llvm-project/mlir/lib/Analysis/LoopAnalysis.cpp

385 lines
15 KiB
C++

//===- LoopAnalysis.cpp - Misc loop analysis routines //-------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements miscellaneous loop analysis routines.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/NestedMatcher.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallString.h"
#include <type_traits>
using namespace mlir;
/// Returns the trip count of the loop as an affine expression if the latter is
/// expressible as an affine expression, and nullptr otherwise. The trip count
/// expression is simplified before returning. This method only utilizes map
/// composition to construct lower and upper bounds before computing the trip
/// count expressions.
void mlir::buildTripCountMapAndOperands(
AffineForOp forOp, AffineMap *tripCountMap,
SmallVectorImpl<Value> *tripCountOperands) {
int64_t loopSpan;
int64_t step = forOp.getStep();
OpBuilder b(forOp.getOperation());
if (forOp.hasConstantBounds()) {
int64_t lb = forOp.getConstantLowerBound();
int64_t ub = forOp.getConstantUpperBound();
loopSpan = ub - lb;
if (loopSpan < 0)
loopSpan = 0;
*tripCountMap = b.getConstantAffineMap(ceilDiv(loopSpan, step));
tripCountOperands->clear();
return;
}
auto lbMap = forOp.getLowerBoundMap();
auto ubMap = forOp.getUpperBoundMap();
if (lbMap.getNumResults() != 1) {
*tripCountMap = AffineMap();
return;
}
// Difference of each upper bound expression from the single lower bound
// expression (divided by the step) provides the expressions for the trip
// count map.
AffineValueMap ubValueMap(ubMap, forOp.getUpperBoundOperands());
SmallVector<AffineExpr, 4> lbSplatExpr(ubValueMap.getNumResults(),
lbMap.getResult(0));
auto lbMapSplat =
AffineMap::get(lbMap.getNumDims(), lbMap.getNumSymbols(), lbSplatExpr);
AffineValueMap lbSplatValueMap(lbMapSplat, forOp.getLowerBoundOperands());
AffineValueMap tripCountValueMap;
AffineValueMap::difference(ubValueMap, lbSplatValueMap, &tripCountValueMap);
for (unsigned i = 0, e = tripCountValueMap.getNumResults(); i < e; ++i)
tripCountValueMap.setResult(i,
tripCountValueMap.getResult(i).ceilDiv(step));
*tripCountMap = tripCountValueMap.getAffineMap();
tripCountOperands->assign(tripCountValueMap.getOperands().begin(),
tripCountValueMap.getOperands().end());
}
/// Returns the trip count of the loop if it's a constant, None otherwise. This
/// method uses affine expression analysis (in turn using getTripCount) and is
/// able to determine constant trip count in non-trivial cases.
// FIXME(mlir-team): this is really relying on buildTripCountMapAndOperands;
// being an analysis utility, it shouldn't. Replace with a version that just
// works with analysis structures (FlatAffineConstraints) and thus doesn't
// update the IR.
Optional<uint64_t> mlir::getConstantTripCount(AffineForOp forOp) {
SmallVector<Value, 4> operands;
AffineMap map;
buildTripCountMapAndOperands(forOp, &map, &operands);
if (!map)
return None;
// Take the min if all trip counts are constant.
Optional<uint64_t> tripCount;
for (auto resultExpr : map.getResults()) {
if (auto constExpr = resultExpr.dyn_cast<AffineConstantExpr>()) {
if (tripCount.hasValue())
tripCount = std::min(tripCount.getValue(),
static_cast<uint64_t>(constExpr.getValue()));
else
tripCount = constExpr.getValue();
} else
return None;
}
return tripCount;
}
/// Returns the greatest known integral divisor of the trip count. Affine
/// expression analysis is used (indirectly through getTripCount), and
/// this method is thus able to determine non-trivial divisors.
uint64_t mlir::getLargestDivisorOfTripCount(AffineForOp forOp) {
SmallVector<Value, 4> operands;
AffineMap map;
buildTripCountMapAndOperands(forOp, &map, &operands);
if (!map)
return 1;
// The largest divisor of the trip count is the GCD of the individual largest
// divisors.
assert(map.getNumResults() >= 1 && "expected one or more results");
Optional<uint64_t> gcd;
for (auto resultExpr : map.getResults()) {
uint64_t thisGcd;
if (auto constExpr = resultExpr.dyn_cast<AffineConstantExpr>()) {
uint64_t tripCount = constExpr.getValue();
// 0 iteration loops (greatest divisor is 2^64 - 1).
if (tripCount == 0)
thisGcd = std::numeric_limits<uint64_t>::max();
else
// The greatest divisor is the trip count.
thisGcd = tripCount;
} else {
// Trip count is not a known constant; return its largest known divisor.
thisGcd = resultExpr.getLargestKnownDivisor();
}
if (gcd.hasValue())
gcd = llvm::GreatestCommonDivisor64(gcd.getValue(), thisGcd);
else
gcd = thisGcd;
}
assert(gcd.hasValue() && "value expected per above logic");
return gcd.getValue();
}
/// Given an induction variable `iv` of type AffineForOp and an access `index`
/// of type index, returns `true` if `index` is independent of `iv` and
/// false otherwise. The determination supports composition with at most one
/// AffineApplyOp. The 'at most one AffineApplyOp' comes from the fact that
/// the composition of AffineApplyOp needs to be canonicalized by construction
/// to avoid writing code that composes arbitrary numbers of AffineApplyOps
/// everywhere. To achieve this, at the very least, the compose-affine-apply
/// pass must have been run.
