llvm-project/llvm/lib/Target/PowerPC/PPCISelLowering.cpp

7862 lines
315 KiB
C++

//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the PPCISelLowering class.
//
//===----------------------------------------------------------------------===//
#include "PPCISelLowering.h"
#include "MCTargetDesc/PPCPredicates.h"
#include "PPCMachineFunctionInfo.h"
#include "PPCPerfectShuffle.h"
#include "PPCTargetMachine.h"
#include "PPCTargetObjectFile.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
if (TM.getSubtargetImpl()->isDarwin())
return new TargetLoweringObjectFileMachO();
if (TM.getSubtargetImpl()->isSVR4ABI())
return new PPC64LinuxTargetObjectFile();
return new TargetLoweringObjectFileELF();
}
PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
: TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
setPow2DivIsCheap();
// Use _setjmp/_longjmp instead of setjmp/longjmp.
setUseUnderscoreSetJmp(true);
setUseUnderscoreLongJmp(true);
// On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
// arguments are at least 4/8 bytes aligned.
bool isPPC64 = Subtarget->isPPC64();
setMinStackArgumentAlignment(isPPC64 ? 8:4);
// Set up the register classes.
addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
// PowerPC has an i16 but no i8 (or i1) SEXTLOAD
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
// PowerPC has pre-inc load and store's.
setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
// This is used in the ppcf128->int sequence. Note it has different semantics
// from FP_ROUND: that rounds to nearest, this rounds to zero.
setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
// We do not currently implement these libm ops for PowerPC.
setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand);
setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
setOperationAction(ISD::FRINT, MVT::ppcf128, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
// PowerPC has no SREM/UREM instructions
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::UREM, MVT::i32, Expand);
setOperationAction(ISD::SREM, MVT::i64, Expand);
setOperationAction(ISD::UREM, MVT::i64, Expand);
// Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
// We don't support sin/cos/sqrt/fmod/pow
setOperationAction(ISD::FSIN , MVT::f64, Expand);
setOperationAction(ISD::FCOS , MVT::f64, Expand);
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
setOperationAction(ISD::FREM , MVT::f64, Expand);
setOperationAction(ISD::FPOW , MVT::f64, Expand);
setOperationAction(ISD::FMA , MVT::f64, Legal);
setOperationAction(ISD::FSIN , MVT::f32, Expand);
setOperationAction(ISD::FCOS , MVT::f32, Expand);
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
setOperationAction(ISD::FREM , MVT::f32, Expand);
setOperationAction(ISD::FPOW , MVT::f32, Expand);
setOperationAction(ISD::FMA , MVT::f32, Legal);
setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
// If we're enabling GP optimizations, use hardware square root
if (!Subtarget->hasFSQRT() &&
!(TM.Options.UnsafeFPMath &&
Subtarget->hasFRSQRTE() && Subtarget->hasFRE()))
setOperationAction(ISD::FSQRT, MVT::f64, Expand);
if (!Subtarget->hasFSQRT() &&
!(TM.Options.UnsafeFPMath &&
Subtarget->hasFRSQRTES() && Subtarget->hasFRES()))
setOperationAction(ISD::FSQRT, MVT::f32, Expand);
if (Subtarget->hasFCPSGN()) {
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
} else {
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
}
if (Subtarget->hasFPRND()) {
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
setOperationAction(ISD::FROUND, MVT::f64, Legal);
setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
setOperationAction(ISD::FCEIL, MVT::f32, Legal);
setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
setOperationAction(ISD::FROUND, MVT::f32, Legal);
}
// PowerPC does not have BSWAP, CTPOP or CTTZ
setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
if (Subtarget->hasPOPCNTD()) {
setOperationAction(ISD::CTPOP, MVT::i32 , Legal);
setOperationAction(ISD::CTPOP, MVT::i64 , Legal);
} else {
setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
}
// PowerPC does not have ROTR
setOperationAction(ISD::ROTR, MVT::i32 , Expand);
setOperationAction(ISD::ROTR, MVT::i64 , Expand);
// PowerPC does not have Select
setOperationAction(ISD::SELECT, MVT::i32, Expand);
setOperationAction(ISD::SELECT, MVT::i64, Expand);
setOperationAction(ISD::SELECT, MVT::f32, Expand);
setOperationAction(ISD::SELECT, MVT::f64, Expand);
// PowerPC wants to turn select_cc of FP into fsel when possible.
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
// PowerPC wants to optimize integer setcc a bit
setOperationAction(ISD::SETCC, MVT::i32, Custom);
// PowerPC does not have BRCOND which requires SetCC
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
// PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
// PowerPC does not have [U|S]INT_TO_FP
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
setOperationAction(ISD::BITCAST, MVT::f32, Expand);
setOperationAction(ISD::BITCAST, MVT::i32, Expand);
setOperationAction(ISD::BITCAST, MVT::i64, Expand);
setOperationAction(ISD::BITCAST, MVT::f64, Expand);
// We cannot sextinreg(i1). Expand to shifts.
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
// NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
// SjLj exception handling but a light-weight setjmp/longjmp replacement to
// support continuation, user-level threading, and etc.. As a result, no
// other SjLj exception interfaces are implemented and please don't build
// your own exception handling based on them.
// LLVM/Clang supports zero-cost DWARF exception handling.
setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
// We want to legalize GlobalAddress and ConstantPool nodes into the
// appropriate instructions to materialize the address.
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
setOperationAction(ISD::JumpTable, MVT::i32, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
setOperationAction(ISD::JumpTable, MVT::i64, Custom);
// TRAP is legal.
setOperationAction(ISD::TRAP, MVT::Other, Legal);
// TRAMPOLINE is custom lowered.
setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
// VASTART needs to be custom lowered to use the VarArgsFrameIndex
setOperationAction(ISD::VASTART , MVT::Other, Custom);
if (Subtarget->isSVR4ABI()) {
if (isPPC64) {
// VAARG always uses double-word chunks, so promote anything smaller.
setOperationAction(ISD::VAARG, MVT::i1, Promote);
AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
setOperationAction(ISD::VAARG, MVT::i8, Promote);
AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
setOperationAction(ISD::VAARG, MVT::i16, Promote);
AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
setOperationAction(ISD::VAARG, MVT::i32, Promote);
AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
setOperationAction(ISD::VAARG, MVT::Other, Expand);
} else {
// VAARG is custom lowered with the 32-bit SVR4 ABI.
setOperationAction(ISD::VAARG, MVT::Other, Custom);
setOperationAction(ISD::VAARG, MVT::i64, Custom);
}
} else
setOperationAction(ISD::VAARG, MVT::Other, Expand);
if (Subtarget->isSVR4ABI() && !isPPC64)
// VACOPY is custom lowered with the 32-bit SVR4 ABI.
setOperationAction(ISD::VACOPY , MVT::Other, Custom);
else
setOperationAction(ISD::VACOPY , MVT::Other, Expand);
// Use the default implementation.
setOperationAction(ISD::VAEND , MVT::Other, Expand);
setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
// We want to custom lower some of our intrinsics.
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
// To handle counter-based loop conditions.
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
// Comparisons that require checking two conditions.
setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
if (Subtarget->has64BitSupport()) {
// They also have instructions for converting between i64 and fp.
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
// This is just the low 32 bits of a (signed) fp->i64 conversion.
// We cannot do this with Promote because i64 is not a legal type.
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
if (PPCSubTarget.hasLFIWAX() || Subtarget->isPPC64())
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
} else {
// PowerPC does not have FP_TO_UINT on 32-bit implementations.
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
}
// With the instructions enabled under FPCVT, we can do everything.
if (PPCSubTarget.hasFPCVT()) {
if (Subtarget->has64BitSupport()) {
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
}
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
}
if (Subtarget->use64BitRegs()) {
// 64-bit PowerPC implementations can support i64 types directly
addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
// BUILD_PAIR can't be handled natively, and should be expanded to shl/or
setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
// 64-bit PowerPC wants to expand i128 shifts itself.
setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
} else {
// 32-bit PowerPC wants to expand i64 shifts itself.
setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
}
if (Subtarget->hasAltivec()) {
// First set operation action for all vector types to expand. Then we
// will selectively turn on ones that can be effectively codegen'd.
for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
// add/sub are legal for all supported vector VT's.
setOperationAction(ISD::ADD , VT, Legal);
setOperationAction(ISD::SUB , VT, Legal);
// We promote all shuffles to v16i8.
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
// We promote all non-typed operations to v4i32.
setOperationAction(ISD::AND , VT, Promote);
AddPromotedToType (ISD::AND , VT, MVT::v4i32);
setOperationAction(ISD::OR , VT, Promote);
AddPromotedToType (ISD::OR , VT, MVT::v4i32);
setOperationAction(ISD::XOR , VT, Promote);
AddPromotedToType (ISD::XOR , VT, MVT::v4i32);
setOperationAction(ISD::LOAD , VT, Promote);
AddPromotedToType (ISD::LOAD , VT, MVT::v4i32);
setOperationAction(ISD::SELECT, VT, Promote);
AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
setOperationAction(ISD::STORE, VT, Promote);
AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
// No other operations are legal.
setOperationAction(ISD::MUL , VT, Expand);
setOperationAction(ISD::SDIV, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::UREM, VT, Expand);
setOperationAction(ISD::FDIV, VT, Expand);
setOperationAction(ISD::FREM, VT, Expand);
setOperationAction(ISD::FNEG, VT, Expand);
setOperationAction(ISD::FSQRT, VT, Expand);
setOperationAction(ISD::FLOG, VT, Expand);
setOperationAction(ISD::FLOG10, VT, Expand);
setOperationAction(ISD::FLOG2, VT, Expand);
setOperationAction(ISD::FEXP, VT, Expand);
setOperationAction(ISD::FEXP2, VT, Expand);
setOperationAction(ISD::FSIN, VT, Expand);
setOperationAction(ISD::FCOS, VT, Expand);
setOperationAction(ISD::FABS, VT, Expand);
setOperationAction(ISD::FPOWI, VT, Expand);
setOperationAction(ISD::FFLOOR, VT, Expand);
setOperationAction(ISD::FCEIL, VT, Expand);
setOperationAction(ISD::FTRUNC, VT, Expand);
setOperationAction(ISD::FRINT, VT, Expand);
setOperationAction(ISD::FNEARBYINT, VT, Expand);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
setOperationAction(ISD::UDIVREM, VT, Expand);
setOperationAction(ISD::SDIVREM, VT, Expand);
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
setOperationAction(ISD::FPOW, VT, Expand);
setOperationAction(ISD::CTPOP, VT, Expand);
setOperationAction(ISD::CTLZ, VT, Expand);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
setOperationAction(ISD::CTTZ, VT, Expand);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
setOperationAction(ISD::VSELECT, VT, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) {
MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j;
setTruncStoreAction(VT, InnerVT, Expand);
}
setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, Expand);
}
// We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
// with merges, splats, etc.
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
setOperationAction(ISD::AND , MVT::v4i32, Legal);
setOperationAction(ISD::OR , MVT::v4i32, Legal);
setOperationAction(ISD::XOR , MVT::v4i32, Legal);
setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
setOperationAction(ISD::STORE , MVT::v4i32, Legal);
setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
setOperationAction(ISD::MUL, MVT::v4f32, Legal);
setOperationAction(ISD::FMA, MVT::v4f32, Legal);
if (TM.Options.UnsafeFPMath) {
setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
}
setOperationAction(ISD::MUL, MVT::v4i32, Custom);
setOperationAction(ISD::MUL, MVT::v8i16, Custom);
setOperationAction(ISD::MUL, MVT::v16i8, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
// Altivec does not contain unordered floating-point compare instructions
setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
setCondCodeAction(ISD::SETUGT, MVT::v4f32, Expand);
setCondCodeAction(ISD::SETUGE, MVT::v4f32, Expand);
setCondCodeAction(ISD::SETULT, MVT::v4f32, Expand);
setCondCodeAction(ISD::SETULE, MVT::v4f32, Expand);
setCondCodeAction(ISD::SETO, MVT::v4f32, Expand);
setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
}
if (Subtarget->has64BitSupport()) {
setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
}
setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand);
setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
setBooleanContents(ZeroOrOneBooleanContent);
// Altivec instructions set fields to all zeros or all ones.
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
if (isPPC64) {
setStackPointerRegisterToSaveRestore(PPC::X1);
setExceptionPointerRegister(PPC::X3);
setExceptionSelectorRegister(PPC::X4);
} else {
setStackPointerRegisterToSaveRestore(PPC::R1);
setExceptionPointerRegister(PPC::R3);
setExceptionSelectorRegister(PPC::R4);
}
// We have target-specific dag combine patterns for the following nodes:
setTargetDAGCombine(ISD::SINT_TO_FP);
setTargetDAGCombine(ISD::LOAD);
setTargetDAGCombine(ISD::STORE);
setTargetDAGCombine(ISD::BR_CC);
setTargetDAGCombine(ISD::BSWAP);
setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
// Use reciprocal estimates.
if (TM.Options.UnsafeFPMath) {
setTargetDAGCombine(ISD::FDIV);
setTargetDAGCombine(ISD::FSQRT);
}
// Darwin long double math library functions have $LDBL128 appended.
if (Subtarget->isDarwin()) {
setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
}
setMinFunctionAlignment(2);
if (PPCSubTarget.isDarwin())
setPrefFunctionAlignment(4);
if (isPPC64 && Subtarget->isJITCodeModel())
// Temporary workaround for the inability of PPC64 JIT to handle jump
// tables.
setSupportJumpTables(false);
setInsertFencesForAtomic(true);
setSchedulingPreference(Sched::Hybrid);
computeRegisterProperties();
// The Freescale cores does better with aggressive inlining of memcpy and
// friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
if (Subtarget->getDarwinDirective() == PPC::DIR_E500mc ||
Subtarget->getDarwinDirective() == PPC::DIR_E5500) {
MaxStoresPerMemset = 32;
MaxStoresPerMemsetOptSize = 16;
MaxStoresPerMemcpy = 32;
MaxStoresPerMemcpyOptSize = 8;
MaxStoresPerMemmove = 32;
MaxStoresPerMemmoveOptSize = 8;
setPrefFunctionAlignment(4);
}
}
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area.
unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
const TargetMachine &TM = getTargetMachine();
// Darwin passes everything on 4 byte boundary.
if (TM.getSubtarget<PPCSubtarget>().isDarwin())
return 4;
// 16byte and wider vectors are passed on 16byte boundary.
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
if (VTy->getBitWidth() >= 128)
return 16;
// The rest is 8 on PPC64 and 4 on PPC32 boundary.
if (PPCSubTarget.isPPC64())
return 8;
return 4;
}
const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
default: return 0;
case PPCISD::FSEL: return "PPCISD::FSEL";
case PPCISD::FCFID: return "PPCISD::FCFID";
case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
case PPCISD::FRE: return "PPCISD::FRE";
case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE";
case PPCISD::STFIWX: return "PPCISD::STFIWX";
case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
case PPCISD::VPERM: return "PPCISD::VPERM";
case PPCISD::Hi: return "PPCISD::Hi";
case PPCISD::Lo: return "PPCISD::Lo";
case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY";
case PPCISD::TOC_RESTORE: return "PPCISD::TOC_RESTORE";
case PPCISD::LOAD: return "PPCISD::LOAD";
case PPCISD::LOAD_TOC: return "PPCISD::LOAD_TOC";
case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
case PPCISD::SRL: return "PPCISD::SRL";
case PPCISD::SRA: return "PPCISD::SRA";
case PPCISD::SHL: return "PPCISD::SHL";
case PPCISD::CALL: return "PPCISD::CALL";
case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP";
case PPCISD::MTCTR: return "PPCISD::MTCTR";
case PPCISD::BCTRL: return "PPCISD::BCTRL";
case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP";
case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
case PPCISD::MFOCRF: return "PPCISD::MFOCRF";
case PPCISD::VCMP: return "PPCISD::VCMP";
case PPCISD::VCMPo: return "PPCISD::VCMPo";
case PPCISD::LBRX: return "PPCISD::LBRX";
case PPCISD::STBRX: return "PPCISD::STBRX";
case PPCISD::LARX: return "PPCISD::LARX";
case PPCISD::STCX: return "PPCISD::STCX";
case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
case PPCISD::BDNZ: return "PPCISD::BDNZ";
case PPCISD::BDZ: return "PPCISD::BDZ";
case PPCISD::MFFS: return "PPCISD::MFFS";
case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ";
case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN";
case PPCISD::CR6SET: return "PPCISD::CR6SET";
case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET";
case PPCISD::ADDIS_TOC_HA: return "PPCISD::ADDIS_TOC_HA";
case PPCISD::LD_TOC_L: return "PPCISD::LD_TOC_L";
case PPCISD::ADDI_TOC_L: return "PPCISD::ADDI_TOC_L";
case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L";
case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS";
case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA";
case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L";
case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR";
case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA";
case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L";
case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR";
case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L";
case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT";
case PPCISD::SC: return "PPCISD::SC";
}
}
EVT PPCTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
if (!VT.isVector())
return MVT::i32;
return VT.changeVectorElementTypeToInteger();
}
//===----------------------------------------------------------------------===//
// Node matching predicates, for use by the tblgen matching code.
//===----------------------------------------------------------------------===//
/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
static bool isFloatingPointZero(SDValue Op) {
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
return CFP->getValueAPF().isZero();
else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
// Maybe this has already been legalized into the constant pool?
if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
return CFP->getValueAPF().isZero();
}
return false;
}
/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
/// true if Op is undef or if it matches the specified value.
static bool isConstantOrUndef(int Op, int Val) {
return Op < 0 || Op == Val;
}
/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
/// VPKUHUM instruction.
bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
if (!isUnary) {
for (unsigned i = 0; i != 16; ++i)
if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
return false;
} else {
for (unsigned i = 0; i != 8; ++i)
if (!isConstantOrUndef(N->getMaskElt(i), i*2+1) ||
!isConstantOrUndef(N->getMaskElt(i+8), i*2+1))
return false;
}
return true;
}
/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
/// VPKUWUM instruction.
bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
if (!isUnary) {
for (unsigned i = 0; i != 16; i += 2)
if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) ||
!isConstantOrUndef(N->getMaskElt(i+1), i*2+3))
return false;
} else {
for (unsigned i = 0; i != 8; i += 2)
if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) ||
!isConstantOrUndef(N->getMaskElt(i+1), i*2+3) ||
!isConstantOrUndef(N->getMaskElt(i+8), i*2+2) ||
!isConstantOrUndef(N->getMaskElt(i+9), i*2+3))
return false;
}
return true;
}
/// isVMerge - Common function, used to match vmrg* shuffles.
///
static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
unsigned LHSStart, unsigned RHSStart) {
assert(N->getValueType(0) == MVT::v16i8 &&
"PPC only supports shuffles by bytes!");
assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
"Unsupported merge size!");
for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
LHSStart+j+i*UnitSize) ||
!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
RHSStart+j+i*UnitSize))
return false;
}
return true;
}
/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
bool isUnary) {
if (!isUnary)
return isVMerge(N, UnitSize, 8, 24);
return isVMerge(N, UnitSize, 8, 8);
}
/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
bool isUnary) {
if (!isUnary)
return isVMerge(N, UnitSize, 0, 16);
return isVMerge(N, UnitSize, 0, 0);
}
/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
/// amount, otherwise return -1.
int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
assert(N->getValueType(0) == MVT::v16i8 &&
"PPC only supports shuffles by bytes!");
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
// Find the first non-undef value in the shuffle mask.
unsigned i;
for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
/*search*/;
if (i == 16) return -1; // all undef.
// Otherwise, check to see if the rest of the elements are consecutively
// numbered from this value.
unsigned ShiftAmt = SVOp->getMaskElt(i);
if (ShiftAmt < i) return -1;
ShiftAmt -= i;
if (!isUnary) {
// Check the rest of the elements to see if they are consecutive.
for (++i; i != 16; ++i)
if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
return -1;
} else {
// Check the rest of the elements to see if they are consecutive.
for (++i; i != 16; ++i)
if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
return -1;
}
return ShiftAmt;
}
/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a splat of a single element that is suitable for input to
/// VSPLTB/VSPLTH/VSPLTW.
bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
assert(N->getValueType(0) == MVT::v16i8 &&
(EltSize == 1 || EltSize == 2 || EltSize == 4));
// This is a splat operation if each element of the permute is the same, and
// if the value doesn't reference the second vector.
unsigned ElementBase = N->getMaskElt(0);
// FIXME: Handle UNDEF elements too!
if (ElementBase >= 16)
return false;
// Check that the indices are consecutive, in the case of a multi-byte element
// splatted with a v16i8 mask.
for (unsigned i = 1; i != EltSize; ++i)
if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
return false;
for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
if (N->getMaskElt(i) < 0) continue;
for (unsigned j = 0; j != EltSize; ++j)
if (N->getMaskElt(i+j) != N->getMaskElt(j))
return false;
}
return true;
}
/// isAllNegativeZeroVector - Returns true if all elements of build_vector
/// are -0.0.
bool PPC::isAllNegativeZeroVector(SDNode *N) {
BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
APInt APVal, APUndef;
unsigned BitSize;
bool HasAnyUndefs;
if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
return CFP->getValueAPF().isNegZero();
return false;
}
/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
assert(isSplatShuffleMask(SVOp, EltSize));
return SVOp->getMaskElt(0) / EltSize;
}
/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
/// by using a vspltis[bhw] instruction of the specified element size, return
/// the constant being splatted. The ByteSize field indicates the number of
/// bytes of each element [124] -> [bhw].
SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
SDValue OpVal(0, 0);
// If ByteSize of the splat is bigger than the element size of the
// build_vector, then we have a case where we are checking for a splat where
// multiple elements of the buildvector are folded together into a single
// logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
unsigned EltSize = 16/N->getNumOperands();
if (EltSize < ByteSize) {
unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
SDValue UniquedVals[4];
assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
// See if all of the elements in the buildvector agree across.
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
// If the element isn't a constant, bail fully out.
if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
if (UniquedVals[i&(Multiple-1)].getNode() == 0)
UniquedVals[i&(Multiple-1)] = N->getOperand(i);
else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
return SDValue(); // no match.
}
// Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
// either constant or undef values that are identical for each chunk. See
// if these chunks can form into a larger vspltis*.
// Check to see if all of the leading entries are either 0 or -1. If
// neither, then this won't fit into the immediate field.
bool LeadingZero = true;
bool LeadingOnes = true;
for (unsigned i = 0; i != Multiple-1; ++i) {
if (UniquedVals[i].getNode() == 0) continue; // Must have been undefs.
LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
}
// Finally, check the least significant entry.
if (LeadingZero) {
if (UniquedVals[Multiple-1].getNode() == 0)
return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
if (Val < 16)
return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
}
if (LeadingOnes) {
if (UniquedVals[Multiple-1].getNode() == 0)
return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
return DAG.getTargetConstant(Val, MVT::i32);
}
return SDValue();
}
// Check to see if this buildvec has a single non-undef value in its elements.
