forked from OSchip/llvm-project
2042 lines
72 KiB
C++
2042 lines
72 KiB
C++
//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements sparse conditional constant propagation and merging:
|
|
//
|
|
// Specifically, this:
|
|
// * Assumes values are constant unless proven otherwise
|
|
// * Assumes BasicBlocks are dead unless proven otherwise
|
|
// * Proves values to be constant, and replaces them with constants
|
|
// * Proves conditional branches to be unconditional
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/SCCP.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/Utils/Local.h"
|
|
#include "llvm/Analysis/ValueLattice.h"
|
|
#include "llvm/Analysis/ValueLatticeUtils.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include <cassert>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "sccp"
|
|
|
|
STATISTIC(NumInstRemoved, "Number of instructions removed");
|
|
STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
|
|
|
|
STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
|
|
STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
|
|
STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
|
|
STATISTIC(IPNumRangeInfoUsed, "Number of times constant range info was used by"
|
|
"IPSCCP");
|
|
|
|
namespace {
|
|
|
|
/// LatticeVal class - This class represents the different lattice values that
|
|
/// an LLVM value may occupy. It is a simple class with value semantics.
|
|
///
|
|
class LatticeVal {
|
|
enum LatticeValueTy {
|
|
/// unknown - This LLVM Value has no known value yet.
|
|
unknown,
|
|
|
|
/// constant - This LLVM Value has a specific constant value.
|
|
constant,
|
|
|
|
/// forcedconstant - This LLVM Value was thought to be undef until
|
|
/// ResolvedUndefsIn. This is treated just like 'constant', but if merged
|
|
/// with another (different) constant, it goes to overdefined, instead of
|
|
/// asserting.
|
|
forcedconstant,
|
|
|
|
/// overdefined - This instruction is not known to be constant, and we know
|
|
/// it has a value.
|
|
overdefined
|
|
};
|
|
|
|
/// Val: This stores the current lattice value along with the Constant* for
|
|
/// the constant if this is a 'constant' or 'forcedconstant' value.
|
|
PointerIntPair<Constant *, 2, LatticeValueTy> Val;
|
|
|
|
LatticeValueTy getLatticeValue() const {
|
|
return Val.getInt();
|
|
}
|
|
|
|
public:
|
|
LatticeVal() : Val(nullptr, unknown) {}
|
|
|
|
bool isUnknown() const { return getLatticeValue() == unknown; }
|
|
|
|
bool isConstant() const {
|
|
return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
|
|
}
|
|
|
|
bool isOverdefined() const { return getLatticeValue() == overdefined; }
|
|
|
|
Constant *getConstant() const {
|
|
assert(isConstant() && "Cannot get the constant of a non-constant!");
|
|
return Val.getPointer();
|
|
}
|
|
|
|
/// markOverdefined - Return true if this is a change in status.
|
|
bool markOverdefined() {
|
|
if (isOverdefined())
|
|
return false;
|
|
|
|
Val.setInt(overdefined);
|
|
return true;
|
|
}
|
|
|
|
/// markConstant - Return true if this is a change in status.
|
|
bool markConstant(Constant *V) {
|
|
if (getLatticeValue() == constant) { // Constant but not forcedconstant.
|
|
assert(getConstant() == V && "Marking constant with different value");
|
|
return false;
|
|
}
|
|
|
|
if (isUnknown()) {
|
|
Val.setInt(constant);
|
|
assert(V && "Marking constant with NULL");
|
|
Val.setPointer(V);
|
|
} else {
|
|
assert(getLatticeValue() == forcedconstant &&
|
|
"Cannot move from overdefined to constant!");
|
|
// Stay at forcedconstant if the constant is the same.
|
|
if (V == getConstant()) return false;
|
|
|
|
// Otherwise, we go to overdefined. Assumptions made based on the
|
|
// forced value are possibly wrong. Assuming this is another constant
|
|
// could expose a contradiction.
|
|
Val.setInt(overdefined);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// getConstantInt - If this is a constant with a ConstantInt value, return it
|
|
/// otherwise return null.
|
|
ConstantInt *getConstantInt() const {
|
|
if (isConstant())
|
|
return dyn_cast<ConstantInt>(getConstant());
|
|
return nullptr;
|
|
}
|
|
|
|
/// getBlockAddress - If this is a constant with a BlockAddress value, return
|
|
/// it, otherwise return null.
|
|
BlockAddress *getBlockAddress() const {
|
|
if (isConstant())
|
|
return dyn_cast<BlockAddress>(getConstant());
|
|
return nullptr;
|
|
}
|
|
|
|
void markForcedConstant(Constant *V) {
|
|
assert(isUnknown() && "Can't force a defined value!");
|
|
Val.setInt(forcedconstant);
|
|
Val.setPointer(V);
|
|
}
|
|
|
|
ValueLatticeElement toValueLattice() const {
|
|
if (isOverdefined())
|
|
return ValueLatticeElement::getOverdefined();
|
|
if (isConstant())
|
|
return ValueLatticeElement::get(getConstant());
|
|
return ValueLatticeElement();
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
|
|
/// Constant Propagation.
|
|
///
|
|
class SCCPSolver : public InstVisitor<SCCPSolver> {
|
|
const DataLayout &DL;
|
|
const TargetLibraryInfo *TLI;
|
|
SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
|
|
DenseMap<Value *, LatticeVal> ValueState; // The state each value is in.
|
|
// The state each parameter is in.
|
|
DenseMap<Value *, ValueLatticeElement> ParamState;
|
|
|
|
/// StructValueState - This maintains ValueState for values that have
|
|
/// StructType, for example for formal arguments, calls, insertelement, etc.
|
|
DenseMap<std::pair<Value *, unsigned>, LatticeVal> StructValueState;
|
|
|
|
/// GlobalValue - If we are tracking any values for the contents of a global
|
|
/// variable, we keep a mapping from the constant accessor to the element of
|
|
/// the global, to the currently known value. If the value becomes
|
|
/// overdefined, it's entry is simply removed from this map.
|
|
DenseMap<GlobalVariable *, LatticeVal> TrackedGlobals;
|
|
|
|
/// TrackedRetVals - If we are tracking arguments into and the return
|
|
/// value out of a function, it will have an entry in this map, indicating
|
|
/// what the known return value for the function is.
|
|
DenseMap<Function *, LatticeVal> TrackedRetVals;
|
|
|
|
/// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
|
|
/// that return multiple values.
|
|
DenseMap<std::pair<Function *, unsigned>, LatticeVal> TrackedMultipleRetVals;
|
|
|
|
/// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
|
|
/// represented here for efficient lookup.
|
|
SmallPtrSet<Function *, 16> MRVFunctionsTracked;
|
|
|
|
/// MustTailFunctions - Each function here is a callee of non-removable
|
|
/// musttail call site.
|
|
SmallPtrSet<Function *, 16> MustTailCallees;
|
|
|
|
/// TrackingIncomingArguments - This is the set of functions for whose
|
|
/// arguments we make optimistic assumptions about and try to prove as
|
|
/// constants.
|
|
SmallPtrSet<Function *, 16> TrackingIncomingArguments;
|
|
|
|
/// The reason for two worklists is that overdefined is the lowest state
|
|
/// on the lattice, and moving things to overdefined as fast as possible
|
|
/// makes SCCP converge much faster.
