
// Create the PPCISD altivec 'dot' comparison node.
SDValue Ops[] = {
Op.getOperand(2), // LHS
Op.getOperand(3), // RHS
DAG.getConstant(CompareOpc, MVT::i32)
};
EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
// Now that we have the comparison, emit a copy from the CR to a GPR.
// This is flagged to the above dot comparison.
SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
DAG.getRegister(PPC::CR6, MVT::i32),
CompNode.getValue(1));
// Unpack the result based on how the target uses it.
unsigned BitNo; // Bit # of CR6.
bool InvertBit; // Invert result?
switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
default: // Can't happen, don't crash on invalid number though.
case 0: // Return the value of the EQ bit of CR6.
BitNo = 0; InvertBit = false;
break;
case 1: // Return the inverted value of the EQ bit of CR6.
BitNo = 0; InvertBit = true;
break;
case 2: // Return the value of the LT bit of CR6.
BitNo = 2; InvertBit = false;
break;
case 3: // Return the inverted value of the LT bit of CR6.
BitNo = 2; InvertBit = true;
break;
}
// Shift the bit into the low position.
Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
DAG.getConstant(8-(3-BitNo), MVT::i32));
// Isolate the bit.
Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
DAG.getConstant(1, MVT::i32));
// If we are supposed to, toggle the bit.
if (InvertBit)
Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
DAG.getConstant(1, MVT::i32));
return Flags;
}
SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
// For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
// instructions), but for smaller types, we need to first extend up to v2i32
// before doing going farther.
if (Op.getValueType() == MVT::v2i64) {
EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
if (ExtVT != MVT::v2i32) {
Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
ExtVT.getVectorElementType(), 4)));
Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
DAG.getValueType(MVT::v2i32));
}
return Op;
}
return SDValue();
}
SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
// Create a stack slot that is 16-byte aligned.
MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
EVT PtrVT = getPointerTy();
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
// Store the input value into Value#0 of the stack slot.
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
Op.getOperand(0), FIdx, MachinePointerInfo(),
false, false, 0);
// Load it out.
return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
false, false, false, 0);
}
SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
SDNode *N = Op.getNode();
assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
"Unknown extract_vector_elt type");
SDValue Value = N->getOperand(0);
// The first part of this is like the store lowering except that we don't
// need to track the chain.
// The values are now known to be -1 (false) or 1 (true). To convert this
// into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
// This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
// FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
// understand how to form the extending load.
SDValue FPHalfs = DAG.getConstantFP(0.5, MVT::f64);
FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64,
FPHalfs, FPHalfs, FPHalfs, FPHalfs);
Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
// Now convert to an integer and store.
Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, MVT::i32),
Value);
MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FrameIdx);
EVT PtrVT = getPointerTy();
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
SDValue StoreChain = DAG.getEntryNode();
SmallVector<SDValue, 2> Ops;
Ops.push_back(StoreChain);
Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, MVT::i32));
Ops.push_back(Value);
Ops.push_back(FIdx);
SmallVector<EVT, 2> ValueVTs;
ValueVTs.push_back(MVT::Other); // chain
SDVTList VTs = DAG.getVTList(ValueVTs);
StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
dl, VTs, Ops, MVT::v4i32, PtrInfo);
// Extract the value requested.
unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
SDValue Idx = DAG.getConstant(Offset, FIdx.getValueType());
Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
SDValue IntVal = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
PtrInfo.getWithOffset(Offset),
false, false, false, 0);
if (!Subtarget.useCRBits())
return IntVal;
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
}
/// Lowering for QPX v4i1 loads
SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
SDValue LoadChain = LN->getChain();
SDValue BasePtr = LN->getBasePtr();
if (Op.getValueType() == MVT::v4f64 ||
Op.getValueType() == MVT::v4f32) {
EVT MemVT = LN->getMemoryVT();
unsigned Alignment = LN->getAlignment();
// If this load is properly aligned, then it is legal.
if (Alignment >= MemVT.getStoreSize())
return Op;
EVT ScalarVT = Op.getValueType().getScalarType(),
ScalarMemVT = MemVT.getScalarType();
unsigned Stride = ScalarMemVT.getStoreSize();
SmallVector<SDValue, 8> Vals, LoadChains;
for (unsigned Idx = 0; Idx < 4; ++Idx) {
SDValue Load;
if (ScalarVT != ScalarMemVT)
Load =
DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
BasePtr,
LN->getPointerInfo().getWithOffset(Idx*Stride),
ScalarMemVT, LN->isVolatile(), LN->isNonTemporal(),
LN->isInvariant(), MinAlign(Alignment, Idx*Stride),
LN->getAAInfo());
else
Load =
DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
LN->getPointerInfo().getWithOffset(Idx*Stride),
LN->isVolatile(), LN->isNonTemporal(),
LN->isInvariant(), MinAlign(Alignment, Idx*Stride),
LN->getAAInfo());
if (Idx == 0 && LN->isIndexed()) {
assert(LN->getAddressingMode() == ISD::PRE_INC &&
"Unknown addressing mode on vector load");
Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
LN->getAddressingMode());
}
Vals.push_back(Load);
LoadChains.push_back(Load.getValue(1));
BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
DAG.getConstant(Stride, BasePtr.getValueType()));
}
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
Op.getValueType(), Vals);
if (LN->isIndexed()) {
SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
return DAG.getMergeValues(RetOps, dl);
}
SDValue RetOps[] = { Value, TF };
return DAG.getMergeValues(RetOps, dl);
}
assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
// To lower v4i1 from a byte array, we load the byte elements of the
// vector and then reuse the BUILD_VECTOR logic.
SmallVector<SDValue, 4> VectElmts, VectElmtChains;
for (unsigned i = 0; i < 4; ++i) {
SDValue Idx = DAG.getConstant(i, BasePtr.getValueType());
Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
VectElmts.push_back(DAG.getExtLoad(ISD::EXTLOAD,
dl, MVT::i32, LoadChain, Idx,
LN->getPointerInfo().getWithOffset(i),
MVT::i8 /* memory type */,
LN->isVolatile(), LN->isNonTemporal(),
LN->isInvariant(),
1 /* alignment */, LN->getAAInfo()));
VectElmtChains.push_back(VectElmts[i].getValue(1));
}
LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i1, VectElmts);
SDValue RVals[] = { Value, LoadChain };
return DAG.getMergeValues(RVals, dl);
}
/// Lowering for QPX v4i1 stores
SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
SDValue StoreChain = SN->getChain();
SDValue BasePtr = SN->getBasePtr();
SDValue Value = SN->getValue();
if (Value.getValueType() == MVT::v4f64 ||
Value.getValueType() == MVT::v4f32) {
EVT MemVT = SN->getMemoryVT();
unsigned Alignment = SN->getAlignment();
// If this store is properly aligned, then it is legal.
if (Alignment >= MemVT.getStoreSize())
return Op;
EVT ScalarVT = Value.getValueType().getScalarType(),
ScalarMemVT = MemVT.getScalarType();
unsigned Stride = ScalarMemVT.getStoreSize();
SmallVector<SDValue, 8> Stores;
for (unsigned Idx = 0; Idx < 4; ++Idx) {
SDValue Ex =
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
DAG.getConstant(Idx, getVectorIdxTy()));
SDValue Store;
if (ScalarVT != ScalarMemVT)
Store =
DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
SN->getPointerInfo().getWithOffset(Idx*Stride),
ScalarMemVT, SN->isVolatile(), SN->isNonTemporal(),
MinAlign(Alignment, Idx*Stride), SN->getAAInfo());
else
Store =
DAG.getStore(StoreChain, dl, Ex, BasePtr,
SN->getPointerInfo().getWithOffset(Idx*Stride),
SN->isVolatile(), SN->isNonTemporal(),
MinAlign(Alignment, Idx*Stride), SN->getAAInfo());
if (Idx == 0 && SN->isIndexed()) {
assert(SN->getAddressingMode() == ISD::PRE_INC &&
"Unknown addressing mode on vector store");
Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
SN->getAddressingMode());
}
BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
DAG.getConstant(Stride, BasePtr.getValueType()));
Stores.push_back(Store);
}
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
if (SN->isIndexed()) {
SDValue RetOps[] = { TF, Stores[0].getValue(1) };
return DAG.getMergeValues(RetOps, dl);
}
return TF;
}
assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
// The values are now known to be -1 (false) or 1 (true). To convert this
// into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
// This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
// FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
// understand how to form the extending load.
SDValue FPHalfs = DAG.getConstantFP(0.5, MVT::f64);
FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64,
FPHalfs, FPHalfs, FPHalfs, FPHalfs);
Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
// Now convert to an integer and store.
Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, MVT::i32),
Value);
MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FrameIdx);
EVT PtrVT = getPointerTy();
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
SmallVector<SDValue, 2> Ops;
Ops.push_back(StoreChain);
Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, MVT::i32));
Ops.push_back(Value);
Ops.push_back(FIdx);
SmallVector<EVT, 2> ValueVTs;
ValueVTs.push_back(MVT::Other); // chain
SDVTList VTs = DAG.getVTList(ValueVTs);
StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
dl, VTs, Ops, MVT::v4i32, PtrInfo);
// Move data into the byte array.
SmallVector<SDValue, 4> Loads, LoadChains;
for (unsigned i = 0; i < 4; ++i) {
unsigned Offset = 4*i;
SDValue Idx = DAG.getConstant(Offset, FIdx.getValueType());
Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
Loads.push_back(DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
PtrInfo.getWithOffset(Offset),
false, false, false, 0));
LoadChains.push_back(Loads[i].getValue(1));
}
StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
SmallVector<SDValue, 4> Stores;
for (unsigned i = 0; i < 4; ++i) {
SDValue Idx = DAG.getConstant(i, BasePtr.getValueType());
Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
Stores.push_back(DAG.getTruncStore(StoreChain, dl, Loads[i], Idx,
SN->getPointerInfo().getWithOffset(i),
MVT::i8 /* memory type */,
SN->isNonTemporal(), SN->isVolatile(),
1 /* alignment */, SN->getAAInfo()));
}
StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
return StoreChain;
}
SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
if (Op.getValueType() == MVT::v4i32) {
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl);
SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
SDValue RHSSwap = // = vrlw RHS, 16
BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
// Shrinkify inputs to v8i16.
LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
// Low parts multiplied together, generating 32-bit results (we ignore the
// top parts).
SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
LHS, RHS, DAG, dl, MVT::v4i32);
SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
// Shift the high parts up 16 bits.
HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
Neg16, DAG, dl);
return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
} else if (Op.getValueType() == MVT::v8i16) {
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
LHS, RHS, Zero, DAG, dl);
} else if (Op.getValueType() == MVT::v16i8) {
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
bool isLittleEndian = Subtarget.isLittleEndian();
// Multiply the even 8-bit parts, producing 16-bit sums.
SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
LHS, RHS, DAG, dl, MVT::v8i16);
EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
// Multiply the odd 8-bit parts, producing 16-bit sums.
SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
LHS, RHS, DAG, dl, MVT::v8i16);
OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
// Merge the results together. Because vmuleub and vmuloub are
// instructions with a big-endian bias, we must reverse the
// element numbering and reverse the meaning of "odd" and "even"
// when generating little endian code.
int Ops[16];
for (unsigned i = 0; i != 8; ++i) {
if (isLittleEndian) {
Ops[i*2 ] = 2*i;
Ops[i*2+1] = 2*i+16;
} else {
Ops[i*2 ] = 2*i+1;
Ops[i*2+1] = 2*i+1+16;
}
}
if (isLittleEndian)
return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
else
return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
} else {
llvm_unreachable("Unknown mul to lower!");
}
}
/// LowerOperation - Provide custom lowering hooks for some operations.
///
SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default: llvm_unreachable("Wasn't expecting to be able to lower this!");
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
case ISD::SETCC: return LowerSETCC(Op, DAG);
case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
case ISD::VASTART:
return LowerVASTART(Op, DAG, Subtarget);
case ISD::VAARG:
return LowerVAARG(Op, DAG, Subtarget);
case ISD::VACOPY:
return LowerVACOPY(Op, DAG, Subtarget);
case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, Subtarget);
case ISD::DYNAMIC_STACKALLOC:
return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget);
case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG);
case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG);
case ISD::LOAD: return LowerLOAD(Op, DAG);
case ISD::STORE: return LowerSTORE(Op, DAG);
case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
case ISD::FP_TO_UINT:
case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG,
SDLoc(Op));
case ISD::UINT_TO_FP:
case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
// Lower 64-bit shifts.
case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
// Vector-related lowering.
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
case ISD::MUL: return LowerMUL(Op, DAG);
// For counter-based loop handling.
case ISD::INTRINSIC_W_CHAIN: return SDValue();
// Frame & Return address.
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
}
}
void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue>&Results,
SelectionDAG &DAG) const {
SDLoc dl(N);
switch (N->getOpcode()) {
default:
llvm_unreachable("Do not know how to custom type legalize this operation!");
case ISD::READCYCLECOUNTER: {
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
Results.push_back(RTB);
Results.push_back(RTB.getValue(1));
Results.push_back(RTB.getValue(2));
break;
}
case ISD::INTRINSIC_W_CHAIN: {
if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
Intrinsic::ppc_is_decremented_ctr_nonzero)
break;
assert(N->getValueType(0) == MVT::i1 &&
"Unexpected result type for CTR decrement intrinsic");
EVT SVT = getSetCCResultType(*DAG.getContext(), N->getValueType(0));
SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
N->getOperand(1));
Results.push_back(NewInt);
Results.push_back(NewInt.getValue(1));
break;
}
case ISD::VAARG: {
if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
return;
EVT VT = N->getValueType(0);
if (VT == MVT::i64) {
SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget);
Results.push_back(NewNode);
Results.push_back(NewNode.getValue(1));
}
return;
}
case ISD::FP_ROUND_INREG: {
assert(N->getValueType(0) == MVT::ppcf128);
assert(N->getOperand(0).getValueType() == MVT::ppcf128);
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
MVT::f64, N->getOperand(0),
DAG.getIntPtrConstant(0));
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
MVT::f64, N->getOperand(0),
DAG.getIntPtrConstant(1));
// Add the two halves of the long double in round-to-zero mode.
SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
// We know the low half is about to be thrown away, so just use something
// convenient.
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
FPreg, FPreg));
return;
}
case ISD::FP_TO_SINT:
// LowerFP_TO_INT() can only handle f32 and f64.
if (N->getOperand(0).getValueType() == MVT::ppcf128)
return;
Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
return;
}
}
//===----------------------------------------------------------------------===//
// Other Lowering Code
//===----------------------------------------------------------------------===//
static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Function *Func = Intrinsic::getDeclaration(M, Id);
return Builder.CreateCall(Func);
}
// The mappings for emitLeading/TrailingFence is taken from
// http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
AtomicOrdering Ord, bool IsStore,
bool IsLoad) const {
if (Ord == SequentiallyConsistent)
return callIntrinsic(Builder, Intrinsic::ppc_sync);
else if (isAtLeastRelease(Ord))
return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
else
return nullptr;
}
Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
AtomicOrdering Ord, bool IsStore,
bool IsLoad) const {
if (IsLoad && isAtLeastAcquire(Ord))
return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
// FIXME: this is too conservative, a dependent branch + isync is enough.
// See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
// http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
// and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
else
return nullptr;
}
MachineBasicBlock *
PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
unsigned AtomicSize,
unsigned BinOpcode) const {
// This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
auto LoadMnemonic = PPC::LDARX;
auto StoreMnemonic = PPC::STDCX;
switch (AtomicSize) {
default:
llvm_unreachable("Unexpected size of atomic entity");
case 1:
LoadMnemonic = PPC::LBARX;
StoreMnemonic = PPC::STBCX;
assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
break;
case 2:
LoadMnemonic = PPC::LHARX;
StoreMnemonic = PPC::STHCX;
assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
break;
case 4:
LoadMnemonic = PPC::LWARX;
StoreMnemonic = PPC::STWCX;
break;
case 8:
LoadMnemonic = PPC::LDARX;
StoreMnemonic = PPC::STDCX;
break;
}
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction *F = BB->getParent();
MachineFunction::iterator It = BB;
++It;
unsigned dest = MI->getOperand(0).getReg();
unsigned ptrA = MI->getOperand(1).getReg();
unsigned ptrB = MI->getOperand(2).getReg();
unsigned incr = MI->getOperand(3).getReg();
DebugLoc dl = MI->getDebugLoc();
MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, loopMBB);
F->insert(It, exitMBB);
exitMBB->splice(exitMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
MachineRegisterInfo &RegInfo = F->getRegInfo();
unsigned TmpReg = (!BinOpcode) ? incr :
RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
: &PPC::GPRCRegClass);
// thisMBB:
// ...
// fallthrough --> loopMBB
BB->addSuccessor(loopMBB);
// loopMBB:
// l[wd]arx dest, ptr
// add r0, dest, incr
// st[wd]cx. r0, ptr
// bne- loopMBB
// fallthrough --> exitMBB
BB = loopMBB;
BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
.addReg(ptrA).addReg(ptrB);
if (BinOpcode)
BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
BuildMI(BB, dl, TII->get(StoreMnemonic))
.addReg(TmpReg).addReg(ptrA).addReg(ptrB);
BuildMI(BB, dl, TII->get(PPC::BCC))
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
BB->addSuccessor(loopMBB);
BB->addSuccessor(exitMBB);
// exitMBB:
// ...
BB = exitMBB;
return BB;
}
MachineBasicBlock *
PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
MachineBasicBlock *BB,
bool is8bit, // operation
unsigned BinOpcode) const {
// If we support part-word atomic mnemonics, just use them
if (Subtarget.hasPartwordAtomics())
return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode);
// This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
// In 64 bit mode we have to use 64 bits for addresses, even though the
// lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address
// registers without caring whether they're 32 or 64, but here we're
// doing actual arithmetic on the addresses.
bool is64bit = Subtarget.isPPC64();
unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction *F = BB->getParent();
MachineFunction::iterator It = BB;
++It;
unsigned dest = MI->getOperand(0).getReg();
unsigned ptrA = MI->getOperand(1).getReg();
unsigned ptrB = MI->getOperand(2).getReg();
unsigned incr = MI->getOperand(3).getReg();
DebugLoc dl = MI->getDebugLoc();
MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, loopMBB);
F->insert(It, exitMBB);
exitMBB->splice(exitMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
MachineRegisterInfo &RegInfo = F->getRegInfo();
const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
: &PPC::GPRCRegClass;
unsigned PtrReg = RegInfo.createVirtualRegister(RC);
unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
unsigned MaskReg = RegInfo.createVirtualRegister(RC);
unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
unsigned Ptr1Reg;
unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
// thisMBB:
// ...
// fallthrough --> loopMBB
BB->addSuccessor(loopMBB);
// The 4-byte load must be aligned, while a char or short may be
// anywhere in the word. Hence all this nasty bookkeeping code.
// add ptr1, ptrA, ptrB [copy if ptrA==0]
// rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
// xori shift, shift1, 24 [16]
// rlwinm ptr, ptr1, 0, 0, 29
// slw incr2, incr, shift
// li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
// slw mask, mask2, shift
// loopMBB:
// lwarx tmpDest, ptr
// add tmp, tmpDest, incr2
// andc tmp2, tmpDest, mask
// and tmp3, tmp, mask
// or tmp4, tmp3, tmp2
// stwcx. tmp4, ptr
// bne- loopMBB
// fallthrough --> exitMBB
// srw dest, tmpDest, shift
if (ptrA != ZeroReg) {
Ptr1Reg = RegInfo.createVirtualRegister(RC);
BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
.addReg(ptrA).addReg(ptrB);
} else {
Ptr1Reg = ptrB;
}
BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
.addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
.addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
if (is64bit)
BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
.addReg(Ptr1Reg).addImm(0).addImm(61);
else
BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
.addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
.addReg(incr).addReg(ShiftReg);
if (is8bit)
BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
else {
BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
}
BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
.addReg(Mask2Reg).addReg(ShiftReg);
BB = loopMBB;
BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
.addReg(ZeroReg).addReg(PtrReg);
if (BinOpcode)
BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
.addReg(Incr2Reg).addReg(TmpDestReg);
BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
.addReg(TmpDestReg).addReg(MaskReg);
BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
.addReg(TmpReg).addReg(MaskReg);
BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
.addReg(Tmp3Reg).addReg(Tmp2Reg);
BuildMI(BB, dl, TII->get(PPC::STWCX))
.addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
BuildMI(BB, dl, TII->get(PPC::BCC))
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
BB->addSuccessor(loopMBB);
BB->addSuccessor(exitMBB);
// exitMBB:
// ...
BB = exitMBB;
BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
.addReg(ShiftReg);
return BB;
}
llvm::MachineBasicBlock*
PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
MachineBasicBlock *MBB) const {
DebugLoc DL = MI->getDebugLoc();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
MachineFunction *MF = MBB->getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
const BasicBlock *BB = MBB->getBasicBlock();
MachineFunction::iterator I = MBB;
++I;
// Memory Reference
MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
unsigned DstReg = MI->getOperand(0).getReg();
const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
assert(RC->hasType(MVT::i32) && "Invalid destination!");
unsigned mainDstReg = MRI.createVirtualRegister(RC);
unsigned restoreDstReg = MRI.createVirtualRegister(RC);
MVT PVT = getPointerTy();
assert((PVT == MVT::i64 || PVT == MVT::i32) &&
"Invalid Pointer Size!");
// For v = setjmp(buf), we generate
//
// thisMBB:
// SjLjSetup mainMBB
// bl mainMBB
// v_restore = 1
// b sinkMBB
//
// mainMBB:
// buf[LabelOffset] = LR
// v_main = 0
//
// sinkMBB:
// v = phi(main, restore)
//
MachineBasicBlock *thisMBB = MBB;
MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
MF->insert(I, mainMBB);
MF->insert(I, sinkMBB);
MachineInstrBuilder MIB;
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), MBB,
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
// Note that the structure of the jmp_buf used here is not compatible
// with that used by libc, and is not designed to be. Specifically, it
// stores only those 'reserved' registers that LLVM does not otherwise
// understand how to spill. Also, by convention, by the time this
// intrinsic is called, Clang has already stored the frame address in the
// first slot of the buffer and stack address in the third. Following the
// X86 target code, we'll store the jump address in the second slot. We also
// need to save the TOC pointer (R2) to handle jumps between shared
// libraries, and that will be stored in the fourth slot. The thread
// identifier (R13) is not affected.
// thisMBB:
const int64_t LabelOffset = 1 * PVT.getStoreSize();
const int64_t TOCOffset = 3 * PVT.getStoreSize();
const int64_t BPOffset = 4 * PVT.getStoreSize();
// Prepare IP either in reg.
const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
unsigned BufReg = MI->getOperand(1).getReg();
if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
setUsesTOCBasePtr(*MBB->getParent());
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
.addReg(PPC::X2)
.addImm(TOCOffset)
.addReg(BufReg);
MIB.setMemRefs(MMOBegin, MMOEnd);
}
// Naked functions never have a base pointer, and so we use r1. For all
// other functions, this decision must be delayed until during PEI.
unsigned BaseReg;
if (MF->getFunction()->hasFnAttribute(Attribute::Naked))
BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
else
BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
MIB = BuildMI(*thisMBB, MI, DL,
TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
.addReg(BaseReg)
.addImm(BPOffset)
.addReg(BufReg);
MIB.setMemRefs(MMOBegin, MMOEnd);
// Setup
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
MIB.addRegMask(TRI->getNoPreservedMask());
BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
.addMBB(mainMBB);
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
thisMBB->addSuccessor(mainMBB, /* weight */ 0);
thisMBB->addSuccessor(sinkMBB, /* weight */ 1);
// mainMBB:
// mainDstReg = 0
MIB =
BuildMI(mainMBB, DL,
TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
// Store IP
if (Subtarget.isPPC64()) {
MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
.addReg(LabelReg)
.addImm(LabelOffset)
.addReg(BufReg);
} else {
MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
.addReg(LabelReg)
.addImm(LabelOffset)
.addReg(BufReg);
}
MIB.setMemRefs(MMOBegin, MMOEnd);
BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
mainMBB->addSuccessor(sinkMBB);
// sinkMBB:
BuildMI(*sinkMBB, sinkMBB->begin(), DL,
TII->get(PPC::PHI), DstReg)
.addReg(mainDstReg).addMBB(mainMBB)
.addReg(restoreDstReg).addMBB(thisMBB);
MI->eraseFromParent();
return sinkMBB;
}
MachineBasicBlock *
PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
MachineBasicBlock *MBB) const {
DebugLoc DL = MI->getDebugLoc();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
MachineFunction *MF = MBB->getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
// Memory Reference
MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
MVT PVT = getPointerTy();
assert((PVT == MVT::i64 || PVT == MVT::i32) &&
"Invalid Pointer Size!");
const TargetRegisterClass *RC =
(PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
unsigned Tmp = MRI.createVirtualRegister(RC);
// Since FP is only updated here but NOT referenced, it's treated as GPR.
unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
unsigned BP =
(PVT == MVT::i64)
? PPC::X30
: (Subtarget.isSVR4ABI() &&
MF->getTarget().getRelocationModel() == Reloc::PIC_
? PPC::R29
: PPC::R30);
MachineInstrBuilder MIB;
const int64_t LabelOffset = 1 * PVT.getStoreSize();
const int64_t SPOffset = 2 * PVT.getStoreSize();
const int64_t TOCOffset = 3 * PVT.getStoreSize();
const int64_t BPOffset = 4 * PVT.getStoreSize();
unsigned BufReg = MI->getOperand(0).getReg();
// Reload FP (the jumped-to function may not have had a
// frame pointer, and if so, then its r31 will be restored
// as necessary).
if (PVT == MVT::i64) {
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
.addImm(0)
.addReg(BufReg);
} else {
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
.addImm(0)
.addReg(BufReg);
}
MIB.setMemRefs(MMOBegin, MMOEnd);
// Reload IP
if (PVT == MVT::i64) {
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
.addImm(LabelOffset)
.addReg(BufReg);
} else {
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
.addImm(LabelOffset)
.addReg(BufReg);
}
MIB.setMemRefs(MMOBegin, MMOEnd);
// Reload SP
if (PVT == MVT::i64) {
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
.addImm(SPOffset)
.addReg(BufReg);
} else {
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
.addImm(SPOffset)
.addReg(BufReg);
}
MIB.setMemRefs(MMOBegin, MMOEnd);
// Reload BP
if (PVT == MVT::i64) {
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
.addImm(BPOffset)
.addReg(BufReg);
} else {
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
.addImm(BPOffset)
.addReg(BufReg);
}
MIB.setMemRefs(MMOBegin, MMOEnd);
// Reload TOC
if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
setUsesTOCBasePtr(*MBB->getParent());
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
.addImm(TOCOffset)
.addReg(BufReg);
MIB.setMemRefs(MMOBegin, MMOEnd);
}
// Jump
BuildMI(*MBB, MI, DL,
TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
MI->eraseFromParent();
return MBB;
}
MachineBasicBlock *
PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB) const {
if (MI->getOpcode() == TargetOpcode::STACKMAP ||
MI->getOpcode() == TargetOpcode::PATCHPOINT) {
if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
MI->getOpcode() == TargetOpcode::PATCHPOINT) {
// Call lowering should have added an r2 operand to indicate a dependence
// on the TOC base pointer value. It can't however, because there is no
// way to mark the dependence as implicit there, and so the stackmap code
// will confuse it with a regular operand. Instead, add the dependence
// here.