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
if (OpVal.getNode() == 0)
OpVal = N->getOperand(i);
else if (OpVal != N->getOperand(i))
return SDValue();
}
if (OpVal.getNode() == 0) return SDValue(); // All UNDEF: use implicit def.
unsigned ValSizeInBytes = EltSize;
uint64_t Value = 0;
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
Value = CN->getZExtValue();
} else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
Value = FloatToBits(CN->getValueAPF().convertToFloat());
}
// If the splat value is larger than the element value, then we can never do
// this splat. The only case that we could fit the replicated bits into our
// immediate field for would be zero, and we prefer to use vxor for it.
if (ValSizeInBytes < ByteSize) return SDValue();
// If the element value is larger than the splat value, cut it in half and
// check to see if the two halves are equal. Continue doing this until we
// get to ByteSize. This allows us to handle 0x01010101 as 0x01.
while (ValSizeInBytes > ByteSize) {
ValSizeInBytes >>= 1;
// If the top half equals the bottom half, we're still ok.
if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
(Value & ((1 << (8*ValSizeInBytes))-1)))
return SDValue();
}
// Properly sign extend the value.
int MaskVal = SignExtend32(Value, ByteSize * 8);
// If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
if (MaskVal == 0) return SDValue();
// Finally, if this value fits in a 5 bit sext field, return it
if (SignExtend32<5>(MaskVal) == MaskVal)
return DAG.getTargetConstant(MaskVal, MVT::i32);
return SDValue();
}
//===----------------------------------------------------------------------===//
// Addressing Mode Selection
//===----------------------------------------------------------------------===//
/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
/// or 64-bit immediate, and if the value can be accurately represented as a
/// sign extension from a 16-bit value. If so, this returns true and the
/// immediate.
static bool isIntS16Immediate(SDNode *N, short &Imm) {
if (N->getOpcode() != ISD::Constant)
return false;
Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
if (N->getValueType(0) == MVT::i32)
return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
else
return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
}
static bool isIntS16Immediate(SDValue Op, short &Imm) {
return isIntS16Immediate(Op.getNode(), Imm);
}
/// SelectAddressRegReg - Given the specified addressed, check to see if it
/// can be represented as an indexed [r+r] operation. Returns false if it
/// can be more efficiently represented with [r+imm].
bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
SDValue &Index,
SelectionDAG &DAG) const {
short imm = 0;
if (N.getOpcode() == ISD::ADD) {
if (isIntS16Immediate(N.getOperand(1), imm))
return false; // r+i
if (N.getOperand(1).getOpcode() == PPCISD::Lo)
return false; // r+i
Base = N.getOperand(0);
Index = N.getOperand(1);
return true;
} else if (N.getOpcode() == ISD::OR) {
if (isIntS16Immediate(N.getOperand(1), imm))
return false; // r+i can fold it if we can.
// If this is an or of disjoint bitfields, we can codegen this as an add
// (for better address arithmetic) if the LHS and RHS of the OR are provably
// disjoint.
APInt LHSKnownZero, LHSKnownOne;
APInt RHSKnownZero, RHSKnownOne;
DAG.ComputeMaskedBits(N.getOperand(0),
LHSKnownZero, LHSKnownOne);
if (LHSKnownZero.getBoolValue()) {
DAG.ComputeMaskedBits(N.getOperand(1),
RHSKnownZero, RHSKnownOne);
// If all of the bits are known zero on the LHS or RHS, the add won't
// carry.
if (~(LHSKnownZero | RHSKnownZero) == 0) {
Base = N.getOperand(0);
Index = N.getOperand(1);
return true;
}
}
}
return false;
}
// If we happen to be doing an i64 load or store into a stack slot that has
// less than a 4-byte alignment, then the frame-index elimination may need to
// use an indexed load or store instruction (because the offset may not be a
// multiple of 4). The extra register needed to hold the offset comes from the
// register scavenger, and it is possible that the scavenger will need to use
// an emergency spill slot. As a result, we need to make sure that a spill slot
// is allocated when doing an i64 load/store into a less-than-4-byte-aligned
// stack slot.
static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
// FIXME: This does not handle the LWA case.
if (VT != MVT::i64)
return;
// NOTE: We'll exclude negative FIs here, which come from argument
// lowering, because there are no known test cases triggering this problem
// using packed structures (or similar). We can remove this exclusion if
// we find such a test case. The reason why this is so test-case driven is
// because this entire 'fixup' is only to prevent crashes (from the
// register scavenger) on not-really-valid inputs. For example, if we have:
// %a = alloca i1
// %b = bitcast i1* %a to i64*
// store i64* a, i64 b
// then the store should really be marked as 'align 1', but is not. If it
// were marked as 'align 1' then the indexed form would have been
// instruction-selected initially, and the problem this 'fixup' is preventing
// won't happen regardless.
if (FrameIdx < 0)
return;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
unsigned Align = MFI->getObjectAlignment(FrameIdx);
if (Align >= 4)
return;
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
FuncInfo->setHasNonRISpills();
}
/// Returns true if the address N can be represented by a base register plus
/// a signed 16-bit displacement [r+imm], and if it is not better
/// represented as reg+reg. If Aligned is true, only accept displacements
/// suitable for STD and friends, i.e. multiples of 4.
bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
SDValue &Base,
SelectionDAG &DAG,
bool Aligned) const {
// FIXME dl should come from parent load or store, not from address
SDLoc dl(N);
// If this can be more profitably realized as r+r, fail.
if (SelectAddressRegReg(N, Disp, Base, DAG))
return false;
if (N.getOpcode() == ISD::ADD) {
short imm = 0;
if (isIntS16Immediate(N.getOperand(1), imm) &&
(!Aligned || (imm & 3) == 0)) {
Disp = DAG.getTargetConstant(imm, N.getValueType());
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
} else {
Base = N.getOperand(0);
}
return true; // [r+i]
} else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
// Match LOAD (ADD (X, Lo(G))).
assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
&& "Cannot handle constant offsets yet!");
Disp = N.getOperand(1).getOperand(0); // The global address.
assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
Disp.getOpcode() == ISD::TargetConstantPool ||
Disp.getOpcode() == ISD::TargetJumpTable);
Base = N.getOperand(0);
return true; // [&g+r]
}
} else if (N.getOpcode() == ISD::OR) {
short imm = 0;
if (isIntS16Immediate(N.getOperand(1), imm) &&
(!Aligned || (imm & 3) == 0)) {
// If this is an or of disjoint bitfields, we can codegen this as an add
// (for better address arithmetic) if the LHS and RHS of the OR are
// provably disjoint.
APInt LHSKnownZero, LHSKnownOne;
DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
// If all of the bits are known zero on the LHS or RHS, the add won't
// carry.
Base = N.getOperand(0);
Disp = DAG.getTargetConstant(imm, N.getValueType());
return true;
}
}
} else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
// Loading from a constant address.
// If this address fits entirely in a 16-bit sext immediate field, codegen
// this as "d, 0"
short Imm;
if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
CN->getValueType(0));
return true;
}
// Handle 32-bit sext immediates with LIS + addr mode.
if ((CN->getValueType(0) == MVT::i32 ||
(int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
(!Aligned || (CN->getZExtValue() & 3) == 0)) {
int Addr = (int)CN->getZExtValue();
// Otherwise, break this down into an LIS + disp.
Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
return true;
}
}
Disp = DAG.getTargetConstant(0, getPointerTy());
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
} else
Base = N;
return true; // [r+0]
}
/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
/// represented as an indexed [r+r] operation.
bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
SDValue &Index,
SelectionDAG &DAG) const {
// Check to see if we can easily represent this as an [r+r] address. This
// will fail if it thinks that the address is more profitably represented as
// reg+imm, e.g. where imm = 0.
if (SelectAddressRegReg(N, Base, Index, DAG))
return true;
// If the operand is an addition, always emit this as [r+r], since this is
// better (for code size, and execution, as the memop does the add for free)
// than emitting an explicit add.
if (N.getOpcode() == ISD::ADD) {
Base = N.getOperand(0);
Index = N.getOperand(1);
return true;
}
// Otherwise, do it the hard way, using R0 as the base register.
Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
N.getValueType());
Index = N;
return true;
}
/// getPreIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if the node's address
/// can be legally represented as pre-indexed load / store address.
bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
SDValue &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const {
if (DisablePPCPreinc) return false;
bool isLoad = true;
SDValue Ptr;
EVT VT;
unsigned Alignment;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
Ptr = LD->getBasePtr();
VT = LD->getMemoryVT();
Alignment = LD->getAlignment();
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
Ptr = ST->getBasePtr();
VT = ST->getMemoryVT();
Alignment = ST->getAlignment();
isLoad = false;
} else
return false;
// PowerPC doesn't have preinc load/store instructions for vectors.
if (VT.isVector())
return false;
if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
// Common code will reject creating a pre-inc form if the base pointer
// is a frame index, or if N is a store and the base pointer is either
// the same as or a predecessor of the value being stored. Check for
// those situations here, and try with swapped Base/Offset instead.
bool Swap = false;
if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
Swap = true;
else if (!isLoad) {
SDValue Val = cast<StoreSDNode>(N)->getValue();
if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
Swap = true;
}
if (Swap)
std::swap(Base, Offset);
AM = ISD::PRE_INC;
return true;
}
// LDU/STU can only handle immediates that are a multiple of 4.
if (VT != MVT::i64) {
if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
return false;
} else {
// LDU/STU need an address with at least 4-byte alignment.
if (Alignment < 4)
return false;
if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
return false;
}
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
// PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
// sext i32 to i64 when addr mode is r+i.
if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
LD->getExtensionType() == ISD::SEXTLOAD &&
isa<ConstantSDNode>(Offset))
return false;
}
AM = ISD::PRE_INC;
return true;
}
//===----------------------------------------------------------------------===//
// LowerOperation implementation
//===----------------------------------------------------------------------===//
/// GetLabelAccessInfo - Return true if we should reference labels using a
/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
unsigned &LoOpFlags, const GlobalValue *GV = 0) {
HiOpFlags = PPCII::MO_HA;
LoOpFlags = PPCII::MO_LO;
// Don't use the pic base if not in PIC relocation model. Or if we are on a
// non-darwin platform. We don't support PIC on other platforms yet.
bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
TM.getSubtarget<PPCSubtarget>().isDarwin();
if (isPIC) {
HiOpFlags |= PPCII::MO_PIC_FLAG;
LoOpFlags |= PPCII::MO_PIC_FLAG;
}
// If this is a reference to a global value that requires a non-lazy-ptr, make
// sure that instruction lowering adds it.
if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
HiOpFlags |= PPCII::MO_NLP_FLAG;
LoOpFlags |= PPCII::MO_NLP_FLAG;
if (GV->hasHiddenVisibility()) {
HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
}
}
return isPIC;
}
static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
SelectionDAG &DAG) {
EVT PtrVT = HiPart.getValueType();
SDValue Zero = DAG.getConstant(0, PtrVT);
SDLoc DL(HiPart);
SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
// With PIC, the first instruction is actually "GR+hi(&G)".
if (isPIC)
Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
// Generate non-pic code that has direct accesses to the constant pool.
// The address of the global is just (hi(&g)+lo(&g)).
return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
}
SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
SelectionDAG &DAG) const {
EVT PtrVT = Op.getValueType();
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
const Constant *C = CP->getConstVal();
// 64-bit SVR4 ABI code is always position-independent.
// The actual address of the GlobalValue is stored in the TOC.
if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(CP), MVT::i64, GA,
DAG.getRegister(PPC::X2, MVT::i64));
}
unsigned MOHiFlag, MOLoFlag;
bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
SDValue CPIHi =
DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
SDValue CPILo =
DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
}
SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
EVT PtrVT = Op.getValueType();
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
// 64-bit SVR4 ABI code is always position-independent.
// The actual address of the GlobalValue is stored in the TOC.
if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(JT), MVT::i64, GA,
DAG.getRegister(PPC::X2, MVT::i64));
}
unsigned MOHiFlag, MOLoFlag;
bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
}
SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
SelectionDAG &DAG) const {
EVT PtrVT = Op.getValueType();
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
unsigned MOHiFlag, MOLoFlag;
bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
}
SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) const {
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
SDLoc dl(GA);
const GlobalValue *GV = GA->getGlobal();
EVT PtrVT = getPointerTy();
bool is64bit = PPCSubTarget.isPPC64();
TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
if (Model == TLSModel::LocalExec) {
SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
PPCII::MO_TPREL_HA);
SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
PPCII::MO_TPREL_LO);
SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
is64bit ? MVT::i64 : MVT::i32);
SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
}
if (!is64bit)
llvm_unreachable("only local-exec is currently supported for ppc32");
if (Model == TLSModel::InitialExec) {
SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
PPCII::MO_TLS);
SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
SDValue TPOffsetHi = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
PtrVT, GOTReg, TGA);
SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
PtrVT, TGA, TPOffsetHi);
return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
}
if (Model == TLSModel::GeneralDynamic) {
SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
GOTReg, TGA);
SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT,
GOTEntryHi, TGA);
// We need a chain node, and don't have one handy. The underlying
// call has no side effects, so using the function entry node
// suffices.
SDValue Chain = DAG.getEntryNode();
Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl,
PtrVT, ParmReg, TGA);
// The return value from GET_TLS_ADDR really is in X3 already, but
// some hacks are needed here to tie everything together. The extra
// copies dissolve during subsequent transforms.
Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
return DAG.getCopyFromReg(Chain, dl, PPC::X3, PtrVT);
}
if (Model == TLSModel::LocalDynamic) {
SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
GOTReg, TGA);
SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT,
GOTEntryHi, TGA);
// We need a chain node, and don't have one handy. The underlying
// call has no side effects, so using the function entry node
// suffices.
SDValue Chain = DAG.getEntryNode();
Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl,
PtrVT, ParmReg, TGA);
// The return value from GET_TLSLD_ADDR really is in X3 already, but
// some hacks are needed here to tie everything together. The extra
// copies dissolve during subsequent transforms.
Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT,
Chain, ParmReg, TGA);
return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
}
llvm_unreachable("Unknown TLS model!");
}
SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
EVT PtrVT = Op.getValueType();
GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
SDLoc DL(GSDN);
const GlobalValue *GV = GSDN->getGlobal();
// 64-bit SVR4 ABI code is always position-independent.
// The actual address of the GlobalValue is stored in the TOC.
if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
DAG.getRegister(PPC::X2, MVT::i64));
}
unsigned MOHiFlag, MOLoFlag;
bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
SDValue GAHi =
DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
SDValue GALo =
DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
// If the global reference is actually to a non-lazy-pointer, we have to do an
// extra load to get the address of the global.
if (MOHiFlag & PPCII::MO_NLP_FLAG)
Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
false, false, false, 0);
return Ptr;
}
SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
SDLoc dl(Op);
// If we're comparing for equality to zero, expose the fact that this is
// implented as a ctlz/srl pair on ppc, so that the dag combiner can
// fold the new nodes.
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
if (C->isNullValue() && CC == ISD::SETEQ) {
EVT VT = Op.getOperand(0).getValueType();
SDValue Zext = Op.getOperand(0);
if (VT.bitsLT(MVT::i32)) {
VT = MVT::i32;
Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
}
unsigned Log2b = Log2_32(VT.getSizeInBits());
SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
DAG.getConstant(Log2b, MVT::i32));
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
}
// Leave comparisons against 0 and -1 alone for now, since they're usually
// optimized. FIXME: revisit this when we can custom lower all setcc
// optimizations.
if (C->isAllOnesValue() || C->isNullValue())
return SDValue();
}
// If we have an integer seteq/setne, turn it into a compare against zero
// by xor'ing the rhs with the lhs, which is faster than setting a
// condition register, reading it back out, and masking the correct bit. The
// normal approach here uses sub to do this instead of xor. Using xor exposes
// the result to other bit-twiddling opportunities.
EVT LHSVT = Op.getOperand(0).getValueType();
if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
EVT VT = Op.getValueType();
SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
Op.getOperand(1));
return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
}
return SDValue();
}
SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
const PPCSubtarget &Subtarget) const {
SDNode *Node = Op.getNode();
EVT VT = Node->getValueType(0);
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
SDValue InChain = Node->getOperand(0);
SDValue VAListPtr = Node->getOperand(1);
const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
SDLoc dl(Node);
assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
// gpr_index
SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
VAListPtr, MachinePointerInfo(SV), MVT::i8,
false, false, 0);
InChain = GprIndex.getValue(1);
if (VT == MVT::i64) {
// Check if GprIndex is even
SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
DAG.getConstant(1, MVT::i32));
SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
DAG.getConstant(0, MVT::i32), ISD::SETNE);
SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
DAG.getConstant(1, MVT::i32));
// Align GprIndex to be even if it isn't
GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
GprIndex);
}
// fpr index is 1 byte after gpr
SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
DAG.getConstant(1, MVT::i32));
// fpr
SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
FprPtr, MachinePointerInfo(SV), MVT::i8,
false, false, 0);
InChain = FprIndex.getValue(1);
SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
DAG.getConstant(8, MVT::i32));
SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
DAG.getConstant(4, MVT::i32));
// areas
SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
MachinePointerInfo(), false, false,
false, 0);
InChain = OverflowArea.getValue(1);
SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
MachinePointerInfo(), false, false,
false, 0);
InChain = RegSaveArea.getValue(1);
// select overflow_area if index > 8
SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
DAG.getConstant(8, MVT::i32), ISD::SETLT);
// adjustment constant gpr_index * 4/8
SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
VT.isInteger() ? GprIndex : FprIndex,
DAG.getConstant(VT.isInteger() ? 4 : 8,
MVT::i32));
// OurReg = RegSaveArea + RegConstant
SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
RegConstant);
// Floating types are 32 bytes into RegSaveArea
if (VT.isFloatingPoint())
OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
DAG.getConstant(32, MVT::i32));
// increase {f,g}pr_index by 1 (or 2 if VT is i64)
SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
VT.isInteger() ? GprIndex : FprIndex,
DAG.getConstant(VT == MVT::i64 ? 2 : 1,
MVT::i32));
InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
VT.isInteger() ? VAListPtr : FprPtr,
MachinePointerInfo(SV),
MVT::i8, false, false, 0);
// determine if we should load from reg_save_area or overflow_area
SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
// increase overflow_area by 4/8 if gpr/fpr > 8
SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
DAG.getConstant(VT.isInteger() ? 4 : 8,
MVT::i32));
OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
OverflowAreaPlusN);
InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
OverflowAreaPtr,
MachinePointerInfo(),
MVT::i32, false, false, 0);
return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
false, false, false, 0);
}
SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG,
const PPCSubtarget &Subtarget) const {
assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
// We have to copy the entire va_list struct:
// 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
return DAG.getMemcpy(Op.getOperand(0), Op,
Op.getOperand(1), Op.getOperand(2),
DAG.getConstant(12, MVT::i32), 8, false, true,
MachinePointerInfo(), MachinePointerInfo());
}
SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
SelectionDAG &DAG) const {
return Op.getOperand(0);
}
SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue Trmp = Op.getOperand(1); // trampoline
SDValue FPtr = Op.getOperand(2); // nested function
SDValue Nest = Op.getOperand(3); // 'nest' parameter value
SDLoc dl(Op);
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
bool isPPC64 = (PtrVT == MVT::i64);
Type *IntPtrTy =
DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
*DAG.getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = IntPtrTy;
Entry.Node = Trmp; Args.push_back(Entry);
// TrampSize == (isPPC64 ? 48 : 40);
Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
isPPC64 ? MVT::i64 : MVT::i32);
Args.push_back(Entry);
Entry.Node = FPtr; Args.push_back(Entry);
Entry.Node = Nest; Args.push_back(Entry);
// Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
TargetLowering::CallLoweringInfo CLI(Chain,
Type::getVoidTy(*DAG.getContext()),
false, false, false, false, 0,
CallingConv::C,
/*isTailCall=*/false,
/*doesNotRet=*/false,
/*isReturnValueUsed=*/true,
DAG.getExternalSymbol("__trampoline_setup", PtrVT),
Args, DAG, dl);
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
return CallResult.second;
}
SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
const PPCSubtarget &Subtarget) const {
MachineFunction &MF = DAG.getMachineFunction();
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
SDLoc dl(Op);
if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
MachinePointerInfo(SV),
false, false, 0);
}
// For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
// We suppose the given va_list is already allocated.
//
// typedef struct {
// char gpr; /* index into the array of 8 GPRs
// * stored in the register save area
// * gpr=0 corresponds to r3,
// * gpr=1 to r4, etc.
// */
// char fpr; /* index into the array of 8 FPRs
// * stored in the register save area
// * fpr=0 corresponds to f1,
// * fpr=1 to f2, etc.
// */
// char *overflow_arg_area;
// /* location on stack that holds
// * the next overflow argument
// */
// char *reg_save_area;
// /* where r3:r10 and f1:f8 (if saved)
// * are stored
// */
// } va_list[1];
SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
PtrVT);
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
PtrVT);
uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
uint64_t FPROffset = 1;
SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
// Store first byte : number of int regs
SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
Op.getOperand(1),
MachinePointerInfo(SV),
MVT::i8, false, false, 0);
uint64_t nextOffset = FPROffset;
SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
ConstFPROffset);
// Store second byte : number of float regs
SDValue secondStore =
DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
MachinePointerInfo(SV, nextOffset), MVT::i8,
false, false, 0);
nextOffset += StackOffset;
nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
// Store second word : arguments given on stack
SDValue thirdStore =
DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
MachinePointerInfo(SV, nextOffset),
false, false, 0);
nextOffset += FrameOffset;
nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
// Store third word : arguments given in registers
return DAG.getStore(thirdStore, dl, FR, nextPtr,
MachinePointerInfo(SV, nextOffset),
false, false, 0);
}
#include "PPCGenCallingConv.inc"
bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State) {
return true;
}
bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
MVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State) {
static const uint16_t ArgRegs[] = {
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
};
const unsigned NumArgRegs = array_lengthof(ArgRegs);
unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
// Skip one register if the first unallocated register has an even register
// number and there are still argument registers available which have not been
// allocated yet. RegNum is actually an index into ArgRegs, which means we
// need to skip a register if RegNum is odd.
if (RegNum != NumArgRegs && RegNum % 2 == 1) {
State.AllocateReg(ArgRegs[RegNum]);
}
// Always return false here, as this function only makes sure that the first
// unallocated register has an odd register number and does not actually
// allocate a register for the current argument.
return false;
}
bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
MVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State) {
static const uint16_t ArgRegs[] = {
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
PPC::F8
};
const unsigned NumArgRegs = array_lengthof(ArgRegs);
unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
// If there is only one Floating-point register left we need to put both f64
// values of a split ppc_fp128 value on the stack.
if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
State.AllocateReg(ArgRegs[RegNum]);
}
// Always return false here, as this function only makes sure that the two f64
// values a ppc_fp128 value is split into are both passed in registers or both
// passed on the stack and does not actually allocate a register for the
// current argument.
return false;
}
/// GetFPR - Get the set of FP registers that should be allocated for arguments,
/// on Darwin.
static const uint16_t *GetFPR() {
static const uint16_t FPR[] = {
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
};
return FPR;
}
/// CalculateStackSlotSize - Calculates the size reserved for this argument on
/// the stack.
static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
unsigned PtrByteSize) {
unsigned ArgSize = ArgVT.getSizeInBits()/8;
if (Flags.isByVal())
ArgSize = Flags.getByValSize();
ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
return ArgSize;
}
SDValue
PPCTargetLowering::LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg>
&Ins,
SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals)
const {
if (PPCSubTarget.isSVR4ABI()) {
if (PPCSubTarget.isPPC64())
return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
dl, DAG, InVals);
else
return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
dl, DAG, InVals);
} else {
return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
dl, DAG, InVals);
}
}
SDValue
PPCTargetLowering::LowerFormalArguments_32SVR4(
SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg>
&Ins,
SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
// 32-bit SVR4 ABI Stack Frame Layout:
// +-----------------------------------+
// +--> | Back chain |
// | +-----------------------------------+
// | | Floating-point register save area |
// | +-----------------------------------+
// | | General register save area |
// | +-----------------------------------+
// | | CR save word |
// | +-----------------------------------+
// | | VRSAVE save word |
// | +-----------------------------------+
// | | Alignment padding |
// | +-----------------------------------+
// | | Vector register save area |
// | +-----------------------------------+
// | | Local variable space |
// | +-----------------------------------+
// | | Parameter list area |
// | +-----------------------------------+
// | | LR save word |
// | +-----------------------------------+
// SP--> +--- | Back chain |
// +-----------------------------------+
//
// Specifications:
// System V Application Binary Interface PowerPC Processor Supplement
// AltiVec Technology Programming Interface Manual
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
// Potential tail calls could cause overwriting of argument stack slots.
bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
(CallConv == CallingConv::Fast));
unsigned PtrByteSize = 4;
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), ArgLocs, *DAG.getContext());
// Reserve space for the linkage area on the stack.
CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
// Arguments stored in registers.
if (VA.isRegLoc()) {
const TargetRegisterClass *RC;
EVT ValVT = VA.getValVT();
switch (ValVT.getSimpleVT().SimpleTy) {
default:
llvm_unreachable("ValVT not supported by formal arguments Lowering");
case MVT::i32:
RC = &PPC::GPRCRegClass;
break;
case MVT::f32:
RC = &PPC::F4RCRegClass;
break;
case MVT::f64:
RC = &PPC::F8RCRegClass;
break;
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v4f32:
RC = &PPC::VRRCRegClass;
break;
}
// Transform the arguments stored in physical registers into virtual ones.
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
InVals.push_back(ArgValue);
} else {
// Argument stored in memory.
assert(VA.isMemLoc());
unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
isImmutable);
// Create load nodes to retrieve arguments from the stack.
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
MachinePointerInfo(),
false, false, false, 0));
}
}
// Assign locations to all of the incoming aggregate by value arguments.
// Aggregates passed by value are stored in the local variable space of the
// caller's stack frame, right above the parameter list area.
SmallVector<CCValAssign, 16> ByValArgLocs;
CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), ByValArgLocs, *DAG.getContext());
// Reserve stack space for the allocations in CCInfo.
CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
// Area that is at least reserved in the caller of this function.
unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
// Set the size that is at least reserved in caller of this function. Tail
// call optimized function's reserved stack space needs to be aligned so that
// taking the difference between two stack areas will result in an aligned
// stack.
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
MinReservedArea =
std::max(MinReservedArea,
PPCFrameLowering::getMinCallFrameSize(false, false));
unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
getStackAlignment();
unsigned AlignMask = TargetAlign-1;
MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
FI->setMinReservedArea(MinReservedArea);
SmallVector<SDValue, 8> MemOps;
// If the function takes variable number of arguments, make a frame index for
// the start of the first vararg value... for expansion of llvm.va_start.
if (isVarArg) {
static const uint16_t GPArgRegs[] = {
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
};
const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
static const uint16_t FPArgRegs[] = {
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
PPC::F8
};
const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
NumGPArgRegs));
FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
NumFPArgRegs));
// Make room for NumGPArgRegs and NumFPArgRegs.
int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
FuncInfo->setVarArgsStackOffset(
MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
CCInfo.getNextStackOffset(), true));
FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
// The fixed integer arguments of a variadic function are stored to the
// VarArgsFrameIndex on the stack so that they may be loaded by deferencing
// the result of va_next.
for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
// Get an existing live-in vreg, or add a new one.
unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
if (!VReg)
VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
MachinePointerInfo(), false, false, 0);
MemOps.push_back(Store);
// Increment the address by four for the next argument to store
SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
}
// FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
// is set.
// The double arguments are stored to the VarArgsFrameIndex
// on the stack.
for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
// Get an existing live-in vreg, or add a new one.
unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
if (!VReg)
VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
MachinePointerInfo(), false, false, 0);
MemOps.push_back(Store);
// Increment the address by eight for the next argument to store
SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
PtrVT);
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
}
}
if (!MemOps.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl,
MVT::Other, &MemOps[0], MemOps.size());
return Chain;
}
// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
// value to MVT::i64 and then truncate to the correct register size.
SDValue
PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
SelectionDAG &DAG, SDValue ArgVal,
SDLoc dl) const {
if (Flags.isSExt())
ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
DAG.getValueType(ObjectVT));
else if (Flags.isZExt())
ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
DAG.getValueType(ObjectVT));
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
}
// Set the size that is at least reserved in caller of this function. Tail
// call optimized functions' reserved stack space needs to be aligned so that
// taking the difference between two stack areas will result in an aligned
// stack.
void
PPCTargetLowering::setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
unsigned nAltivecParamsAtEnd,
unsigned MinReservedArea,
bool isPPC64) const {
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
// Add the Altivec parameters at the end, if needed.
if (nAltivecParamsAtEnd) {
MinReservedArea = ((MinReservedArea+15)/16)*16;
MinReservedArea += 16*nAltivecParamsAtEnd;
}
MinReservedArea =
std::max(MinReservedArea,
PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
unsigned TargetAlign
= DAG.getMachineFunction().getTarget().getFrameLowering()->
getStackAlignment();
unsigned AlignMask = TargetAlign-1;
MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
FI->setMinReservedArea(MinReservedArea);
}
SDValue
PPCTargetLowering::LowerFormalArguments_64SVR4(
SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg>
&Ins,
SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
// TODO: add description of PPC stack frame format, or at least some docs.
//
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
// Potential tail calls could cause overwriting of argument stack slots.
bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
(CallConv == CallingConv::Fast));
unsigned PtrByteSize = 8;
unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
// Area that is at least reserved in caller of this function.
unsigned MinReservedArea = ArgOffset;
static const uint16_t GPR[] = {
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
};
static const uint16_t *FPR = GetFPR();
static const uint16_t VR[] = {
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
};
const unsigned Num_GPR_Regs = array_lengthof(GPR);
const unsigned Num_FPR_Regs = 13;
const unsigned Num_VR_Regs = array_lengthof(VR);
unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
// Add DAG nodes to load the arguments or copy them out of registers. On
// entry to a function on PPC, the arguments start after the linkage area,
// although the first ones are often in registers.
SmallVector<SDValue, 8> MemOps;
unsigned nAltivecParamsAtEnd = 0;
Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
unsigned CurArgIdx = 0;
for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
SDValue ArgVal;
bool needsLoad = false;
EVT ObjectVT = Ins[ArgNo].VT;
unsigned ObjSize = ObjectVT.getSizeInBits()/8;
unsigned ArgSize = ObjSize;
ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
CurArgIdx = Ins[ArgNo].OrigArgIndex;
unsigned CurArgOffset = ArgOffset;
// Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
if (isVarArg) {
MinReservedArea = ((MinReservedArea+15)/16)*16;
MinReservedArea += CalculateStackSlotSize(ObjectVT,
Flags,
PtrByteSize);
} else
nAltivecParamsAtEnd++;
} else
// Calculate min reserved area.
MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
Flags,
PtrByteSize);
// FIXME the codegen can be much improved in some cases.
// We do not have to keep everything in memory.
if (Flags.isByVal()) {
// ObjSize is the true size, ArgSize rounded up to multiple of registers.
ObjSize = Flags.getByValSize();
ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
// Empty aggregate parameters do not take up registers. Examples:
// struct { } a;
// union { } b;
// int c[0];
// etc. However, we have to provide a place-holder in InVals, so
// pretend we have an 8-byte item at the current address for that
// purpose.
if (!ObjSize) {
int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
InVals.push_back(FIN);
continue;
}
// All aggregates smaller than 8 bytes must be passed right-justified.
if (ObjSize < PtrByteSize)
CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize);
// The value of the object is its address.
int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
InVals.push_back(FIN);
if (ObjSize < 8) {
if (GPR_idx != Num_GPR_Regs) {
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
SDValue Store;
if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
EVT ObjType = (ObjSize == 1 ? MVT::i8 :
(ObjSize == 2 ? MVT::i16 : MVT::i32));
Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
MachinePointerInfo(FuncArg, CurArgOffset),
ObjType, false, false, 0);
} else {
// For sizes that don't fit a truncating store (3, 5, 6, 7),
// store the whole register as-is to the parameter save area
// slot. The address of the parameter was already calculated
// above (InVals.push_back(FIN)) to be the right-justified
// offset within the slot. For this store, we need a new
// frame index that points at the beginning of the slot.
int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
MachinePointerInfo(FuncArg, ArgOffset),
false, false, 0);
}
MemOps.push_back(Store);
++GPR_idx;
}
// Whether we copied from a register or not, advance the offset
// into the parameter save area by a full doubleword.
ArgOffset += PtrByteSize;
continue;
}
for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
// Store whatever pieces of the object are in registers
// to memory. ArgOffset will be the address of the beginning
// of the object.
if (GPR_idx != Num_GPR_Regs) {
unsigned VReg;
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
MachinePointerInfo(FuncArg, ArgOffset),
false, false, 0);
MemOps.push_back(Store);
++GPR_idx;
ArgOffset += PtrByteSize;
} else {
ArgOffset += ArgSize - j;
break;
}
}
continue;
}
switch (ObjectVT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("Unhandled argument type!");
case MVT::i32:
case MVT::i64:
if (GPR_idx != Num_GPR_Regs) {
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
if (ObjectVT == MVT::i32)
// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
// value to MVT::i64 and then truncate to the correct register size.
ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
++GPR_idx;
} else {
needsLoad = true;
ArgSize = PtrByteSize;
}
ArgOffset += 8;
break;
case MVT::f32:
case MVT::f64:
// Every 8 bytes of argument space consumes one of the GPRs available for
// argument passing.
if (GPR_idx != Num_GPR_Regs) {
++GPR_idx;
}
if (FPR_idx != Num_FPR_Regs) {
unsigned VReg;
if (ObjectVT == MVT::f32)
VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
else
VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
++FPR_idx;
} else {
needsLoad = true;
ArgSize = PtrByteSize;
}
ArgOffset += 8;
break;
case MVT::v4f32:
case MVT::v4i32:
case MVT::v8i16:
case MVT::v16i8:
// Note that vector arguments in registers don't reserve stack space,
// except in varargs functions.
if (VR_idx != Num_VR_Regs) {
unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
if (isVarArg) {
while ((ArgOffset % 16) != 0) {
ArgOffset += PtrByteSize;
if (GPR_idx != Num_GPR_Regs)
GPR_idx++;
}
ArgOffset += 16;
GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
}
++VR_idx;
} else {
// Vectors are aligned.
ArgOffset = ((ArgOffset+15)/16)*16;
CurArgOffset = ArgOffset;
ArgOffset += 16;
needsLoad = true;
}
break;
}
// We need to load the argument to a virtual register if we determined
// above that we ran out of physical registers of the appropriate type.
if (needsLoad) {
int FI = MFI->CreateFixedObject(ObjSize,
CurArgOffset + (ArgSize - ObjSize),
isImmutable);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
false, false, false, 0);
}
InVals.push_back(ArgVal);
}
// Set the size that is at least reserved in caller of this function. Tail
// call optimized functions' reserved stack space needs to be aligned so that
// taking the difference between two stack areas will result in an aligned
// stack.
setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, true);
// If the function takes variable number of arguments, make a frame index for
// the start of the first vararg value... for expansion of llvm.va_start.
if (isVarArg) {
int Depth = ArgOffset;
FuncInfo->setVarArgsFrameIndex(
MFI->CreateFixedObject(PtrByteSize, Depth, true));
SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
// If this function is vararg, store any remaining integer argument regs
// to their spots on the stack so that they may be loaded by deferencing the
// result of va_next.
for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
MachinePointerInfo(), false, false, 0);
MemOps.push_back(Store);
// Increment the address by four for the next argument to store
SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
}
}
if (!MemOps.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl,
MVT::Other, &MemOps[0], MemOps.size());
return Chain;
}
SDValue
PPCTargetLowering::LowerFormalArguments_Darwin(
SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg>
&Ins,
SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
// TODO: add description of PPC stack frame format, or at least some docs.
//
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
bool isPPC64 = PtrVT == MVT::i64;
// Potential tail calls could cause overwriting of argument stack slots.
bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
(CallConv == CallingConv::Fast));
unsigned PtrByteSize = isPPC64 ? 8 : 4;
unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
// Area that is at least reserved in caller of this function.
unsigned MinReservedArea = ArgOffset;
static const uint16_t GPR_32[] = { // 32-bit registers.
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
};
static const uint16_t GPR_64[] = { // 64-bit registers.
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
};
static const uint16_t *FPR = GetFPR();
static const uint16_t VR[] = {
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
};
const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
const unsigned Num_FPR_Regs = 13;
const unsigned Num_VR_Regs = array_lengthof( VR);
unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
// In 32-bit non-varargs functions, the stack space for vectors is after the
// stack space for non-vectors. We do not use this space unless we have
// too many vectors to fit in registers, something that only occurs in
// constructed examples:), but we have to walk the arglist to figure
// that out...for the pathological case, compute VecArgOffset as the
// start of the vector parameter area. Computing VecArgOffset is the
// entire point of the following loop.
unsigned VecArgOffset = ArgOffset;
if (!isVarArg && !isPPC64) {
for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
++ArgNo) {
EVT ObjectVT = Ins[ArgNo].VT;
ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
if (Flags.isByVal()) {
// ObjSize is the true size, ArgSize rounded up to multiple of regs.
unsigned ObjSize = Flags.getByValSize();
unsigned ArgSize =
((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
VecArgOffset += ArgSize;
continue;
}
switch(ObjectVT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("Unhandled argument type!");
case MVT::i32:
case MVT::f32:
VecArgOffset += 4;
break;
case MVT::i64: // PPC64
case MVT::f64:
// FIXME: We are guaranteed to be !isPPC64 at this point.
// Does MVT::i64 apply?
VecArgOffset += 8;
break;
case MVT::v4f32:
case MVT::v4i32:
case MVT::v8i16:
case MVT::v16i8:
// Nothing to do, we're only looking at Nonvector args here.
break;
}
}
}
// We've found where the vector parameter area in memory is. Skip the
// first 12 parameters; these don't use that memory.
VecArgOffset = ((VecArgOffset+15)/16)*16;
VecArgOffset += 12*16;
// Add DAG nodes to load the arguments or copy them out of registers. On
// entry to a function on PPC, the arguments start after the linkage area,
// although the first ones are often in registers.
SmallVector<SDValue, 8> MemOps;
unsigned nAltivecParamsAtEnd = 0;
Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
unsigned CurArgIdx = 0;
for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
SDValue ArgVal;
bool needsLoad = false;
EVT ObjectVT = Ins[ArgNo].VT;
unsigned ObjSize = ObjectVT.getSizeInBits()/8;
unsigned ArgSize = ObjSize;
ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
CurArgIdx = Ins[ArgNo].OrigArgIndex;
unsigned CurArgOffset = ArgOffset;
// Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
if (isVarArg || isPPC64) {
MinReservedArea = ((MinReservedArea+15)/16)*16;
MinReservedArea += CalculateStackSlotSize(ObjectVT,
Flags,
PtrByteSize);
} else nAltivecParamsAtEnd++;
} else
// Calculate min reserved area.
MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
Flags,
PtrByteSize);
// FIXME the codegen can be much improved in some cases.
// We do not have to keep everything in memory.
if (Flags.isByVal()) {
// ObjSize is the true size, ArgSize rounded up to multiple of registers.
ObjSize = Flags.getByValSize();
ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
// Objects of size 1 and 2 are right justified, everything else is
// left justified. This means the memory address is adjusted forwards.
if (ObjSize==1 || ObjSize==2) {
CurArgOffset = CurArgOffset + (4 - ObjSize);
}
// The value of the object is its address.
int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
InVals.push_back(FIN);
if (ObjSize==1 || ObjSize==2) {
if (GPR_idx != Num_GPR_Regs) {
unsigned VReg;
if (isPPC64)
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
else
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
MachinePointerInfo(FuncArg,
CurArgOffset),
ObjType, false, false, 0);
MemOps.push_back(Store);
++GPR_idx;
}
ArgOffset += PtrByteSize;
continue;
}
for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
// Store whatever pieces of the object are in registers
// to memory. ArgOffset will be the address of the beginning
// of the object.
if (GPR_idx != Num_GPR_Regs) {
unsigned VReg;
if (isPPC64)
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
else
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
MachinePointerInfo(FuncArg, ArgOffset),
false, false, 0);
MemOps.push_back(Store);
++GPR_idx;
ArgOffset += PtrByteSize;
} else {
ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
break;
}
}
continue;
}
switch (ObjectVT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("Unhandled argument type!");
case MVT::i32:
if (!isPPC64) {
if (GPR_idx != Num_GPR_Regs) {
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
++GPR_idx;
} else {
needsLoad = true;
ArgSize = PtrByteSize;
}
// All int arguments reserve stack space in the Darwin ABI.
ArgOffset += PtrByteSize;
break;
}
// FALLTHROUGH
case MVT::i64: // PPC64
if (GPR_idx != Num_GPR_Regs) {
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
if (ObjectVT == MVT::i32)
// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
// value to MVT::i64 and then truncate to the correct register size.
ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
++GPR_idx;
} else {
needsLoad = true;
ArgSize = PtrByteSize;
}
// All int arguments reserve stack space in the Darwin ABI.
ArgOffset += 8;
break;
case MVT::f32:
case MVT::f64:
// Every 4 bytes of argument space consumes one of the GPRs available for
// argument passing.
if (GPR_idx != Num_GPR_Regs) {
++GPR_idx;
if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
++GPR_idx;
}
if (FPR_idx != Num_FPR_Regs) {
unsigned VReg;
if (ObjectVT == MVT::f32)
VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
else
VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
++FPR_idx;
} else {
needsLoad = true;
}
// All FP arguments reserve stack space in the Darwin ABI.
ArgOffset += isPPC64 ? 8 : ObjSize;
break;
case MVT::v4f32:
case MVT::v4i32:
case MVT::v8i16:
case MVT::v16i8:
// Note that vector arguments in registers don't reserve stack space,
// except in varargs functions.
if (VR_idx != Num_VR_Regs) {
unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
if (isVarArg) {
while ((ArgOffset % 16) != 0) {
ArgOffset += PtrByteSize;
if (GPR_idx != Num_GPR_Regs)
GPR_idx++;
}
ArgOffset += 16;
GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
}
++VR_idx;
} else {
if (!isVarArg && !isPPC64) {
// Vectors go after all the nonvectors.
CurArgOffset = VecArgOffset;
VecArgOffset += 16;
} else {
// Vectors are aligned.
ArgOffset = ((ArgOffset+15)/16)*16;
CurArgOffset = ArgOffset;
ArgOffset += 16;
}
needsLoad = true;
}
break;
}
// We need to load the argument to a virtual register if we determined above
// that we ran out of physical registers of the appropriate type.
if (needsLoad) {
int FI = MFI->CreateFixedObject(ObjSize,
CurArgOffset + (ArgSize - ObjSize),
isImmutable);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
false, false, false, 0);
}
InVals.push_back(ArgVal);
}
// Set the size that is at least reserved in caller of this function. Tail
// call optimized functions' reserved stack space needs to be aligned so that
// taking the difference between two stack areas will result in an aligned
// stack.
setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, isPPC64);
// If the function takes variable number of arguments, make a frame index for
// the start of the first vararg value... for expansion of llvm.va_start.
if (isVarArg) {
int Depth = ArgOffset;
FuncInfo->setVarArgsFrameIndex(
MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
Depth, true));
SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
// If this function is vararg, store any remaining integer argument regs
// to their spots on the stack so that they may be loaded by deferencing the
// result of va_next.
for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
unsigned VReg;
if (isPPC64)
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
else
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
MachinePointerInfo(), false, false, 0);
MemOps.push_back(Store);
// Increment the address by four for the next argument to store
SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
}
}
if (!MemOps.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl,
MVT::Other, &MemOps[0], MemOps.size());
return Chain;
}
/// CalculateParameterAndLinkageAreaSize - Get the size of the parameter plus
/// linkage area for the Darwin ABI, or the 64-bit SVR4 ABI.
static unsigned
CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
bool isPPC64,
bool isVarArg,
unsigned CC,
const SmallVectorImpl<ISD::OutputArg>
&Outs,
const SmallVectorImpl<SDValue> &OutVals,
unsigned &nAltivecParamsAtEnd) {
// Count how many bytes are to be pushed on the stack, including the linkage
// area, and parameter passing area. We start with 24/48 bytes, which is
// prereserved space for [SP][CR][LR][3 x unused].
unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
unsigned NumOps = Outs.size();
unsigned PtrByteSize = isPPC64 ? 8 : 4;
// Add up all the space actually used.
// In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
// they all go in registers, but we must reserve stack space for them for
// possible use by the caller. In varargs or 64-bit calls, parameters are
// assigned stack space in order, with padding so Altivec parameters are
// 16-byte aligned.
nAltivecParamsAtEnd = 0;
for (unsigned i = 0; i != NumOps; ++i) {
ISD::ArgFlagsTy Flags = Outs[i].Flags;
EVT ArgVT = Outs[i].VT;
// Varargs Altivec parameters are padded to a 16 byte boundary.
if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
if (!isVarArg && !isPPC64) {
// Non-varargs Altivec parameters go after all the non-Altivec
// parameters; handle those later so we know how much padding we need.
nAltivecParamsAtEnd++;
continue;
}
// Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
NumBytes = ((NumBytes+15)/16)*16;
}
NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
}
// Allow for Altivec parameters at the end, if needed.
if (nAltivecParamsAtEnd) {
NumBytes = ((NumBytes+15)/16)*16;
NumBytes += 16*nAltivecParamsAtEnd;
}
// The prolog code of the callee may store up to 8 GPR argument registers to
// the stack, allowing va_start to index over them in memory if its varargs.
// Because we cannot tell if this is needed on the caller side, we have to
// conservatively assume that it is needed. As such, make sure we have at
// least enough stack space for the caller to store the 8 GPRs.
NumBytes = std::max(NumBytes,
PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
// Tail call needs the stack to be aligned.
if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){
unsigned TargetAlign = DAG.getMachineFunction().getTarget().
getFrameLowering()->getStackAlignment();
unsigned AlignMask = TargetAlign-1;
NumBytes = (NumBytes + AlignMask) & ~AlignMask;
}
return NumBytes;
}
/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
/// adjusted to accommodate the arguments for the tailcall.
static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
unsigned ParamSize) {
if (!isTailCall) return 0;
PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
unsigned CallerMinReservedArea = FI->getMinReservedArea();
int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
// Remember only if the new adjustement is bigger.
if (SPDiff < FI->getTailCallSPDelta())
FI->setTailCallSPDelta(SPDiff);
return SPDiff;
}
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
/// for tail call optimization. Targets which want to do tail call
/// optimization should implement this function.
bool
PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
CallingConv::ID CalleeCC,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SelectionDAG& DAG) const {
if (!getTargetMachine().Options.GuaranteedTailCallOpt)
return false;
// Variable argument functions are not supported.
if (isVarArg)
return false;
MachineFunction &MF = DAG.getMachineFunction();
CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
// Functions containing by val parameters are not supported.
for (unsigned i = 0; i != Ins.size(); i++) {
ISD::ArgFlagsTy Flags = Ins[i].Flags;
if (Flags.isByVal()) return false;
}
// Non PIC/GOT tail calls are supported.
if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
return true;
// At the moment we can only do local tail calls (in same module, hidden
// or protected) if we are generating PIC.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
return G->getGlobal()->hasHiddenVisibility()
|| G->getGlobal()->hasProtectedVisibility();
}
return false;
}
/// isCallCompatibleAddress - Return the immediate to use if the specified
/// 32-bit value is representable in the immediate field of a BxA instruction.
static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
if (!C) return 0;
int Addr = C->getZExtValue();
if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
SignExtend32<26>(Addr) != Addr)
return 0; // Top 6 bits have to be sext of immediate.
return DAG.getConstant((int)C->getZExtValue() >> 2,
DAG.getTargetLoweringInfo().getPointerTy()).getNode();
}
namespace {
struct TailCallArgumentInfo {
SDValue Arg;
SDValue FrameIdxOp;
int FrameIdx;
TailCallArgumentInfo() : FrameIdx(0) {}
};
}
/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
static void
StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
SDValue Chain,
const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
SmallVectorImpl<SDValue> &MemOpChains,
SDLoc dl) {
for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
SDValue Arg = TailCallArgs[i].Arg;
SDValue FIN = TailCallArgs[i].FrameIdxOp;
int FI = TailCallArgs[i].FrameIdx;
// Store relative to framepointer.