|
|
///
|
|
/// By having a separate worklist, we accomplish this because everything
|
|
/// possibly overdefined will become overdefined at the soonest possible
|
|
/// point.
|
|
SmallVector<Value *, 64> OverdefinedInstWorkList;
|
|
SmallVector<Value *, 64> InstWorkList;
|
|
|
|
// The BasicBlock work list
|
|
SmallVector<BasicBlock *, 64> BBWorkList;
|
|
|
|
/// KnownFeasibleEdges - Entries in this set are edges which have already had
|
|
/// PHI nodes retriggered.
|
|
using Edge = std::pair<BasicBlock *, BasicBlock *>;
|
|
DenseSet<Edge> KnownFeasibleEdges;
|
|
|
|
public:
|
|
SCCPSolver(const DataLayout &DL, const TargetLibraryInfo *tli)
|
|
: DL(DL), TLI(tli) {}
|
|
|
|
/// MarkBlockExecutable - This method can be used by clients to mark all of
|
|
/// the blocks that are known to be intrinsically live in the processed unit.
|
|
///
|
|
/// This returns true if the block was not considered live before.
|
|
bool MarkBlockExecutable(BasicBlock *BB) {
|
|
if (!BBExecutable.insert(BB).second)
|
|
return false;
|
|
LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
|
|
BBWorkList.push_back(BB); // Add the block to the work list!
|
|
return true;
|
|
}
|
|
|
|
/// TrackValueOfGlobalVariable - Clients can use this method to
|
|
/// inform the SCCPSolver that it should track loads and stores to the
|
|
/// specified global variable if it can. This is only legal to call if
|
|
/// performing Interprocedural SCCP.
|
|
void TrackValueOfGlobalVariable(GlobalVariable *GV) {
|
|
// We only track the contents of scalar globals.
|
|
if (GV->getValueType()->isSingleValueType()) {
|
|
LatticeVal &IV = TrackedGlobals[GV];
|
|
if (!isa<UndefValue>(GV->getInitializer()))
|
|
IV.markConstant(GV->getInitializer());
|
|
}
|
|
}
|
|
|
|
/// AddTrackedFunction - If the SCCP solver is supposed to track calls into
|
|
/// and out of the specified function (which cannot have its address taken),
|
|
/// this method must be called.
|
|
void AddTrackedFunction(Function *F) {
|
|
// Add an entry, F -> undef.
|
|
if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
|
|
MRVFunctionsTracked.insert(F);
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
|
|
TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
|
|
LatticeVal()));
|
|
} else
|
|
TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
|
|
}
|
|
|
|
/// AddMustTailCallee - If the SCCP solver finds that this function is called
|
|
/// from non-removable musttail call site.
|
|
void AddMustTailCallee(Function *F) {
|
|
MustTailCallees.insert(F);
|
|
}
|
|
|
|
/// Returns true if the given function is called from non-removable musttail
|
|
/// call site.
|
|
bool isMustTailCallee(Function *F) {
|
|
return MustTailCallees.count(F);
|
|
}
|
|
|
|
void AddArgumentTrackedFunction(Function *F) {
|
|
TrackingIncomingArguments.insert(F);
|
|
}
|
|
|
|
/// Returns true if the given function is in the solver's set of
|
|
/// argument-tracked functions.
|
|
bool isArgumentTrackedFunction(Function *F) {
|
|
return TrackingIncomingArguments.count(F);
|
|
}
|
|
|
|
/// Solve - Solve for constants and executable blocks.
|
|
void Solve();
|
|
|
|
/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
|
|
/// that branches on undef values cannot reach any of their successors.
|
|
/// However, this is not a safe assumption. After we solve dataflow, this
|
|
/// method should be use to handle this. If this returns true, the solver
|
|
/// should be rerun.
|
|
bool ResolvedUndefsIn(Function &F);
|
|
|
|
bool isBlockExecutable(BasicBlock *BB) const {
|
|
return BBExecutable.count(BB);
|
|
}
|
|
|
|
std::vector<LatticeVal> getStructLatticeValueFor(Value *V) const {
|
|
std::vector<LatticeVal> StructValues;
|
|
auto *STy = dyn_cast<StructType>(V->getType());
|
|
assert(STy && "getStructLatticeValueFor() can be called only on structs");
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
|
|
auto I = StructValueState.find(std::make_pair(V, i));
|
|
assert(I != StructValueState.end() && "Value not in valuemap!");
|
|
StructValues.push_back(I->second);
|
|
}
|
|
return StructValues;
|
|
}
|
|
|
|
ValueLatticeElement getLatticeValueFor(Value *V) {
|
|
assert(!V->getType()->isStructTy() &&
|
|
"Should use getStructLatticeValueFor");
|
|
std::pair<DenseMap<Value*, ValueLatticeElement>::iterator, bool>
|
|
PI = ParamState.insert(std::make_pair(V, ValueLatticeElement()));
|
|
ValueLatticeElement &LV = PI.first->second;
|
|
if (PI.second) {
|
|
DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
|
|
assert(I != ValueState.end() &&
|
|
"V not found in ValueState nor Paramstate map!");
|
|
LV = I->second.toValueLattice();
|
|
}
|
|
|
|
return LV;
|
|
}
|
|
|
|
/// getTrackedRetVals - Get the inferred return value map.
|
|
const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
|
|
return TrackedRetVals;
|
|
}
|
|
|
|
/// getTrackedGlobals - Get and return the set of inferred initializers for
|
|
/// global variables.
|
|
const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
|
|
return TrackedGlobals;
|
|
}
|
|
|
|
/// getMRVFunctionsTracked - Get the set of functions which return multiple
|
|
/// values tracked by the pass.
|
|
const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() {
|
|
return MRVFunctionsTracked;
|
|
}
|
|
|
|
/// getMustTailCallees - Get the set of functions which are called
|
|
/// from non-removable musttail call sites.
|
|
const SmallPtrSet<Function *, 16> getMustTailCallees() {
|
|
return MustTailCallees;
|
|
}
|
|
|
|
/// markOverdefined - Mark the specified value overdefined. This
|
|
/// works with both scalars and structs.
|
|
void markOverdefined(Value *V) {
|
|
if (auto *STy = dyn_cast<StructType>(V->getType()))
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
|
|
markOverdefined(getStructValueState(V, i), V);
|
|
else
|
|
markOverdefined(ValueState[V], V);
|
|
}
|
|
|
|
// isStructLatticeConstant - Return true if all the lattice values
|
|
// corresponding to elements of the structure are not overdefined,
|
|
// false otherwise.
|
|
bool isStructLatticeConstant(Function *F, StructType *STy) {
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
|
|
const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
|
|
assert(It != TrackedMultipleRetVals.end());
|
|
LatticeVal LV = It->second;
|
|
if (LV.isOverdefined())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
// pushToWorkList - Helper for markConstant/markForcedConstant/markOverdefined
|
|
void pushToWorkList(LatticeVal &IV, Value *V) {
|
|
if (IV.isOverdefined())
|
|
return OverdefinedInstWorkList.push_back(V);
|
|
InstWorkList.push_back(V);
|
|
}
|
|
|
|
// markConstant - Make a value be marked as "constant". If the value
|
|
// is not already a constant, add it to the instruction work list so that
|
|
// the users of the instruction are updated later.
