llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_deadlock_detector.h

256 lines
8.0 KiB
C++

//===-- sanitizer_deadlock_detector.h ---------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of Sanitizer runtime.
// The deadlock detector maintains a directed graph of lock acquisitions.
// When a lock event happens, the detector checks if the locks already held by
// the current thread are reachable from the newly acquired lock.
//
// The detector can handle only a fixed amount of simultaneously live locks
// (a lock is alive if it has been locked at least once and has not been
// destroyed). When the maximal number of locks is reached the entire graph
// is flushed and the new lock epoch is started. The node ids from the old
// epochs can not be used with any of the detector methods except for
// nodeBelongsToCurrentEpoch().
//
// FIXME: this is work in progress, nothing really works yet.
//
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_DEADLOCK_DETECTOR_H
#define SANITIZER_DEADLOCK_DETECTOR_H
#include "sanitizer_common.h"
#include "sanitizer_bvgraph.h"
namespace __sanitizer {
// Thread-local state for DeadlockDetector.
// It contains the locks currently held by the owning thread.
template <class BV>
class DeadlockDetectorTLS {
public:
// No CTOR.
void clear() {
bv_.clear();
epoch_ = 0;
}
bool empty() const { return bv_.empty(); }
void ensureCurrentEpoch(uptr current_epoch) {
if (epoch_ == current_epoch) return;
bv_.clear();
epoch_ = current_epoch;
}
uptr getEpoch() const { return epoch_; }
void addLock(uptr lock_id, uptr current_epoch) {
// Printf("addLock: %zx %zx\n", lock_id, current_epoch);
CHECK_EQ(epoch_, current_epoch);
CHECK(bv_.setBit(lock_id));
}
void removeLock(uptr lock_id) {
// Printf("remLock: %zx %zx\n", lock_id, current_epoch);
CHECK(bv_.clearBit(lock_id));
}
const BV &getLocks(uptr current_epoch) const {
CHECK_EQ(epoch_, current_epoch);
return bv_;
}
private:
BV bv_;
uptr epoch_;
};
// DeadlockDetector.
// For deadlock detection to work we need one global DeadlockDetector object
// and one DeadlockDetectorTLS object per evey thread.
// This class is not thread safe, all concurrent accesses should be guarded
// by an external lock.
// Most of the methods of this class are not thread-safe (i.e. should
// be protected by an external lock) unless explicitly told otherwise.
template <class BV>
class DeadlockDetector {
public:
typedef BV BitVector;
uptr size() const { return g_.size(); }
// No CTOR.
void clear() {
current_epoch_ = 0;
available_nodes_.clear();
recycled_nodes_.clear();
g_.clear();
}
// Allocate new deadlock detector node.
// If we are out of available nodes first try to recycle some.
// If there is nothing to recycle, flush the graph and increment the epoch.
// Associate 'data' (opaque user's object) with the new node.
uptr newNode(uptr data) {
if (!available_nodes_.empty())
return getAvailableNode(data);
if (!recycled_nodes_.empty()) {
CHECK(available_nodes_.empty());
// removeEdgesFrom was called in removeNode.
g_.removeEdgesTo(recycled_nodes_);
available_nodes_.setUnion(recycled_nodes_);
recycled_nodes_.clear();
return getAvailableNode(data);
}
// We are out of vacant nodes. Flush and increment the current_epoch_.
current_epoch_ += size();
recycled_nodes_.clear();
available_nodes_.setAll();
g_.clear();
return getAvailableNode(data);
}
// Get data associated with the node created by newNode().
uptr getData(uptr node) const { return data_[nodeToIndex(node)]; }
bool nodeBelongsToCurrentEpoch(uptr node) {
return node && (node / size() * size()) == current_epoch_;
}
void removeNode(uptr node) {
uptr idx = nodeToIndex(node);
CHECK(!available_nodes_.getBit(idx));
CHECK(recycled_nodes_.setBit(idx));
g_.removeEdgesFrom(idx);
}
void ensureCurrentEpoch(DeadlockDetectorTLS<BV> *dtls) {
dtls->ensureCurrentEpoch(current_epoch_);
}
// Handles the lock event, returns true if there is a cycle.