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
MachinePointerInfo::getFixedStack(FI),
false, false, 0));
}
}
/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
/// the appropriate stack slot for the tail call optimized function call.
static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
MachineFunction &MF,
SDValue Chain,
SDValue OldRetAddr,
SDValue OldFP,
int SPDiff,
bool isPPC64,
bool isDarwinABI,
SDLoc dl) {
if (SPDiff) {
// Calculate the new stack slot for the return address.
int SlotSize = isPPC64 ? 8 : 4;
int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
isDarwinABI);
int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
NewRetAddrLoc, true);
EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
MachinePointerInfo::getFixedStack(NewRetAddr),
false, false, 0);
// When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
// slot as the FP is never overwritten.
if (isDarwinABI) {
int NewFPLoc =
SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
true);
SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
MachinePointerInfo::getFixedStack(NewFPIdx),
false, false, 0);
}
}
return Chain;
}
/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
/// the position of the argument.
static void
CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
SDValue Arg, int SPDiff, unsigned ArgOffset,
SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
int Offset = ArgOffset + SPDiff;
uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
SDValue FIN = DAG.getFrameIndex(FI, VT);
TailCallArgumentInfo Info;
Info.Arg = Arg;
Info.FrameIdxOp = FIN;
Info.FrameIdx = FI;
TailCallArguments.push_back(Info);
}
/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
/// stack slot. Returns the chain as result and the loaded frame pointers in
/// LROpOut/FPOpout. Used when tail calling.
SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
int SPDiff,
SDValue Chain,
SDValue &LROpOut,
SDValue &FPOpOut,
bool isDarwinABI,
SDLoc dl) const {
if (SPDiff) {
// Load the LR and FP stack slot for later adjusting.
EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
LROpOut = getReturnAddrFrameIndex(DAG);
LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
false, false, false, 0);
Chain = SDValue(LROpOut.getNode(), 1);
// When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
// slot as the FP is never overwritten.
if (isDarwinABI) {
FPOpOut = getFramePointerFrameIndex(DAG);
FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
false, false, false, 0);
Chain = SDValue(FPOpOut.getNode(), 1);
}
}
return Chain;
}
/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
/// by "Src" to address "Dst" of size "Size". Alignment information is
/// specified by the specific parameter attribute. The copy will be passed as
/// a byval function parameter.
/// Sometimes what we are copying is the end of a larger object, the part that
/// does not fit in registers.
static SDValue
CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
SDLoc dl) {
SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
false, false, MachinePointerInfo(0),
MachinePointerInfo(0));
}
/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
/// tail calls.
static void
LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
SDValue Arg, SDValue PtrOff, int SPDiff,
unsigned ArgOffset, bool isPPC64, bool isTailCall,
bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments,
SDLoc dl) {
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
if (!isTailCall) {
if (isVector) {
SDValue StackPtr;
if (isPPC64)
StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
else
StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
DAG.getConstant(ArgOffset, PtrVT));
}
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
MachinePointerInfo(), false, false, 0));
// Calculate and remember argument location.
} else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
TailCallArguments);
}
static
void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
SDValue LROp, SDValue FPOp, bool isDarwinABI,
SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
MachineFunction &MF = DAG.getMachineFunction();
// Emit a sequence of copyto/copyfrom virtual registers for arguments that
// might overwrite each other in case of tail call optimization.
SmallVector<SDValue, 8> MemOpChains2;
// Do not flag preceding copytoreg stuff together with the following stuff.
InFlag = SDValue();
StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
MemOpChains2, dl);
if (!MemOpChains2.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&MemOpChains2[0], MemOpChains2.size());
// Store the return address to the appropriate stack slot.
Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
isPPC64, isDarwinABI, dl);
// Emit callseq_end just before tailcall node.
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
DAG.getIntPtrConstant(0, true), InFlag, dl);
InFlag = Chain.getValue(1);
}
static
unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
SDValue &Chain, SDLoc dl, int SPDiff, bool isTailCall,
SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass,
SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
const PPCSubtarget &PPCSubTarget) {
bool isPPC64 = PPCSubTarget.isPPC64();
bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
NodeTys.push_back(MVT::Other); // Returns a chain
NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use.
unsigned CallOpc = PPCISD::CALL;
bool needIndirectCall = true;
if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
// If this is an absolute destination address, use the munged value.
Callee = SDValue(Dest, 0);
needIndirectCall = false;
}
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
// XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
// Use indirect calls for ALL functions calls in JIT mode, since the
// far-call stubs may be outside relocation limits for a BL instruction.
if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
unsigned OpFlags = 0;
if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
(PPCSubTarget.getTargetTriple().isMacOSX() &&
PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
(G->getGlobal()->isDeclaration() ||
G->getGlobal()->isWeakForLinker())) {
// PC-relative references to external symbols should go through $stub,
// unless we're building with the leopard linker or later, which
// automatically synthesizes these stubs.
OpFlags = PPCII::MO_DARWIN_STUB;
}
// If the callee is a GlobalAddress/ExternalSymbol node (quite common,
// every direct call is) turn it into a TargetGlobalAddress /
// TargetExternalSymbol node so that legalize doesn't hack it.
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
Callee.getValueType(),
0, OpFlags);
needIndirectCall = false;
}
}
if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
unsigned char OpFlags = 0;
if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
(PPCSubTarget.getTargetTriple().isMacOSX() &&
PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
// PC-relative references to external symbols should go through $stub,
// unless we're building with the leopard linker or later, which
// automatically synthesizes these stubs.
OpFlags = PPCII::MO_DARWIN_STUB;
}
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
OpFlags);
needIndirectCall = false;
}
if (needIndirectCall) {
// Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
// to do the call, we can't use PPCISD::CALL.
SDValue MTCTROps[] = {Chain, Callee, InFlag};
if (isSVR4ABI && isPPC64) {
// Function pointers in the 64-bit SVR4 ABI do not point to the function
// entry point, but to the function descriptor (the function entry point
// address is part of the function descriptor though).
// The function descriptor is a three doubleword structure with the
// following fields: function entry point, TOC base address and
// environment pointer.
// Thus for a call through a function pointer, the following actions need
// to be performed:
// 1. Save the TOC of the caller in the TOC save area of its stack
// frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
// 2. Load the address of the function entry point from the function
// descriptor.
// 3. Load the TOC of the callee from the function descriptor into r2.
// 4. Load the environment pointer from the function descriptor into
// r11.
// 5. Branch to the function entry point address.
// 6. On return of the callee, the TOC of the caller needs to be
// restored (this is done in FinishCall()).
//
// All those operations are flagged together to ensure that no other
// operations can be scheduled in between. E.g. without flagging the
// operations together, a TOC access in the caller could be scheduled
// between the load of the callee TOC and the branch to the callee, which
// results in the TOC access going through the TOC of the callee instead
// of going through the TOC of the caller, which leads to incorrect code.
// Load the address of the function entry point from the function
// descriptor.
SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
InFlag.getNode() ? 3 : 2);
Chain = LoadFuncPtr.getValue(1);
InFlag = LoadFuncPtr.getValue(2);
// Load environment pointer into r11.
// Offset of the environment pointer within the function descriptor.
SDValue PtrOff = DAG.getIntPtrConstant(16);
SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
InFlag);
Chain = LoadEnvPtr.getValue(1);
InFlag = LoadEnvPtr.getValue(2);
SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
InFlag);
Chain = EnvVal.getValue(0);
InFlag = EnvVal.getValue(1);
// Load TOC of the callee into r2. We are using a target-specific load
// with r2 hard coded, because the result of a target-independent load
// would never go directly into r2, since r2 is a reserved register (which
// prevents the register allocator from allocating it), resulting in an
// additional register being allocated and an unnecessary move instruction
// being generated.
VTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
Callee, InFlag);
Chain = LoadTOCPtr.getValue(0);
InFlag = LoadTOCPtr.getValue(1);
MTCTROps[0] = Chain;
MTCTROps[1] = LoadFuncPtr;
MTCTROps[2] = InFlag;
}
Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2 + (InFlag.getNode() != 0));
InFlag = Chain.getValue(1);
NodeTys.clear();
NodeTys.push_back(MVT::Other);
NodeTys.push_back(MVT::Glue);
Ops.push_back(Chain);
CallOpc = PPCISD::BCTRL;
Callee.setNode(0);
// Add use of X11 (holding environment pointer)
if (isSVR4ABI && isPPC64)
Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
// Add CTR register as callee so a bctr can be emitted later.
if (isTailCall)
Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
}
// If this is a direct call, pass the chain and the callee.
if (Callee.getNode()) {
Ops.push_back(Chain);
Ops.push_back(Callee);
}
// If this is a tail call add stack pointer delta.
if (isTailCall)
Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
// Add argument registers to the end of the list so that they are known live
// into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
return CallOpc;
}
static
bool isLocalCall(const SDValue &Callee)
{
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
return !G->getGlobal()->isDeclaration() &&
!G->getGlobal()->isWeakForLinker();
return false;
}
SDValue
PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), RVLocs, *DAG.getContext());
CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
SDValue Val = DAG.getCopyFromReg(Chain, dl,
VA.getLocReg(), VA.getLocVT(), InFlag);
Chain = Val.getValue(1);
InFlag = Val.getValue(2);
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::AExt:
Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
break;
case CCValAssign::ZExt:
Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
DAG.getValueType(VA.getValVT()));
Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
break;
case CCValAssign::SExt:
Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
DAG.getValueType(VA.getValVT()));
Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
break;
}
InVals.push_back(Val);
}
return Chain;
}
SDValue
PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
bool isTailCall, bool isVarArg,
SelectionDAG &DAG,
SmallVector<std::pair<unsigned, SDValue>, 8>
&RegsToPass,
SDValue InFlag, SDValue Chain,
SDValue &Callee,
int SPDiff, unsigned NumBytes,
const SmallVectorImpl<ISD::InputArg> &Ins,
SmallVectorImpl<SDValue> &InVals) const {
std::vector<EVT> NodeTys;
SmallVector<SDValue, 8> Ops;
unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
isTailCall, RegsToPass, Ops, NodeTys,
PPCSubTarget);
// Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
if (isVarArg && PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
// When performing tail call optimization the callee pops its arguments off
// the stack. Account for this here so these bytes can be pushed back on in
// PPCFrameLowering::eliminateCallFramePseudoInstr.
int BytesCalleePops =
(CallConv == CallingConv::Fast &&
getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
// Add a register mask operand representing the call-preserved registers.
const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
if (InFlag.getNode())
Ops.push_back(InFlag);
// Emit tail call.
if (isTailCall) {
assert(((Callee.getOpcode() == ISD::Register &&
cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
Callee.getOpcode() == ISD::TargetExternalSymbol ||
Callee.getOpcode() == ISD::TargetGlobalAddress ||
isa<ConstantSDNode>(Callee)) &&
"Expecting an global address, external symbol, absolute value or register");
return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
}
// Add a NOP immediately after the branch instruction when using the 64-bit
// SVR4 ABI. At link time, if caller and callee are in a different module and
// thus have a different TOC, the call will be replaced with a call to a stub
// function which saves the current TOC, loads the TOC of the callee and
// branches to the callee. The NOP will be replaced with a load instruction
// which restores the TOC of the caller from the TOC save slot of the current
// stack frame. If caller and callee belong to the same module (and have the
// same TOC), the NOP will remain unchanged.
bool needsTOCRestore = false;
if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
if (CallOpc == PPCISD::BCTRL) {
// This is a call through a function pointer.
// Restore the caller TOC from the save area into R2.
// See PrepareCall() for more information about calls through function
// pointers in the 64-bit SVR4 ABI.
// We are using a target-specific load with r2 hard coded, because the
// result of a target-independent load would never go directly into r2,
// since r2 is a reserved register (which prevents the register allocator
// from allocating it), resulting in an additional register being
// allocated and an unnecessary move instruction being generated.
needsTOCRestore = true;
} else if ((CallOpc == PPCISD::CALL) && !isLocalCall(Callee)) {
// Otherwise insert NOP for non-local calls.
CallOpc = PPCISD::CALL_NOP;
}
}
Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
InFlag = Chain.getValue(1);
if (needsTOCRestore) {
SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
InFlag = Chain.getValue(1);
}
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
DAG.getIntPtrConstant(BytesCalleePops, true),
InFlag, dl);
if (!Ins.empty())
InFlag = Chain.getValue(1);
return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
Ins, dl, DAG, InVals);
}
SDValue
PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &dl = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &isTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool isVarArg = CLI.IsVarArg;
if (isTailCall)
isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
Ins, DAG);
if (PPCSubTarget.isSVR4ABI()) {
if (PPCSubTarget.isPPC64())
return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
isTailCall, Outs, OutVals, Ins,
dl, DAG, InVals);
else
return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
isTailCall, Outs, OutVals, Ins,
dl, DAG, InVals);
}
return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
isTailCall, Outs, OutVals, Ins,
dl, DAG, InVals);
}
SDValue
PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv, bool isVarArg,
bool isTailCall,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
// See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
// of the 32-bit SVR4 ABI stack frame layout.
assert((CallConv == CallingConv::C ||
CallConv == CallingConv::Fast) && "Unknown calling convention!");
unsigned PtrByteSize = 4;
MachineFunction &MF = DAG.getMachineFunction();
// Mark this function as potentially containing a function that contains a
// tail call. As a consequence the frame pointer will be used for dynamicalloc
// and restoring the callers stack pointer in this functions epilog. This is
// done because by tail calling the called function might overwrite the value
// in this function's (MF) stack pointer stack slot 0(SP).
if (getTargetMachine().Options.GuaranteedTailCallOpt &&
CallConv == CallingConv::Fast)
MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
// Count how many bytes are to be pushed on the stack, including the linkage
// area, parameter list area and the part of the local variable space which
// contains copies of aggregates which are passed by value.
// Assign locations to all of the outgoing arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), ArgLocs, *DAG.getContext());
// Reserve space for the linkage area on the stack.
CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
if (isVarArg) {
// Handle fixed and variable vector arguments differently.
// Fixed vector arguments go into registers as long as registers are
// available. Variable vector arguments always go into memory.
unsigned NumArgs = Outs.size();
for (unsigned i = 0; i != NumArgs; ++i) {
MVT ArgVT = Outs[i].VT;
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
bool Result;
if (Outs[i].IsFixed) {
Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
CCInfo);
} else {
Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
ArgFlags, CCInfo);
}
if (Result) {
#ifndef NDEBUG
errs() << "Call operand #" << i << " has unhandled type "
<< EVT(ArgVT).getEVTString() << "\n";
#endif
llvm_unreachable(0);
}
}
} else {
// All arguments are treated the same.
CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
}
// Assign locations to all of the outgoing aggregate by value arguments.
SmallVector<CCValAssign, 16> ByValArgLocs;
CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), ByValArgLocs, *DAG.getContext());
// Reserve stack space for the allocations in CCInfo.
CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
// Size of the linkage area, parameter list area and the part of the local
// space variable where copies of aggregates which are passed by value are
// stored.
unsigned NumBytes = CCByValInfo.getNextStackOffset();
// Calculate by how many bytes the stack has to be adjusted in case of tail
// call optimization.
int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
// Adjust the stack pointer for the new arguments...
// These operations are automatically eliminated by the prolog/epilog pass
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
dl);
SDValue CallSeqStart = Chain;
// Load the return address and frame pointer so it can be moved somewhere else
// later.
SDValue LROp, FPOp;
Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
dl);
// Set up a copy of the stack pointer for use loading and storing any
// arguments that may not fit in the registers available for argument
// passing.
SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
SmallVector<SDValue, 8> MemOpChains;
bool seenFloatArg = false;
// Walk the register/memloc assignments, inserting copies/loads.
for (unsigned i = 0, j = 0, e = ArgLocs.size();
i != e;
++i) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = OutVals[i];
ISD::ArgFlagsTy Flags = Outs[i].Flags;
if (Flags.isByVal()) {
// Argument is an aggregate which is passed by value, thus we need to
// create a copy of it in the local variable space of the current stack
// frame (which is the stack frame of the caller) and pass the address of
// this copy to the callee.
assert((j < ByValArgLocs.size()) && "Index out of bounds!");
CCValAssign &ByValVA = ByValArgLocs[j++];
assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
// Memory reserved in the local variable space of the callers stack frame.
unsigned LocMemOffset = ByValVA.getLocMemOffset();
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
// Create a copy of the argument in the local area of the current
// stack frame.
SDValue MemcpyCall =
CreateCopyOfByValArgument(Arg, PtrOff,
CallSeqStart.getNode()->getOperand(0),
Flags, DAG, dl);
// This must go outside the CALLSEQ_START..END.
SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
CallSeqStart.getNode()->getOperand(1),
SDLoc(MemcpyCall));
DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
NewCallSeqStart.getNode());
Chain = CallSeqStart = NewCallSeqStart;
// Pass the address of the aggregate copy on the stack either in a
// physical register or in the parameter list area of the current stack
// frame to the callee.
Arg = PtrOff;
}
if (VA.isRegLoc()) {
seenFloatArg |= VA.getLocVT().isFloatingPoint();
// Put argument in a physical register.
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
} else {
// Put argument in the parameter list area of the current stack frame.
assert(VA.isMemLoc());
unsigned LocMemOffset = VA.getLocMemOffset();
if (!isTailCall) {
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
MachinePointerInfo(),
false, false, 0));
} else {
// Calculate and remember argument location.
CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
TailCallArguments);
}
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into the appropriate regs.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
// Set CR bit 6 to true if this is a vararg call with floating args passed in
// registers.
if (isVarArg) {
SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, InFlag };
Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
dl, VTs, Ops, InFlag.getNode() ? 2 : 1);
InFlag = Chain.getValue(1);
}
if (isTailCall)
PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
false, TailCallArguments);
return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
Ins, InVals);
}
// Copy an argument into memory, being careful to do this outside the
// call sequence for the call to which the argument belongs.
SDValue
PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
SDValue CallSeqStart,
ISD::ArgFlagsTy Flags,
SelectionDAG &DAG,
SDLoc dl) const {
SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
CallSeqStart.getNode()->getOperand(0),
Flags, DAG, dl);
// The MEMCPY must go outside the CALLSEQ_START..END.
SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
CallSeqStart.getNode()->getOperand(1),
SDLoc(MemcpyCall));
DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
NewCallSeqStart.getNode());
return NewCallSeqStart;
}
SDValue
PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv, bool isVarArg,
bool isTailCall,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
unsigned NumOps = Outs.size();
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
unsigned PtrByteSize = 8;
MachineFunction &MF = DAG.getMachineFunction();
// Mark this function as potentially containing a function that contains a
// tail call. As a consequence the frame pointer will be used for dynamicalloc
// and restoring the callers stack pointer in this functions epilog. This is
// done because by tail calling the called function might overwrite the value
// in this function's (MF) stack pointer stack slot 0(SP).
if (getTargetMachine().Options.GuaranteedTailCallOpt &&
CallConv == CallingConv::Fast)
MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
unsigned nAltivecParamsAtEnd = 0;
// Count how many bytes are to be pushed on the stack, including the linkage
// area, and parameter passing area. We start with at least 48 bytes, which
// is reserved space for [SP][CR][LR][3 x unused].
// NOTE: For PPC64, nAltivecParamsAtEnd always remains zero as a result
// of this call.
unsigned NumBytes =
CalculateParameterAndLinkageAreaSize(DAG, true, isVarArg, CallConv,
Outs, OutVals, nAltivecParamsAtEnd);
// Calculate by how many bytes the stack has to be adjusted in case of tail
// call optimization.
int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
// To protect arguments on the stack from being clobbered in a tail call,
// force all the loads to happen before doing any other lowering.
if (isTailCall)
Chain = DAG.getStackArgumentTokenFactor(Chain);
// Adjust the stack pointer for the new arguments...
// These operations are automatically eliminated by the prolog/epilog pass
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
dl);
SDValue CallSeqStart = Chain;
// Load the return address and frame pointer so it can be move somewhere else
// later.
SDValue LROp, FPOp;
Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
dl);
// Set up a copy of the stack pointer for use loading and storing any
// arguments that may not fit in the registers available for argument
// passing.
SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
// Figure out which arguments are going to go in registers, and which in
// memory. Also, if this is a vararg function, floating point operations
// must be stored to our stack, and loaded into integer regs as well, if
// any integer regs are available for argument passing.
unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
static const uint16_t GPR[] = {
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
};
static const uint16_t *FPR = GetFPR();
static const uint16_t VR[] = {
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
};
const unsigned NumGPRs = array_lengthof(GPR);
const unsigned NumFPRs = 13;
const unsigned NumVRs = array_lengthof(VR);
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
SmallVector<SDValue, 8> MemOpChains;
for (unsigned i = 0; i != NumOps; ++i) {
SDValue Arg = OutVals[i];
ISD::ArgFlagsTy Flags = Outs[i].Flags;
// PtrOff will be used to store the current argument to the stack if a
// register cannot be found for it.
SDValue PtrOff;
PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
// Promote integers to 64-bit values.
if (Arg.getValueType() == MVT::i32) {
// FIXME: Should this use ANY_EXTEND if neither sext nor zext?
unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
}
// FIXME memcpy is used way more than necessary. Correctness first.
// Note: "by value" is code for passing a structure by value, not
// basic types.
if (Flags.isByVal()) {
// Note: Size includes alignment padding, so
// struct x { short a; char b; }
// will have Size = 4. With #pragma pack(1), it will have Size = 3.
// These are the proper values we need for right-justifying the
// aggregate in a parameter register.
unsigned Size = Flags.getByValSize();
// An empty aggregate parameter takes up no storage and no
// registers.
if (Size == 0)
continue;
// All aggregates smaller than 8 bytes must be passed right-justified.
if (Size==1 || Size==2 || Size==4) {
EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
if (GPR_idx != NumGPRs) {
SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
MachinePointerInfo(), VT,
false, false, 0);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
ArgOffset += PtrByteSize;
continue;
}
}
if (GPR_idx == NumGPRs && Size < 8) {
SDValue Const = DAG.getConstant(PtrByteSize - Size,
PtrOff.getValueType());
SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
CallSeqStart,
Flags, DAG, dl);
ArgOffset += PtrByteSize;
continue;
}
// Copy entire object into memory. There are cases where gcc-generated
// code assumes it is there, even if it could be put entirely into
// registers. (This is not what the doc says.)
// FIXME: The above statement is likely due to a misunderstanding of the
// documents. All arguments must be copied into the parameter area BY
// THE CALLEE in the event that the callee takes the address of any
// formal argument. That has not yet been implemented. However, it is
// reasonable to use the stack area as a staging area for the register
// load.
// Skip this for small aggregates, as we will use the same slot for a
// right-justified copy, below.
if (Size >= 8)
Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
CallSeqStart,
Flags, DAG, dl);
// When a register is available, pass a small aggregate right-justified.
if (Size < 8 && GPR_idx != NumGPRs) {
// The easiest way to get this right-justified in a register
// is to copy the structure into the rightmost portion of a
// local variable slot, then load the whole slot into the
// register.
// FIXME: The memcpy seems to produce pretty awful code for
// small aggregates, particularly for packed ones.
// FIXME: It would be preferable to use the slot in the
// parameter save area instead of a new local variable.
SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
CallSeqStart,
Flags, DAG, dl);
// Load the slot into the register.
SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
MachinePointerInfo(),
false, false, false, 0);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
// Done with this argument.
ArgOffset += PtrByteSize;
continue;
}
// For aggregates larger than PtrByteSize, copy the pieces of the
// object that fit into registers from the parameter save area.
for (unsigned j=0; j<Size; j+=PtrByteSize) {
SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
if (GPR_idx != NumGPRs) {
SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
MachinePointerInfo(),
false, false, false, 0);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
ArgOffset += PtrByteSize;
} else {
ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
break;
}
}
continue;
}
switch (Arg.getSimpleValueType().SimpleTy) {
default: llvm_unreachable("Unexpected ValueType for argument!");
case MVT::i32:
case MVT::i64:
if (GPR_idx != NumGPRs) {
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
} else {
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
true, isTailCall, false, MemOpChains,
TailCallArguments, dl);
}
ArgOffset += PtrByteSize;
break;
case MVT::f32:
case MVT::f64:
if (FPR_idx != NumFPRs) {
RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
if (isVarArg) {
// A single float or an aggregate containing only a single float
// must be passed right-justified in the stack doubleword, and
// in the GPR, if one is available.