setUsesTOCBasePtr(*BB->getParent());
MI->addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
}
return emitPatchPoint(MI, BB);
}
if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
return emitEHSjLjSetJmp(MI, BB);
} else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
return emitEHSjLjLongJmp(MI, BB);
}
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
// To "insert" these instructions we actually have to insert their
// control-flow patterns.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = BB;
++It;
MachineFunction *F = BB->getParent();
if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
MI->getOpcode() == PPC::SELECT_CC_I8 ||
MI->getOpcode() == PPC::SELECT_I4 ||
MI->getOpcode() == PPC::SELECT_I8)) {
SmallVector<MachineOperand, 2> Cond;
if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
MI->getOpcode() == PPC::SELECT_CC_I8)
Cond.push_back(MI->getOperand(4));
else
Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
Cond.push_back(MI->getOperand(1));
DebugLoc dl = MI->getDebugLoc();
TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(),
Cond, MI->getOperand(2).getReg(),
MI->getOperand(3).getReg());
} else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
MI->getOpcode() == PPC::SELECT_CC_I8 ||
MI->getOpcode() == PPC::SELECT_CC_F4 ||
MI->getOpcode() == PPC::SELECT_CC_F8 ||
MI->getOpcode() == PPC::SELECT_CC_QFRC ||
MI->getOpcode() == PPC::SELECT_CC_QSRC ||
MI->getOpcode() == PPC::SELECT_CC_QBRC ||
MI->getOpcode() == PPC::SELECT_CC_VRRC ||
MI->getOpcode() == PPC::SELECT_CC_VSFRC ||
MI->getOpcode() == PPC::SELECT_CC_VSRC ||
MI->getOpcode() == PPC::SELECT_I4 ||
MI->getOpcode() == PPC::SELECT_I8 ||
MI->getOpcode() == PPC::SELECT_F4 ||
MI->getOpcode() == PPC::SELECT_F8 ||
MI->getOpcode() == PPC::SELECT_QFRC ||
MI->getOpcode() == PPC::SELECT_QSRC ||
MI->getOpcode() == PPC::SELECT_QBRC ||
MI->getOpcode() == PPC::SELECT_VRRC ||
MI->getOpcode() == PPC::SELECT_VSFRC ||
MI->getOpcode() == PPC::SELECT_VSRC) {
// The incoming instruction knows the destination vreg to set, the
// condition code register to branch on, the true/false values to
// select between, and a branch opcode to use.
// thisMBB:
// ...
// TrueVal = ...
// cmpTY ccX, r1, r2
// bCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
DebugLoc dl = MI->getDebugLoc();
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
if (MI->getOpcode() == PPC::SELECT_I4 ||
MI->getOpcode() == PPC::SELECT_I8 ||
MI->getOpcode() == PPC::SELECT_F4 ||
MI->getOpcode() == PPC::SELECT_F8 ||
MI->getOpcode() == PPC::SELECT_QFRC ||
MI->getOpcode() == PPC::SELECT_QSRC ||
MI->getOpcode() == PPC::SELECT_QBRC ||
MI->getOpcode() == PPC::SELECT_VRRC ||
MI->getOpcode() == PPC::SELECT_VSFRC ||
MI->getOpcode() == PPC::SELECT_VSRC) {
BuildMI(BB, dl, TII->get(PPC::BC))
.addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
} else {
unsigned SelectPred = MI->getOperand(4).getImm();
BuildMI(BB, dl, TII->get(PPC::BCC))
.addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
}
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = sinkMBB;
BuildMI(*BB, BB->begin(), dl,
TII->get(PPC::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
.addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
} else if (MI->getOpcode() == PPC::ReadTB) {
// To read the 64-bit time-base register on a 32-bit target, we read the
// two halves. Should the counter have wrapped while it was being read, we
// need to try again.
// ...
// readLoop:
// mfspr Rx,TBU # load from TBU
// mfspr Ry,TB # load from TB
// mfspr Rz,TBU # load from TBU
// cmpw crX,Rx,Rz # check if old=new
// bne readLoop # branch if they're not equal
// ...
MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
DebugLoc dl = MI->getDebugLoc();
F->insert(It, readMBB);
F->insert(It, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
BB->addSuccessor(readMBB);
BB = readMBB;
MachineRegisterInfo &RegInfo = F->getRegInfo();
unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
unsigned LoReg = MI->getOperand(0).getReg();
unsigned HiReg = MI->getOperand(1).getReg();
BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
.addReg(HiReg).addReg(ReadAgainReg);
BuildMI(BB, dl, TII->get(PPC::BCC))
.addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
BB->addSuccessor(readMBB);
BB->addSuccessor(sinkMBB);
}
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
BB = EmitAtomicBinary(MI, BB, 4, 0);
else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
BB = EmitAtomicBinary(MI, BB, 8, 0);
else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
(Subtarget.hasPartwordAtomics() &&
MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
(Subtarget.hasPartwordAtomics() &&
MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
auto LoadMnemonic = PPC::LDARX;
auto StoreMnemonic = PPC::STDCX;
switch(MI->getOpcode()) {
default:
llvm_unreachable("Compare and swap of unknown size");
case PPC::ATOMIC_CMP_SWAP_I8:
LoadMnemonic = PPC::LBARX;
StoreMnemonic = PPC::STBCX;
assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
break;
case PPC::ATOMIC_CMP_SWAP_I16:
LoadMnemonic = PPC::LHARX;
StoreMnemonic = PPC::STHCX;
assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
break;
case PPC::ATOMIC_CMP_SWAP_I32:
LoadMnemonic = PPC::LWARX;
StoreMnemonic = PPC::STWCX;
break;
case PPC::ATOMIC_CMP_SWAP_I64:
LoadMnemonic = PPC::LDARX;
StoreMnemonic = PPC::STDCX;
break;
}
unsigned dest = MI->getOperand(0).getReg();
unsigned ptrA = MI->getOperand(1).getReg();
unsigned ptrB = MI->getOperand(2).getReg();
unsigned oldval = MI->getOperand(3).getReg();
unsigned newval = MI->getOperand(4).getReg();
DebugLoc dl = MI->getDebugLoc();
MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, loop1MBB);
F->insert(It, loop2MBB);
F->insert(It, midMBB);
F->insert(It, exitMBB);
exitMBB->splice(exitMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
// thisMBB:
// ...
// fallthrough --> loopMBB
BB->addSuccessor(loop1MBB);
// loop1MBB:
// l[bhwd]arx dest, ptr
// cmp[wd] dest, oldval
// bne- midMBB
// loop2MBB:
// st[bhwd]cx. newval, ptr
// bne- loopMBB
// b exitBB
// midMBB:
// st[bhwd]cx. dest, ptr
// exitBB:
BB = loop1MBB;
BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
.addReg(ptrA).addReg(ptrB);
BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
.addReg(oldval).addReg(dest);
BuildMI(BB, dl, TII->get(PPC::BCC))
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
BB->addSuccessor(loop2MBB);
BB->addSuccessor(midMBB);
BB = loop2MBB;
BuildMI(BB, dl, TII->get(StoreMnemonic))
.addReg(newval).addReg(ptrA).addReg(ptrB);
BuildMI(BB, dl, TII->get(PPC::BCC))
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
BB->addSuccessor(loop1MBB);
BB->addSuccessor(exitMBB);
BB = midMBB;
BuildMI(BB, dl, TII->get(StoreMnemonic))
.addReg(dest).addReg(ptrA).addReg(ptrB);
BB->addSuccessor(exitMBB);
// exitMBB:
// ...
BB = exitMBB;
} else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
// We must use 64-bit registers for addresses when targeting 64-bit,
// since we're actually doing arithmetic on them. Other registers
// can be 32-bit.
bool is64bit = Subtarget.isPPC64();
bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
unsigned dest = MI->getOperand(0).getReg();
unsigned ptrA = MI->getOperand(1).getReg();
unsigned ptrB = MI->getOperand(2).getReg();
unsigned oldval = MI->getOperand(3).getReg();
unsigned newval = MI->getOperand(4).getReg();
DebugLoc dl = MI->getDebugLoc();
MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, loop1MBB);
F->insert(It, loop2MBB);
F->insert(It, midMBB);
F->insert(It, exitMBB);
exitMBB->splice(exitMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
MachineRegisterInfo &RegInfo = F->getRegInfo();
const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
: &PPC::GPRCRegClass;
unsigned PtrReg = RegInfo.createVirtualRegister(RC);
unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
unsigned MaskReg = RegInfo.createVirtualRegister(RC);
unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
unsigned Ptr1Reg;
unsigned TmpReg = RegInfo.createVirtualRegister(RC);
unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
// thisMBB:
// ...
// fallthrough --> loopMBB
BB->addSuccessor(loop1MBB);
// The 4-byte load must be aligned, while a char or short may be
// anywhere in the word. Hence all this nasty bookkeeping code.
// add ptr1, ptrA, ptrB [copy if ptrA==0]
// rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
// xori shift, shift1, 24 [16]
// rlwinm ptr, ptr1, 0, 0, 29
// slw newval2, newval, shift
// slw oldval2, oldval,shift
// li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
// slw mask, mask2, shift
// and newval3, newval2, mask
// and oldval3, oldval2, mask
// loop1MBB:
// lwarx tmpDest, ptr
// and tmp, tmpDest, mask
// cmpw tmp, oldval3
// bne- midMBB
// loop2MBB:
// andc tmp2, tmpDest, mask
// or tmp4, tmp2, newval3
// stwcx. tmp4, ptr
// bne- loop1MBB
// b exitBB
// midMBB:
// stwcx. tmpDest, ptr
// exitBB:
// srw dest, tmpDest, shift
if (ptrA != ZeroReg) {
Ptr1Reg = RegInfo.createVirtualRegister(RC);
BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
.addReg(ptrA).addReg(ptrB);
} else {
Ptr1Reg = ptrB;
}
BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
.addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
.addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
if (is64bit)
BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
.addReg(Ptr1Reg).addImm(0).addImm(61);
else
BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
.addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
.addReg(newval).addReg(ShiftReg);
BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
.addReg(oldval).addReg(ShiftReg);
if (is8bit)
BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
else {
BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
.addReg(Mask3Reg).addImm(65535);
}
BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
.addReg(Mask2Reg).addReg(ShiftReg);
BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
.addReg(NewVal2Reg).addReg(MaskReg);
BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
.addReg(OldVal2Reg).addReg(MaskReg);
BB = loop1MBB;
BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
.addReg(ZeroReg).addReg(PtrReg);
BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
.addReg(TmpDestReg).addReg(MaskReg);
BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
.addReg(TmpReg).addReg(OldVal3Reg);
BuildMI(BB, dl, TII->get(PPC::BCC))
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
BB->addSuccessor(loop2MBB);
BB->addSuccessor(midMBB);
BB = loop2MBB;
BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
.addReg(TmpDestReg).addReg(MaskReg);
BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
.addReg(Tmp2Reg).addReg(NewVal3Reg);
BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
.addReg(ZeroReg).addReg(PtrReg);
BuildMI(BB, dl, TII->get(PPC::BCC))
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
BB->addSuccessor(loop1MBB);
BB->addSuccessor(exitMBB);
BB = midMBB;
BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
.addReg(ZeroReg).addReg(PtrReg);
BB->addSuccessor(exitMBB);
// exitMBB:
// ...
BB = exitMBB;
BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
.addReg(ShiftReg);
} else if (MI->getOpcode() == PPC::FADDrtz) {
// This pseudo performs an FADD with rounding mode temporarily forced
// to round-to-zero. We emit this via custom inserter since the FPSCR
// is not modeled at the SelectionDAG level.
unsigned Dest = MI->getOperand(0).getReg();
unsigned Src1 = MI->getOperand(1).getReg();
unsigned Src2 = MI->getOperand(2).getReg();
DebugLoc dl = MI->getDebugLoc();
MachineRegisterInfo &RegInfo = F->getRegInfo();
unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
// Save FPSCR value.
BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
// Set rounding mode to round-to-zero.
BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
// Perform addition.
BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
// Restore FPSCR value.
BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
} else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
MI->getOpcode() == PPC::ANDIo_1_GT_BIT ||
MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) {
unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ?
PPC::ANDIo8 : PPC::ANDIo;
bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8);
MachineRegisterInfo &RegInfo = F->getRegInfo();
unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
&PPC::GPRCRegClass :
&PPC::G8RCRegClass);
DebugLoc dl = MI->getDebugLoc();
BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
.addReg(MI->getOperand(1).getReg()).addImm(1);
BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
MI->getOperand(0).getReg())
.addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
} else if (MI->getOpcode() == PPC::TCHECK_RET) {
DebugLoc Dl = MI->getDebugLoc();
MachineRegisterInfo &RegInfo = F->getRegInfo();
unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
return BB;
} else {
llvm_unreachable("Unexpected instr type to insert");
}
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
//===----------------------------------------------------------------------===//
// Target Optimization Hooks
//===----------------------------------------------------------------------===//
SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand,
DAGCombinerInfo &DCI,
unsigned &RefinementSteps,
bool &UseOneConstNR) const {
EVT VT = Operand.getValueType();
if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
(VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
(VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
(VT == MVT::v2f64 && Subtarget.hasVSX()) ||
(VT == MVT::v4f32 && Subtarget.hasQPX()) ||
(VT == MVT::v4f64 && Subtarget.hasQPX())) {
// Convergence is quadratic, so we essentially double the number of digits
// correct after every iteration. For both FRE and FRSQRTE, the minimum
// architected relative accuracy is 2^-5. When hasRecipPrec(), this is
// 2^-14. IEEE float has 23 digits and double has 52 digits.
RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
if (VT.getScalarType() == MVT::f64)
++RefinementSteps;
UseOneConstNR = true;
return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
}
return SDValue();
}
SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand,
DAGCombinerInfo &DCI,
unsigned &RefinementSteps) const {
EVT VT = Operand.getValueType();
if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
(VT == MVT::f64 && Subtarget.hasFRE()) ||
(VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
(VT == MVT::v2f64 && Subtarget.hasVSX()) ||
(VT == MVT::v4f32 && Subtarget.hasQPX()) ||
(VT == MVT::v4f64 && Subtarget.hasQPX())) {
// Convergence is quadratic, so we essentially double the number of digits
// correct after every iteration. For both FRE and FRSQRTE, the minimum
// architected relative accuracy is 2^-5. When hasRecipPrec(), this is
// 2^-14. IEEE float has 23 digits and double has 52 digits.
RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
if (VT.getScalarType() == MVT::f64)
++RefinementSteps;
return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
}
return SDValue();
}
bool PPCTargetLowering::combineRepeatedFPDivisors(unsigned NumUsers) const {
// Note: This functionality is used only when unsafe-fp-math is enabled, and
// on cores with reciprocal estimates (which are used when unsafe-fp-math is
// enabled for division), this functionality is redundant with the default
// combiner logic (once the division -> reciprocal/multiply transformation
// has taken place). As a result, this matters more for older cores than for
// newer ones.
// Combine multiple FDIVs with the same divisor into multiple FMULs by the
// reciprocal if there are two or more FDIVs (for embedded cores with only
// one FP pipeline) for three or more FDIVs (for generic OOO cores).
switch (Subtarget.getDarwinDirective()) {
default:
return NumUsers > 2;
case PPC::DIR_440:
case PPC::DIR_A2:
case PPC::DIR_E500mc:
case PPC::DIR_E5500:
return NumUsers > 1;
}
}
static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
unsigned Bytes, int Dist,
SelectionDAG &DAG) {
if (VT.getSizeInBits() / 8 != Bytes)
return false;
SDValue BaseLoc = Base->getBasePtr();
if (Loc.getOpcode() == ISD::FrameIndex) {
if (BaseLoc.getOpcode() != ISD::FrameIndex)
return false;
const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
int FS = MFI->getObjectSize(FI);
int BFS = MFI->getObjectSize(BFI);
if (FS != BFS || FS != (int)Bytes) return false;
return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
}
// Handle X+C
if (DAG.isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
return true;
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
const GlobalValue *GV1 = nullptr;
const GlobalValue *GV2 = nullptr;
int64_t Offset1 = 0;
int64_t Offset2 = 0;
bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
if (isGA1 && isGA2 && GV1 == GV2)
return Offset1 == (Offset2 + Dist*Bytes);
return false;
}
// Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
// not enforce equality of the chain operands.
static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
unsigned Bytes, int Dist,
SelectionDAG &DAG) {
if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
EVT VT = LS->getMemoryVT();
SDValue Loc = LS->getBasePtr();
return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
}
if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
EVT VT;
switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
default: return false;
case Intrinsic::ppc_qpx_qvlfd:
case Intrinsic::ppc_qpx_qvlfda:
VT = MVT::v4f64;
break;
case Intrinsic::ppc_qpx_qvlfs:
case Intrinsic::ppc_qpx_qvlfsa:
VT = MVT::v4f32;
break;
case Intrinsic::ppc_qpx_qvlfcd:
case Intrinsic::ppc_qpx_qvlfcda:
VT = MVT::v2f64;
break;
case Intrinsic::ppc_qpx_qvlfcs:
case Intrinsic::ppc_qpx_qvlfcsa:
VT = MVT::v2f32;
break;
case Intrinsic::ppc_qpx_qvlfiwa:
case Intrinsic::ppc_qpx_qvlfiwz:
case Intrinsic::ppc_altivec_lvx:
case Intrinsic::ppc_altivec_lvxl:
case Intrinsic::ppc_vsx_lxvw4x:
VT = MVT::v4i32;
break;
case Intrinsic::ppc_vsx_lxvd2x:
VT = MVT::v2f64;
break;
case Intrinsic::ppc_altivec_lvebx:
VT = MVT::i8;
break;
case Intrinsic::ppc_altivec_lvehx:
VT = MVT::i16;
break;
case Intrinsic::ppc_altivec_lvewx:
VT = MVT::i32;
break;
}
return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
}
if (N->getOpcode() == ISD::INTRINSIC_VOID) {
EVT VT;
switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
default: return false;
case Intrinsic::ppc_qpx_qvstfd:
case Intrinsic::ppc_qpx_qvstfda:
VT = MVT::v4f64;
break;
case Intrinsic::ppc_qpx_qvstfs:
case Intrinsic::ppc_qpx_qvstfsa:
VT = MVT::v4f32;
break;
case Intrinsic::ppc_qpx_qvstfcd:
case Intrinsic::ppc_qpx_qvstfcda:
VT = MVT::v2f64;
break;
case Intrinsic::ppc_qpx_qvstfcs:
case Intrinsic::ppc_qpx_qvstfcsa:
VT = MVT::v2f32;
break;
case Intrinsic::ppc_qpx_qvstfiw:
case Intrinsic::ppc_qpx_qvstfiwa:
case Intrinsic::ppc_altivec_stvx:
case Intrinsic::ppc_altivec_stvxl:
case Intrinsic::ppc_vsx_stxvw4x:
VT = MVT::v4i32;
break;
case Intrinsic::ppc_vsx_stxvd2x:
VT = MVT::v2f64;
break;
case Intrinsic::ppc_altivec_stvebx:
VT = MVT::i8;
break;
case Intrinsic::ppc_altivec_stvehx:
VT = MVT::i16;
break;
case Intrinsic::ppc_altivec_stvewx:
VT = MVT::i32;
break;
}
return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
}
return false;
}
// Return true is there is a nearyby consecutive load to the one provided
// (regardless of alignment). We search up and down the chain, looking though
// token factors and other loads (but nothing else). As a result, a true result
// indicates that it is safe to create a new consecutive load adjacent to the
// load provided.
static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
SDValue Chain = LD->getChain();
EVT VT = LD->getMemoryVT();
SmallSet<SDNode *, 16> LoadRoots;
SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
SmallSet<SDNode *, 16> Visited;
// First, search up the chain, branching to follow all token-factor operands.
// If we find a consecutive load, then we're done, otherwise, record all
// nodes just above the top-level loads and token factors.
while (!Queue.empty()) {
SDNode *ChainNext = Queue.pop_back_val();
if (!Visited.insert(ChainNext).second)
continue;
if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
return true;
if (!Visited.count(ChainLD->getChain().getNode()))
Queue.push_back(ChainLD->getChain().getNode());
} else if (ChainNext->getOpcode() == ISD::TokenFactor) {
for (const SDUse &O : ChainNext->ops())
if (!Visited.count(O.getNode()))
Queue.push_back(O.getNode());
} else
LoadRoots.insert(ChainNext);
}
// Second, search down the chain, starting from the top-level nodes recorded
// in the first phase. These top-level nodes are the nodes just above all
// loads and token factors. Starting with their uses, recursively look though
// all loads (just the chain uses) and token factors to find a consecutive
// load.
Visited.clear();
Queue.clear();
for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
IE = LoadRoots.end(); I != IE; ++I) {
Queue.push_back(*I);
while (!Queue.empty()) {
SDNode *LoadRoot = Queue.pop_back_val();
if (!Visited.insert(LoadRoot).second)
continue;
if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
return true;
for (SDNode::use_iterator UI = LoadRoot->use_begin(),
UE = LoadRoot->use_end(); UI != UE; ++UI)
if (((isa<MemSDNode>(*UI) &&
cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
Queue.push_back(*UI);
}
}
return false;
}
SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(N);
assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
// If we're tracking CR bits, we need to be careful that we don't have:
// trunc(binary-ops(zext(x), zext(y)))
// or
// trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
// such that we're unnecessarily moving things into GPRs when it would be
// better to keep them in CR bits.
// Note that trunc here can be an actual i1 trunc, or can be the effective
// truncation that comes from a setcc or select_cc.
if (N->getOpcode() == ISD::TRUNCATE &&
N->getValueType(0) != MVT::i1)
return SDValue();
if (N->getOperand(0).getValueType() != MVT::i32 &&
N->getOperand(0).getValueType() != MVT::i64)
return SDValue();
if (N->getOpcode() == ISD::SETCC ||
N->getOpcode() == ISD::SELECT_CC) {
// If we're looking at a comparison, then we need to make sure that the
// high bits (all except for the first) don't matter the result.
ISD::CondCode CC =
cast<CondCodeSDNode>(N->getOperand(
N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
unsigned OpBits = N->getOperand(0).getValueSizeInBits();
if (ISD::isSignedIntSetCC(CC)) {
if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
return SDValue();
} else if (ISD::isUnsignedIntSetCC(CC)) {
if (!DAG.MaskedValueIsZero(N->getOperand(0),
APInt::getHighBitsSet(OpBits, OpBits-1)) ||
!DAG.MaskedValueIsZero(N->getOperand(1),
APInt::getHighBitsSet(OpBits, OpBits-1)))
return SDValue();
} else {
// This is neither a signed nor an unsigned comparison, just make sure
// that the high bits are equal.
APInt Op1Zero, Op1One;
APInt Op2Zero, Op2One;
DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One);
DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One);
// We don't really care about what is known about the first bit (if
// anything), so clear it in all masks prior to comparing them.
Op1Zero.clearBit(0); Op1One.clearBit(0);
Op2Zero.clearBit(0); Op2One.clearBit(0);
if (Op1Zero != Op2Zero || Op1One != Op2One)
return SDValue();
}
}
// We now know that the higher-order bits are irrelevant, we just need to
// make sure that all of the intermediate operations are bit operations, and
// all inputs are extensions.
if (N->getOperand(0).getOpcode() != ISD::AND &&
N->getOperand(0).getOpcode() != ISD::OR &&
N->getOperand(0).getOpcode() != ISD::XOR &&
N->getOperand(0).getOpcode() != ISD::SELECT &&
N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
return SDValue();
if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
N->getOperand(1).getOpcode() != ISD::AND &&
N->getOperand(1).getOpcode() != ISD::OR &&
N->getOperand(1).getOpcode() != ISD::XOR &&
N->getOperand(1).getOpcode() != ISD::SELECT &&
N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
return SDValue();
SmallVector<SDValue, 4> Inputs;
SmallVector<SDValue, 8> BinOps, PromOps;
SmallPtrSet<SDNode *, 16> Visited;
for (unsigned i = 0; i < 2; ++i) {
if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
isa<ConstantSDNode>(N->getOperand(i)))
Inputs.push_back(N->getOperand(i));
else
BinOps.push_back(N->getOperand(i));
if (N->getOpcode() == ISD::TRUNCATE)
break;
}
// Visit all inputs, collect all binary operations (and, or, xor and
// select) that are all fed by extensions.
while (!BinOps.empty()) {
SDValue BinOp = BinOps.back();
BinOps.pop_back();
if (!Visited.insert(BinOp.getNode()).second)
continue;
PromOps.push_back(BinOp);
for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
// The condition of the select is not promoted.
if (BinOp.getOpcode() == ISD::SELECT && i == 0)
continue;
if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
continue;
if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
isa<ConstantSDNode>(BinOp.getOperand(i))) {
Inputs.push_back(BinOp.getOperand(i));
} else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
BinOp.getOperand(i).getOpcode() == ISD::OR ||
BinOp.getOperand(i).getOpcode() == ISD::XOR ||
BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
BinOps.push_back(BinOp.getOperand(i));
} else {
// We have an input that is not an extension or another binary
// operation; we'll abort this transformation.
return SDValue();
}
}
}
// Make sure that this is a self-contained cluster of operations (which
// is not quite the same thing as saying that everything has only one
// use).
for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
if (isa<ConstantSDNode>(Inputs[i]))
continue;
for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
UE = Inputs[i].getNode()->use_end();
UI != UE; ++UI) {
SDNode *User = *UI;
if (User != N && !Visited.count(User))
return SDValue();
// Make sure that we're not going to promote the non-output-value
// operand(s) or SELECT or SELECT_CC.
// FIXME: Although we could sometimes handle this, and it does occur in
// practice that one of the condition inputs to the select is also one of
// the outputs, we currently can't deal with this.
if (User->getOpcode() == ISD::SELECT) {
if (User->getOperand(0) == Inputs[i])
return SDValue();
} else if (User->getOpcode() == ISD::SELECT_CC) {
if (User->getOperand(0) == Inputs[i] ||
User->getOperand(1) == Inputs[i])
return SDValue();
}
}
}
for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
UE = PromOps[i].getNode()->use_end();
UI != UE; ++UI) {
SDNode *User = *UI;
if (User != N && !Visited.count(User))
return SDValue();
// Make sure that we're not going to promote the non-output-value
// operand(s) or SELECT or SELECT_CC.