|
|
void markConstant(LatticeVal &IV, Value *V, Constant *C) {
|
|
if (!IV.markConstant(C)) return;
|
|
LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
|
|
pushToWorkList(IV, V);
|
|
}
|
|
|
|
void markConstant(Value *V, Constant *C) {
|
|
assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
|
|
markConstant(ValueState[V], V, C);
|
|
}
|
|
|
|
void markForcedConstant(Value *V, Constant *C) {
|
|
assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
|
|
LatticeVal &IV = ValueState[V];
|
|
IV.markForcedConstant(C);
|
|
LLVM_DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
|
|
pushToWorkList(IV, V);
|
|
}
|
|
|
|
// markOverdefined - Make a value be marked as "overdefined". If the
|
|
// value is not already overdefined, add it to the overdefined instruction
|
|
// work list so that the users of the instruction are updated later.
|
|
void markOverdefined(LatticeVal &IV, Value *V) {
|
|
if (!IV.markOverdefined()) return;
|
|
|
|
LLVM_DEBUG(dbgs() << "markOverdefined: ";
|
|
if (auto *F = dyn_cast<Function>(V)) dbgs()
|
|
<< "Function '" << F->getName() << "'\n";
|
|
else dbgs() << *V << '\n');
|
|
// Only instructions go on the work list
|
|
pushToWorkList(IV, V);
|
|
}
|
|
|
|
void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
|
|
if (IV.isOverdefined() || MergeWithV.isUnknown())
|
|
return; // Noop.
|
|
if (MergeWithV.isOverdefined())
|
|
return markOverdefined(IV, V);
|
|
if (IV.isUnknown())
|
|
return markConstant(IV, V, MergeWithV.getConstant());
|
|
if (IV.getConstant() != MergeWithV.getConstant())
|
|
return markOverdefined(IV, V);
|
|
}
|
|
|
|
void mergeInValue(Value *V, LatticeVal MergeWithV) {
|
|
assert(!V->getType()->isStructTy() &&
|
|
"non-structs should use markConstant");
|
|
mergeInValue(ValueState[V], V, MergeWithV);
|
|
}
|
|
|
|
/// getValueState - Return the LatticeVal object that corresponds to the
|
|
/// value. This function handles the case when the value hasn't been seen yet
|
|
/// by properly seeding constants etc.
|
|
LatticeVal &getValueState(Value *V) {
|
|
assert(!V->getType()->isStructTy() && "Should use getStructValueState");
|
|
|
|
std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
|
|
ValueState.insert(std::make_pair(V, LatticeVal()));
|
|
LatticeVal &LV = I.first->second;
|
|
|
|
if (!I.second)
|
|
return LV; // Common case, already in the map.
|
|
|
|
if (auto *C = dyn_cast<Constant>(V)) {
|
|
// Undef values remain unknown.
|
|
if (!isa<UndefValue>(V))
|
|
LV.markConstant(C); // Constants are constant
|
|
}
|
|
|
|
// All others are underdefined by default.
|
|
return LV;
|
|
}
|
|
|
|
ValueLatticeElement &getParamState(Value *V) {
|
|
assert(!V->getType()->isStructTy() && "Should use getStructValueState");
|
|
|
|
std::pair<DenseMap<Value*, ValueLatticeElement>::iterator, bool>
|
|
PI = ParamState.insert(std::make_pair(V, ValueLatticeElement()));
|
|
ValueLatticeElement &LV = PI.first->second;
|
|
if (PI.second)
|
|
LV = getValueState(V).toValueLattice();
|
|
|
|
return LV;
|
|
}
|
|
|
|
/// getStructValueState - Return the LatticeVal object that corresponds to the
|
|
/// value/field pair. This function handles the case when the value hasn't
|
|
/// been seen yet by properly seeding constants etc.
|
|
LatticeVal &getStructValueState(Value *V, unsigned i) {
|
|
assert(V->getType()->isStructTy() && "Should use getValueState");
|
|
assert(i < cast<StructType>(V->getType())->getNumElements() &&
|
|
"Invalid element #");
|
|
|
|
std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
|
|
bool> I = StructValueState.insert(
|
|
std::make_pair(std::make_pair(V, i), LatticeVal()));
|
|
LatticeVal &LV = I.first->second;
|
|
|
|
if (!I.second)
|
|
return LV; // Common case, already in the map.
|
|
|
|
if (auto *C = dyn_cast<Constant>(V)) {
|
|
Constant *Elt = C->getAggregateElement(i);
|
|
|
|
if (!Elt)
|
|
LV.markOverdefined(); // Unknown sort of constant.
|
|
else if (isa<UndefValue>(Elt))
|
|
; // Undef values remain unknown.
|
|
else
|
|
LV.markConstant(Elt); // Constants are constant.
|
|
}
|
|
|
|
// All others are underdefined by default.
|
|
return LV;
|
|
}
|
|
|
|
/// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
|
|
/// work list if it is not already executable.
|
|
void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
|
|
if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
|
|
return; // This edge is already known to be executable!
|
|
|
|
if (!MarkBlockExecutable(Dest)) {
|
|
// If the destination is already executable, we just made an *edge*
|
|
// feasible that wasn't before. Revisit the PHI nodes in the block
|
|
// because they have potentially new operands.
|
|
LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
|
|
<< " -> " << Dest->getName() << '\n');
|
|
|
|
for (PHINode &PN : Dest->phis())
|
|
visitPHINode(PN);
|
|
}
|
|
}
|
|
|
|
// getFeasibleSuccessors - Return a vector of booleans to indicate which
|
|
// successors are reachable from a given terminator instruction.
|
|
void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs);
|
|
|
|
// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
|
|
// block to the 'To' basic block is currently feasible.
|
|
bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
|
|
|
|
// OperandChangedState - This method is invoked on all of the users of an
|
|
// instruction that was just changed state somehow. Based on this
|
|
// information, we need to update the specified user of this instruction.
|
|
void OperandChangedState(Instruction *I) {
|
|
if (BBExecutable.count(I->getParent())) // Inst is executable?
|
|
visit(*I);
|
|
}
|
|
|
|
private:
|
|
friend class InstVisitor<SCCPSolver>;
|
|
|
|
// visit implementations - Something changed in this instruction. Either an
|
|
// operand made a transition, or the instruction is newly executable. Change
|
|
// the value type of I to reflect these changes if appropriate.
|
|
void visitPHINode(PHINode &I);
|
|
|
|
// Terminators
|
|
|
|
void visitReturnInst(ReturnInst &I);
|
|
void visitTerminatorInst(TerminatorInst &TI);
|
|
|
|
void visitCastInst(CastInst &I);
|
|
void visitSelectInst(SelectInst &I);
|
|
void visitBinaryOperator(Instruction &I);
|
|
void visitCmpInst(CmpInst &I);
|
|
void visitExtractValueInst(ExtractValueInst &EVI);
|
|
void visitInsertValueInst(InsertValueInst &IVI);
|
|
|
|
void visitCatchSwitchInst(CatchSwitchInst &CPI) {
|
|
markOverdefined(&CPI);
|
|
visitTerminatorInst(CPI);
|
|
}
|
|
|
|
// Instructions that cannot be folded away.