SDValue StoreOff;
if (Arg.getSimpleValueType().SimpleTy == MVT::f32) {
SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
StoreOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
} else
StoreOff = PtrOff;
SDValue Store = DAG.getStore(Chain, dl, Arg, StoreOff,
MachinePointerInfo(), false, false, 0);
MemOpChains.push_back(Store);
// Float varargs are always shadowed in available integer registers
if (GPR_idx != NumGPRs) {
SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
MachinePointerInfo(), false, false,
false, 0);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
}
} else if (GPR_idx != NumGPRs)
// If we have any FPRs remaining, we may also have GPRs remaining.
++GPR_idx;
} else {
// Single-precision floating-point values are mapped to the
// second (rightmost) word of the stack doubleword.
if (Arg.getValueType() == MVT::f32) {
SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
}
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
true, isTailCall, false, MemOpChains,
TailCallArguments, dl);
}
ArgOffset += 8;
break;
case MVT::v4f32:
case MVT::v4i32:
case MVT::v8i16:
case MVT::v16i8:
if (isVarArg) {
// These go aligned on the stack, or in the corresponding R registers
// when within range. The Darwin PPC ABI doc claims they also go in
// V registers; in fact gcc does this only for arguments that are
// prototyped, not for those that match the ... We do it for all
// arguments, seems to work.
while (ArgOffset % 16 !=0) {
ArgOffset += PtrByteSize;
if (GPR_idx != NumGPRs)
GPR_idx++;
}
// We could elide this store in the case where the object fits
// entirely in R registers. Maybe later.
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
DAG.getConstant(ArgOffset, PtrVT));
SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
MachinePointerInfo(), false, false, 0);
MemOpChains.push_back(Store);
if (VR_idx != NumVRs) {
SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
MachinePointerInfo(),
false, false, false, 0);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
}
ArgOffset += 16;
for (unsigned i=0; i<16; i+=PtrByteSize) {
if (GPR_idx == NumGPRs)
break;
SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
DAG.getConstant(i, PtrVT));
SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
false, false, false, 0);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
}
break;
}
// Non-varargs Altivec params generally go in registers, but have
// stack space allocated at the end.
if (VR_idx != NumVRs) {
// Doesn't have GPR space allocated.
RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
} else {
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
true, isTailCall, true, MemOpChains,
TailCallArguments, dl);
ArgOffset += 16;
}
break;
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// Check if this is an indirect call (MTCTR/BCTRL).
// See PrepareCall() for more information about calls through function
// pointers in the 64-bit SVR4 ABI.
if (!isTailCall &&
!dyn_cast<GlobalAddressSDNode>(Callee) &&
!dyn_cast<ExternalSymbolSDNode>(Callee) &&
!isBLACompatibleAddress(Callee, DAG)) {
// Load r2 into a virtual register and store it to the TOC save area.
SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
// TOC save area offset.
SDValue PtrOff = DAG.getIntPtrConstant(40);
SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
false, false, 0);
// R12 must contain the address of an indirect callee. This does not
// mean the MTCTR instruction must use R12; it's easier to model this
// as an extra parameter, so do that.
RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
}
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into the appropriate regs.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
if (isTailCall)
PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
FPOp, true, TailCallArguments);
return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
Ins, InVals);
}
SDValue
PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv, bool isVarArg,
bool isTailCall,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
unsigned NumOps = Outs.size();
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
bool isPPC64 = PtrVT == MVT::i64;
unsigned PtrByteSize = isPPC64 ? 8 : 4;
MachineFunction &MF = DAG.getMachineFunction();
// Mark this function as potentially containing a function that contains a
// tail call. As a consequence the frame pointer will be used for dynamicalloc
// and restoring the callers stack pointer in this functions epilog. This is
// done because by tail calling the called function might overwrite the value
// in this function's (MF) stack pointer stack slot 0(SP).
if (getTargetMachine().Options.GuaranteedTailCallOpt &&
CallConv == CallingConv::Fast)
MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
unsigned nAltivecParamsAtEnd = 0;
// Count how many bytes are to be pushed on the stack, including the linkage
// area, and parameter passing area. We start with 24/48 bytes, which is
// prereserved space for [SP][CR][LR][3 x unused].
unsigned NumBytes =
CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
Outs, OutVals,
nAltivecParamsAtEnd);
// Calculate by how many bytes the stack has to be adjusted in case of tail
// call optimization.
int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
// To protect arguments on the stack from being clobbered in a tail call,
// force all the loads to happen before doing any other lowering.
if (isTailCall)
Chain = DAG.getStackArgumentTokenFactor(Chain);
// Adjust the stack pointer for the new arguments...
// These operations are automatically eliminated by the prolog/epilog pass
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
dl);
SDValue CallSeqStart = Chain;
// Load the return address and frame pointer so it can be move somewhere else
// later.
SDValue LROp, FPOp;
Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
dl);
// Set up a copy of the stack pointer for use loading and storing any
// arguments that may not fit in the registers available for argument
// passing.
SDValue StackPtr;
if (isPPC64)
StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
else
StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
// Figure out which arguments are going to go in registers, and which in
// memory. Also, if this is a vararg function, floating point operations
// must be stored to our stack, and loaded into integer regs as well, if
// any integer regs are available for argument passing.
unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
static const uint16_t GPR_32[] = { // 32-bit registers.
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
};
static const uint16_t GPR_64[] = { // 64-bit registers.
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
};
static const uint16_t *FPR = GetFPR();
static const uint16_t VR[] = {
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
};
const unsigned NumGPRs = array_lengthof(GPR_32);
const unsigned NumFPRs = 13;
const unsigned NumVRs = array_lengthof(VR);
const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
SmallVector<SDValue, 8> MemOpChains;
for (unsigned i = 0; i != NumOps; ++i) {
SDValue Arg = OutVals[i];
ISD::ArgFlagsTy Flags = Outs[i].Flags;
// PtrOff will be used to store the current argument to the stack if a
// register cannot be found for it.
SDValue PtrOff;
PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
// On PPC64, promote integers to 64-bit values.
if (isPPC64 && Arg.getValueType() == MVT::i32) {
// FIXME: Should this use ANY_EXTEND if neither sext nor zext?
unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
}
// FIXME memcpy is used way more than necessary. Correctness first.
// Note: "by value" is code for passing a structure by value, not
// basic types.
if (Flags.isByVal()) {
unsigned Size = Flags.getByValSize();
// Very small objects are passed right-justified. Everything else is
// passed left-justified.
if (Size==1 || Size==2) {
EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
if (GPR_idx != NumGPRs) {
SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
MachinePointerInfo(), VT,
false, false, 0);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
ArgOffset += PtrByteSize;
} else {
SDValue Const = DAG.getConstant(PtrByteSize - Size,
PtrOff.getValueType());
SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
CallSeqStart,
Flags, DAG, dl);
ArgOffset += PtrByteSize;
}
continue;
}
// Copy entire object into memory. There are cases where gcc-generated
// code assumes it is there, even if it could be put entirely into
// registers. (This is not what the doc says.)
Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
CallSeqStart,
Flags, DAG, dl);
// For small aggregates (Darwin only) and aggregates >= PtrByteSize,
// copy the pieces of the object that fit into registers from the
// parameter save area.
for (unsigned j=0; j<Size; j+=PtrByteSize) {
SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
if (GPR_idx != NumGPRs) {
SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
MachinePointerInfo(),
false, false, false, 0);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
ArgOffset += PtrByteSize;
} else {
ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
break;
}
}
continue;
}
switch (Arg.getSimpleValueType().SimpleTy) {
default: llvm_unreachable("Unexpected ValueType for argument!");
case MVT::i32:
case MVT::i64:
if (GPR_idx != NumGPRs) {
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
} else {
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
isPPC64, isTailCall, false, MemOpChains,
TailCallArguments, dl);
}
ArgOffset += PtrByteSize;
break;
case MVT::f32:
case MVT::f64:
if (FPR_idx != NumFPRs) {
RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
if (isVarArg) {
SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
MachinePointerInfo(), false, false, 0);
MemOpChains.push_back(Store);
// Float varargs are always shadowed in available integer registers
if (GPR_idx != NumGPRs) {
SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
MachinePointerInfo(), false, false,
false, 0);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
}
if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
MachinePointerInfo(),
false, false, false, 0);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
}
} else {
// If we have any FPRs remaining, we may also have GPRs remaining.
// Args passed in FPRs consume either 1 (f32) or 2 (f64) available
// GPRs.
if (GPR_idx != NumGPRs)
++GPR_idx;
if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
!isPPC64) // PPC64 has 64-bit GPR's obviously :)
++GPR_idx;
}
} else
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
isPPC64, isTailCall, false, MemOpChains,
TailCallArguments, dl);
if (isPPC64)
ArgOffset += 8;
else
ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
break;
case MVT::v4f32:
case MVT::v4i32:
case MVT::v8i16:
case MVT::v16i8:
if (isVarArg) {
// These go aligned on the stack, or in the corresponding R registers
// when within range. The Darwin PPC ABI doc claims they also go in
// V registers; in fact gcc does this only for arguments that are
// prototyped, not for those that match the ... We do it for all
// arguments, seems to work.
while (ArgOffset % 16 !=0) {
ArgOffset += PtrByteSize;
if (GPR_idx != NumGPRs)
GPR_idx++;
}
// We could elide this store in the case where the object fits
// entirely in R registers. Maybe later.
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
DAG.getConstant(ArgOffset, PtrVT));
SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
MachinePointerInfo(), false, false, 0);
MemOpChains.push_back(Store);
if (VR_idx != NumVRs) {
SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
MachinePointerInfo(),
false, false, false, 0);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
}
ArgOffset += 16;
for (unsigned i=0; i<16; i+=PtrByteSize) {
if (GPR_idx == NumGPRs)
break;
SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
DAG.getConstant(i, PtrVT));
SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
false, false, false, 0);
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
}
break;
}
// Non-varargs Altivec params generally go in registers, but have
// stack space allocated at the end.
if (VR_idx != NumVRs) {
// Doesn't have GPR space allocated.
RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
} else if (nAltivecParamsAtEnd==0) {
// We are emitting Altivec params in order.
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
isPPC64, isTailCall, true, MemOpChains,
TailCallArguments, dl);
ArgOffset += 16;
}
break;
}
}
// If all Altivec parameters fit in registers, as they usually do,
// they get stack space following the non-Altivec parameters. We
// don't track this here because nobody below needs it.
// If there are more Altivec parameters than fit in registers emit
// the stores here.
if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
unsigned j = 0;
// Offset is aligned; skip 1st 12 params which go in V registers.
ArgOffset = ((ArgOffset+15)/16)*16;
ArgOffset += 12*16;
for (unsigned i = 0; i != NumOps; ++i) {
SDValue Arg = OutVals[i];
EVT ArgType = Outs[i].VT;
if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
if (++j > NumVRs) {
SDValue PtrOff;
// We are emitting Altivec params in order.
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
isPPC64, isTailCall, true, MemOpChains,
TailCallArguments, dl);
ArgOffset += 16;
}
}
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// On Darwin, R12 must contain the address of an indirect callee. This does
// not mean the MTCTR instruction must use R12; it's easier to model this as
// an extra parameter, so do that.
if (!isTailCall &&
!dyn_cast<GlobalAddressSDNode>(Callee) &&
!dyn_cast<ExternalSymbolSDNode>(Callee) &&
!isBLACompatibleAddress(Callee, DAG))
RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
PPC::R12), Callee));
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into the appropriate regs.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
if (isTailCall)
PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
FPOp, true, TailCallArguments);
return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
Ins, InVals);
}
bool
PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
MachineFunction &MF, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
RVLocs, Context);
return CCInfo.CheckReturn(Outs, RetCC_PPC);
}
SDValue
PPCTargetLowering::LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
SDLoc dl, SelectionDAG &DAG) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), RVLocs, *DAG.getContext());
CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
SDValue Flag;
SmallVector<SDValue, 4> RetOps(1, Chain);
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
SDValue Arg = OutVals[i];
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
break;
}
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
RetOps[0] = Chain; // Update chain.
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other,
&RetOps[0], RetOps.size());
}
SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
const PPCSubtarget &Subtarget) const {
// When we pop the dynamic allocation we need to restore the SP link.
SDLoc dl(Op);
// Get the corect type for pointers.
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
// Construct the stack pointer operand.
bool isPPC64 = Subtarget.isPPC64();
unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
SDValue StackPtr = DAG.getRegister(SP, PtrVT);
// Get the operands for the STACKRESTORE.
SDValue Chain = Op.getOperand(0);
SDValue SaveSP = Op.getOperand(1);
// Load the old link SP.
SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
MachinePointerInfo(),
false, false, false, 0);
// Restore the stack pointer.
Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
// Store the old link SP.
return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
false, false, 0);
}
SDValue
PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
bool isPPC64 = PPCSubTarget.isPPC64();
bool isDarwinABI = PPCSubTarget.isDarwinABI();
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
// Get current frame pointer save index. The users of this index will be
// primarily DYNALLOC instructions.
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
int RASI = FI->getReturnAddrSaveIndex();
// If the frame pointer save index hasn't been defined yet.
if (!RASI) {
// Find out what the fix offset of the frame pointer save area.
int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
// Allocate the frame index for frame pointer save area.
RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
// Save the result.
FI->setReturnAddrSaveIndex(RASI);
}
return DAG.getFrameIndex(RASI, PtrVT);
}
SDValue
PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
bool isPPC64 = PPCSubTarget.isPPC64();
bool isDarwinABI = PPCSubTarget.isDarwinABI();
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
// Get current frame pointer save index. The users of this index will be
// primarily DYNALLOC instructions.
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
int FPSI = FI->getFramePointerSaveIndex();
// If the frame pointer save index hasn't been defined yet.
if (!FPSI) {
// Find out what the fix offset of the frame pointer save area.
int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
isDarwinABI);
// Allocate the frame index for frame pointer save area.
FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
// Save the result.
FI->setFramePointerSaveIndex(FPSI);
}
return DAG.getFrameIndex(FPSI, PtrVT);
}
SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
SelectionDAG &DAG,
const PPCSubtarget &Subtarget) const {
// Get the inputs.
SDValue Chain = Op.getOperand(0);
SDValue Size = Op.getOperand(1);
SDLoc dl(Op);
// Get the corect type for pointers.
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
// Negate the size.
SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
DAG.getConstant(0, PtrVT), Size);
// Construct a node for the frame pointer save index.
SDValue FPSIdx = getFramePointerFrameIndex(DAG);
// Build a DYNALLOC node.
SDValue Ops[3] = { Chain, NegSize, FPSIdx };
SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
}
SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
DAG.getVTList(MVT::i32, MVT::Other),
Op.getOperand(0), Op.getOperand(1));
}
SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
Op.getOperand(0), Op.getOperand(1));
}
/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
/// possible.
SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
// Not FP? Not a fsel.
if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
!Op.getOperand(2).getValueType().isFloatingPoint())
return Op;
// We might be able to do better than this under some circumstances, but in
// general, fsel-based lowering of select is a finite-math-only optimization.
// For more information, see section F.3 of the 2.06 ISA specification.
if (!DAG.getTarget().Options.NoInfsFPMath ||
!DAG.getTarget().Options.NoNaNsFPMath)
return Op;
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
EVT ResVT = Op.getValueType();
EVT CmpVT = Op.getOperand(0).getValueType();
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
SDValue TV = Op.getOperand(2), FV = Op.getOperand(3);
SDLoc dl(Op);
// If the RHS of the comparison is a 0.0, we don't need to do the
// subtraction at all.
SDValue Sel1;
if (isFloatingPointZero(RHS))
switch (CC) {
default: break; // SETUO etc aren't handled by fsel.
case ISD::SETNE:
std::swap(TV, FV);
case ISD::SETEQ:
if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits
Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
return DAG.getNode(PPCISD::FSEL, dl, ResVT,
DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
case ISD::SETULT:
case ISD::SETLT:
std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
case ISD::SETOGE:
case ISD::SETGE:
if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
case ISD::SETUGT:
case ISD::SETGT:
std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
case ISD::SETOLE:
case ISD::SETLE:
if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
return DAG.getNode(PPCISD::FSEL, dl, ResVT,
DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
}
SDValue Cmp;
switch (CC) {
default: break; // SETUO etc aren't handled by fsel.
case ISD::SETNE:
std::swap(TV, FV);
case ISD::SETEQ:
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits
Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
return DAG.getNode(PPCISD::FSEL, dl, ResVT,
DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
case ISD::SETULT:
case ISD::SETLT:
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
case ISD::SETOGE:
case ISD::SETGE:
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
case ISD::SETUGT:
case ISD::SETGT:
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
case ISD::SETOLE:
case ISD::SETLE:
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
}
return Op;
}
// FIXME: Split this code up when LegalizeDAGTypes lands.
SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
SDLoc dl) const {
assert(Op.getOperand(0).getValueType().isFloatingPoint());
SDValue Src = Op.getOperand(0);
if (Src.getValueType() == MVT::f32)
Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
SDValue Tmp;
switch (Op.getSimpleValueType().SimpleTy) {
default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
case MVT::i32:
Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
(PPCSubTarget.hasFPCVT() ? PPCISD::FCTIWUZ :
PPCISD::FCTIDZ),
dl, MVT::f64, Src);
break;
case MVT::i64:
assert((Op.getOpcode() == ISD::FP_TO_SINT || PPCSubTarget.hasFPCVT()) &&
"i64 FP_TO_UINT is supported only with FPCVT");
Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
PPCISD::FCTIDUZ,
dl, MVT::f64, Src);
break;
}
// Convert the FP value to an int value through memory.
bool i32Stack = Op.getValueType() == MVT::i32 && PPCSubTarget.hasSTFIWX() &&
(Op.getOpcode() == ISD::FP_TO_SINT || PPCSubTarget.hasFPCVT());
SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI);
// Emit a store to the stack slot.
SDValue Chain;
if (i32Stack) {
MachineFunction &MF = DAG.getMachineFunction();
MachineMemOperand *MMO =
MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
DAG.getVTList(MVT::Other), Ops, array_lengthof(Ops),
MVT::i32, MMO);
} else
Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
MPI, false, false, 0);
// Result is a load from the stack slot. If loading 4 bytes, make sure to
// add in a bias.
if (Op.getValueType() == MVT::i32 && !i32Stack) {
FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
DAG.getConstant(4, FIPtr.getValueType()));
MPI = MachinePointerInfo();
}
return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MPI,
false, false, false, 0);
}
SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
// Don't handle ppc_fp128 here; let it be lowered to a libcall.
if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
return SDValue();
assert((Op.getOpcode() == ISD::SINT_TO_FP || PPCSubTarget.hasFPCVT()) &&
"UINT_TO_FP is supported only with FPCVT");
// If we have FCFIDS, then use it when converting to single-precision.
// Otherwise, convert to double-precision and then round.
unsigned FCFOp = (PPCSubTarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
(Op.getOpcode() == ISD::UINT_TO_FP ?
PPCISD::FCFIDUS : PPCISD::FCFIDS) :
(Op.getOpcode() == ISD::UINT_TO_FP ?
PPCISD::FCFIDU : PPCISD::FCFID);
MVT FCFTy = (PPCSubTarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
MVT::f32 : MVT::f64;
if (Op.getOperand(0).getValueType() == MVT::i64) {
SDValue SINT = Op.getOperand(0);
// When converting to single-precision, we actually need to convert
// to double-precision first and then round to single-precision.
// To avoid double-rounding effects during that operation, we have
// to prepare the input operand. Bits that might be truncated when
// converting to double-precision are replaced by a bit that won't
// be lost at this stage, but is below the single-precision rounding
// position.
//
// However, if -enable-unsafe-fp-math is in effect, accept double
// rounding to avoid the extra overhead.
if (Op.getValueType() == MVT::f32 &&
!PPCSubTarget.hasFPCVT() &&
!DAG.getTarget().Options.UnsafeFPMath) {
// Twiddle input to make sure the low 11 bits are zero. (If this
// is the case, we are guaranteed the value will fit into the 53 bit
// mantissa of an IEEE double-precision value without rounding.)
// If any of those low 11 bits were not zero originally, make sure
// bit 12 (value 2048) is set instead, so that the final rounding
// to single-precision gets the correct result.
SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
SINT, DAG.getConstant(2047, MVT::i64));
Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
Round, DAG.getConstant(2047, MVT::i64));
Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
Round = DAG.getNode(ISD::AND, dl, MVT::i64,
Round, DAG.getConstant(-2048, MVT::i64));
// However, we cannot use that value unconditionally: if the magnitude
// of the input value is small, the bit-twiddling we did above might
// end up visibly changing the output. Fortunately, in that case, we
// don't need to twiddle bits since the original input will convert
// exactly to double-precision floating-point already. Therefore,
// construct a conditional to use the original value if the top 11
// bits are all sign-bit copies, and use the rounded value computed
// above otherwise.
SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
SINT, DAG.getConstant(53, MVT::i32));
Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
Cond, DAG.getConstant(1, MVT::i64));
Cond = DAG.getSetCC(dl, MVT::i32,
Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
}
SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
if (Op.getValueType() == MVT::f32 && !PPCSubTarget.hasFPCVT())
FP = DAG.getNode(ISD::FP_ROUND, dl,
MVT::f32, FP, DAG.getIntPtrConstant(0));
return FP;
}
assert(Op.getOperand(0).getValueType() == MVT::i32 &&
"Unhandled INT_TO_FP type in custom expander!");
// Since we only generate this in 64-bit mode, we can take advantage of
// 64-bit registers. In particular, sign extend the input value into the
// 64-bit register with extsw, store the WHOLE 64-bit value into the stack
// then lfd it and fcfid it.
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *FrameInfo = MF.getFrameInfo();
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
SDValue Ld;
if (PPCSubTarget.hasLFIWAX() || PPCSubTarget.hasFPCVT()) {
int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
MachinePointerInfo::getFixedStack(FrameIdx),
false, false, 0);
assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
"Expected an i32 store");
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
MachineMemOperand::MOLoad, 4, 4);
SDValue Ops[] = { Store, FIdx };
Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
PPCISD::LFIWZX : PPCISD::LFIWAX,
dl, DAG.getVTList(MVT::f64, MVT::Other),
Ops, 2, MVT::i32, MMO);
} else {
assert(PPCSubTarget.isPPC64() &&
"i32->FP without LFIWAX supported only on PPC64");
int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
Op.getOperand(0));
// STD the extended value into the stack slot.
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx,
MachinePointerInfo::getFixedStack(FrameIdx),
false, false, 0);
// Load the value as a double.
Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx,
MachinePointerInfo::getFixedStack(FrameIdx),
false, false, false, 0);
}
// FCFID it and return it.
SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
if (Op.getValueType() == MVT::f32 && !PPCSubTarget.hasFPCVT())
FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
return FP;
}
SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
/*
The rounding mode is in bits 30:31 of FPSR, and has the following
settings:
00 Round to nearest
01 Round to 0
10 Round to +inf
11 Round to -inf
FLT_ROUNDS, on the other hand, expects the following:
-1 Undefined
0 Round to 0
1 Round to nearest
2 Round to +inf
3 Round to -inf
To perform the conversion, we do:
((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
*/
MachineFunction &MF = DAG.getMachineFunction();
EVT VT = Op.getValueType();
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
SDValue MFFSreg, InFlag;
// Save FP Control Word to register
EVT NodeTys[] = {
MVT::f64, // return register
MVT::Glue // unused in this context
};
SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
// Save FP register to stack slot
int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
StackSlot, MachinePointerInfo(), false, false,0);
// Load FP Control Word from low 32 bits of stack slot.
SDValue Four = DAG.getConstant(4, PtrVT);
SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
false, false, false, 0);
// Transform as necessary
SDValue CWD1 =
DAG.getNode(ISD::AND, dl, MVT::i32,
CWD, DAG.getConstant(3, MVT::i32));
SDValue CWD2 =
DAG.getNode(ISD::SRL, dl, MVT::i32,
DAG.getNode(ISD::AND, dl, MVT::i32,
DAG.getNode(ISD::XOR, dl, MVT::i32,
CWD, DAG.getConstant(3, MVT::i32)),
DAG.getConstant(3, MVT::i32)),
DAG.getConstant(1, MVT::i32));
SDValue RetVal =
DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
return DAG.getNode((VT.getSizeInBits() < 16 ?
ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
}
SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
unsigned BitWidth = VT.getSizeInBits();
SDLoc dl(Op);
assert(Op.getNumOperands() == 3 &&
VT == Op.getOperand(1).getValueType() &&
"Unexpected SHL!");
// Expand into a bunch of logical ops. Note that these ops
// depend on the PPC behavior for oversized shift amounts.
SDValue Lo = Op.getOperand(0);
SDValue Hi = Op.getOperand(1);
SDValue Amt = Op.getOperand(2);
EVT AmtVT = Amt.getValueType();
SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
DAG.getConstant(BitWidth, AmtVT), Amt);
SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
DAG.getConstant(-BitWidth, AmtVT));
SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
SDValue OutOps[] = { OutLo, OutHi };
return DAG.getMergeValues(OutOps, 2, dl);
}
SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc dl(Op);
unsigned BitWidth = VT.getSizeInBits();
assert(Op.getNumOperands() == 3 &&
VT == Op.getOperand(1).getValueType() &&
"Unexpected SRL!");
// Expand into a bunch of logical ops. Note that these ops
// depend on the PPC behavior for oversized shift amounts.
SDValue Lo = Op.getOperand(0);
SDValue Hi = Op.getOperand(1);
SDValue Amt = Op.getOperand(2);
EVT AmtVT = Amt.getValueType();
SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
DAG.getConstant(BitWidth, AmtVT), Amt);
SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
DAG.getConstant(-BitWidth, AmtVT));
SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
SDValue OutOps[] = { OutLo, OutHi };
return DAG.getMergeValues(OutOps, 2, dl);
}
SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
EVT VT = Op.getValueType();
unsigned BitWidth = VT.getSizeInBits();
assert(Op.getNumOperands() == 3 &&
VT == Op.getOperand(1).getValueType() &&
"Unexpected SRA!");
// Expand into a bunch of logical ops, followed by a select_cc.
SDValue Lo = Op.getOperand(0);
SDValue Hi = Op.getOperand(1);
SDValue Amt = Op.getOperand(2);
EVT AmtVT = Amt.getValueType();
SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
DAG.getConstant(BitWidth, AmtVT), Amt);
SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
DAG.getConstant(-BitWidth, AmtVT));
SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
Tmp4, Tmp6, ISD::SETLE);
SDValue OutOps[] = { OutLo, OutHi };
return DAG.getMergeValues(OutOps, 2, dl);
}
//===----------------------------------------------------------------------===//
// Vector related lowering.
//
/// BuildSplatI - Build a canonical splati of Val with an element size of
/// SplatSize. Cast the result to VT.
static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
SelectionDAG &DAG, SDLoc dl) {
assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
static const EVT VTys[] = { // canonical VT to use for each size.
MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
};
EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
// Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
if (Val == -1)
SplatSize = 1;
EVT CanonicalVT = VTys[SplatSize-1];
// Build a canonical splat for this value.
SDValue Elt = DAG.getConstant(Val, MVT::i32);
SmallVector<SDValue, 8> Ops;
Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
&Ops[0], Ops.size());
return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
}
/// BuildIntrinsicOp - Return a unary operator intrinsic node with the
/// specified intrinsic ID.
static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op,
SelectionDAG &DAG, SDLoc dl,
EVT DestVT = MVT::Other) {
if (DestVT == MVT::Other) DestVT = Op.getValueType();
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
DAG.getConstant(IID, MVT::i32), Op);
}
/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
/// specified intrinsic ID.
static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
SelectionDAG &DAG, SDLoc dl,
EVT DestVT = MVT::Other) {
if (DestVT == MVT::Other) DestVT = LHS.getValueType();
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
DAG.getConstant(IID, MVT::i32), LHS, RHS);
}
/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
/// specified intrinsic ID.
static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
SDValue Op2, SelectionDAG &DAG,
SDLoc dl, EVT DestVT = MVT::Other) {
if (DestVT == MVT::Other) DestVT = Op0.getValueType();
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
}
/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
/// amount. The result has the specified value type.
static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
EVT VT, SelectionDAG &DAG, SDLoc dl) {
// Force LHS/RHS to be the right type.
LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
int Ops[16];
for (unsigned i = 0; i != 16; ++i)
Ops[i] = i + Amt;
SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
return DAG.getNode(ISD::BITCAST, dl, VT, T);
}
// If this is a case we can't handle, return null and let the default
// expansion code take care of it. If we CAN select this case, and if it
// selects to a single instruction, return Op. Otherwise, if we can codegen
// this case more efficiently than a constant pool load, lower it to the
// sequence of ops that should be used.
SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
// Check if this is a splat of a constant value.
APInt APSplatBits, APSplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
HasAnyUndefs, 0, true) || SplatBitSize > 32)
return SDValue();
unsigned SplatBits = APSplatBits.getZExtValue();
unsigned SplatUndef = APSplatUndef.getZExtValue();
unsigned SplatSize = SplatBitSize / 8;
// First, handle single instruction cases.
// All zeros?
if (SplatBits == 0) {
// Canonicalize all zero vectors to be v4i32.
if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
SDValue Z = DAG.getConstant(0, MVT::i32);
Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
}
return Op;
}
// If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
(32-SplatBitSize));
if (SextVal >= -16 && SextVal <= 15)
return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
// Two instruction sequences.
// If this value is in the range [-32,30] and is even, use:
// VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
// If this value is in the range [17,31] and is odd, use:
// VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
// If this value is in the range [-31,-17] and is odd, use:
// VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
// Note the last two are three-instruction sequences.
if (SextVal >= -32 && SextVal <= 31) {
// To avoid having these optimizations undone by constant folding,
// we convert to a pseudo that will be expanded later into one of
// the above forms.
SDValue Elt = DAG.getConstant(SextVal, MVT::i32);
EVT VT = Op.getValueType();
int Size = VT == MVT::v16i8 ? 1 : (VT == MVT::v8i16 ? 2 : 4);
SDValue EltSize = DAG.getConstant(Size, MVT::i32);
return DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
}
// If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
// 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
// for fneg/fabs.
if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
// Make -1 and vspltisw -1:
SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
// Make the VSLW intrinsic, computing 0x8000_0000.
SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
OnesV, DAG, dl);
// xor by OnesV to invert it.
Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
}
// Check to see if this is a wide variety of vsplti*, binop self cases.
static const signed char SplatCsts[] = {
-1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
-8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
};
for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
// Indirect through the SplatCsts array so that we favor 'vsplti -1' for
// cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
int i = SplatCsts[idx];
// Figure out what shift amount will be used by altivec if shifted by i in
// this splat size.
unsigned TypeShiftAmt = i & (SplatBitSize-1);
// vsplti + shl self.
if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
static const unsigned IIDs[] = { // Intrinsic to use for each size.
Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
Intrinsic::ppc_altivec_vslw
};
Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
}
// vsplti + srl self.
if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
static const unsigned IIDs[] = { // Intrinsic to use for each size.
Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
Intrinsic::ppc_altivec_vsrw
};
Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
}
// vsplti + sra self.
if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
static const unsigned IIDs[] = { // Intrinsic to use for each size.
Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
Intrinsic::ppc_altivec_vsraw
};
Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
}
// vsplti + rol self.
if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
static const unsigned IIDs[] = { // Intrinsic to use for each size.
Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
Intrinsic::ppc_altivec_vrlw
};
Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
}
// t = vsplti c, result = vsldoi t, t, 1
if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
}
// t = vsplti c, result = vsldoi t, t, 2
if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
}
// t = vsplti c, result = vsldoi t, t, 3
if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
}
}
return SDValue();
}
/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
/// the specified operations to build the shuffle.
static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
SDValue RHS, SelectionDAG &DAG,
SDLoc dl) {
unsigned OpNum = (PFEntry >> 26) & 0x0F;
unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
enum {
OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
OP_VMRGHW,
OP_VMRGLW,
OP_VSPLTISW0,
OP_VSPLTISW1,
OP_VSPLTISW2,
OP_VSPLTISW3,
OP_VSLDOI4,
OP_VSLDOI8,
OP_VSLDOI12
};
if (OpNum == OP_COPY) {
if (LHSID == (1*9+2)*9+3) return LHS;
assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
return RHS;
}
SDValue OpLHS, OpRHS;
OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
int ShufIdxs[16];
switch (OpNum) {
default: llvm_unreachable("Unknown i32 permute!");
case OP_VMRGHW:
ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
break;
case OP_VMRGLW:
ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
break;
case OP_VSPLTISW0:
for (unsigned i = 0; i != 16; ++i)
ShufIdxs[i] = (i&3)+0;
break;
case OP_VSPLTISW1:
for (unsigned i = 0; i != 16; ++i)
ShufIdxs[i] = (i&3)+4;
break;
case OP_VSPLTISW2:
for (unsigned i = 0; i != 16; ++i)
ShufIdxs[i] = (i&3)+8;
break;
case OP_VSPLTISW3:
for (unsigned i = 0; i != 16; ++i)
ShufIdxs[i] = (i&3)+12;
break;
case OP_VSLDOI4:
return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
case OP_VSLDOI8:
return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
case OP_VSLDOI12:
return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
}
EVT VT = OpLHS.getValueType();
OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
return DAG.getNode(ISD::BITCAST, dl, VT, T);
}
/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
/// is a shuffle we can handle in a single instruction, return it. Otherwise,
/// return the code it can be lowered into. Worst case, it can always be
/// lowered into a vperm.
SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
EVT VT = Op.getValueType();
// Cases that are handled by instructions that take permute immediates
// (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
// selected by the instruction selector.
if (V2.getOpcode() == ISD::UNDEF) {
if (PPC::isSplatShuffleMask(SVOp, 1) ||
PPC::isSplatShuffleMask(SVOp, 2) ||
PPC::isSplatShuffleMask(SVOp, 4) ||
PPC::isVPKUWUMShuffleMask(SVOp, true) ||
PPC::isVPKUHUMShuffleMask(SVOp, true) ||
PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
return Op;
}
}
// Altivec has a variety of "shuffle immediates" that take two vector inputs
// and produce a fixed permutation. If any of these match, do not lower to
// VPERM.
if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
PPC::isVPKUHUMShuffleMask(SVOp, false) ||
PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
PPC::isVMRGHShuffleMask(SVOp, 4, false))
return Op;
// Check to see if this is a shuffle of 4-byte values. If so, we can use our
// perfect shuffle table to emit an optimal matching sequence.
ArrayRef<int> PermMask = SVOp->getMask();
unsigned PFIndexes[4];
bool isFourElementShuffle = true;
for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
unsigned EltNo = 8; // Start out undef.
for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
if (PermMask[i*4+j] < 0)
continue; // Undef, ignore it.
unsigned ByteSource = PermMask[i*4+j];
if ((ByteSource & 3) != j) {
isFourElementShuffle = false;
break;
}
if (EltNo == 8) {
EltNo = ByteSource/4;
} else if (EltNo != ByteSource/4) {
isFourElementShuffle = false;
break;
}
}
PFIndexes[i] = EltNo;
}
// If this shuffle can be expressed as a shuffle of 4-byte elements, use the
// perfect shuffle vector to determine if it is cost effective to do this as
// discrete instructions, or whether we should use a vperm.
if (isFourElementShuffle) {
// Compute the index in the perfect shuffle table.
unsigned PFTableIndex =
PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
unsigned Cost = (PFEntry >> 30);
// Determining when to avoid vperm is tricky. Many things affect the cost
// of vperm, particularly how many times the perm mask needs to be computed.
// For example, if the perm mask can be hoisted out of a loop or is already
// used (perhaps because there are multiple permutes with the same shuffle
// mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
// the loop requires an extra register.
//
// As a compromise, we only emit discrete instructions if the shuffle can be
// generated in 3 or fewer operations. When we have loop information
// available, if this block is within a loop, we should avoid using vperm
// for 3-operation perms and use a constant pool load instead.
if (Cost < 3)
return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
}
// Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
// vector that will get spilled to the constant pool.
if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
// The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
// that it is in input element units, not in bytes. Convert now.
EVT EltVT = V1.getValueType().getVectorElementType();
unsigned BytesPerElement = EltVT.getSizeInBits()/8;
SmallVector<SDValue, 16> ResultMask;
for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
for (unsigned j = 0; j != BytesPerElement; ++j)
ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
MVT::i32));
}
SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
&ResultMask[0], ResultMask.size());
return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
}
/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
/// altivec comparison. If it is, return true and fill in Opc/isDot with
/// information about the intrinsic.
static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
bool &isDot) {
unsigned IntrinsicID =
cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
CompareOpc = -1;
isDot = false;
switch (IntrinsicID) {
default: return false;
// Comparison predicates.
case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
// Normal Comparisons.
case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
}
return true;
}
/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
/// lower, do it, otherwise return null.
SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
// If this is a lowered altivec predicate compare, CompareOpc is set to the
// opcode number of the comparison.
SDLoc dl(Op);
int CompareOpc;
bool isDot;
if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
return SDValue(); // Don't custom lower most intrinsics.
// If this is a non-dot comparison, make the VCMP node and we are done.
if (!isDot) {
SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
Op.getOperand(1), Op.getOperand(2),
DAG.getConstant(CompareOpc, MVT::i32));
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
}
// Create the PPCISD altivec 'dot' comparison node.
SDValue Ops[] = {
Op.getOperand(2), // LHS
Op.getOperand(3), // RHS
DAG.getConstant(CompareOpc, MVT::i32)
};
EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
// Now that we have the comparison, emit a copy from the CR to a GPR.
// This is flagged to the above dot comparison.
SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
DAG.getRegister(PPC::CR6, MVT::i32),
CompNode.getValue(1));
// Unpack the result based on how the target uses it.
unsigned BitNo; // Bit # of CR6.
bool InvertBit; // Invert result?
switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
default: // Can't happen, don't crash on invalid number though.
case 0: // Return the value of the EQ bit of CR6.
BitNo = 0; InvertBit = false;
break;
case 1: // Return the inverted value of the EQ bit of CR6.
BitNo = 0; InvertBit = true;
break;
case 2: // Return the value of the LT bit of CR6.
BitNo = 2; InvertBit = false;
break;
case 3: // Return the inverted value of the LT bit of CR6.
BitNo = 2; InvertBit = true;
break;
}
// Shift the bit into the low position.
Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
DAG.getConstant(8-(3-BitNo), MVT::i32));
// Isolate the bit.
Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
DAG.getConstant(1, MVT::i32));
// If we are supposed to, toggle the bit.
if (InvertBit)
Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
DAG.getConstant(1, MVT::i32));
return Flags;
}
SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
// Create a stack slot that is 16-byte aligned.
MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
EVT PtrVT = getPointerTy();
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
// Store the input value into Value#0 of the stack slot.
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
Op.getOperand(0), FIdx, MachinePointerInfo(),
false, false, 0);
// Load it out.
return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
false, false, false, 0);
}
SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
if (Op.getValueType() == MVT::v4i32) {
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl);
SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
SDValue RHSSwap = // = vrlw RHS, 16
BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
// Shrinkify inputs to v8i16.
LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
// Low parts multiplied together, generating 32-bit results (we ignore the
// top parts).
SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
LHS, RHS, DAG, dl, MVT::v4i32);
SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
// Shift the high parts up 16 bits.
HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
Neg16, DAG, dl);
return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
} else if (Op.getValueType() == MVT::v8i16) {
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
LHS, RHS, Zero, DAG, dl);
} else if (Op.getValueType() == MVT::v16i8) {
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
// Multiply the even 8-bit parts, producing 16-bit sums.
SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
LHS, RHS, DAG, dl, MVT::v8i16);
EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
// Multiply the odd 8-bit parts, producing 16-bit sums.
SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
LHS, RHS, DAG, dl, MVT::v8i16);
OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
// Merge the results together.
int Ops[16];
for (unsigned i = 0; i != 8; ++i) {
Ops[i*2 ] = 2*i+1;
Ops[i*2+1] = 2*i+1+16;
}
return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
} else {
llvm_unreachable("Unknown mul to lower!");
}
}
/// LowerOperation - Provide custom lowering hooks for some operations.
///
SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default: llvm_unreachable("Wasn't expecting to be able to lower this!");
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
case ISD::SETCC: return LowerSETCC(Op, DAG);
case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
case ISD::VASTART:
return LowerVASTART(Op, DAG, PPCSubTarget);
case ISD::VAARG:
return LowerVAARG(Op, DAG, PPCSubTarget);
case ISD::VACOPY:
return LowerVACOPY(Op, DAG, PPCSubTarget);
case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
case ISD::DYNAMIC_STACKALLOC:
return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG);
case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
case ISD::FP_TO_UINT:
case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG,
SDLoc(Op));
case ISD::UINT_TO_FP:
case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
// Lower 64-bit shifts.
case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
// Vector-related lowering.
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
case ISD::MUL: return LowerMUL(Op, DAG);
// For counter-based loop handling.
case ISD::INTRINSIC_W_CHAIN: return SDValue();
// Frame & Return address.
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
}
}
void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue>&Results,
SelectionDAG &DAG) const {
const TargetMachine &TM = getTargetMachine();
SDLoc dl(N);
switch (N->getOpcode()) {
default:
llvm_unreachable("Do not know how to custom type legalize this operation!");
case ISD::INTRINSIC_W_CHAIN: {
if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
Intrinsic::ppc_is_decremented_ctr_nonzero)
break;
assert(N->getValueType(0) == MVT::i1 &&
"Unexpected result type for CTR decrement intrinsic");
EVT SVT = getSetCCResultType(*DAG.getContext(), N->getValueType(0));
SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
N->getOperand(1));
Results.push_back(NewInt);
Results.push_back(NewInt.getValue(1));
break;
}
case ISD::VAARG: {
if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
|| TM.getSubtarget<PPCSubtarget>().isPPC64())
return;
EVT VT = N->getValueType(0);
if (VT == MVT::i64) {
SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
Results.push_back(NewNode);
Results.push_back(NewNode.getValue(1));
}
return;
}
case ISD::FP_ROUND_INREG: {
assert(N->getValueType(0) == MVT::ppcf128);
assert(N->getOperand(0).getValueType() == MVT::ppcf128);
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
MVT::f64, N->getOperand(0),
DAG.getIntPtrConstant(0));
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
MVT::f64, N->getOperand(0),
DAG.getIntPtrConstant(1));
// Add the two halves of the long double in round-to-zero mode.
SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
// We know the low half is about to be thrown away, so just use something
// convenient.
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
FPreg, FPreg));
return;
}
case ISD::FP_TO_SINT:
// LowerFP_TO_INT() can only handle f32 and f64.
if (N->getOperand(0).getValueType() == MVT::ppcf128)
return;
Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
return;
}
}
//===----------------------------------------------------------------------===//
// Other Lowering Code
//===----------------------------------------------------------------------===//
MachineBasicBlock *
PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
bool is64bit, unsigned BinOpcode) const {
// This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction *F = BB->getParent();
MachineFunction::iterator It = BB;
++It;
unsigned dest = MI->getOperand(0).getReg();
unsigned ptrA = MI->getOperand(1).getReg();
unsigned ptrB = MI->getOperand(2).getReg();
unsigned incr = MI->getOperand(3).getReg();
DebugLoc dl = MI->getDebugLoc();
MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, loopMBB);
F->insert(It, exitMBB);
exitMBB->splice(exitMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)),
BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
MachineRegisterInfo &RegInfo = F->getRegInfo();
unsigned TmpReg = (!BinOpcode) ? incr :
RegInfo.createVirtualRegister(
is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
(const TargetRegisterClass *) &PPC::GPRCRegClass);
// thisMBB:
// ...
// fallthrough --> loopMBB
BB->addSuccessor(loopMBB);
// loopMBB:
// l[wd]arx dest, ptr
// add r0, dest, incr
// st[wd]cx. r0, ptr
// bne- loopMBB
// fallthrough --> exitMBB
BB = loopMBB;
BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
.addReg(ptrA).addReg(ptrB);
if (BinOpcode)
BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
.addReg(TmpReg).addReg(ptrA).addReg(ptrB);
BuildMI(BB, dl, TII->get(PPC::BCC))
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
BB->addSuccessor(loopMBB);
BB->addSuccessor(exitMBB);
// exitMBB:
// ...
BB = exitMBB;
return BB;
}
MachineBasicBlock *
PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
MachineBasicBlock *BB,
bool is8bit, // operation
unsigned BinOpcode) const {
// This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
// In 64 bit mode we have to use 64 bits for addresses, even though the
// lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address
// registers without caring whether they're 32 or 64, but here we're
// doing actual arithmetic on the addresses.
bool is64bit = PPCSubTarget.isPPC64();
unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction *F = BB->getParent();
MachineFunction::iterator It = BB;
++It;
unsigned dest = MI->getOperand(0).getReg();
unsigned ptrA = MI->getOperand(1).getReg();
unsigned ptrB = MI->getOperand(2).getReg();
unsigned incr = MI->getOperand(3).getReg();
DebugLoc dl = MI->getDebugLoc();
MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, loopMBB);
F->insert(It, exitMBB);
exitMBB->splice(exitMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)),
BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
MachineRegisterInfo &RegInfo = F->getRegInfo();
const TargetRegisterClass *RC =
is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
(const TargetRegisterClass *) &PPC::GPRCRegClass;
unsigned PtrReg = RegInfo.createVirtualRegister(RC);
unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
unsigned MaskReg = RegInfo.createVirtualRegister(RC);
unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
unsigned Ptr1Reg;
unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
// thisMBB:
// ...
// fallthrough --> loopMBB
BB->addSuccessor(loopMBB);
// The 4-byte load must be aligned, while a char or short may be
// anywhere in the word. Hence all this nasty bookkeeping code.
// add ptr1, ptrA, ptrB [copy if ptrA==0]
// rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
// xori shift, shift1, 24 [16]
// rlwinm ptr, ptr1, 0, 0, 29
// slw incr2, incr, shift
// li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
// slw mask, mask2, shift
// loopMBB:
// lwarx tmpDest, ptr
// add tmp, tmpDest, incr2
// andc tmp2, tmpDest, mask
// and tmp3, tmp, mask
// or tmp4, tmp3, tmp2
// stwcx. tmp4, ptr
// bne- loopMBB
// fallthrough --> exitMBB
// srw dest, tmpDest, shift
if (ptrA != ZeroReg) {
Ptr1Reg = RegInfo.createVirtualRegister(RC);
BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
.addReg(ptrA).addReg(ptrB);
} else {
Ptr1Reg = ptrB;
}
BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
.addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
.addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
if (is64bit)
BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
.addReg(Ptr1Reg).addImm(0).addImm(61);
else
BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
.addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
.addReg(incr).addReg(ShiftReg);
if (is8bit)
BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
else {
BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
}
BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
.addReg(Mask2Reg).addReg(ShiftReg);
BB = loopMBB;
BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
.addReg(ZeroReg).addReg(PtrReg);
if (BinOpcode)
BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
.addReg(Incr2Reg).addReg(TmpDestReg);
BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
.addReg(TmpDestReg).addReg(MaskReg);
BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
.addReg(TmpReg).addReg(MaskReg);
BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
.addReg(Tmp3Reg).addReg(Tmp2Reg);
BuildMI(BB, dl, TII->get(PPC::STWCX))
.addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
BuildMI(BB, dl, TII->get(PPC::BCC))
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
BB->addSuccessor(loopMBB);
BB->addSuccessor(exitMBB);
// exitMBB:
// ...