// FIXME: Although we could sometimes handle this, and it does occur in
// practice that one of the condition inputs to the select is also one of
// the outputs, we currently can't deal with this.
if (User->getOpcode() == ISD::SELECT) {
if (User->getOperand(0) == PromOps[i])
return SDValue();
} else if (User->getOpcode() == ISD::SELECT_CC) {
if (User->getOperand(0) == PromOps[i] ||
User->getOperand(1) == PromOps[i])
return SDValue();
}
}
}
// Replace all inputs with the extension operand.
for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
// Constants may have users outside the cluster of to-be-promoted nodes,
// and so we need to replace those as we do the promotions.
if (isa<ConstantSDNode>(Inputs[i]))
continue;
else
DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
}
// Replace all operations (these are all the same, but have a different
// (i1) return type). DAG.getNode will validate that the types of
// a binary operator match, so go through the list in reverse so that
// we've likely promoted both operands first. Any intermediate truncations or
// extensions disappear.
while (!PromOps.empty()) {
SDValue PromOp = PromOps.back();
PromOps.pop_back();
if (PromOp.getOpcode() == ISD::TRUNCATE ||
PromOp.getOpcode() == ISD::SIGN_EXTEND ||
PromOp.getOpcode() == ISD::ZERO_EXTEND ||
PromOp.getOpcode() == ISD::ANY_EXTEND) {
if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
PromOp.getOperand(0).getValueType() != MVT::i1) {
// The operand is not yet ready (see comment below).
PromOps.insert(PromOps.begin(), PromOp);
continue;
}
SDValue RepValue = PromOp.getOperand(0);
if (isa<ConstantSDNode>(RepValue))
RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
continue;
}
unsigned C;
switch (PromOp.getOpcode()) {
default: C = 0; break;
case ISD::SELECT: C = 1; break;
case ISD::SELECT_CC: C = 2; break;
}
if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
PromOp.getOperand(C).getValueType() != MVT::i1) ||
(!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
// The to-be-promoted operands of this node have not yet been
// promoted (this should be rare because we're going through the
// list backward, but if one of the operands has several users in
// this cluster of to-be-promoted nodes, it is possible).
PromOps.insert(PromOps.begin(), PromOp);
continue;
}
SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
PromOp.getNode()->op_end());
// If there are any constant inputs, make sure they're replaced now.
for (unsigned i = 0; i < 2; ++i)
if (isa<ConstantSDNode>(Ops[C+i]))
Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
DAG.ReplaceAllUsesOfValueWith(PromOp,
DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
}
// Now we're left with the initial truncation itself.
if (N->getOpcode() == ISD::TRUNCATE)
return N->getOperand(0);
// Otherwise, this is a comparison. The operands to be compared have just
// changed type (to i1), but everything else is the same.
return SDValue(N, 0);
}
SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(N);
// If we're tracking CR bits, we need to be careful that we don't have:
// zext(binary-ops(trunc(x), trunc(y)))
// or
// zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
// such that we're unnecessarily moving things into CR bits that can more
// efficiently stay in GPRs. Note that if we're not certain that the high
// bits are set as required by the final extension, we still may need to do
// some masking to get the proper behavior.
// This same functionality is important on PPC64 when dealing with
// 32-to-64-bit extensions; these occur often when 32-bit values are used as
// the return values of functions. Because it is so similar, it is handled
// here as well.
if (N->getValueType(0) != MVT::i32 &&
N->getValueType(0) != MVT::i64)
return SDValue();
if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
(N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
return SDValue();
if (N->getOperand(0).getOpcode() != ISD::AND &&
N->getOperand(0).getOpcode() != ISD::OR &&
N->getOperand(0).getOpcode() != ISD::XOR &&
N->getOperand(0).getOpcode() != ISD::SELECT &&
N->getOperand(0).getOpcode() != ISD::SELECT_CC)
return SDValue();
SmallVector<SDValue, 4> Inputs;
SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
SmallPtrSet<SDNode *, 16> Visited;
// Visit all inputs, collect all binary operations (and, or, xor and
// select) that are all fed by truncations.
while (!BinOps.empty()) {
SDValue BinOp = BinOps.back();
BinOps.pop_back();
if (!Visited.insert(BinOp.getNode()).second)
continue;
PromOps.push_back(BinOp);
for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
// The condition of the select is not promoted.
if (BinOp.getOpcode() == ISD::SELECT && i == 0)
continue;
if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
continue;
if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
isa<ConstantSDNode>(BinOp.getOperand(i))) {
Inputs.push_back(BinOp.getOperand(i));
} else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
BinOp.getOperand(i).getOpcode() == ISD::OR ||
BinOp.getOperand(i).getOpcode() == ISD::XOR ||
BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
BinOps.push_back(BinOp.getOperand(i));
} else {
// We have an input that is not a truncation or another binary
// operation; we'll abort this transformation.
return SDValue();
}
}
}
// The operands of a select that must be truncated when the select is
// promoted because the operand is actually part of the to-be-promoted set.
DenseMap<SDNode *, EVT> SelectTruncOp[2];
// Make sure that this is a self-contained cluster of operations (which
// is not quite the same thing as saying that everything has only one
// use).
for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
if (isa<ConstantSDNode>(Inputs[i]))
continue;
for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
UE = Inputs[i].getNode()->use_end();
UI != UE; ++UI) {
SDNode *User = *UI;
if (User != N && !Visited.count(User))
return SDValue();
// If we're going to promote the non-output-value operand(s) or SELECT or
// SELECT_CC, record them for truncation.
if (User->getOpcode() == ISD::SELECT) {
if (User->getOperand(0) == Inputs[i])
SelectTruncOp[0].insert(std::make_pair(User,
User->getOperand(0).getValueType()));
} else if (User->getOpcode() == ISD::SELECT_CC) {
if (User->getOperand(0) == Inputs[i])
SelectTruncOp[0].insert(std::make_pair(User,
User->getOperand(0).getValueType()));
if (User->getOperand(1) == Inputs[i])
SelectTruncOp[1].insert(std::make_pair(User,
User->getOperand(1).getValueType()));
}
}
}
for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
UE = PromOps[i].getNode()->use_end();
UI != UE; ++UI) {
SDNode *User = *UI;
if (User != N && !Visited.count(User))
return SDValue();
// If we're going to promote the non-output-value operand(s) or SELECT or
// SELECT_CC, record them for truncation.
if (User->getOpcode() == ISD::SELECT) {
if (User->getOperand(0) == PromOps[i])
SelectTruncOp[0].insert(std::make_pair(User,
User->getOperand(0).getValueType()));
} else if (User->getOpcode() == ISD::SELECT_CC) {
if (User->getOperand(0) == PromOps[i])
SelectTruncOp[0].insert(std::make_pair(User,
User->getOperand(0).getValueType()));
if (User->getOperand(1) == PromOps[i])
SelectTruncOp[1].insert(std::make_pair(User,
User->getOperand(1).getValueType()));
}
}
}
unsigned PromBits = N->getOperand(0).getValueSizeInBits();
bool ReallyNeedsExt = false;
if (N->getOpcode() != ISD::ANY_EXTEND) {
// If all of the inputs are not already sign/zero extended, then
// we'll still need to do that at the end.
for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
if (isa<ConstantSDNode>(Inputs[i]))
continue;
unsigned OpBits =
Inputs[i].getOperand(0).getValueSizeInBits();
assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
if ((N->getOpcode() == ISD::ZERO_EXTEND &&
!DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
APInt::getHighBitsSet(OpBits,
OpBits-PromBits))) ||
(N->getOpcode() == ISD::SIGN_EXTEND &&
DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
(OpBits-(PromBits-1)))) {
ReallyNeedsExt = true;
break;
}
}
}
// Replace all inputs, either with the truncation operand, or a
// truncation or extension to the final output type.
for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
// Constant inputs need to be replaced with the to-be-promoted nodes that
// use them because they might have users outside of the cluster of
// promoted nodes.
if (isa<ConstantSDNode>(Inputs[i]))
continue;
SDValue InSrc = Inputs[i].getOperand(0);
if (Inputs[i].getValueType() == N->getValueType(0))
DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
else if (N->getOpcode() == ISD::SIGN_EXTEND)
DAG.ReplaceAllUsesOfValueWith(Inputs[i],
DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
else if (N->getOpcode() == ISD::ZERO_EXTEND)
DAG.ReplaceAllUsesOfValueWith(Inputs[i],
DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
else
DAG.ReplaceAllUsesOfValueWith(Inputs[i],
DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
}
// Replace all operations (these are all the same, but have a different
// (promoted) return type). DAG.getNode will validate that the types of
// a binary operator match, so go through the list in reverse so that
// we've likely promoted both operands first.
while (!PromOps.empty()) {
SDValue PromOp = PromOps.back();
PromOps.pop_back();
unsigned C;
switch (PromOp.getOpcode()) {
default: C = 0; break;
case ISD::SELECT: C = 1; break;
case ISD::SELECT_CC: C = 2; break;
}
if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
(!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
// The to-be-promoted operands of this node have not yet been
// promoted (this should be rare because we're going through the
// list backward, but if one of the operands has several users in
// this cluster of to-be-promoted nodes, it is possible).
PromOps.insert(PromOps.begin(), PromOp);
continue;
}
// For SELECT and SELECT_CC nodes, we do a similar check for any
// to-be-promoted comparison inputs.
if (PromOp.getOpcode() == ISD::SELECT ||
PromOp.getOpcode() == ISD::SELECT_CC) {
if ((SelectTruncOp[0].count(PromOp.getNode()) &&
PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
(SelectTruncOp[1].count(PromOp.getNode()) &&
PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
PromOps.insert(PromOps.begin(), PromOp);
continue;
}
}
SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
PromOp.getNode()->op_end());
// If this node has constant inputs, then they'll need to be promoted here.
for (unsigned i = 0; i < 2; ++i) {
if (!isa<ConstantSDNode>(Ops[C+i]))
continue;
if (Ops[C+i].getValueType() == N->getValueType(0))
continue;
if (N->getOpcode() == ISD::SIGN_EXTEND)
Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
else if (N->getOpcode() == ISD::ZERO_EXTEND)
Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
else
Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
}
// If we've promoted the comparison inputs of a SELECT or SELECT_CC,
// truncate them again to the original value type.
if (PromOp.getOpcode() == ISD::SELECT ||
PromOp.getOpcode() == ISD::SELECT_CC) {
auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
if (SI0 != SelectTruncOp[0].end())
Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
if (SI1 != SelectTruncOp[1].end())
Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
}
DAG.ReplaceAllUsesOfValueWith(PromOp,
DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
}
// Now we're left with the initial extension itself.
if (!ReallyNeedsExt)
return N->getOperand(0);
// To zero extend, just mask off everything except for the first bit (in the
// i1 case).
if (N->getOpcode() == ISD::ZERO_EXTEND)
return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
DAG.getConstant(APInt::getLowBitsSet(
N->getValueSizeInBits(0), PromBits),
N->getValueType(0)));
assert(N->getOpcode() == ISD::SIGN_EXTEND &&
"Invalid extension type");
EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0));
SDValue ShiftCst =
DAG.getConstant(N->getValueSizeInBits(0)-PromBits, ShiftAmountTy);
return DAG.getNode(ISD::SRA, dl, N->getValueType(0),
DAG.getNode(ISD::SHL, dl, N->getValueType(0),
N->getOperand(0), ShiftCst), ShiftCst);
}
SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
DAGCombinerInfo &DCI) const {
assert((N->getOpcode() == ISD::SINT_TO_FP ||
N->getOpcode() == ISD::UINT_TO_FP) &&
"Need an int -> FP conversion node here");
if (!Subtarget.has64BitSupport())
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(N);
SDValue Op(N, 0);
// Don't handle ppc_fp128 here or i1 conversions.
if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
return SDValue();
if (Op.getOperand(0).getValueType() == MVT::i1)
return SDValue();
// For i32 intermediate values, unfortunately, the conversion functions
// leave the upper 32 bits of the value are undefined. Within the set of
// scalar instructions, we have no method for zero- or sign-extending the
// value. Thus, we cannot handle i32 intermediate values here.
if (Op.getOperand(0).getValueType() == MVT::i32)
return SDValue();
assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
"UINT_TO_FP is supported only with FPCVT");
// If we have FCFIDS, then use it when converting to single-precision.
// Otherwise, convert to double-precision and then round.
unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
: PPCISD::FCFIDS)
: (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
: PPCISD::FCFID);
MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
? MVT::f32
: MVT::f64;
// If we're converting from a float, to an int, and back to a float again,
// then we don't need the store/load pair at all.
if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
Subtarget.hasFPCVT()) ||
(Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
SDValue Src = Op.getOperand(0).getOperand(0);
if (Src.getValueType() == MVT::f32) {
Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
DCI.AddToWorklist(Src.getNode());
}
unsigned FCTOp =
Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
PPCISD::FCTIDUZ;
SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
FP = DAG.getNode(ISD::FP_ROUND, dl,
MVT::f32, FP, DAG.getIntPtrConstant(0));
DCI.AddToWorklist(FP.getNode());
}
return FP;
}
return SDValue();
}
// expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
// builtins) into loads with swaps.
SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(N);
SDValue Chain;
SDValue Base;
MachineMemOperand *MMO;
switch (N->getOpcode()) {
default:
llvm_unreachable("Unexpected opcode for little endian VSX load");
case ISD::LOAD: {
LoadSDNode *LD = cast<LoadSDNode>(N);
Chain = LD->getChain();
Base = LD->getBasePtr();
MMO = LD->getMemOperand();
// If the MMO suggests this isn't a load of a full vector, leave
// things alone. For a built-in, we have to make the change for
// correctness, so if there is a size problem that will be a bug.
if (MMO->getSize() < 16)
return SDValue();
break;
}
case ISD::INTRINSIC_W_CHAIN: {
MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
Chain = Intrin->getChain();
Base = Intrin->getBasePtr();
MMO = Intrin->getMemOperand();
break;
}
}
MVT VecTy = N->getValueType(0).getSimpleVT();
SDValue LoadOps[] = { Chain, Base };
SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
DAG.getVTList(VecTy, MVT::Other),
LoadOps, VecTy, MMO);
DCI.AddToWorklist(Load.getNode());
Chain = Load.getValue(1);
SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
DAG.getVTList(VecTy, MVT::Other), Chain, Load);
DCI.AddToWorklist(Swap.getNode());
return Swap;
}
// expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
// builtins) into stores with swaps.
SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(N);
SDValue Chain;
SDValue Base;
unsigned SrcOpnd;
MachineMemOperand *MMO;
switch (N->getOpcode()) {
default:
llvm_unreachable("Unexpected opcode for little endian VSX store");
case ISD::STORE: {
StoreSDNode *ST = cast<StoreSDNode>(N);
Chain = ST->getChain();
Base = ST->getBasePtr();
MMO = ST->getMemOperand();
SrcOpnd = 1;
// If the MMO suggests this isn't a store of a full vector, leave
// things alone. For a built-in, we have to make the change for
// correctness, so if there is a size problem that will be a bug.
if (MMO->getSize() < 16)
return SDValue();
break;
}
case ISD::INTRINSIC_VOID: {
MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
Chain = Intrin->getChain();
// Intrin->getBasePtr() oddly does not get what we want.
Base = Intrin->getOperand(3);
MMO = Intrin->getMemOperand();
SrcOpnd = 2;
break;
}
}
SDValue Src = N->getOperand(SrcOpnd);
MVT VecTy = Src.getValueType().getSimpleVT();
SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
DAG.getVTList(VecTy, MVT::Other), Chain, Src);
DCI.AddToWorklist(Swap.getNode());
Chain = Swap.getValue(1);
SDValue StoreOps[] = { Chain, Swap, Base };
SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
DAG.getVTList(MVT::Other),
StoreOps, VecTy, MMO);
DCI.AddToWorklist(Store.getNode());
return Store;
}
SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(N);
switch (N->getOpcode()) {
default: break;
case PPCISD::SHL:
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
if (C->isNullValue()) // 0 << V -> 0.
return N->getOperand(0);
}
break;
case PPCISD::SRL:
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
if (C->isNullValue()) // 0 >>u V -> 0.
return N->getOperand(0);
}
break;
case PPCISD::SRA:
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
if (C->isNullValue() || // 0 >>s V -> 0.
C->isAllOnesValue()) // -1 >>s V -> -1.
return N->getOperand(0);
}
break;
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
return DAGCombineExtBoolTrunc(N, DCI);
case ISD::TRUNCATE:
case ISD::SETCC:
case ISD::SELECT_CC:
return DAGCombineTruncBoolExt(N, DCI);
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
return combineFPToIntToFP(N, DCI);
case ISD::STORE: {
// Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() &&
N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
N->getOperand(1).getValueType() == MVT::i32 &&
N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
SDValue Val = N->getOperand(1).getOperand(0);
if (Val.getValueType() == MVT::f32) {
Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
DCI.AddToWorklist(Val.getNode());
}
Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
DCI.AddToWorklist(Val.getNode());
SDValue Ops[] = {
N->getOperand(0), Val, N->getOperand(2),
DAG.getValueType(N->getOperand(1).getValueType())
};
Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
DAG.getVTList(MVT::Other), Ops,
cast<StoreSDNode>(N)->getMemoryVT(),
cast<StoreSDNode>(N)->getMemOperand());
DCI.AddToWorklist(Val.getNode());
return Val;
}
// Turn STORE (BSWAP) -> sthbrx/stwbrx.
if (cast<StoreSDNode>(N)->isUnindexed() &&
N->getOperand(1).getOpcode() == ISD::BSWAP &&
N->getOperand(1).getNode()->hasOneUse() &&
(N->getOperand(1).getValueType() == MVT::i32 ||
N->getOperand(1).getValueType() == MVT::i16 ||
(Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
N->getOperand(1).getValueType() == MVT::i64))) {
SDValue BSwapOp = N->getOperand(1).getOperand(0);
// Do an any-extend to 32-bits if this is a half-word input.
if (BSwapOp.getValueType() == MVT::i16)
BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
SDValue Ops[] = {
N->getOperand(0), BSwapOp, N->getOperand(2),
DAG.getValueType(N->getOperand(1).getValueType())
};
return
DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
Ops, cast<StoreSDNode>(N)->getMemoryVT(),
cast<StoreSDNode>(N)->getMemOperand());
}
// For little endian, VSX stores require generating xxswapd/lxvd2x.
EVT VT = N->getOperand(1).getValueType();
if (VT.isSimple()) {
MVT StoreVT = VT.getSimpleVT();
if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
(StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
return expandVSXStoreForLE(N, DCI);
}
break;
}
case ISD::LOAD: {
LoadSDNode *LD = cast<LoadSDNode>(N);
EVT VT = LD->getValueType(0);
// For little endian, VSX loads require generating lxvd2x/xxswapd.
if (VT.isSimple()) {
MVT LoadVT = VT.getSimpleVT();
if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
(LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
return expandVSXLoadForLE(N, DCI);
}
EVT MemVT = LD->getMemoryVT();
Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);
Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
unsigned ScalarABIAlignment = getDataLayout()->getABITypeAlignment(STy);
if (LD->isUnindexed() && VT.isVector() &&
((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
// P8 and later hardware should just use LOAD.
!Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
VT == MVT::v4i32 || VT == MVT::v4f32)) ||
(Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
LD->getAlignment() >= ScalarABIAlignment)) &&
LD->getAlignment() < ABIAlignment) {
// This is a type-legal unaligned Altivec or QPX load.
SDValue Chain = LD->getChain();
SDValue Ptr = LD->getBasePtr();
bool isLittleEndian = Subtarget.isLittleEndian();
// This implements the loading of unaligned vectors as described in
// the venerable Apple Velocity Engine overview. Specifically:
// https://developer.apple.com/hardwaredrivers/ve/alignment.html
// https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
//
// The general idea is to expand a sequence of one or more unaligned
// loads into an alignment-based permutation-control instruction (lvsl
// or lvsr), a series of regular vector loads (which always truncate
// their input address to an aligned address), and a series of
// permutations. The results of these permutations are the requested
// loaded values. The trick is that the last "extra" load is not taken
// from the address you might suspect (sizeof(vector) bytes after the
// last requested load), but rather sizeof(vector) - 1 bytes after the
// last requested vector. The point of this is to avoid a page fault if
// the base address happened to be aligned. This works because if the
// base address is aligned, then adding less than a full vector length
// will cause the last vector in the sequence to be (re)loaded.
// Otherwise, the next vector will be fetched as you might suspect was
// necessary.
// We might be able to reuse the permutation generation from
// a different base address offset from this one by an aligned amount.
// The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
// optimization later.
Intrinsic::ID Intr, IntrLD, IntrPerm;
MVT PermCntlTy, PermTy, LDTy;
if (Subtarget.hasAltivec()) {
Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr :
Intrinsic::ppc_altivec_lvsl;
IntrLD = Intrinsic::ppc_altivec_lvx;
IntrPerm = Intrinsic::ppc_altivec_vperm;
PermCntlTy = MVT::v16i8;
PermTy = MVT::v4i32;
LDTy = MVT::v4i32;
} else {
Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
Intrinsic::ppc_qpx_qvlpcls;
IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
Intrinsic::ppc_qpx_qvlfs;
IntrPerm = Intrinsic::ppc_qpx_qvfperm;
PermCntlTy = MVT::v4f64;
PermTy = MVT::v4f64;
LDTy = MemVT.getSimpleVT();
}
SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
// Create the new MMO for the new base load. It is like the original MMO,
// but represents an area in memory almost twice the vector size centered
// on the original address. If the address is unaligned, we might start
// reading up to (sizeof(vector)-1) bytes below the address of the
// original unaligned load.
MachineFunction &MF = DAG.getMachineFunction();
MachineMemOperand *BaseMMO =
MF.getMachineMemOperand(LD->getMemOperand(), -MemVT.getStoreSize()+1,
2*MemVT.getStoreSize()-1);
// Create the new base load.
SDValue LDXIntID = DAG.getTargetConstant(IntrLD, getPointerTy());
SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
SDValue BaseLoad =
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
DAG.getVTList(PermTy, MVT::Other),
BaseLoadOps, LDTy, BaseMMO);
// Note that the value of IncOffset (which is provided to the next
// load's pointer info offset value, and thus used to calculate the
// alignment), and the value of IncValue (which is actually used to
// increment the pointer value) are different! This is because we
// require the next load to appear to be aligned, even though it
// is actually offset from the base pointer by a lesser amount.
int IncOffset = VT.getSizeInBits() / 8;
int IncValue = IncOffset;
// Walk (both up and down) the chain looking for another load at the real
// (aligned) offset (the alignment of the other load does not matter in
// this case). If found, then do not use the offset reduction trick, as
// that will prevent the loads from being later combined (as they would
// otherwise be duplicates).
if (!findConsecutiveLoad(LD, DAG))
--IncValue;
SDValue Increment = DAG.getConstant(IncValue, getPointerTy());
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
MachineMemOperand *ExtraMMO =
MF.getMachineMemOperand(LD->getMemOperand(),
1, 2*MemVT.getStoreSize()-1);
SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
SDValue ExtraLoad =
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
DAG.getVTList(PermTy, MVT::Other),
ExtraLoadOps, LDTy, ExtraMMO);
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
BaseLoad.getValue(1), ExtraLoad.getValue(1));
// Because vperm has a big-endian bias, we must reverse the order
// of the input vectors and complement the permute control vector
// when generating little endian code. We have already handled the
// latter by using lvsr instead of lvsl, so just reverse BaseLoad
// and ExtraLoad here.
SDValue Perm;
if (isLittleEndian)
Perm = BuildIntrinsicOp(IntrPerm,
ExtraLoad, BaseLoad, PermCntl, DAG, dl);
else
Perm = BuildIntrinsicOp(IntrPerm,
BaseLoad, ExtraLoad, PermCntl, DAG, dl);
if (VT != PermTy)
Perm = Subtarget.hasAltivec() ?
DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
DAG.getTargetConstant(1, MVT::i64));
// second argument is 1 because this rounding
// is always exact.
// The output of the permutation is our loaded result, the TokenFactor is
// our new chain.
DCI.CombineTo(N, Perm, TF);
return SDValue(N, 0);
}
}
break;
case ISD::INTRINSIC_WO_CHAIN: {
bool isLittleEndian = Subtarget.isLittleEndian();
unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
: Intrinsic::ppc_altivec_lvsl);
if ((IID == Intr ||
IID == Intrinsic::ppc_qpx_qvlpcld ||
IID == Intrinsic::ppc_qpx_qvlpcls) &&
N->getOperand(1)->getOpcode() == ISD::ADD) {
SDValue Add = N->getOperand(1);
int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
if (DAG.MaskedValueIsZero(
Add->getOperand(1),
APInt::getAllOnesValue(Bits /* alignment */)
.zext(
Add.getValueType().getScalarType().getSizeInBits()))) {
SDNode *BasePtr = Add->getOperand(0).getNode();
for (SDNode::use_iterator UI = BasePtr->use_begin(),
UE = BasePtr->use_end();
UI != UE; ++UI) {
if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
// We've found another LVSL/LVSR, and this address is an aligned
// multiple of that one. The results will be the same, so use the
// one we've just found instead.
return SDValue(*UI, 0);
}
}
}
if (isa<ConstantSDNode>(Add->getOperand(1))) {
SDNode *BasePtr = Add->getOperand(0).getNode();
for (SDNode::use_iterator UI = BasePtr->use_begin(),
UE = BasePtr->use_end(); UI != UE; ++UI) {
if (UI->getOpcode() == ISD::ADD &&
isa<ConstantSDNode>(UI->getOperand(1)) &&
(cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
(1ULL << Bits) == 0) {
SDNode *OtherAdd = *UI;
for (SDNode::use_iterator VI = OtherAdd->use_begin(),
VE = OtherAdd->use_end(); VI != VE; ++VI) {
if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
return SDValue(*VI, 0);
}
}
}
}
}
}
}
break;
case ISD::INTRINSIC_W_CHAIN: {
// For little endian, VSX loads require generating lxvd2x/xxswapd.
if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
default:
break;
case Intrinsic::ppc_vsx_lxvw4x:
case Intrinsic::ppc_vsx_lxvd2x:
return expandVSXLoadForLE(N, DCI);
}
}
break;
}
case ISD::INTRINSIC_VOID: {
// For little endian, VSX stores require generating xxswapd/stxvd2x.
if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
default:
break;
case Intrinsic::ppc_vsx_stxvw4x:
case Intrinsic::ppc_vsx_stxvd2x:
return expandVSXStoreForLE(N, DCI);
}
}
break;
}
case ISD::BSWAP:
// Turn BSWAP (LOAD) -> lhbrx/lwbrx.
if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
N->getOperand(0).hasOneUse() &&
(N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
(Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
N->getValueType(0) == MVT::i64))) {
SDValue Load = N->getOperand(0);
LoadSDNode *LD = cast<LoadSDNode>(Load);
// Create the byte-swapping load.
SDValue Ops[] = {
LD->getChain(), // Chain
LD->getBasePtr(), // Ptr
DAG.getValueType(N->getValueType(0)) // VT
};
SDValue BSLoad =
DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
DAG.getVTList(N->getValueType(0) == MVT::i64 ?
MVT::i64 : MVT::i32, MVT::Other),
Ops, LD->getMemoryVT(), LD->getMemOperand());
// If this is an i16 load, insert the truncate.
SDValue ResVal = BSLoad;
if (N->getValueType(0) == MVT::i16)
ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
// First, combine the bswap away. This makes the value produced by the
// load dead.
DCI.CombineTo(N, ResVal);
// Next, combine the load away, we give it a bogus result value but a real
// chain result. The result value is dead because the bswap is dead.
DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
// Return N so it doesn't get rechecked!
return SDValue(N, 0);
}
break;
case PPCISD::VCMP: {
// If a VCMPo node already exists with exactly the same operands as this
// node, use its result instead of this node (VCMPo computes both a CR6 and
// a normal output).