// FIXME: handle RW locks, recursive locks, etc.
bool onLock(DeadlockDetectorTLS<BV> *dtls, uptr cur_node) {
ensureCurrentEpoch(dtls);
uptr cur_idx = nodeToIndex(cur_node);
bool is_reachable = g_.isReachable(cur_idx, dtls->getLocks(current_epoch_));
g_.addEdges(dtls->getLocks(current_epoch_), cur_idx);
dtls->addLock(cur_idx, current_epoch_);
return is_reachable;
}
// Handles the try_lock event, returns false.
// When a try_lock event happens (i.e. a try_lock call succeeds) we need
// to add this lock to the currently held locks, but we should not try to
// change the lock graph or to detect a cycle. We may want to investigate
// whether a more aggressive strategy is possible for try_lock.
bool onTryLock(DeadlockDetectorTLS<BV> *dtls, uptr cur_node) {
ensureCurrentEpoch(dtls);
uptr cur_idx = nodeToIndex(cur_node);
dtls->addLock(cur_idx, current_epoch_);
return false;
}
// Returns true iff dtls is empty (no locks are currently held) and we can
// add the node to the currently held locks w/o chanding the global state.
// This operation is thread-safe as it only touches the dtls.
bool onFirstLock(DeadlockDetectorTLS<BV> *dtls, uptr node) {
if (!dtls->empty()) return false;
if (dtls->getEpoch() && dtls->getEpoch() == nodeToEpoch(node)) {
dtls->addLock(nodeToIndexUnchecked(node), nodeToEpoch(node));
return true;
}
return false;
}
// Finds a path between the lock 'cur_node' (which is currently held in dtls)
// and some other currently held lock, returns the length of the path
// or 0 on failure.
uptr findPathToHeldLock(DeadlockDetectorTLS<BV> *dtls, uptr cur_node,
uptr *path, uptr path_size) {
tmp_bv_.copyFrom(dtls->getLocks(current_epoch_));
uptr idx = nodeToIndex(cur_node);
CHECK(tmp_bv_.clearBit(idx));
uptr res = g_.findShortestPath(idx, tmp_bv_, path, path_size);
for (uptr i = 0; i < res; i++)
path[i] = indexToNode(path[i]);
if (res)
CHECK_EQ(path[0], cur_node);
return res;
}
// Handle the unlock event.
// This operation is thread-safe as it only touches the dtls.
void onUnlock(DeadlockDetectorTLS<BV> *dtls, uptr node) {
if (dtls->getEpoch() == nodeToEpoch(node))
dtls->removeLock(nodeToIndexUnchecked(node));
}
bool isHeld(DeadlockDetectorTLS<BV> *dtls, uptr node) const {
return dtls->getLocks(current_epoch_).getBit(nodeToIndex(node));
}
uptr testOnlyGetEpoch() const { return current_epoch_; }
bool testOnlyHasEdge(uptr l1, uptr l2) {
return g_.hasEdge(nodeToIndex(l1), nodeToIndex(l2));
}
// idx1 and idx2 are raw indices to g_, not lock IDs.
bool testOnlyHasEdgeRaw(uptr idx1, uptr idx2) {
return g_.hasEdge(idx1, idx2);
}
void Print() {
for (uptr from = 0; from < size(); from++)
for (uptr to = 0; to < size(); to++)
if (g_.hasEdge(from, to))
Printf(" %zx => %zx\n", from, to);
}
private:
void check_idx(uptr idx) const { CHECK_LT(idx, size()); }
void check_node(uptr node) const {
CHECK_GE(node, size());
CHECK_EQ(current_epoch_, nodeToEpoch(node));
}
uptr indexToNode(uptr idx) const {
check_idx(idx);
return idx + current_epoch_;
}
uptr nodeToIndexUnchecked(uptr node) const { return node % size(); }
uptr nodeToIndex(uptr node) const {
check_node(node);
return nodeToIndexUnchecked(node);
}
uptr nodeToEpoch(uptr node) const { return node / size() * size(); }
uptr getAvailableNode(uptr data) {
uptr idx = available_nodes_.getAndClearFirstOne();
data_[idx] = data;
return indexToNode(idx);
}
uptr current_epoch_;
BV available_nodes_;
BV recycled_nodes_;
BV tmp_bv_;
BVGraph<BV> g_;
uptr data_[BV::kSize];
};
} // namespace __sanitizer
#endif // SANITIZER_DEADLOCK_DETECTOR_H