BB = exitMBB;
BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
.addReg(ShiftReg);
return BB;
}
llvm::MachineBasicBlock*
PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
MachineBasicBlock *MBB) const {
DebugLoc DL = MI->getDebugLoc();
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
MachineFunction *MF = MBB->getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
const BasicBlock *BB = MBB->getBasicBlock();
MachineFunction::iterator I = MBB;
++I;
// Memory Reference
MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
unsigned DstReg = MI->getOperand(0).getReg();
const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
assert(RC->hasType(MVT::i32) && "Invalid destination!");
unsigned mainDstReg = MRI.createVirtualRegister(RC);
unsigned restoreDstReg = MRI.createVirtualRegister(RC);
MVT PVT = getPointerTy();
assert((PVT == MVT::i64 || PVT == MVT::i32) &&
"Invalid Pointer Size!");
// For v = setjmp(buf), we generate
//
// thisMBB:
// SjLjSetup mainMBB
// bl mainMBB
// v_restore = 1
// b sinkMBB
//
// mainMBB:
// buf[LabelOffset] = LR
// v_main = 0
//
// sinkMBB:
// v = phi(main, restore)
//
MachineBasicBlock *thisMBB = MBB;
MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
MF->insert(I, mainMBB);
MF->insert(I, sinkMBB);
MachineInstrBuilder MIB;
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), MBB,
llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
// Note that the structure of the jmp_buf used here is not compatible
// with that used by libc, and is not designed to be. Specifically, it
// stores only those 'reserved' registers that LLVM does not otherwise
// understand how to spill. Also, by convention, by the time this
// intrinsic is called, Clang has already stored the frame address in the
// first slot of the buffer and stack address in the third. Following the
// X86 target code, we'll store the jump address in the second slot. We also
// need to save the TOC pointer (R2) to handle jumps between shared
// libraries, and that will be stored in the fourth slot. The thread
// identifier (R13) is not affected.
// thisMBB:
const int64_t LabelOffset = 1 * PVT.getStoreSize();
const int64_t TOCOffset = 3 * PVT.getStoreSize();
const int64_t BPOffset = 4 * PVT.getStoreSize();
// Prepare IP either in reg.
const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
unsigned BufReg = MI->getOperand(1).getReg();
if (PPCSubTarget.isPPC64() && PPCSubTarget.isSVR4ABI()) {
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
.addReg(PPC::X2)
.addImm(TOCOffset)
.addReg(BufReg);
MIB.setMemRefs(MMOBegin, MMOEnd);
}
// Naked functions never have a base pointer, and so we use r1. For all
// other functions, this decision must be delayed until during PEI.
unsigned BaseReg;
if (MF->getFunction()->getAttributes().hasAttribute(
AttributeSet::FunctionIndex, Attribute::Naked))
BaseReg = PPCSubTarget.isPPC64() ? PPC::X1 : PPC::R1;
else
BaseReg = PPCSubTarget.isPPC64() ? PPC::BP8 : PPC::BP;
MIB = BuildMI(*thisMBB, MI, DL,
TII->get(PPCSubTarget.isPPC64() ? PPC::STD : PPC::STW))
.addReg(BaseReg)
.addImm(BPOffset)
.addReg(BufReg);
MIB.setMemRefs(MMOBegin, MMOEnd);
// Setup
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
const PPCRegisterInfo *TRI =
static_cast<const PPCRegisterInfo*>(getTargetMachine().getRegisterInfo());
MIB.addRegMask(TRI->getNoPreservedMask());
BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
.addMBB(mainMBB);
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
thisMBB->addSuccessor(mainMBB, /* weight */ 0);
thisMBB->addSuccessor(sinkMBB, /* weight */ 1);
// mainMBB:
// mainDstReg = 0
MIB = BuildMI(mainMBB, DL,
TII->get(PPCSubTarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
// Store IP
if (PPCSubTarget.isPPC64()) {
MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
.addReg(LabelReg)
.addImm(LabelOffset)
.addReg(BufReg);
} else {
MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
.addReg(LabelReg)
.addImm(LabelOffset)
.addReg(BufReg);
}
MIB.setMemRefs(MMOBegin, MMOEnd);
BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
mainMBB->addSuccessor(sinkMBB);
// sinkMBB:
BuildMI(*sinkMBB, sinkMBB->begin(), DL,
TII->get(PPC::PHI), DstReg)
.addReg(mainDstReg).addMBB(mainMBB)
.addReg(restoreDstReg).addMBB(thisMBB);
MI->eraseFromParent();
return sinkMBB;
}
MachineBasicBlock *
PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
MachineBasicBlock *MBB) const {
DebugLoc DL = MI->getDebugLoc();
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
MachineFunction *MF = MBB->getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
// Memory Reference
MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
MVT PVT = getPointerTy();
assert((PVT == MVT::i64 || PVT == MVT::i32) &&
"Invalid Pointer Size!");
const TargetRegisterClass *RC =
(PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
unsigned Tmp = MRI.createVirtualRegister(RC);
// Since FP is only updated here but NOT referenced, it's treated as GPR.
unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
unsigned BP = (PVT == MVT::i64) ? PPC::X30 : PPC::R30;
MachineInstrBuilder MIB;
const int64_t LabelOffset = 1 * PVT.getStoreSize();
const int64_t SPOffset = 2 * PVT.getStoreSize();
const int64_t TOCOffset = 3 * PVT.getStoreSize();
const int64_t BPOffset = 4 * PVT.getStoreSize();
unsigned BufReg = MI->getOperand(0).getReg();
// Reload FP (the jumped-to function may not have had a
// frame pointer, and if so, then its r31 will be restored
// as necessary).
if (PVT == MVT::i64) {
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
.addImm(0)
.addReg(BufReg);
} else {
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
.addImm(0)
.addReg(BufReg);
}
MIB.setMemRefs(MMOBegin, MMOEnd);
// Reload IP
if (PVT == MVT::i64) {
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
.addImm(LabelOffset)
.addReg(BufReg);
} else {
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
.addImm(LabelOffset)
.addReg(BufReg);
}
MIB.setMemRefs(MMOBegin, MMOEnd);
// Reload SP
if (PVT == MVT::i64) {
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
.addImm(SPOffset)
.addReg(BufReg);
} else {
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
.addImm(SPOffset)
.addReg(BufReg);
}
MIB.setMemRefs(MMOBegin, MMOEnd);
// Reload BP
if (PVT == MVT::i64) {
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
.addImm(BPOffset)
.addReg(BufReg);
} else {
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
.addImm(BPOffset)
.addReg(BufReg);
}
MIB.setMemRefs(MMOBegin, MMOEnd);
// Reload TOC
if (PVT == MVT::i64 && PPCSubTarget.isSVR4ABI()) {
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
.addImm(TOCOffset)
.addReg(BufReg);
MIB.setMemRefs(MMOBegin, MMOEnd);
}
// Jump
BuildMI(*MBB, MI, DL,
TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
MI->eraseFromParent();
return MBB;
}
MachineBasicBlock *
PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB) const {
if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
return emitEHSjLjSetJmp(MI, BB);
} else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
return emitEHSjLjLongJmp(MI, BB);
}
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
// To "insert" these instructions we actually have to insert their
// control-flow patterns.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = BB;
++It;
MachineFunction *F = BB->getParent();
if (PPCSubTarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
MI->getOpcode() == PPC::SELECT_CC_I8)) {
SmallVector<MachineOperand, 2> Cond;
Cond.push_back(MI->getOperand(4));
Cond.push_back(MI->getOperand(1));
DebugLoc dl = MI->getDebugLoc();
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(),
Cond, MI->getOperand(2).getReg(),
MI->getOperand(3).getReg());
} else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
MI->getOpcode() == PPC::SELECT_CC_I8 ||
MI->getOpcode() == PPC::SELECT_CC_F4 ||
MI->getOpcode() == PPC::SELECT_CC_F8 ||
MI->getOpcode() == PPC::SELECT_CC_VRRC) {
// The incoming instruction knows the destination vreg to set, the
// condition code register to branch on, the true/false values to
// select between, and a branch opcode to use.
// thisMBB:
// ...
// TrueVal = ...
// cmpTY ccX, r1, r2
// bCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
unsigned SelectPred = MI->getOperand(4).getImm();
DebugLoc dl = MI->getDebugLoc();
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)),
BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
BuildMI(BB, dl, TII->get(PPC::BCC))
.addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = sinkMBB;
BuildMI(*BB, BB->begin(), dl,
TII->get(PPC::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
.addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
}
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
BB = EmitAtomicBinary(MI, BB, false, 0);
else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
BB = EmitAtomicBinary(MI, BB, true, 0);
else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
unsigned dest = MI->getOperand(0).getReg();
unsigned ptrA = MI->getOperand(1).getReg();
unsigned ptrB = MI->getOperand(2).getReg();
unsigned oldval = MI->getOperand(3).getReg();
unsigned newval = MI->getOperand(4).getReg();
DebugLoc dl = MI->getDebugLoc();
MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, loop1MBB);
F->insert(It, loop2MBB);
F->insert(It, midMBB);
F->insert(It, exitMBB);
exitMBB->splice(exitMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)),
BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
// thisMBB:
// ...
// fallthrough --> loopMBB
BB->addSuccessor(loop1MBB);
// loop1MBB:
// l[wd]arx dest, ptr
// cmp[wd] dest, oldval
// bne- midMBB
// loop2MBB:
// st[wd]cx. newval, ptr
// bne- loopMBB
// b exitBB
// midMBB:
// st[wd]cx. dest, ptr
// exitBB:
BB = loop1MBB;
BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
.addReg(ptrA).addReg(ptrB);
BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
.addReg(oldval).addReg(dest);
BuildMI(BB, dl, TII->get(PPC::BCC))
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
BB->addSuccessor(loop2MBB);
BB->addSuccessor(midMBB);
BB = loop2MBB;
BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
.addReg(newval).addReg(ptrA).addReg(ptrB);
BuildMI(BB, dl, TII->get(PPC::BCC))
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
BB->addSuccessor(loop1MBB);
BB->addSuccessor(exitMBB);
BB = midMBB;
BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
.addReg(dest).addReg(ptrA).addReg(ptrB);
BB->addSuccessor(exitMBB);
// exitMBB:
// ...
BB = exitMBB;
} else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
// We must use 64-bit registers for addresses when targeting 64-bit,
// since we're actually doing arithmetic on them. Other registers
// can be 32-bit.
bool is64bit = PPCSubTarget.isPPC64();
bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
unsigned dest = MI->getOperand(0).getReg();
unsigned ptrA = MI->getOperand(1).getReg();
unsigned ptrB = MI->getOperand(2).getReg();
unsigned oldval = MI->getOperand(3).getReg();
unsigned newval = MI->getOperand(4).getReg();
DebugLoc dl = MI->getDebugLoc();
MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, loop1MBB);
F->insert(It, loop2MBB);
F->insert(It, midMBB);
F->insert(It, exitMBB);
exitMBB->splice(exitMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)),
BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
MachineRegisterInfo &RegInfo = F->getRegInfo();
const TargetRegisterClass *RC =
is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
(const TargetRegisterClass *) &PPC::GPRCRegClass;
unsigned PtrReg = RegInfo.createVirtualRegister(RC);
unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
unsigned MaskReg = RegInfo.createVirtualRegister(RC);
unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
unsigned Ptr1Reg;
unsigned TmpReg = RegInfo.createVirtualRegister(RC);
unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
// thisMBB:
// ...
// fallthrough --> loopMBB
BB->addSuccessor(loop1MBB);
// The 4-byte load must be aligned, while a char or short may be
// anywhere in the word. Hence all this nasty bookkeeping code.
// add ptr1, ptrA, ptrB [copy if ptrA==0]
// rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
// xori shift, shift1, 24 [16]
// rlwinm ptr, ptr1, 0, 0, 29
// slw newval2, newval, shift
// slw oldval2, oldval,shift
// li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
// slw mask, mask2, shift
// and newval3, newval2, mask
// and oldval3, oldval2, mask
// loop1MBB:
// lwarx tmpDest, ptr
// and tmp, tmpDest, mask
// cmpw tmp, oldval3
// bne- midMBB
// loop2MBB:
// andc tmp2, tmpDest, mask
// or tmp4, tmp2, newval3
// stwcx. tmp4, ptr
// bne- loop1MBB
// b exitBB
// midMBB:
// stwcx. tmpDest, ptr
// exitBB:
// srw dest, tmpDest, shift
if (ptrA != ZeroReg) {
Ptr1Reg = RegInfo.createVirtualRegister(RC);
BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
.addReg(ptrA).addReg(ptrB);
} else {
Ptr1Reg = ptrB;
}
BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
.addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
.addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
if (is64bit)
BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
.addReg(Ptr1Reg).addImm(0).addImm(61);
else
BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
.addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
.addReg(newval).addReg(ShiftReg);
BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
.addReg(oldval).addReg(ShiftReg);
if (is8bit)
BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
else {
BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
.addReg(Mask3Reg).addImm(65535);
}
BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
.addReg(Mask2Reg).addReg(ShiftReg);
BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
.addReg(NewVal2Reg).addReg(MaskReg);
BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
.addReg(OldVal2Reg).addReg(MaskReg);
BB = loop1MBB;
BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
.addReg(ZeroReg).addReg(PtrReg);
BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
.addReg(TmpDestReg).addReg(MaskReg);
BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
.addReg(TmpReg).addReg(OldVal3Reg);
BuildMI(BB, dl, TII->get(PPC::BCC))
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
BB->addSuccessor(loop2MBB);
BB->addSuccessor(midMBB);
BB = loop2MBB;
BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
.addReg(TmpDestReg).addReg(MaskReg);
BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
.addReg(Tmp2Reg).addReg(NewVal3Reg);
BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
.addReg(ZeroReg).addReg(PtrReg);
BuildMI(BB, dl, TII->get(PPC::BCC))
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
BB->addSuccessor(loop1MBB);
BB->addSuccessor(exitMBB);
BB = midMBB;
BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
.addReg(ZeroReg).addReg(PtrReg);
BB->addSuccessor(exitMBB);
// exitMBB:
// ...
BB = exitMBB;
BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
.addReg(ShiftReg);
} else if (MI->getOpcode() == PPC::FADDrtz) {
// This pseudo performs an FADD with rounding mode temporarily forced
// to round-to-zero. We emit this via custom inserter since the FPSCR
// is not modeled at the SelectionDAG level.
unsigned Dest = MI->getOperand(0).getReg();
unsigned Src1 = MI->getOperand(1).getReg();
unsigned Src2 = MI->getOperand(2).getReg();
DebugLoc dl = MI->getDebugLoc();
MachineRegisterInfo &RegInfo = F->getRegInfo();
unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
// Save FPSCR value.
BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
// Set rounding mode to round-to-zero.
BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
// Perform addition.
BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
// Restore FPSCR value.
BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)).addImm(1).addReg(MFFSReg);
} else {
llvm_unreachable("Unexpected instr type to insert");
}
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
//===----------------------------------------------------------------------===//
// Target Optimization Hooks
//===----------------------------------------------------------------------===//
SDValue PPCTargetLowering::DAGCombineFastRecip(SDValue Op,
DAGCombinerInfo &DCI) const {
if (DCI.isAfterLegalizeVectorOps())
return SDValue();
EVT VT = Op.getValueType();
if ((VT == MVT::f32 && PPCSubTarget.hasFRES()) ||
(VT == MVT::f64 && PPCSubTarget.hasFRE()) ||
(VT == MVT::v4f32 && PPCSubTarget.hasAltivec())) {
// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
// For the reciprocal, we need to find the zero of the function:
// F(X) = A X - 1 [which has a zero at X = 1/A]
// =>
// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
// does not require additional intermediate precision]
// Convergence is quadratic, so we essentially double the number of digits
// correct after every iteration. The minimum architected relative
// accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
// 23 digits and double has 52 digits.
int Iterations = PPCSubTarget.hasRecipPrec() ? 1 : 3;
if (VT.getScalarType() == MVT::f64)
++Iterations;
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(Op);
SDValue FPOne =
DAG.getConstantFP(1.0, VT.getScalarType());
if (VT.isVector()) {
assert(VT.getVectorNumElements() == 4 &&
"Unknown vector type");
FPOne = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
FPOne, FPOne, FPOne, FPOne);
}
SDValue Est = DAG.getNode(PPCISD::FRE, dl, VT, Op);
DCI.AddToWorklist(Est.getNode());
// Newton iterations: Est = Est + Est (1 - Arg * Est)
for (int i = 0; i < Iterations; ++i) {
SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Op, Est);
DCI.AddToWorklist(NewEst.getNode());
NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPOne, NewEst);
DCI.AddToWorklist(NewEst.getNode());
NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
DCI.AddToWorklist(NewEst.getNode());
Est = DAG.getNode(ISD::FADD, dl, VT, Est, NewEst);
DCI.AddToWorklist(Est.getNode());
}
return Est;
}
return SDValue();
}
SDValue PPCTargetLowering::DAGCombineFastRecipFSQRT(SDValue Op,
DAGCombinerInfo &DCI) const {
if (DCI.isAfterLegalizeVectorOps())
return SDValue();
EVT VT = Op.getValueType();
if ((VT == MVT::f32 && PPCSubTarget.hasFRSQRTES()) ||
(VT == MVT::f64 && PPCSubTarget.hasFRSQRTE()) ||
(VT == MVT::v4f32 && PPCSubTarget.hasAltivec())) {
// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
// For the reciprocal sqrt, we need to find the zero of the function:
// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
// =>
// X_{i+1} = X_i (1.5 - A X_i^2 / 2)
// As a result, we precompute A/2 prior to the iteration loop.
// Convergence is quadratic, so we essentially double the number of digits
// correct after every iteration. The minimum architected relative
// accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
// 23 digits and double has 52 digits.
int Iterations = PPCSubTarget.hasRecipPrec() ? 1 : 3;
if (VT.getScalarType() == MVT::f64)
++Iterations;
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(Op);
SDValue FPThreeHalves =
DAG.getConstantFP(1.5, VT.getScalarType());
if (VT.isVector()) {
assert(VT.getVectorNumElements() == 4 &&
"Unknown vector type");
FPThreeHalves = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
FPThreeHalves, FPThreeHalves,
FPThreeHalves, FPThreeHalves);
}
SDValue Est = DAG.getNode(PPCISD::FRSQRTE, dl, VT, Op);
DCI.AddToWorklist(Est.getNode());
// We now need 0.5*Arg which we can write as (1.5*Arg - Arg) so that
// this entire sequence requires only one FP constant.
SDValue HalfArg = DAG.getNode(ISD::FMUL, dl, VT, FPThreeHalves, Op);
DCI.AddToWorklist(HalfArg.getNode());
HalfArg = DAG.getNode(ISD::FSUB, dl, VT, HalfArg, Op);
DCI.AddToWorklist(HalfArg.getNode());
// Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
for (int i = 0; i < Iterations; ++i) {
SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, Est);
DCI.AddToWorklist(NewEst.getNode());
NewEst = DAG.getNode(ISD::FMUL, dl, VT, HalfArg, NewEst);
DCI.AddToWorklist(NewEst.getNode());
NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPThreeHalves, NewEst);
DCI.AddToWorklist(NewEst.getNode());
Est = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
DCI.AddToWorklist(Est.getNode());
}
return Est;
}
return SDValue();
}
// Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
// not enforce equality of the chain operands.
static bool isConsecutiveLS(LSBaseSDNode *LS, LSBaseSDNode *Base,
unsigned Bytes, int Dist,
SelectionDAG &DAG) {
EVT VT = LS->getMemoryVT();
if (VT.getSizeInBits() / 8 != Bytes)
return false;
SDValue Loc = LS->getBasePtr();
SDValue BaseLoc = Base->getBasePtr();
if (Loc.getOpcode() == ISD::FrameIndex) {
if (BaseLoc.getOpcode() != ISD::FrameIndex)
return false;
const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
int FS = MFI->getObjectSize(FI);
int BFS = MFI->getObjectSize(BFI);
if (FS != BFS || FS != (int)Bytes) return false;
return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
}
// Handle X+C
if (DAG.isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
return true;
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
const GlobalValue *GV1 = NULL;
const GlobalValue *GV2 = NULL;
int64_t Offset1 = 0;
int64_t Offset2 = 0;
bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
if (isGA1 && isGA2 && GV1 == GV2)
return Offset1 == (Offset2 + Dist*Bytes);
return false;
}
// Return true is there is a nearyby consecutive load to the one provided
// (regardless of alignment). We search up and down the chain, looking though
// token factors and other loads (but nothing else). As a result, a true
// results indicates that it is safe to create a new consecutive load adjacent
// to the load provided.
static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
SDValue Chain = LD->getChain();
EVT VT = LD->getMemoryVT();
SmallSet<SDNode *, 16> LoadRoots;
SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
SmallSet<SDNode *, 16> Visited;
// First, search up the chain, branching to follow all token-factor operands.
// If we find a consecutive load, then we're done, otherwise, record all
// nodes just above the top-level loads and token factors.
while (!Queue.empty()) {
SDNode *ChainNext = Queue.pop_back_val();
if (!Visited.insert(ChainNext))
continue;
if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(ChainNext)) {
if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
return true;
if (!Visited.count(ChainLD->getChain().getNode()))
Queue.push_back(ChainLD->getChain().getNode());
} else if (ChainNext->getOpcode() == ISD::TokenFactor) {
for (SDNode::op_iterator O = ChainNext->op_begin(),
OE = ChainNext->op_end(); O != OE; ++O)
if (!Visited.count(O->getNode()))
Queue.push_back(O->getNode());
} else
LoadRoots.insert(ChainNext);
}
// Second, search down the chain, starting from the top-level nodes recorded
// in the first phase. These top-level nodes are the nodes just above all
// loads and token factors. Starting with their uses, recursively look though
// all loads (just the chain uses) and token factors to find a consecutive
// load.
Visited.clear();
Queue.clear();
for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
IE = LoadRoots.end(); I != IE; ++I) {
Queue.push_back(*I);
while (!Queue.empty()) {
SDNode *LoadRoot = Queue.pop_back_val();
if (!Visited.insert(LoadRoot))
continue;
if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(LoadRoot))
if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
return true;
for (SDNode::use_iterator UI = LoadRoot->use_begin(),
UE = LoadRoot->use_end(); UI != UE; ++UI)
if (((isa<LoadSDNode>(*UI) &&
cast<LoadSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
Queue.push_back(*UI);
}
}
return false;
}
SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
const TargetMachine &TM = getTargetMachine();
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(N);
switch (N->getOpcode()) {
default: break;
case PPCISD::SHL:
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
if (C->isNullValue()) // 0 << V -> 0.
return N->getOperand(0);
}
break;
case PPCISD::SRL:
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
if (C->isNullValue()) // 0 >>u V -> 0.
return N->getOperand(0);
}
break;
case PPCISD::SRA:
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
if (C->isNullValue() || // 0 >>s V -> 0.
C->isAllOnesValue()) // -1 >>s V -> -1.
return N->getOperand(0);
}
break;
case ISD::FDIV: {
assert(TM.Options.UnsafeFPMath &&
"Reciprocal estimates require UnsafeFPMath");
if (N->getOperand(1).getOpcode() == ISD::FSQRT) {
SDValue RV =
DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0), DCI);
if (RV.getNode() != 0) {
DCI.AddToWorklist(RV.getNode());
return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
N->getOperand(0), RV);
}
} else if (N->getOperand(1).getOpcode() == ISD::FP_EXTEND &&
N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
SDValue RV =
DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
DCI);
if (RV.getNode() != 0) {
DCI.AddToWorklist(RV.getNode());
RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N->getOperand(1)),
N->getValueType(0), RV);
DCI.AddToWorklist(RV.getNode());
return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
N->getOperand(0), RV);
}
} else if (N->getOperand(1).getOpcode() == ISD::FP_ROUND &&
N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
SDValue RV =
DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
DCI);
if (RV.getNode() != 0) {
DCI.AddToWorklist(RV.getNode());
RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N->getOperand(1)),
N->getValueType(0), RV,
N->getOperand(1).getOperand(1));
DCI.AddToWorklist(RV.getNode());
return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
N->getOperand(0), RV);
}
}
SDValue RV = DAGCombineFastRecip(N->getOperand(1), DCI);
if (RV.getNode() != 0) {
DCI.AddToWorklist(RV.getNode());
return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
N->getOperand(0), RV);
}
}
break;
case ISD::FSQRT: {
assert(TM.Options.UnsafeFPMath &&
"Reciprocal estimates require UnsafeFPMath");
// Compute this as 1/(1/sqrt(X)), which is the reciprocal of the
// reciprocal sqrt.