|
|
|
|
void visitStoreInst (StoreInst &I);
|
|
void visitLoadInst (LoadInst &I);
|
|
void visitGetElementPtrInst(GetElementPtrInst &I);
|
|
|
|
void visitCallInst (CallInst &I) {
|
|
visitCallSite(&I);
|
|
}
|
|
|
|
void visitInvokeInst (InvokeInst &II) {
|
|
visitCallSite(&II);
|
|
visitTerminatorInst(II);
|
|
}
|
|
|
|
void visitCallSite (CallSite CS);
|
|
void visitResumeInst (TerminatorInst &I) { /*returns void*/ }
|
|
void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
|
|
void visitFenceInst (FenceInst &I) { /*returns void*/ }
|
|
|
|
void visitInstruction(Instruction &I) {
|
|
// All the instructions we don't do any special handling for just
|
|
// go to overdefined.
|
|
LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
|
|
markOverdefined(&I);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
// getFeasibleSuccessors - Return a vector of booleans to indicate which
|
|
// successors are reachable from a given terminator instruction.
|
|
void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
|
|
SmallVectorImpl<bool> &Succs) {
|
|
Succs.resize(TI.getNumSuccessors());
|
|
if (auto *BI = dyn_cast<BranchInst>(&TI)) {
|
|
if (BI->isUnconditional()) {
|
|
Succs[0] = true;
|
|
return;
|
|
}
|
|
|
|
LatticeVal BCValue = getValueState(BI->getCondition());
|
|
ConstantInt *CI = BCValue.getConstantInt();
|
|
if (!CI) {
|
|
// Overdefined condition variables, and branches on unfoldable constant
|
|
// conditions, mean the branch could go either way.
|
|
if (!BCValue.isUnknown())
|
|
Succs[0] = Succs[1] = true;
|
|
return;
|
|
}
|
|
|
|
// Constant condition variables mean the branch can only go a single way.
|
|
Succs[CI->isZero()] = true;
|
|
return;
|
|
}
|
|
|
|
// Unwinding instructions successors are always executable.
|
|
if (TI.isExceptional()) {
|
|
Succs.assign(TI.getNumSuccessors(), true);
|
|
return;
|
|
}
|
|
|
|
if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
|
|
if (!SI->getNumCases()) {
|
|
Succs[0] = true;
|
|
return;
|
|
}
|
|
LatticeVal SCValue = getValueState(SI->getCondition());
|
|
ConstantInt *CI = SCValue.getConstantInt();
|
|
|
|
if (!CI) { // Overdefined or unknown condition?
|
|
// All destinations are executable!
|
|
if (!SCValue.isUnknown())
|
|
Succs.assign(TI.getNumSuccessors(), true);
|
|
return;
|
|
}
|
|
|
|
Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
|
|
return;
|
|
}
|
|
|
|
// In case of indirect branch and its address is a blockaddress, we mark
|
|
// the target as executable.
|
|
if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
|
|
// Casts are folded by visitCastInst.
|
|
LatticeVal IBRValue = getValueState(IBR->getAddress());
|
|
BlockAddress *Addr = IBRValue.getBlockAddress();
|
|
if (!Addr) { // Overdefined or unknown condition?
|
|
// All destinations are executable!
|
|
if (!IBRValue.isUnknown())
|
|
Succs.assign(TI.getNumSuccessors(), true);
|
|
return;
|
|
}
|
|
|
|
BasicBlock* T = Addr->getBasicBlock();
|
|
assert(Addr->getFunction() == T->getParent() &&
|
|
"Block address of a different function ?");
|
|
for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
|
|
// This is the target.
|
|
if (IBR->getDestination(i) == T) {
|
|
Succs[i] = true;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If we didn't find our destination in the IBR successor list, then we
|
|
// have undefined behavior. Its ok to assume no successor is executable.
|
|
return;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
|
|
llvm_unreachable("SCCP: Don't know how to handle this terminator!");
|
|
}
|
|
|
|
// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
|
|
// block to the 'To' basic block is currently feasible.
|
|
bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
|
|
assert(BBExecutable.count(To) && "Dest should always be alive!");
|
|
|
|
// Make sure the source basic block is executable!!
|
|
if (!BBExecutable.count(From)) return false;
|
|
|
|
// Check to make sure this edge itself is actually feasible now.
|
|
TerminatorInst *TI = From->getTerminator();
|
|
if (auto *BI = dyn_cast<BranchInst>(TI)) {
|
|
if (BI->isUnconditional())
|
|
return true;
|
|
|
|
LatticeVal BCValue = getValueState(BI->getCondition());
|
|
|
|
// Overdefined condition variables mean the branch could go either way,
|
|
// undef conditions mean that neither edge is feasible yet.
|
|
ConstantInt *CI = BCValue.getConstantInt();
|
|
if (!CI)
|
|
return !BCValue.isUnknown();
|
|
|
|
// Constant condition variables mean the branch can only go a single way.
|
|
return BI->getSuccessor(CI->isZero()) == To;
|
|
}
|
|
|
|
// Unwinding instructions successors are always executable.
|
|
if (TI->isExceptional())
|
|
return true;
|
|
|
|
if (auto *SI = dyn_cast<SwitchInst>(TI)) {
|
|
if (SI->getNumCases() < 1)
|
|
return true;
|
|
|
|
LatticeVal SCValue = getValueState(SI->getCondition());
|
|
ConstantInt *CI = SCValue.getConstantInt();
|
|
|
|
if (!CI)
|
|
return !SCValue.isUnknown();
|
|
|
|
return SI->findCaseValue(CI)->getCaseSuccessor() == To;
|
|
}
|
|
|
|
// In case of indirect branch and its address is a blockaddress, we mark
|
|
// the target as executable.
|
|
if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) {
|
|
LatticeVal IBRValue = getValueState(IBR->getAddress());
|
|
BlockAddress *Addr = IBRValue.getBlockAddress();
|
|
|
|
if (!Addr)
|
|
return !IBRValue.isUnknown();
|
|
|
|
// At this point, the indirectbr is branching on a blockaddress.
|
|
return Addr->getBasicBlock() == To;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << *TI << '\n');
|
|
llvm_unreachable("SCCP: Don't know how to handle this terminator!");
|
|
}
|
|
|
|
// visit Implementations - Something changed in this instruction, either an
|
|
// operand made a transition, or the instruction is newly executable. Change
|
|
// the value type of I to reflect these changes if appropriate. This method
|
|
// makes sure to do the following actions:
|
|
//
|
|
// 1. If a phi node merges two constants in, and has conflicting value coming
|
|
// from different branches, or if the PHI node merges in an overdefined
|
|
// value, then the PHI node becomes overdefined.
|
|
// 2. If a phi node merges only constants in, and they all agree on value, the
|
|
// PHI node becomes a constant value equal to that.
|
|
// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
|
|
// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
|
|
// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
|
|
// 6. If a conditional branch has a value that is constant, make the selected
|
|
// destination executable
|
|
// 7. If a conditional branch has a value that is overdefined, make all
|
|
// successors executable.