//
if (!N->getOperand(0).hasOneUse() &&
!N->getOperand(1).hasOneUse() &&
!N->getOperand(2).hasOneUse()) {
// Scan all of the users of the LHS, looking for VCMPo's that match.
SDNode *VCMPoNode = nullptr;
SDNode *LHSN = N->getOperand(0).getNode();
for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
UI != E; ++UI)
if (UI->getOpcode() == PPCISD::VCMPo &&
UI->getOperand(1) == N->getOperand(1) &&
UI->getOperand(2) == N->getOperand(2) &&
UI->getOperand(0) == N->getOperand(0)) {
VCMPoNode = *UI;
break;
}
// If there is no VCMPo node, or if the flag value has a single use, don't
// transform this.
if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
break;
// Look at the (necessarily single) use of the flag value. If it has a
// chain, this transformation is more complex. Note that multiple things
// could use the value result, which we should ignore.
SDNode *FlagUser = nullptr;
for (SDNode::use_iterator UI = VCMPoNode->use_begin();
FlagUser == nullptr; ++UI) {
assert(UI != VCMPoNode->use_end() && "Didn't find user!");
SDNode *User = *UI;
for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
FlagUser = User;
break;
}
}
}
// If the user is a MFOCRF instruction, we know this is safe.
// Otherwise we give up for right now.
if (FlagUser->getOpcode() == PPCISD::MFOCRF)
return SDValue(VCMPoNode, 0);
}
break;
}
case ISD::BRCOND: {
SDValue Cond = N->getOperand(1);
SDValue Target = N->getOperand(2);
if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
Intrinsic::ppc_is_decremented_ctr_nonzero) {
// We now need to make the intrinsic dead (it cannot be instruction
// selected).
DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
assert(Cond.getNode()->hasOneUse() &&
"Counter decrement has more than one use");
return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
N->getOperand(0), Target);
}
}
break;
case ISD::BR_CC: {
// If this is a branch on an altivec predicate comparison, lower this so
// that we don't have to do a MFOCRF: instead, branch directly on CR6. This
// lowering is done pre-legalize, because the legalizer lowers the predicate
// compare down to code that is difficult to reassemble.
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
// Sometimes the promoted value of the intrinsic is ANDed by some non-zero
// value. If so, pass-through the AND to get to the intrinsic.
if (LHS.getOpcode() == ISD::AND &&
LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
Intrinsic::ppc_is_decremented_ctr_nonzero &&
isa<ConstantSDNode>(LHS.getOperand(1)) &&
!cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()->
isZero())
LHS = LHS.getOperand(0);
if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
Intrinsic::ppc_is_decremented_ctr_nonzero &&
isa<ConstantSDNode>(RHS)) {
assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
"Counter decrement comparison is not EQ or NE");
unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
bool isBDNZ = (CC == ISD::SETEQ && Val) ||
(CC == ISD::SETNE && !Val);
// We now need to make the intrinsic dead (it cannot be instruction
// selected).
DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
assert(LHS.getNode()->hasOneUse() &&
"Counter decrement has more than one use");
return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
N->getOperand(0), N->getOperand(4));
}
int CompareOpc;
bool isDot;
if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
getAltivecCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
assert(isDot && "Can't compare against a vector result!");
// If this is a comparison against something other than 0/1, then we know
// that the condition is never/always true.
unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
if (Val != 0 && Val != 1) {
if (CC == ISD::SETEQ) // Cond never true, remove branch.
return N->getOperand(0);
// Always !=, turn it into an unconditional branch.
return DAG.getNode(ISD::BR, dl, MVT::Other,
N->getOperand(0), N->getOperand(4));
}
bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
// Create the PPCISD altivec 'dot' comparison node.
SDValue Ops[] = {
LHS.getOperand(2), // LHS of compare
LHS.getOperand(3), // RHS of compare
DAG.getConstant(CompareOpc, MVT::i32)
};
EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
// Unpack the result based on how the target uses it.
PPC::Predicate CompOpc;
switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
default: // Can't happen, don't crash on invalid number though.
case 0: // Branch on the value of the EQ bit of CR6.
CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
break;
case 1: // Branch on the inverted value of the EQ bit of CR6.
CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
break;
case 2: // Branch on the value of the LT bit of CR6.
CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
break;
case 3: // Branch on the inverted value of the LT bit of CR6.
CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
break;
}
return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
DAG.getConstant(CompOpc, MVT::i32),
DAG.getRegister(PPC::CR6, MVT::i32),
N->getOperand(4), CompNode.getValue(1));
}
break;
}
}
return SDValue();
}
SDValue
PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
SelectionDAG &DAG,
std::vector<SDNode *> *Created) const {
// fold (sdiv X, pow2)
EVT VT = N->getValueType(0);
if (VT == MVT::i64 && !Subtarget.isPPC64())
return SDValue();
if ((VT != MVT::i32 && VT != MVT::i64) ||
!(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
return SDValue();
SDLoc DL(N);
SDValue N0 = N->getOperand(0);
bool IsNegPow2 = (-Divisor).isPowerOf2();
unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
SDValue ShiftAmt = DAG.getConstant(Lg2, VT);
SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
if (Created)
Created->push_back(Op.getNode());
if (IsNegPow2) {
Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT), Op);
if (Created)
Created->push_back(Op.getNode());
}
return Op;
}
//===----------------------------------------------------------------------===//
// Inline Assembly Support
//===----------------------------------------------------------------------===//
void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth) const {
KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
switch (Op.getOpcode()) {
default: break;
case PPCISD::LBRX: {
// lhbrx is known to have the top bits cleared out.
if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
KnownZero = 0xFFFF0000;
break;
}
case ISD::INTRINSIC_WO_CHAIN: {
switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
default: break;
case Intrinsic::ppc_altivec_vcmpbfp_p:
case Intrinsic::ppc_altivec_vcmpeqfp_p:
case Intrinsic::ppc_altivec_vcmpequb_p:
case Intrinsic::ppc_altivec_vcmpequh_p:
case Intrinsic::ppc_altivec_vcmpequw_p:
case Intrinsic::ppc_altivec_vcmpequd_p:
case Intrinsic::ppc_altivec_vcmpgefp_p:
case Intrinsic::ppc_altivec_vcmpgtfp_p:
case Intrinsic::ppc_altivec_vcmpgtsb_p:
case Intrinsic::ppc_altivec_vcmpgtsh_p:
case Intrinsic::ppc_altivec_vcmpgtsw_p:
case Intrinsic::ppc_altivec_vcmpgtsd_p:
case Intrinsic::ppc_altivec_vcmpgtub_p:
case Intrinsic::ppc_altivec_vcmpgtuh_p:
case Intrinsic::ppc_altivec_vcmpgtuw_p:
case Intrinsic::ppc_altivec_vcmpgtud_p:
KnownZero = ~1U; // All bits but the low one are known to be zero.
break;
}
}
}
}
unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
switch (Subtarget.getDarwinDirective()) {
default: break;
case PPC::DIR_970:
case PPC::DIR_PWR4:
case PPC::DIR_PWR5:
case PPC::DIR_PWR5X:
case PPC::DIR_PWR6:
case PPC::DIR_PWR6X:
case PPC::DIR_PWR7:
case PPC::DIR_PWR8: {
if (!ML)
break;
const PPCInstrInfo *TII = Subtarget.getInstrInfo();
// For small loops (between 5 and 8 instructions), align to a 32-byte
// boundary so that the entire loop fits in one instruction-cache line.
uint64_t LoopSize = 0;
for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J)
LoopSize += TII->GetInstSizeInBytes(J);
if (LoopSize > 16 && LoopSize <= 32)
return 5;
break;
}
}
return TargetLowering::getPrefLoopAlignment(ML);
}
/// getConstraintType - Given a constraint, return the type of
/// constraint it is for this target.
PPCTargetLowering::ConstraintType
PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default: break;
case 'b':
case 'r':
case 'f':
case 'v':
case 'y':
return C_RegisterClass;
case 'Z':
// FIXME: While Z does indicate a memory constraint, it specifically
// indicates an r+r address (used in conjunction with the 'y' modifier
// in the replacement string). Currently, we're forcing the base
// register to be r0 in the asm printer (which is interpreted as zero)
// and forming the complete address in the second register. This is
// suboptimal.
return C_Memory;
}
} else if (Constraint == "wc") { // individual CR bits.
return C_RegisterClass;
} else if (Constraint == "wa" || Constraint == "wd" ||
Constraint == "wf" || Constraint == "ws") {
return C_RegisterClass; // VSX registers.
}
return TargetLowering::getConstraintType(Constraint);
}
/// Examine constraint type and operand type and determine a weight value.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
TargetLowering::ConstraintWeight
PPCTargetLowering::getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const {
ConstraintWeight weight = CW_Invalid;
Value *CallOperandVal = info.CallOperandVal;
// If we don't have a value, we can't do a match,
// but allow it at the lowest weight.
if (!CallOperandVal)
return CW_Default;
Type *type = CallOperandVal->getType();
// Look at the constraint type.
if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
return CW_Register; // an individual CR bit.
else if ((StringRef(constraint) == "wa" ||
StringRef(constraint) == "wd" ||
StringRef(constraint) == "wf") &&
type->isVectorTy())
return CW_Register;
else if (StringRef(constraint) == "ws" && type->isDoubleTy())
return CW_Register;
switch (*constraint) {
default:
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
break;
case 'b':
if (type->isIntegerTy())
weight = CW_Register;
break;
case 'f':
if (type->isFloatTy())
weight = CW_Register;
break;
case 'd':
if (type->isDoubleTy())
weight = CW_Register;
break;
case 'v':
if (type->isVectorTy())
weight = CW_Register;
break;
case 'y':
weight = CW_Register;
break;
case 'Z':
weight = CW_Memory;
break;
}
return weight;
}
std::pair<unsigned, const TargetRegisterClass *>
PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
const std::string &Constraint,
MVT VT) const {
if (Constraint.size() == 1) {
// GCC RS6000 Constraint Letters
switch (Constraint[0]) {
case 'b': // R1-R31
if (VT == MVT::i64 && Subtarget.isPPC64())
return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
case 'r': // R0-R31
if (VT == MVT::i64 && Subtarget.isPPC64())
return std::make_pair(0U, &PPC::G8RCRegClass);
return std::make_pair(0U, &PPC::GPRCRegClass);
case 'f':
if (VT == MVT::f32 || VT == MVT::i32)
return std::make_pair(0U, &PPC::F4RCRegClass);
if (VT == MVT::f64 || VT == MVT::i64)
return std::make_pair(0U, &PPC::F8RCRegClass);
if (VT == MVT::v4f64 && Subtarget.hasQPX())
return std::make_pair(0U, &PPC::QFRCRegClass);
if (VT == MVT::v4f32 && Subtarget.hasQPX())
return std::make_pair(0U, &PPC::QSRCRegClass);
break;
case 'v':
if (VT == MVT::v4f64 && Subtarget.hasQPX())
return std::make_pair(0U, &PPC::QFRCRegClass);
if (VT == MVT::v4f32 && Subtarget.hasQPX())
return std::make_pair(0U, &PPC::QSRCRegClass);
return std::make_pair(0U, &PPC::VRRCRegClass);
case 'y': // crrc
return std::make_pair(0U, &PPC::CRRCRegClass);
}
} else if (Constraint == "wc") { // an individual CR bit.
return std::make_pair(0U, &PPC::CRBITRCRegClass);
} else if (Constraint == "wa" || Constraint == "wd" ||
Constraint == "wf") {
return std::make_pair(0U, &PPC::VSRCRegClass);
} else if (Constraint == "ws") {
return std::make_pair(0U, &PPC::VSFRCRegClass);
}
std::pair<unsigned, const TargetRegisterClass *> R =
TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
// r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
// (which we call X[0-9]+). If a 64-bit value has been requested, and a
// 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
// register.
// FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
// the AsmName field from *RegisterInfo.td, then this would not be necessary.
if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
PPC::GPRCRegClass.contains(R.first))
return std::make_pair(TRI->getMatchingSuperReg(R.first,
PPC::sub_32, &PPC::G8RCRegClass),
&PPC::G8RCRegClass);
// GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
R.first = PPC::CR0;
R.second = &PPC::CRRCRegClass;
}
return R;
}
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops.
void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue>&Ops,
SelectionDAG &DAG) const {
SDValue Result;
// Only support length 1 constraints.
if (Constraint.length() > 1) return;
char Letter = Constraint[0];
switch (Letter) {
default: break;
case 'I':
case 'J':
case 'K':
case 'L':
case 'M':
case 'N':
case 'O':
case 'P': {
ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
if (!CST) return; // Must be an immediate to match.
int64_t Value = CST->getSExtValue();
EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
// numbers are printed as such.
switch (Letter) {
default: llvm_unreachable("Unknown constraint letter!");
case 'I': // "I" is a signed 16-bit constant.
if (isInt<16>(Value))
Result = DAG.getTargetConstant(Value, TCVT);
break;
case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
if (isShiftedUInt<16, 16>(Value))
Result = DAG.getTargetConstant(Value, TCVT);
break;
case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
if (isShiftedInt<16, 16>(Value))
Result = DAG.getTargetConstant(Value, TCVT);
break;
case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
if (isUInt<16>(Value))
Result = DAG.getTargetConstant(Value, TCVT);
break;
case 'M': // "M" is a constant that is greater than 31.
if (Value > 31)
Result = DAG.getTargetConstant(Value, TCVT);
break;
case 'N': // "N" is a positive constant that is an exact power of two.
if (Value > 0 && isPowerOf2_64(Value))
Result = DAG.getTargetConstant(Value, TCVT);
break;
case 'O': // "O" is the constant zero.
if (Value == 0)
Result = DAG.getTargetConstant(Value, TCVT);
break;
case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
if (isInt<16>(-Value))
Result = DAG.getTargetConstant(Value, TCVT);
break;
}
break;
}
}
if (Result.getNode()) {
Ops.push_back(Result);
return;
}
// Handle standard constraint letters.