SDValue RV = DAGCombineFastRecipFSQRT(N->getOperand(0), DCI);
if (RV.getNode() != 0) {
DCI.AddToWorklist(RV.getNode());
RV = DAGCombineFastRecip(RV, DCI);
if (RV.getNode() != 0)
return RV;
}
}
break;
case ISD::SINT_TO_FP:
if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
// Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
// We allow the src/dst to be either f32/f64, but the intermediate
// type must be i64.
if (N->getOperand(0).getValueType() == MVT::i64 &&
N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
SDValue Val = N->getOperand(0).getOperand(0);
if (Val.getValueType() == MVT::f32) {
Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
DCI.AddToWorklist(Val.getNode());
}
Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
DCI.AddToWorklist(Val.getNode());
Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
DCI.AddToWorklist(Val.getNode());
if (N->getValueType(0) == MVT::f32) {
Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
DAG.getIntPtrConstant(0));
DCI.AddToWorklist(Val.getNode());
}
return Val;
} else if (N->getOperand(0).getValueType() == MVT::i32) {
// If the intermediate type is i32, we can avoid the load/store here
// too.
}
}
}
break;
case ISD::STORE:
// Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
!cast<StoreSDNode>(N)->isTruncatingStore() &&
N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
N->getOperand(1).getValueType() == MVT::i32 &&
N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
SDValue Val = N->getOperand(1).getOperand(0);
if (Val.getValueType() == MVT::f32) {
Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
DCI.AddToWorklist(Val.getNode());
}
Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
DCI.AddToWorklist(Val.getNode());
SDValue Ops[] = {
N->getOperand(0), Val, N->getOperand(2),
DAG.getValueType(N->getOperand(1).getValueType())
};
Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
DAG.getVTList(MVT::Other), Ops, array_lengthof(Ops),
cast<StoreSDNode>(N)->getMemoryVT(),
cast<StoreSDNode>(N)->getMemOperand());
DCI.AddToWorklist(Val.getNode());
return Val;
}
// Turn STORE (BSWAP) -> sthbrx/stwbrx.
if (cast<StoreSDNode>(N)->isUnindexed() &&
N->getOperand(1).getOpcode() == ISD::BSWAP &&
N->getOperand(1).getNode()->hasOneUse() &&
(N->getOperand(1).getValueType() == MVT::i32 ||
N->getOperand(1).getValueType() == MVT::i16 ||
(TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
TM.getSubtarget<PPCSubtarget>().isPPC64() &&
N->getOperand(1).getValueType() == MVT::i64))) {
SDValue BSwapOp = N->getOperand(1).getOperand(0);
// Do an any-extend to 32-bits if this is a half-word input.
if (BSwapOp.getValueType() == MVT::i16)
BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
SDValue Ops[] = {
N->getOperand(0), BSwapOp, N->getOperand(2),
DAG.getValueType(N->getOperand(1).getValueType())
};
return
DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
Ops, array_lengthof(Ops),
cast<StoreSDNode>(N)->getMemoryVT(),
cast<StoreSDNode>(N)->getMemOperand());
}
break;
case ISD::LOAD: {
LoadSDNode *LD = cast<LoadSDNode>(N);
EVT VT = LD->getValueType(0);
Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);
if (ISD::isNON_EXTLoad(N) && VT.isVector() &&
TM.getSubtarget<PPCSubtarget>().hasAltivec() &&
DCI.getDAGCombineLevel() == AfterLegalizeTypes &&
LD->getAlignment() < ABIAlignment) {
// This is a type-legal unaligned Altivec load.
SDValue Chain = LD->getChain();
SDValue Ptr = LD->getBasePtr();
// This implements the loading of unaligned vectors as described in
// the venerable Apple Velocity Engine overview. Specifically:
// https://developer.apple.com/hardwaredrivers/ve/alignment.html
// https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
//
// The general idea is to expand a sequence of one or more unaligned
// loads into a alignment-based permutation-control instruction (lvsl),
// a series of regular vector loads (which always truncate their
// input address to an aligned address), and a series of permutations.
// The results of these permutations are the requested loaded values.
// The trick is that the last "extra" load is not taken from the address
// you might suspect (sizeof(vector) bytes after the last requested
// load), but rather sizeof(vector) - 1 bytes after the last
// requested vector. The point of this is to avoid a page fault if the
// base address happend to be aligned. This works because if the base
// address is aligned, then adding less than a full vector length will
// cause the last vector in the sequence to be (re)loaded. Otherwise,
// the next vector will be fetched as you might suspect was necessary.
// We might be able to reuse the permutation generation from
// a different base address offset from this one by an aligned amount.
// The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
// optimization later.
SDValue PermCntl = BuildIntrinsicOp(Intrinsic::ppc_altivec_lvsl, Ptr,
DAG, dl, MVT::v16i8);
// Refine the alignment of the original load (a "new" load created here
// which was identical to the first except for the alignment would be
// merged with the existing node regardless).
MachineFunction &MF = DAG.getMachineFunction();
MachineMemOperand *MMO =
MF.getMachineMemOperand(LD->getPointerInfo(),
LD->getMemOperand()->getFlags(),
LD->getMemoryVT().getStoreSize(),
ABIAlignment);
LD->refineAlignment(MMO);
SDValue BaseLoad = SDValue(LD, 0);
// Note that the value of IncOffset (which is provided to the next
// load's pointer info offset value, and thus used to calculate the
// alignment), and the value of IncValue (which is actually used to
// increment the pointer value) are different! This is because we
// require the next load to appear to be aligned, even though it
// is actually offset from the base pointer by a lesser amount.
int IncOffset = VT.getSizeInBits() / 8;
int IncValue = IncOffset;
// Walk (both up and down) the chain looking for another load at the real
// (aligned) offset (the alignment of the other load does not matter in
// this case). If found, then do not use the offset reduction trick, as
// that will prevent the loads from being later combined (as they would
// otherwise be duplicates).
if (!findConsecutiveLoad(LD, DAG))
--IncValue;
SDValue Increment = DAG.getConstant(IncValue, getPointerTy());
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
SDValue ExtraLoad =
DAG.getLoad(VT, dl, Chain, Ptr,
LD->getPointerInfo().getWithOffset(IncOffset),
LD->isVolatile(), LD->isNonTemporal(),
LD->isInvariant(), ABIAlignment);
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
BaseLoad.getValue(1), ExtraLoad.getValue(1));
if (BaseLoad.getValueType() != MVT::v4i32)
BaseLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, BaseLoad);
if (ExtraLoad.getValueType() != MVT::v4i32)
ExtraLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, ExtraLoad);
SDValue Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm,
BaseLoad, ExtraLoad, PermCntl, DAG, dl);
if (VT != MVT::v4i32)
Perm = DAG.getNode(ISD::BITCAST, dl, VT, Perm);
// Now we need to be really careful about how we update the users of the
// original load. We cannot just call DCI.CombineTo (or
// DAG.ReplaceAllUsesWith for that matter), because the load still has
// uses created here (the permutation for example) that need to stay.
SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
while (UI != UE) {
SDUse &Use = UI.getUse();
SDNode *User = *UI;
// Note: BaseLoad is checked here because it might not be N, but a
// bitcast of N.
if (User == Perm.getNode() || User == BaseLoad.getNode() ||
User == TF.getNode() || Use.getResNo() > 1) {
++UI;
continue;
}
SDValue To = Use.getResNo() ? TF : Perm;
++UI;
SmallVector<SDValue, 8> Ops;
for (SDNode::op_iterator O = User->op_begin(),
OE = User->op_end(); O != OE; ++O) {
if (*O == Use)
Ops.push_back(To);
else
Ops.push_back(*O);
}
DAG.UpdateNodeOperands(User, Ops.data(), Ops.size());
}
return SDValue(N, 0);
}
}
break;
case ISD::INTRINSIC_WO_CHAIN:
if (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue() ==
Intrinsic::ppc_altivec_lvsl &&
N->getOperand(1)->getOpcode() == ISD::ADD) {
SDValue Add = N->getOperand(1);
if (DAG.MaskedValueIsZero(Add->getOperand(1),
APInt::getAllOnesValue(4 /* 16 byte alignment */).zext(
Add.getValueType().getScalarType().getSizeInBits()))) {
SDNode *BasePtr = Add->getOperand(0).getNode();
for (SDNode::use_iterator UI = BasePtr->use_begin(),
UE = BasePtr->use_end(); UI != UE; ++UI) {
if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
Intrinsic::ppc_altivec_lvsl) {
// We've found another LVSL, and this address if an aligned
// multiple of that one. The results will be the same, so use the
// one we've just found instead.
return SDValue(*UI, 0);
}
}
}
}
case ISD::BSWAP:
// Turn BSWAP (LOAD) -> lhbrx/lwbrx.
if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
N->getOperand(0).hasOneUse() &&
(N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
(TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
TM.getSubtarget<PPCSubtarget>().isPPC64() &&
N->getValueType(0) == MVT::i64))) {
SDValue Load = N->getOperand(0);
LoadSDNode *LD = cast<LoadSDNode>(Load);
// Create the byte-swapping load.
SDValue Ops[] = {
LD->getChain(), // Chain
LD->getBasePtr(), // Ptr
DAG.getValueType(N->getValueType(0)) // VT
};
SDValue BSLoad =
DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
DAG.getVTList(N->getValueType(0) == MVT::i64 ?
MVT::i64 : MVT::i32, MVT::Other),
Ops, 3, LD->getMemoryVT(), LD->getMemOperand());
// If this is an i16 load, insert the truncate.
SDValue ResVal = BSLoad;
if (N->getValueType(0) == MVT::i16)
ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
// First, combine the bswap away. This makes the value produced by the
// load dead.
DCI.CombineTo(N, ResVal);
// Next, combine the load away, we give it a bogus result value but a real
// chain result. The result value is dead because the bswap is dead.
DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
// Return N so it doesn't get rechecked!
return SDValue(N, 0);
}
break;
case PPCISD::VCMP: {
// If a VCMPo node already exists with exactly the same operands as this
// node, use its result instead of this node (VCMPo computes both a CR6 and
// a normal output).
//
if (!N->getOperand(0).hasOneUse() &&
!N->getOperand(1).hasOneUse() &&
!N->getOperand(2).hasOneUse()) {
// Scan all of the users of the LHS, looking for VCMPo's that match.
SDNode *VCMPoNode = 0;
SDNode *LHSN = N->getOperand(0).getNode();
for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
UI != E; ++UI)
if (UI->getOpcode() == PPCISD::VCMPo &&
UI->getOperand(1) == N->getOperand(1) &&
UI->getOperand(2) == N->getOperand(2) &&
UI->getOperand(0) == N->getOperand(0)) {
VCMPoNode = *UI;
break;
}
// If there is no VCMPo node, or if the flag value has a single use, don't
// transform this.
if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
break;
// Look at the (necessarily single) use of the flag value. If it has a
// chain, this transformation is more complex. Note that multiple things
// could use the value result, which we should ignore.
SDNode *FlagUser = 0;
for (SDNode::use_iterator UI = VCMPoNode->use_begin();
FlagUser == 0; ++UI) {
assert(UI != VCMPoNode->use_end() && "Didn't find user!");
SDNode *User = *UI;
for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
FlagUser = User;
break;
}
}
}
// If the user is a MFOCRF instruction, we know this is safe.
// Otherwise we give up for right now.
if (FlagUser->getOpcode() == PPCISD::MFOCRF)
return SDValue(VCMPoNode, 0);
}
break;
}
case ISD::BR_CC: {
// If this is a branch on an altivec predicate comparison, lower this so
// that we don't have to do a MFOCRF: instead, branch directly on CR6. This
// lowering is done pre-legalize, because the legalizer lowers the predicate
// compare down to code that is difficult to reassemble.
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
// Sometimes the promoted value of the intrinsic is ANDed by some non-zero
// value. If so, pass-through the AND to get to the intrinsic.
if (LHS.getOpcode() == ISD::AND &&
LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
Intrinsic::ppc_is_decremented_ctr_nonzero &&
isa<ConstantSDNode>(LHS.getOperand(1)) &&
!cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()->
isZero())
LHS = LHS.getOperand(0);
if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
Intrinsic::ppc_is_decremented_ctr_nonzero &&
isa<ConstantSDNode>(RHS)) {
assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
"Counter decrement comparison is not EQ or NE");
unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
bool isBDNZ = (CC == ISD::SETEQ && Val) ||
(CC == ISD::SETNE && !Val);
// We now need to make the intrinsic dead (it cannot be instruction
// selected).
DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
assert(LHS.getNode()->hasOneUse() &&
"Counter decrement has more than one use");
return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
N->getOperand(0), N->getOperand(4));
}
int CompareOpc;
bool isDot;
if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
assert(isDot && "Can't compare against a vector result!");
// If this is a comparison against something other than 0/1, then we know
// that the condition is never/always true.
unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
if (Val != 0 && Val != 1) {
if (CC == ISD::SETEQ) // Cond never true, remove branch.
return N->getOperand(0);
// Always !=, turn it into an unconditional branch.
return DAG.getNode(ISD::BR, dl, MVT::Other,
N->getOperand(0), N->getOperand(4));
}
bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
// Create the PPCISD altivec 'dot' comparison node.
SDValue Ops[] = {
LHS.getOperand(2), // LHS of compare
LHS.getOperand(3), // RHS of compare
DAG.getConstant(CompareOpc, MVT::i32)
};
EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
// Unpack the result based on how the target uses it.
PPC::Predicate CompOpc;
switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
default: // Can't happen, don't crash on invalid number though.
case 0: // Branch on the value of the EQ bit of CR6.
CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
break;
case 1: // Branch on the inverted value of the EQ bit of CR6.
CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
break;
case 2: // Branch on the value of the LT bit of CR6.
CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
break;
case 3: // Branch on the inverted value of the LT bit of CR6.
CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
break;
}
return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
DAG.getConstant(CompOpc, MVT::i32),
DAG.getRegister(PPC::CR6, MVT::i32),
N->getOperand(4), CompNode.getValue(1));
}
break;
}
}
return SDValue();
}
//===----------------------------------------------------------------------===//
// Inline Assembly Support
//===----------------------------------------------------------------------===//
void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth) const {
KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
switch (Op.getOpcode()) {
default: break;
case PPCISD::LBRX: {
// lhbrx is known to have the top bits cleared out.
if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
KnownZero = 0xFFFF0000;
break;
}
case ISD::INTRINSIC_WO_CHAIN: {
switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
default: break;
case Intrinsic::ppc_altivec_vcmpbfp_p:
case Intrinsic::ppc_altivec_vcmpeqfp_p:
case Intrinsic::ppc_altivec_vcmpequb_p:
case Intrinsic::ppc_altivec_vcmpequh_p:
case Intrinsic::ppc_altivec_vcmpequw_p:
case Intrinsic::ppc_altivec_vcmpgefp_p:
case Intrinsic::ppc_altivec_vcmpgtfp_p:
case Intrinsic::ppc_altivec_vcmpgtsb_p:
case Intrinsic::ppc_altivec_vcmpgtsh_p:
case Intrinsic::ppc_altivec_vcmpgtsw_p:
case Intrinsic::ppc_altivec_vcmpgtub_p:
case Intrinsic::ppc_altivec_vcmpgtuh_p:
case Intrinsic::ppc_altivec_vcmpgtuw_p:
KnownZero = ~1U; // All bits but the low one are known to be zero.
break;
}
}
}
}
/// getConstraintType - Given a constraint, return the type of
/// constraint it is for this target.
PPCTargetLowering::ConstraintType
PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default: break;
case 'b':
case 'r':
case 'f':
case 'v':
case 'y':
return C_RegisterClass;
case 'Z':
// FIXME: While Z does indicate a memory constraint, it specifically
// indicates an r+r address (used in conjunction with the 'y' modifier
// in the replacement string). Currently, we're forcing the base
// register to be r0 in the asm printer (which is interpreted as zero)
// and forming the complete address in the second register. This is
// suboptimal.
return C_Memory;
}
}
return TargetLowering::getConstraintType(Constraint);
}
/// Examine constraint type and operand type and determine a weight value.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
TargetLowering::ConstraintWeight
PPCTargetLowering::getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const {
ConstraintWeight weight = CW_Invalid;
Value *CallOperandVal = info.CallOperandVal;
// If we don't have a value, we can't do a match,
// but allow it at the lowest weight.
if (CallOperandVal == NULL)
return CW_Default;
Type *type = CallOperandVal->getType();
// Look at the constraint type.
switch (*constraint) {
default:
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
break;
case 'b':
if (type->isIntegerTy())
weight = CW_Register;
break;
case 'f':
if (type->isFloatTy())
weight = CW_Register;
break;
case 'd':
if (type->isDoubleTy())
weight = CW_Register;
break;
case 'v':
if (type->isVectorTy())
weight = CW_Register;
break;
case 'y':
weight = CW_Register;
break;
case 'Z':
weight = CW_Memory;
break;
}
return weight;
}
std::pair<unsigned, const TargetRegisterClass*>
PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
MVT VT) const {
if (Constraint.size() == 1) {
// GCC RS6000 Constraint Letters
switch (Constraint[0]) {
case 'b': // R1-R31
if (VT == MVT::i64 && PPCSubTarget.isPPC64())
return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
case 'r': // R0-R31
if (VT == MVT::i64 && PPCSubTarget.isPPC64())
return std::make_pair(0U, &PPC::G8RCRegClass);
return std::make_pair(0U, &PPC::GPRCRegClass);
case 'f':
if (VT == MVT::f32 || VT == MVT::i32)
return std::make_pair(0U, &PPC::F4RCRegClass);
if (VT == MVT::f64 || VT == MVT::i64)
return std::make_pair(0U, &PPC::F8RCRegClass);
break;
case 'v':
return std::make_pair(0U, &PPC::VRRCRegClass);
case 'y': // crrc
return std::make_pair(0U, &PPC::CRRCRegClass);
}
}
std::pair<unsigned, const TargetRegisterClass*> R =
TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
// r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
// (which we call X[0-9]+). If a 64-bit value has been requested, and a
// 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
// register.
// FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
// the AsmName field from *RegisterInfo.td, then this would not be necessary.
if (R.first && VT == MVT::i64 && PPCSubTarget.isPPC64() &&
PPC::GPRCRegClass.contains(R.first)) {
const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
return std::make_pair(TRI->getMatchingSuperReg(R.first,
PPC::sub_32, &PPC::G8RCRegClass),
&PPC::G8RCRegClass);
}
return R;
}
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops.
void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue>&Ops,
SelectionDAG &DAG) const {
SDValue Result(0,0);
// Only support length 1 constraints.
if (Constraint.length() > 1) return;
char Letter = Constraint[0];
switch (Letter) {
default: break;
case 'I':
case 'J':
case 'K':
case 'L':
case 'M':
case 'N':
case 'O':
case 'P': {
ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
if (!CST) return; // Must be an immediate to match.
unsigned Value = CST->getZExtValue();
switch (Letter) {
default: llvm_unreachable("Unknown constraint letter!");
case 'I': // "I" is a signed 16-bit constant.
if ((short)Value == (int)Value)
Result = DAG.getTargetConstant(Value, Op.getValueType());
break;
case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
if ((short)Value == 0)
Result = DAG.getTargetConstant(Value, Op.getValueType());
break;
case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
if ((Value >> 16) == 0)
Result = DAG.getTargetConstant(Value, Op.getValueType());
break;
case 'M': // "M" is a constant that is greater than 31.
if (Value > 31)
Result = DAG.getTargetConstant(Value, Op.getValueType());
break;
case 'N': // "N" is a positive constant that is an exact power of two.
if ((int)Value > 0 && isPowerOf2_32(Value))
Result = DAG.getTargetConstant(Value, Op.getValueType());
break;
case 'O': // "O" is the constant zero.
if (Value == 0)
Result = DAG.getTargetConstant(Value, Op.getValueType());
break;
case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
if ((short)-Value == (int)-Value)
Result = DAG.getTargetConstant(Value, Op.getValueType());
break;
}
break;
}
}
if (Result.getNode()) {
Ops.push_back(Result);
return;
}
// Handle standard constraint letters.
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
// isLegalAddressingMode - Return true if the addressing mode represented
// by AM is legal for this target, for a load/store of the specified type.
bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
Type *Ty) const {
// FIXME: PPC does not allow r+i addressing modes for vectors!
// PPC allows a sign-extended 16-bit immediate field.
if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
return false;
// No global is ever allowed as a base.
if (AM.BaseGV)
return false;
// PPC only support r+r,
switch (AM.Scale) {
case 0: // "r+i" or just "i", depending on HasBaseReg.
break;
case 1:
if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
return false;
// Otherwise we have r+r or r+i.
break;
case 2:
if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
return false;
// Allow 2*r as r+r.
break;
default:
// No other scales are supported.
return false;
}
return true;
}
SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
MFI->setReturnAddressIsTaken(true);
SDLoc dl(Op);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
// Make sure the function does not optimize away the store of the RA to
// the stack.
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
FuncInfo->setLRStoreRequired();
bool isPPC64 = PPCSubTarget.isPPC64();
bool isDarwinABI = PPCSubTarget.isDarwinABI();
if (Depth > 0) {
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
SDValue Offset =
DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
isPPC64? MVT::i64 : MVT::i32);
return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
DAG.getNode(ISD::ADD, dl, getPointerTy(),
FrameAddr, Offset),
MachinePointerInfo(), false, false, false, 0);
}
// Just load the return address off the stack.
SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
RetAddrFI, MachinePointerInfo(), false, false, false, 0);
}
SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
bool isPPC64 = PtrVT == MVT::i64;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
MFI->setFrameAddressIsTaken(true);
// Naked functions never have a frame pointer, and so we use r1. For all
// other functions, this decision must be delayed until during PEI.
unsigned FrameReg;
if (MF.getFunction()->getAttributes().hasAttribute(
AttributeSet::FunctionIndex, Attribute::Naked))
FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
else
FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
PtrVT);
while (Depth--)
FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
FrameAddr, MachinePointerInfo(), false, false,
false, 0);
return FrameAddr;
}
bool
PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
// The PowerPC target isn't yet aware of offsets.
return false;
}
/// getOptimalMemOpType - Returns the target specific optimal type for load
/// and store operations as a result of memset, memcpy, and memmove
/// lowering. If DstAlign is zero that means it's safe to destination
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
/// means there isn't a need to check it against alignment requirement,
/// probably because the source does not need to be loaded. If 'IsMemset' is
/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
/// source is constant so it does not need to be loaded.
/// It returns EVT::Other if the type should be determined using generic
/// target-independent logic.
EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
unsigned DstAlign, unsigned SrcAlign,
bool IsMemset, bool ZeroMemset,
bool MemcpyStrSrc,
MachineFunction &MF) const {
if (this->PPCSubTarget.isPPC64()) {
return MVT::i64;
} else {
return MVT::i32;
}
}
bool PPCTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
bool *Fast) const {
if (DisablePPCUnaligned)
return false;
// PowerPC supports unaligned memory access for simple non-vector types.
// Although accessing unaligned addresses is not as efficient as accessing
// aligned addresses, it is generally more efficient than manual expansion,
// and generally only traps for software emulation when crossing page
// boundaries.
if (!VT.isSimple())
return false;
if (VT.getSimpleVT().isVector())
return false;
if (VT == MVT::ppcf128)
return false;
if (Fast)
*Fast = true;
return true;
}
bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
VT = VT.getScalarType();
if (!VT.isSimple())
return false;
switch (VT.getSimpleVT().SimpleTy) {
case MVT::f32:
case MVT::f64:
return true;
default:
break;
}
return false;
}
Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
if (DisableILPPref)
return TargetLowering::getSchedulingPreference(N);
return Sched::ILP;
}
// Create a fast isel object.
FastISel *
PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
const TargetLibraryInfo *LibInfo) const {
return PPC::createFastISel(FuncInfo, LibInfo);
}