|
|
void SCCPSolver::visitPHINode(PHINode &PN) {
|
|
// If this PN returns a struct, just mark the result overdefined.
|
|
// TODO: We could do a lot better than this if code actually uses this.
|
|
if (PN.getType()->isStructTy())
|
|
return markOverdefined(&PN);
|
|
|
|
if (getValueState(&PN).isOverdefined())
|
|
return; // Quick exit
|
|
|
|
// Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
|
|
// and slow us down a lot. Just mark them overdefined.
|
|
if (PN.getNumIncomingValues() > 64)
|
|
return markOverdefined(&PN);
|
|
|
|
// Look at all of the executable operands of the PHI node. If any of them
|
|
// are overdefined, the PHI becomes overdefined as well. If they are all
|
|
// constant, and they agree with each other, the PHI becomes the identical
|
|
// constant. If they are constant and don't agree, the PHI is overdefined.
|
|
// If there are no executable operands, the PHI remains unknown.
|
|
Constant *OperandVal = nullptr;
|
|
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
|
|
LatticeVal IV = getValueState(PN.getIncomingValue(i));
|
|
if (IV.isUnknown()) continue; // Doesn't influence PHI node.
|
|
|
|
if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
|
|
continue;
|
|
|
|
if (IV.isOverdefined()) // PHI node becomes overdefined!
|
|
return markOverdefined(&PN);
|
|
|
|
if (!OperandVal) { // Grab the first value.
|
|
OperandVal = IV.getConstant();
|
|
continue;
|
|
}
|
|
|
|
// There is already a reachable operand. If we conflict with it,
|
|
// then the PHI node becomes overdefined. If we agree with it, we
|
|
// can continue on.
|
|
|
|
// Check to see if there are two different constants merging, if so, the PHI
|
|
// node is overdefined.
|
|
if (IV.getConstant() != OperandVal)
|
|
return markOverdefined(&PN);
|
|
}
|
|
|
|
// If we exited the loop, this means that the PHI node only has constant
|
|
// arguments that agree with each other(and OperandVal is the constant) or
|
|
// OperandVal is null because there are no defined incoming arguments. If
|
|
// this is the case, the PHI remains unknown.
|
|
if (OperandVal)
|
|
markConstant(&PN, OperandVal); // Acquire operand value
|
|
}
|
|
|
|
void SCCPSolver::visitReturnInst(ReturnInst &I) {
|
|
if (I.getNumOperands() == 0) return; // ret void
|
|
|
|
Function *F = I.getParent()->getParent();
|
|
Value *ResultOp = I.getOperand(0);
|
|
|
|
// If we are tracking the return value of this function, merge it in.
|
|
if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
|
|
DenseMap<Function*, LatticeVal>::iterator TFRVI =
|
|
TrackedRetVals.find(F);
|
|
if (TFRVI != TrackedRetVals.end()) {
|
|
mergeInValue(TFRVI->second, F, getValueState(ResultOp));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Handle functions that return multiple values.
|
|
if (!TrackedMultipleRetVals.empty()) {
|
|
if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
|
|
if (MRVFunctionsTracked.count(F))
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
|
|
mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
|
|
getStructValueState(ResultOp, i));
|
|
}
|
|
}
|
|
|
|
void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
|
|
SmallVector<bool, 16> SuccFeasible;
|
|
getFeasibleSuccessors(TI, SuccFeasible);
|
|
|
|
BasicBlock *BB = TI.getParent();
|
|
|
|
// Mark all feasible successors executable.
|
|
for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
|
|
if (SuccFeasible[i])
|
|
markEdgeExecutable(BB, TI.getSuccessor(i));
|
|
}
|
|
|
|
void SCCPSolver::visitCastInst(CastInst &I) {
|
|
LatticeVal OpSt = getValueState(I.getOperand(0));
|
|
if (OpSt.isOverdefined()) // Inherit overdefinedness of operand
|
|
markOverdefined(&I);
|
|
else if (OpSt.isConstant()) {
|
|
// Fold the constant as we build.
|
|
Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpSt.getConstant(),
|
|
I.getType(), DL);
|
|
if (isa<UndefValue>(C))
|
|
return;
|
|
// Propagate constant value
|
|
markConstant(&I, C);
|
|
}
|
|
}
|
|
|
|
void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
|
|
// If this returns a struct, mark all elements over defined, we don't track
|
|
// structs in structs.
|
|
if (EVI.getType()->isStructTy())
|
|
return markOverdefined(&EVI);
|
|
|
|
// If this is extracting from more than one level of struct, we don't know.
|
|
if (EVI.getNumIndices() != 1)
|
|
return markOverdefined(&EVI);
|
|
|
|
Value *AggVal = EVI.getAggregateOperand();
|
|
if (AggVal->getType()->isStructTy()) {
|
|
unsigned i = *EVI.idx_begin();
|
|
LatticeVal EltVal = getStructValueState(AggVal, i);
|
|
mergeInValue(getValueState(&EVI), &EVI, EltVal);
|
|
} else {
|
|
// Otherwise, must be extracting from an array.
|
|
return markOverdefined(&EVI);
|
|
}
|
|
}
|
|
|
|
void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
|
|
auto *STy = dyn_cast<StructType>(IVI.getType());
|
|
if (!STy)
|
|
return markOverdefined(&IVI);
|
|
|
|
// If this has more than one index, we can't handle it, drive all results to
|
|
// undef.
|
|
if (IVI.getNumIndices() != 1)
|
|
return markOverdefined(&IVI);
|
|
|
|
Value *Aggr = IVI.getAggregateOperand();
|
|
unsigned Idx = *IVI.idx_begin();
|
|
|
|
// Compute the result based on what we're inserting.
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
|
|
// This passes through all values that aren't the inserted element.
|
|
if (i != Idx) {
|
|
LatticeVal EltVal = getStructValueState(Aggr, i);
|
|
mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
|
|
continue;
|
|
}
|
|
|
|
Value *Val = IVI.getInsertedValueOperand();
|
|
if (Val->getType()->isStructTy())
|
|
// We don't track structs in structs.
|
|
markOverdefined(getStructValueState(&IVI, i), &IVI);
|
|
else {
|
|
LatticeVal InVal = getValueState(Val);
|
|
mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SCCPSolver::visitSelectInst(SelectInst &I) {
|
|
// If this select returns a struct, just mark the result overdefined.
|
|
// TODO: We could do a lot better than this if code actually uses this.
|
|
if (I.getType()->isStructTy())
|
|
return markOverdefined(&I);
|
|
|
|
LatticeVal CondValue = getValueState(I.getCondition());
|
|
if (CondValue.isUnknown())
|
|
return;
|
|
|
|
if (ConstantInt *CondCB = CondValue.getConstantInt()) {
|
|
Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
|
|
mergeInValue(&I, getValueState(OpVal));
|
|
return;
|
|
}
|
|
|
|
// Otherwise, the condition is overdefined or a constant we can't evaluate.
|
|
// See if we can produce something better than overdefined based on the T/F
|
|
// value.
|
|
LatticeVal TVal = getValueState(I.getTrueValue());
|
|
LatticeVal FVal = getValueState(I.getFalseValue());
|
|
|
|
// select ?, C, C -> C.