///
/// Prerequisites:
/// 1. `iv` and `index` of the proper type;
/// 2. at most one reachable AffineApplyOp from index;
///
/// Returns false in cases with more than one AffineApplyOp, this is
/// conservative.
static bool isAccessIndexInvariant(Value iv, Value index) {
assert(isForInductionVar(iv) && "iv must be a AffineForOp");
assert(index.getType().isa<IndexType>() && "index must be of IndexType");
SmallVector<Operation *, 4> affineApplyOps;
getReachableAffineApplyOps({index}, affineApplyOps);
if (affineApplyOps.empty()) {
// Pointer equality test because of Value pointer semantics.
return index != iv;
}
if (affineApplyOps.size() > 1) {
affineApplyOps[0]->emitRemark(
"CompositionAffineMapsPass must have been run: there should be at most "
"one AffineApplyOp, returning false conservatively.");
return false;
}
auto composeOp = cast<AffineApplyOp>(affineApplyOps[0]);
// We need yet another level of indirection because the `dim` index of the
// access may not correspond to the `dim` index of composeOp.
return !composeOp.getAffineValueMap().isFunctionOf(0, iv);
}
DenseSet<Value> mlir::getInvariantAccesses(Value iv, ArrayRef<Value> indices) {
DenseSet<Value> res;
for (unsigned idx = 0, n = indices.size(); idx < n; ++idx) {
auto val = indices[idx];
if (isAccessIndexInvariant(iv, val)) {
res.insert(val);
}
}
return res;
}
/// Given:
/// 1. an induction variable `iv` of type AffineForOp;
/// 2. a `memoryOp` of type const LoadOp& or const StoreOp&;
/// determines whether `memoryOp` has a contiguous access along `iv`. Contiguous
/// is defined as either invariant or varying only along a unique MemRef dim.
/// Upon success, the unique MemRef dim is written in `memRefDim` (or -1 to
/// convey the memRef access is invariant along `iv`).
///
/// Prerequisites:
/// 1. `memRefDim` ~= nullptr;
/// 2. `iv` of the proper type;
/// 3. the MemRef accessed by `memoryOp` has no layout map or at most an
/// identity layout map.
///
/// Currently only supports no layoutMap or identity layoutMap in the MemRef.
/// Returns false if the MemRef has a non-identity layoutMap or more than 1
/// layoutMap. This is conservative.
///
// TODO(ntv): check strides.
template <typename LoadOrStoreOp>
static bool isContiguousAccess(Value iv, LoadOrStoreOp memoryOp,
int *memRefDim) {
static_assert(
llvm::is_one_of<LoadOrStoreOp, AffineLoadOp, AffineStoreOp>::value,
"Must be called on either LoadOp or StoreOp");
assert(memRefDim && "memRefDim == nullptr");
auto memRefType = memoryOp.getMemRefType();
auto layoutMap = memRefType.getAffineMaps();
// TODO(ntv): remove dependence on Builder once we support non-identity
// layout map.
Builder b(memoryOp.getContext());
if (layoutMap.size() >= 2 ||
(layoutMap.size() == 1 &&
!(layoutMap[0] ==
b.getMultiDimIdentityMap(layoutMap[0].getNumDims())))) {
return memoryOp.emitError("NYI: non-trivial layoutMap"), false;
}
int uniqueVaryingIndexAlongIv = -1;
auto accessMap = memoryOp.getAffineMap();
SmallVector<Value, 4> mapOperands(memoryOp.getMapOperands());
unsigned numDims = accessMap.getNumDims();
for (unsigned i = 0, e = memRefType.getRank(); i < e; ++i) {
// Gather map operands used result expr 'i' in 'exprOperands'.