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
// isLegalAddressingMode - Return true if the addressing mode represented
// by AM is legal for this target, for a load/store of the specified type.
bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
Type *Ty) const {
// PPC does not allow r+i addressing modes for vectors!
if (Ty->isVectorTy() && AM.BaseOffs != 0)
return false;
// PPC allows a sign-extended 16-bit immediate field.
if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
return false;
// No global is ever allowed as a base.
if (AM.BaseGV)
return false;
// PPC only support r+r,
switch (AM.Scale) {
case 0: // "r+i" or just "i", depending on HasBaseReg.
break;
case 1:
if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
return false;
// Otherwise we have r+r or r+i.
break;
case 2:
if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
return false;
// Allow 2*r as r+r.
break;
default:
// No other scales are supported.
return false;
}
return true;
}
SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
MFI->setReturnAddressIsTaken(true);
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
return SDValue();
SDLoc dl(Op);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
// Make sure the function does not optimize away the store of the RA to
// the stack.
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
FuncInfo->setLRStoreRequired();
bool isPPC64 = Subtarget.isPPC64();
if (Depth > 0) {
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
SDValue Offset =
DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(),
isPPC64 ? MVT::i64 : MVT::i32);
return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
DAG.getNode(ISD::ADD, dl, getPointerTy(),
FrameAddr, Offset),
MachinePointerInfo(), false, false, false, 0);
}
// Just load the return address off the stack.
SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
RetAddrFI, MachinePointerInfo(), false, false, false, 0);
}
SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
bool isPPC64 = PtrVT == MVT::i64;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
MFI->setFrameAddressIsTaken(true);
// Naked functions never have a frame pointer, and so we use r1. For all
// other functions, this decision must be delayed until during PEI.
unsigned FrameReg;
if (MF.getFunction()->hasFnAttribute(Attribute::Naked))
FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
else
FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
PtrVT);
while (Depth--)
FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
FrameAddr, MachinePointerInfo(), false, false,
false, 0);
return FrameAddr;
}
// FIXME? Maybe this could be a TableGen attribute on some registers and
// this table could be generated automatically from RegInfo.
unsigned PPCTargetLowering::getRegisterByName(const char* RegName,
EVT VT) const {
bool isPPC64 = Subtarget.isPPC64();
bool isDarwinABI = Subtarget.isDarwinABI();
if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
(!isPPC64 && VT != MVT::i32))
report_fatal_error("Invalid register global variable type");
bool is64Bit = isPPC64 && VT == MVT::i64;
unsigned Reg = StringSwitch<unsigned>(RegName)
.Case("r1", is64Bit ? PPC::X1 : PPC::R1)
.Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
.Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
(is64Bit ? PPC::X13 : PPC::R13))
.Default(0);
if (Reg)
return Reg;
report_fatal_error("Invalid register name global variable");
}
bool
PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
// The PowerPC target isn't yet aware of offsets.
return false;
}
bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
const CallInst &I,
unsigned Intrinsic) const {
switch (Intrinsic) {
case Intrinsic::ppc_qpx_qvlfd:
case Intrinsic::ppc_qpx_qvlfs:
case Intrinsic::ppc_qpx_qvlfcd:
case Intrinsic::ppc_qpx_qvlfcs:
case Intrinsic::ppc_qpx_qvlfiwa:
case Intrinsic::ppc_qpx_qvlfiwz:
case Intrinsic::ppc_altivec_lvx:
case Intrinsic::ppc_altivec_lvxl:
case Intrinsic::ppc_altivec_lvebx:
case Intrinsic::ppc_altivec_lvehx:
case Intrinsic::ppc_altivec_lvewx:
case Intrinsic::ppc_vsx_lxvd2x:
case Intrinsic::ppc_vsx_lxvw4x: {
EVT VT;
switch (Intrinsic) {
case Intrinsic::ppc_altivec_lvebx:
VT = MVT::i8;
break;
case Intrinsic::ppc_altivec_lvehx:
VT = MVT::i16;
break;
case Intrinsic::ppc_altivec_lvewx:
VT = MVT::i32;
break;
case Intrinsic::ppc_vsx_lxvd2x:
VT = MVT::v2f64;
break;
case Intrinsic::ppc_qpx_qvlfd:
VT = MVT::v4f64;
break;
case Intrinsic::ppc_qpx_qvlfs:
VT = MVT::v4f32;
break;
case Intrinsic::ppc_qpx_qvlfcd:
VT = MVT::v2f64;
break;
case Intrinsic::ppc_qpx_qvlfcs:
VT = MVT::v2f32;
break;
default:
VT = MVT::v4i32;
break;
}
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = VT;
Info.ptrVal = I.getArgOperand(0);
Info.offset = -VT.getStoreSize()+1;
Info.size = 2*VT.getStoreSize()-1;
Info.align = 1;
Info.vol = false;
Info.readMem = true;
Info.writeMem = false;
return true;
}
case Intrinsic::ppc_qpx_qvlfda:
case Intrinsic::ppc_qpx_qvlfsa:
case Intrinsic::ppc_qpx_qvlfcda:
case Intrinsic::ppc_qpx_qvlfcsa:
case Intrinsic::ppc_qpx_qvlfiwaa:
case Intrinsic::ppc_qpx_qvlfiwza: {
EVT VT;
switch (Intrinsic) {
case Intrinsic::ppc_qpx_qvlfda:
VT = MVT::v4f64;
break;
case Intrinsic::ppc_qpx_qvlfsa:
VT = MVT::v4f32;
break;
case Intrinsic::ppc_qpx_qvlfcda:
VT = MVT::v2f64;
break;
case Intrinsic::ppc_qpx_qvlfcsa:
VT = MVT::v2f32;
break;
default:
VT = MVT::v4i32;
break;
}
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = VT;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.size = VT.getStoreSize();
Info.align = 1;
Info.vol = false;
Info.readMem = true;
Info.writeMem = false;
return true;
}
case Intrinsic::ppc_qpx_qvstfd:
case Intrinsic::ppc_qpx_qvstfs:
case Intrinsic::ppc_qpx_qvstfcd:
case Intrinsic::ppc_qpx_qvstfcs:
case Intrinsic::ppc_qpx_qvstfiw:
case Intrinsic::ppc_altivec_stvx:
case Intrinsic::ppc_altivec_stvxl:
case Intrinsic::ppc_altivec_stvebx:
case Intrinsic::ppc_altivec_stvehx:
case Intrinsic::ppc_altivec_stvewx:
case Intrinsic::ppc_vsx_stxvd2x:
case Intrinsic::ppc_vsx_stxvw4x: {
EVT VT;
switch (Intrinsic) {
case Intrinsic::ppc_altivec_stvebx:
VT = MVT::i8;
break;
case Intrinsic::ppc_altivec_stvehx:
VT = MVT::i16;
break;
case Intrinsic::ppc_altivec_stvewx:
VT = MVT::i32;
break;
case Intrinsic::ppc_vsx_stxvd2x:
VT = MVT::v2f64;
break;
case Intrinsic::ppc_qpx_qvstfd:
VT = MVT::v4f64;
break;
case Intrinsic::ppc_qpx_qvstfs:
VT = MVT::v4f32;
break;
case Intrinsic::ppc_qpx_qvstfcd:
VT = MVT::v2f64;
break;
case Intrinsic::ppc_qpx_qvstfcs:
VT = MVT::v2f32;
break;
default:
VT = MVT::v4i32;
break;
}
Info.opc = ISD::INTRINSIC_VOID;
Info.memVT = VT;
Info.ptrVal = I.getArgOperand(1);
Info.offset = -VT.getStoreSize()+1;
Info.size = 2*VT.getStoreSize()-1;
Info.align = 1;
Info.vol = false;
Info.readMem = false;
Info.writeMem = true;
return true;
}
case Intrinsic::ppc_qpx_qvstfda:
case Intrinsic::ppc_qpx_qvstfsa:
case Intrinsic::ppc_qpx_qvstfcda:
case Intrinsic::ppc_qpx_qvstfcsa:
case Intrinsic::ppc_qpx_qvstfiwa: {
EVT VT;
switch (Intrinsic) {
case Intrinsic::ppc_qpx_qvstfda:
VT = MVT::v4f64;
break;
case Intrinsic::ppc_qpx_qvstfsa:
VT = MVT::v4f32;
break;
case Intrinsic::ppc_qpx_qvstfcda:
VT = MVT::v2f64;
break;
case Intrinsic::ppc_qpx_qvstfcsa:
VT = MVT::v2f32;
break;
default:
VT = MVT::v4i32;
break;
}
Info.opc = ISD::INTRINSIC_VOID;
Info.memVT = VT;
Info.ptrVal = I.getArgOperand(1);
Info.offset = 0;
Info.size = VT.getStoreSize();
Info.align = 1;
Info.vol = false;
Info.readMem = false;
Info.writeMem = true;
return true;
}
default:
break;
}
return false;
}
/// getOptimalMemOpType - Returns the target specific optimal type for load
/// and store operations as a result of memset, memcpy, and memmove
/// lowering. If DstAlign is zero that means it's safe to destination
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
/// means there isn't a need to check it against alignment requirement,
/// probably because the source does not need to be loaded. If 'IsMemset' is
/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
/// source is constant so it does not need to be loaded.
/// It returns EVT::Other if the type should be determined using generic
/// target-independent logic.
EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
unsigned DstAlign, unsigned SrcAlign,
bool IsMemset, bool ZeroMemset,
bool MemcpyStrSrc,
MachineFunction &MF) const {
if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
const Function *F = MF.getFunction();
// When expanding a memset, require at least two QPX instructions to cover
// the cost of loading the value to be stored from the constant pool.
if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
(!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
!F->hasFnAttribute(Attribute::NoImplicitFloat)) {
return MVT::v4f64;
}
// We should use Altivec/VSX loads and stores when available. For unaligned
// addresses, unaligned VSX loads are only fast starting with the P8.
if (Subtarget.hasAltivec() && Size >= 16 &&
(((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
return MVT::v4i32;
}
if (Subtarget.isPPC64()) {
return MVT::i64;
}
return MVT::i32;
}
/// \brief Returns true if it is beneficial to convert a load of a constant
/// to just the constant itself.
bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
if (BitSize == 0 || BitSize > 64)
return false;
return true;
}
bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
return false;
unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
return NumBits1 == 64 && NumBits2 == 32;
}
bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
if (!VT1.isInteger() || !VT2.isInteger())
return false;
unsigned NumBits1 = VT1.getSizeInBits();
unsigned NumBits2 = VT2.getSizeInBits();
return NumBits1 == 64 && NumBits2 == 32;
}
bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
// Generally speaking, zexts are not free, but they are free when they can be
// folded with other operations.
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
EVT MemVT = LD->getMemoryVT();
if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
(Subtarget.isPPC64() && MemVT == MVT::i32)) &&
(LD->getExtensionType() == ISD::NON_EXTLOAD ||
LD->getExtensionType() == ISD::ZEXTLOAD))
return true;
}
// FIXME: Add other cases...
// - 32-bit shifts with a zext to i64
// - zext after ctlz, bswap, etc.
// - zext after and by a constant mask
return TargetLowering::isZExtFree(Val, VT2);
}
bool PPCTargetLowering::isFPExtFree(EVT VT) const {
assert(VT.isFloatingPoint());
return true;
}
bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
return isInt<16>(Imm) || isUInt<16>(Imm);
}
bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
return isInt<16>(Imm) || isUInt<16>(Imm);
}
bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
unsigned,
unsigned,
bool *Fast) const {
if (DisablePPCUnaligned)
return false;
// PowerPC supports unaligned memory access for simple non-vector types.
// Although accessing unaligned addresses is not as efficient as accessing
// aligned addresses, it is generally more efficient than manual expansion,
// and generally only traps for software emulation when crossing page
// boundaries.
if (!VT.isSimple())
return false;
if (VT.getSimpleVT().isVector()) {
if (Subtarget.hasVSX()) {
if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
VT != MVT::v4f32 && VT != MVT::v4i32)
return false;
} else {
return false;
}
}
if (VT == MVT::ppcf128)
return false;
if (Fast)
*Fast = true;
return true;
}
bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
VT = VT.getScalarType();
if (!VT.isSimple())
return false;
switch (VT.getSimpleVT().SimpleTy) {
case MVT::f32:
case MVT::f64:
return true;
default:
break;
}
return false;
}
const MCPhysReg *
PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
// LR is a callee-save register, but we must treat it as clobbered by any call
// site. Hence we include LR in the scratch registers, which are in turn added
// as implicit-defs for stackmaps and patchpoints. The same reasoning applies
// to CTR, which is used by any indirect call.
static const MCPhysReg ScratchRegs[] = {
PPC::X12, PPC::LR8, PPC::CTR8, 0
};
return ScratchRegs;
}
bool
PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
EVT VT , unsigned DefinedValues) const {
if (VT == MVT::v2i64)
return false;
if (Subtarget.hasQPX()) {
if (VT == MVT::v4f32 || VT == MVT::v4f64 || VT == MVT::v4i1)
return true;
}
return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
}
Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
if (DisableILPPref || Subtarget.enableMachineScheduler())
return TargetLowering::getSchedulingPreference(N);
return Sched::ILP;
}
// Create a fast isel object.
FastISel *
PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
const TargetLibraryInfo *LibInfo) const {
return PPC::createFastISel(FuncInfo, LibInfo);
}