|
|
if (TVal.isConstant() && FVal.isConstant() &&
|
|
TVal.getConstant() == FVal.getConstant())
|
|
return markConstant(&I, FVal.getConstant());
|
|
|
|
if (TVal.isUnknown()) // select ?, undef, X -> X.
|
|
return mergeInValue(&I, FVal);
|
|
if (FVal.isUnknown()) // select ?, X, undef -> X.
|
|
return mergeInValue(&I, TVal);
|
|
markOverdefined(&I);
|
|
}
|
|
|
|
// Handle Binary Operators.
|
|
void SCCPSolver::visitBinaryOperator(Instruction &I) {
|
|
LatticeVal V1State = getValueState(I.getOperand(0));
|
|
LatticeVal V2State = getValueState(I.getOperand(1));
|
|
|
|
LatticeVal &IV = ValueState[&I];
|
|
if (IV.isOverdefined()) return;
|
|
|
|
if (V1State.isConstant() && V2State.isConstant()) {
|
|
Constant *C = ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
|
|
V2State.getConstant());
|
|
// X op Y -> undef.
|
|
if (isa<UndefValue>(C))
|
|
return;
|
|
return markConstant(IV, &I, C);
|
|
}
|
|
|
|
// If something is undef, wait for it to resolve.
|
|
if (!V1State.isOverdefined() && !V2State.isOverdefined())
|
|
return;
|
|
|
|
// Otherwise, one of our operands is overdefined. Try to produce something
|
|
// better than overdefined with some tricks.
|
|
// If this is 0 / Y, it doesn't matter that the second operand is
|
|
// overdefined, and we can replace it with zero.
|
|
if (I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SDiv)
|
|
if (V1State.isConstant() && V1State.getConstant()->isNullValue())
|
|
return markConstant(IV, &I, V1State.getConstant());
|
|
|
|
// If this is:
|
|
// -> AND/MUL with 0
|
|
// -> OR with -1
|
|
// it doesn't matter that the other operand is overdefined.
|
|
if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Mul ||
|
|
I.getOpcode() == Instruction::Or) {
|
|
LatticeVal *NonOverdefVal = nullptr;
|
|
if (!V1State.isOverdefined())
|
|
NonOverdefVal = &V1State;
|
|
else if (!V2State.isOverdefined())
|
|
NonOverdefVal = &V2State;
|
|
|
|
if (NonOverdefVal) {
|
|
if (NonOverdefVal->isUnknown())
|
|
return;
|
|
|
|
if (I.getOpcode() == Instruction::And ||
|
|
I.getOpcode() == Instruction::Mul) {
|
|
// X and 0 = 0
|
|
// X * 0 = 0
|
|
if (NonOverdefVal->getConstant()->isNullValue())
|
|
return markConstant(IV, &I, NonOverdefVal->getConstant());
|
|
} else {
|
|
// X or -1 = -1
|
|
if (ConstantInt *CI = NonOverdefVal->getConstantInt())
|
|
if (CI->isMinusOne())
|
|
return markConstant(IV, &I, NonOverdefVal->getConstant());
|
|
}
|
|
}
|
|
}
|
|
|
|
markOverdefined(&I);
|
|
}
|
|
|
|
// Handle ICmpInst instruction.
|
|
void SCCPSolver::visitCmpInst(CmpInst &I) {
|
|
LatticeVal V1State = getValueState(I.getOperand(0));
|
|
LatticeVal V2State = getValueState(I.getOperand(1));
|
|
|
|
LatticeVal &IV = ValueState[&I];
|
|
if (IV.isOverdefined()) return;
|
|
|
|
if (V1State.isConstant() && V2State.isConstant()) {
|
|
Constant *C = ConstantExpr::getCompare(
|
|
I.getPredicate(), V1State.getConstant(), V2State.getConstant());
|
|
if (isa<UndefValue>(C))
|
|
return;
|
|
return markConstant(IV, &I, C);
|
|
}
|
|
|
|
// If operands are still unknown, wait for it to resolve.
|
|
if (!V1State.isOverdefined() && !V2State.isOverdefined())
|
|
return;
|
|
|
|
markOverdefined(&I);
|
|
}
|
|
|
|
// Handle getelementptr instructions. If all operands are constants then we
|
|
// can turn this into a getelementptr ConstantExpr.
|
|
void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
|
|
if (ValueState[&I].isOverdefined()) return;
|
|
|
|
SmallVector<Constant*, 8> Operands;
|
|
Operands.reserve(I.getNumOperands());
|
|
|
|
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
|
|
LatticeVal State = getValueState(I.getOperand(i));
|
|
if (State.isUnknown())
|
|
return; // Operands are not resolved yet.
|
|
|
|
if (State.isOverdefined())
|
|
return markOverdefined(&I);
|
|
|
|
assert(State.isConstant() && "Unknown state!");
|
|
Operands.push_back(State.getConstant());
|
|
}
|
|
|
|
Constant *Ptr = Operands[0];
|
|
auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
|
|
Constant *C =
|
|
ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices);
|
|
if (isa<UndefValue>(C))
|
|
return;
|
|
markConstant(&I, C);
|
|
}
|
|
|
|
void SCCPSolver::visitStoreInst(StoreInst &SI) {
|
|
// If this store is of a struct, ignore it.
|
|
if (SI.getOperand(0)->getType()->isStructTy())
|
|
return;
|
|
|
|
if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
|
|
return;
|
|
|
|
GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
|
|
DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
|
|
if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
|
|
|
|
// Get the value we are storing into the global, then merge it.
|
|
mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
|
|
if (I->second.isOverdefined())
|
|
TrackedGlobals.erase(I); // No need to keep tracking this!
|
|
}
|
|
|
|
// Handle load instructions. If the operand is a constant pointer to a constant
|
|
// global, we can replace the load with the loaded constant value!
|
|
void SCCPSolver::visitLoadInst(LoadInst &I) {
|
|
// If this load is of a struct, just mark the result overdefined.
|
|
if (I.getType()->isStructTy())
|
|
return markOverdefined(&I);
|
|
|
|
LatticeVal PtrVal = getValueState(I.getOperand(0));
|
|
if (PtrVal.isUnknown()) return; // The pointer is not resolved yet!
|
|
|
|
LatticeVal &IV = ValueState[&I];
|
|
if (IV.isOverdefined()) return;
|
|
|
|
if (!PtrVal.isConstant() || I.isVolatile())
|
|
return markOverdefined(IV, &I);
|
|
|
|
Constant *Ptr = PtrVal.getConstant();
|
|
|
|
// load null is undefined.
|
|
if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0)
|
|
return;
|
|
|
|
// Transform load (constant global) into the value loaded.
|
|
if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
|
|
if (!TrackedGlobals.empty()) {
|
|
// If we are tracking this global, merge in the known value for it.
|
|
DenseMap<GlobalVariable*, LatticeVal>::iterator It =
|
|
TrackedGlobals.find(GV);
|
|
if (It != TrackedGlobals.end()) {
|
|
mergeInValue(IV, &I, It->second);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Transform load from a constant into a constant if possible.
|
|
if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) {
|
|
if (isa<UndefValue>(C))
|
|
return;
|
|
return markConstant(IV, &I, C);
|
|
}
|
|
|
|
// Otherwise we cannot say for certain what value this load will produce.