SmallVector<Value, 4> exprOperands;
auto resultExpr = accessMap.getResult(i);
resultExpr.walk([&](AffineExpr expr) {
if (auto dimExpr = expr.dyn_cast<AffineDimExpr>())
exprOperands.push_back(mapOperands[dimExpr.getPosition()]);
else if (auto symExpr = expr.dyn_cast<AffineSymbolExpr>())
exprOperands.push_back(mapOperands[numDims + symExpr.getPosition()]);
});
// Check access invariance of each operand in 'exprOperands'.
for (auto exprOperand : exprOperands) {
if (!isAccessIndexInvariant(iv, exprOperand)) {
if (uniqueVaryingIndexAlongIv != -1) {
// 2+ varying indices -> do not vectorize along iv.
return false;
}
uniqueVaryingIndexAlongIv = i;
}
}
}
if (uniqueVaryingIndexAlongIv == -1)
*memRefDim = -1;
else
*memRefDim = memRefType.getRank() - (uniqueVaryingIndexAlongIv + 1);
return true;
}
template <typename LoadOrStoreOp>
static bool isVectorElement(LoadOrStoreOp memoryOp) {
auto memRefType = memoryOp.getMemRefType();
return memRefType.getElementType().template isa<VectorType>();
}
using VectorizableOpFun = std::function<bool(AffineForOp, Operation &)>;
static bool
isVectorizableLoopBodyWithOpCond(AffineForOp loop,
VectorizableOpFun isVectorizableOp,
NestedPattern &vectorTransferMatcher) {
auto *forOp = loop.getOperation();
// No vectorization across conditionals for now.
auto conditionals = matcher::If();
SmallVector<NestedMatch, 8> conditionalsMatched;
conditionals.match(forOp, &conditionalsMatched);
if (!conditionalsMatched.empty()) {
return false;
}
// No vectorization across unknown regions.
auto regions = matcher::Op([](Operation &op) -> bool {
return op.getNumRegions() != 0 &&
!(isa<AffineIfOp>(op) || isa<AffineForOp>(op));
});
SmallVector<NestedMatch, 8> regionsMatched;
regions.match(forOp, &regionsMatched);
if (!regionsMatched.empty()) {
return false;
}
SmallVector<NestedMatch, 8> vectorTransfersMatched;
vectorTransferMatcher.match(forOp, &vectorTransfersMatched);
if (!vectorTransfersMatched.empty()) {
return false;
}
auto loadAndStores = matcher::Op(matcher::isLoadOrStore);
SmallVector<NestedMatch, 8> loadAndStoresMatched;
loadAndStores.match(forOp, &loadAndStoresMatched);
for (auto ls : loadAndStoresMatched) {
auto *op = ls.getMatchedOperation();
auto load = dyn_cast<AffineLoadOp>(op);
auto store = dyn_cast<AffineStoreOp>(op);
// Only scalar types are considered vectorizable, all load/store must be
// vectorizable for a loop to qualify as vectorizable.
// TODO(ntv): ponder whether we want to be more general here.
bool vector = load ? isVectorElement(load) : isVectorElement(store);
if (vector) {
return false;
}
if (isVectorizableOp && !isVectorizableOp(loop, *op)) {
return false;
}
}
return true;
}
bool mlir::isVectorizableLoopBody(AffineForOp loop, int *memRefDim,
NestedPattern &vectorTransferMatcher) {
VectorizableOpFun fun([memRefDim](AffineForOp loop, Operation &op) {
auto load = dyn_cast<AffineLoadOp>(op);
auto store = dyn_cast<AffineStoreOp>(op);
return load ? isContiguousAccess(loop.getInductionVar(), load, memRefDim)
: isContiguousAccess(loop.getInductionVar(), store, memRefDim);
});
return isVectorizableLoopBodyWithOpCond(loop, fun, vectorTransferMatcher);
}
bool mlir::isVectorizableLoopBody(AffineForOp loop,
NestedPattern &vectorTransferMatcher) {
return isVectorizableLoopBodyWithOpCond(loop, nullptr, vectorTransferMatcher);
}
/// Checks whether SSA dominance would be violated if a for op's body
/// operations are shifted by the specified shifts. This method checks if a
/// 'def' and all its uses have the same shift factor.
// TODO(mlir-team): extend this to check for memory-based dependence violation
// when we have the support.
bool mlir::isOpwiseShiftValid(AffineForOp forOp, ArrayRef<uint64_t> shifts) {
auto *forBody = forOp.getBody();
assert(shifts.size() == forBody->getOperations().size());
// Work backwards over the body of the block so that the shift of a use's
// ancestor operation in the block gets recorded before it's looked up.
DenseMap<Operation *, uint64_t> forBodyShift;
for (auto it : llvm::enumerate(llvm::reverse(forBody->getOperations()))) {
auto &op = it.value();
// Get the index of the current operation, note that we are iterating in
// reverse so we need to fix it up.
size_t index = shifts.size() - it.index() - 1;
// Remember the shift of this operation.
uint64_t shift = shifts[index];
forBodyShift.try_emplace(&op, shift);
// Validate the results of this operation if it were to be shifted.
for (unsigned i = 0, e = op.getNumResults(); i < e; ++i) {
Value result = op.getResult(i);
for (auto *user : result.getUsers()) {
// If an ancestor operation doesn't lie in the block of forOp,
// there is no shift to check.
if (auto *ancOp = forBody->findAncestorOpInBlock(*user)) {
assert(forBodyShift.count(ancOp) > 0 && "ancestor expected in map");
if (shift != forBodyShift[ancOp])
return false;
}
}
}
}
return true;
}