|
|
// Bail out.
|
|
markOverdefined(IV, &I);
|
|
}
|
|
|
|
void SCCPSolver::visitCallSite(CallSite CS) {
|
|
Function *F = CS.getCalledFunction();
|
|
Instruction *I = CS.getInstruction();
|
|
|
|
// The common case is that we aren't tracking the callee, either because we
|
|
// are not doing interprocedural analysis or the callee is indirect, or is
|
|
// external. Handle these cases first.
|
|
if (!F || F->isDeclaration()) {
|
|
CallOverdefined:
|
|
// Void return and not tracking callee, just bail.
|
|
if (I->getType()->isVoidTy()) return;
|
|
|
|
// Otherwise, if we have a single return value case, and if the function is
|
|
// a declaration, maybe we can constant fold it.
|
|
if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
|
|
canConstantFoldCallTo(CS, F)) {
|
|
SmallVector<Constant*, 8> Operands;
|
|
for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
|
|
AI != E; ++AI) {
|
|
LatticeVal State = getValueState(*AI);
|
|
|
|
if (State.isUnknown())
|
|
return; // Operands are not resolved yet.
|
|
if (State.isOverdefined())
|
|
return markOverdefined(I);
|
|
assert(State.isConstant() && "Unknown state!");
|
|
Operands.push_back(State.getConstant());
|
|
}
|
|
|
|
if (getValueState(I).isOverdefined())
|
|
return;
|
|
|
|
// If we can constant fold this, mark the result of the call as a
|
|
// constant.
|
|
if (Constant *C = ConstantFoldCall(CS, F, Operands, TLI)) {
|
|
// call -> undef.
|
|
if (isa<UndefValue>(C))
|
|
return;
|
|
return markConstant(I, C);
|
|
}
|
|
}
|
|
|
|
// Otherwise, we don't know anything about this call, mark it overdefined.
|
|
return markOverdefined(I);
|
|
}
|
|
|
|
// If this is a local function that doesn't have its address taken, mark its
|
|
// entry block executable and merge in the actual arguments to the call into
|
|
// the formal arguments of the function.
|
|
if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
|
|
MarkBlockExecutable(&F->front());
|
|
|
|
// Propagate information from this call site into the callee.
|
|
CallSite::arg_iterator CAI = CS.arg_begin();
|
|
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
|
|
AI != E; ++AI, ++CAI) {
|
|
// If this argument is byval, and if the function is not readonly, there
|
|
// will be an implicit copy formed of the input aggregate.
|
|
if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
|
|
markOverdefined(&*AI);
|
|
continue;
|
|
}
|
|
|
|
if (auto *STy = dyn_cast<StructType>(AI->getType())) {
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
|
|
LatticeVal CallArg = getStructValueState(*CAI, i);
|
|
mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg);
|
|
}
|
|
} else {
|
|
// Most other parts of the Solver still only use the simpler value
|
|
// lattice, so we propagate changes for parameters to both lattices.
|
|
getParamState(&*AI).mergeIn(getValueState(*CAI).toValueLattice(), DL);
|
|
mergeInValue(&*AI, getValueState(*CAI));
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this is a single/zero retval case, see if we're tracking the function.
|
|
if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
|
|
if (!MRVFunctionsTracked.count(F))
|
|
goto CallOverdefined; // Not tracking this callee.
|
|
|
|
// If we are tracking this callee, propagate the result of the function
|
|
// into this call site.
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
|
|
mergeInValue(getStructValueState(I, i), I,
|
|
TrackedMultipleRetVals[std::make_pair(F, i)]);
|
|
} else {
|
|
DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
|
|
if (TFRVI == TrackedRetVals.end())
|
|
goto CallOverdefined; // Not tracking this callee.
|
|
|
|
// If so, propagate the return value of the callee into this call result.
|
|
mergeInValue(I, TFRVI->second);
|
|
}
|
|
}
|
|
|
|
void SCCPSolver::Solve() {
|
|
// Process the work lists until they are empty!
|
|
while (!BBWorkList.empty() || !InstWorkList.empty() ||
|
|
!OverdefinedInstWorkList.empty()) {
|
|
// Process the overdefined instruction's work list first, which drives other
|
|
// things to overdefined more quickly.
|
|
while (!OverdefinedInstWorkList.empty()) {
|
|
Value *I = OverdefinedInstWorkList.pop_back_val();
|
|
|
|
LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
|
|
|
|
// "I" got into the work list because it either made the transition from
|
|
// bottom to constant, or to overdefined.
|
|
//
|
|
// Anything on this worklist that is overdefined need not be visited
|
|
// since all of its users will have already been marked as overdefined
|
|
// Update all of the users of this instruction's value.
|
|
//
|
|
for (User *U : I->users())
|
|
if (auto *UI = dyn_cast<Instruction>(U))
|
|
OperandChangedState(UI);
|
|
}
|
|
|
|
// Process the instruction work list.
|
|
while (!InstWorkList.empty()) {
|
|
Value *I = InstWorkList.pop_back_val();
|
|
|
|
LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
|
|
|
|
// "I" got into the work list because it made the transition from undef to
|
|
// constant.
|
|
//
|
|
// Anything on this worklist that is overdefined need not be visited
|
|
// since all of its users will have already been marked as overdefined.
|
|
// Update all of the users of this instruction's value.
|
|
//
|
|
if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
|
|
for (User *U : I->users())
|
|
if (auto *UI = dyn_cast<Instruction>(U))
|
|
OperandChangedState(UI);
|
|
}
|
|
|
|
// Process the basic block work list.
|
|
while (!BBWorkList.empty()) {
|
|
BasicBlock *BB = BBWorkList.back();
|
|
BBWorkList.pop_back();
|
|
|
|
LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
|
|
|
|
// Notify all instructions in this basic block that they are newly
|
|
// executable.
|
|
visit(BB);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
|
|
/// that branches on undef values cannot reach any of their successors.
|
|
/// However, this is not a safe assumption. After we solve dataflow, this
|
|
/// method should be use to handle this. If this returns true, the solver
|
|
/// should be rerun.
|
|
///
|
|
/// This method handles this by finding an unresolved branch and marking it one
|
|
/// of the edges from the block as being feasible, even though the condition
|
|
/// doesn't say it would otherwise be. This allows SCCP to find the rest of the
|
|
/// CFG and only slightly pessimizes the analysis results (by marking one,
|
|
/// potentially infeasible, edge feasible). This cannot usefully modify the
|
|
/// constraints on the condition of the branch, as that would impact other users
|
|
/// of the value.
|
|
///
|
|
/// This scan also checks for values that use undefs, whose results are actually
|
|
/// defined. For example, 'zext i8 undef to i32' should produce all zeros
|
|
/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
|
|
/// even if X isn't defined.
|
|
bool SCCPSolver::ResolvedUndefsIn(Function &F) {
|
|
for (BasicBlock &BB : F) {
|
|
if (!BBExecutable.count(&BB))
|
|
continue;
|
|
|
|
for (Instruction &I : BB) {
|
|
// Look for instructions which produce undef values.
|
|
if (I.getType()->isVoidTy()) continue;
|
|
|
|
if (auto *STy = dyn_cast<StructType>(I.getType())) {
|
|
// Only a few things that can be structs matter for undef.
|
|
|
|
// Tracked calls must never be marked overdefined in ResolvedUndefsIn.
|
|
if (CallSite CS = CallSite(&I))
|
|
if (Function *F = CS.getCalledFunction())
|
|
if (MRVFunctionsTracked.count(F))
|
|
continue;
|
|
|
|
// extractvalue and insertvalue don't need to be marked; they are
|
|
// tracked as precisely as their operands.
|
|
if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
|
|
continue;
|
|
|
|
// Send the results of everything else to overdefined. We could be
|
|
// more precise than this but it isn't worth bothering.
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
|
|
LatticeVal &LV = getStructValueState(&I, i);
|
|
if (LV.isUnknown())
|
|
markOverdefined(LV, &I);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
LatticeVal &LV = getValueState(&I);
|
|
if (!LV.isUnknown()) continue;
|
|
|
|
// extractvalue is safe; check here because the argument is a struct.
|
|
if (isa<ExtractValueInst>(I))
|
|
continue;
|
|
|
|
// Compute the operand LatticeVals, for convenience below.
|
|
// Anything taking a struct is conservatively assumed to require
|
|
// overdefined markings.
|
|
if (I.getOperand(0)->getType()->isStructTy()) {
|
|
markOverdefined(&I);
|
|
return true;
|
|
}
|
|
LatticeVal Op0LV = getValueState(I.getOperand(0));
|
|
LatticeVal Op1LV;
|
|
if (I.getNumOperands() == 2) {
|
|
if (I.getOperand(1)->getType()->isStructTy()) {
|
|
markOverdefined(&I);
|
|
return true;
|
|
}
|
|
|
|
Op1LV = getValueState(I.getOperand(1));
|
|
}
|
|
// If this is an instructions whose result is defined even if the input is
|
|
// not fully defined, propagate the information.
|
|
Type *ITy = I.getType();
|
|
switch (I.getOpcode()) {
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Trunc:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::BitCast:
|
|
break; // Any undef -> undef
|
|
case Instruction::FSub:
|
|
case Instruction::FAdd:
|
|
case Instruction::FMul:
|
|
case Instruction::FDiv:
|
|
case Instruction::FRem:
|
|
// Floating-point binary operation: be conservative.
|
|
if (Op0LV.isUnknown() && Op1LV.isUnknown())
|
|
markForcedConstant(&I, Constant::getNullValue(ITy));
|
|
else
|
|
markOverdefined(&I);
|
|
return true;
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::FPExt:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::SIToFP:
|
|
case Instruction::UIToFP:
|
|
// undef -> 0; some outputs are impossible
|
|
markForcedConstant(&I, Constant::getNullValue(ITy));
|
|
return true;
|
|
case Instruction::Mul:
|
|
case Instruction::And:
|
|
// Both operands undef -> undef
|
|
if (Op0LV.isUnknown() && Op1LV.isUnknown())
|
|
break;
|
|
// undef * X -> 0. X could be zero.
|
|
// undef & X -> 0. X could be zero.
|
|
markForcedConstant(&I, Constant::getNullValue(ITy));
|
|
return true;
|
|
case Instruction::Or:
|
|
// Both operands undef -> undef
|
|
if (Op0LV.isUnknown() && Op1LV.isUnknown())
|
|
break;
|
|
// undef | X -> -1. X could be -1.
|
|
markForcedConstant(&I, Constant::getAllOnesValue(ITy));
|
|
return true;
|
|
case Instruction::Xor:
|
|
// undef ^ undef -> 0; strictly speaking, this is not strictly
|
|
// necessary, but we try to be nice to people who expect this
|
|
// behavior in simple cases
|
|
if (Op0LV.isUnknown() && Op1LV.isUnknown()) {
|
|
markForcedConstant(&I, Constant::getNullValue(ITy));
|
|
return true;
|
|
}
|
|
// undef ^ X -> undef
|
|
break;
|
|
case Instruction::SDiv:
|
|
case Instruction::UDiv:
|
|
case Instruction::SRem:
|
|
case Instruction::URem:
|
|
// X / undef -> undef. No change.
|
|
// X % undef -> undef. No change.
|
|
if (Op1LV.isUnknown()) break;
|
|
|
|
// X / 0 -> undef. No change.
|
|
// X % 0 -> undef. No change.
|
|
if (Op1LV.isConstant() && Op1LV.getConstant()->isZeroValue())
|
|
break;
|
|
|
|
// undef / X -> 0. X could be maxint.
|
|
// undef % X -> 0. X could be 1.
|
|
markForcedConstant(&I, Constant::getNullValue(ITy));
|
|
return true;
|
|
case Instruction::AShr:
|
|
// X >>a undef -> undef.
|
|
if (Op1LV.isUnknown()) break;
|
|
|
|
// Shifting by the bitwidth or more is undefined.
|
|
if (Op1LV.isConstant()) {
|
|
if (auto *ShiftAmt = Op1LV.getConstantInt())
|
|
if (ShiftAmt->getLimitedValue() >=
|
|
ShiftAmt->getType()->getScalarSizeInBits())
|
|
break;
|
|
}
|
|
|
|
// undef >>a X -> 0
|
|
markForcedConstant(&I, Constant::getNullValue(ITy));
|
|
return true;
|
|
case Instruction::LShr:
|
|
case Instruction::Shl:
|
|
// X << undef -> undef.
|
|
// X >> undef -> undef.
|
|
if (Op1LV.isUnknown()) break;
|
|
|
|
// Shifting by the bitwidth or more is undefined.
|
|
if (Op1LV.isConstant()) {
|
|
if (auto *ShiftAmt = Op1LV.getConstantInt())
|
|
if (ShiftAmt->getLimitedValue() >=
|
|
ShiftAmt->getType()->getScalarSizeInBits())
|
|
break;
|
|
}
|
|
|
|
// undef << X -> 0
|
|
// undef >> X -> 0
|
|
markForcedConstant(&I, Constant::getNullValue(ITy));
|
|
return true;
|
|
case Instruction::Select:
|
|
Op1LV = getValueState(I.getOperand(1));
|
|
// undef ? X : Y -> X or Y. There could be commonality between X/Y.
|
|
if (Op0LV.isUnknown()) {
|
|
if (!Op1LV.isConstant()) // Pick the constant one if there is any.
|
|
Op1LV = getValueState(I.getOperand(2));
|
|
} else if (Op1LV.isUnknown()) {
|
|
// c ? undef : undef -> undef. No change.
|
|
Op1LV = getValueState(I.getOperand(2));
|
|
if (Op1LV.isUnknown())
|
|
break;
|
|
// Otherwise, c ? undef : x -> x.
|
|
} else {
|
|
// Leave Op1LV as Operand(1)'s LatticeValue.
|
|
}
|
|
|
|
if (Op1LV.isConstant())
|
|
markForcedConstant(&I, Op1LV.getConstant());
|
|
else
|
|
markOverdefined(&I);
|
|
return true;
|
|
case Instruction::Load:
|
|
// A load here means one of two things: a load of undef from a global,
|
|
// a load from an unknown pointer. Either way, having it return undef
|
|
// is okay.
|
|
break;
|
|
case Instruction::ICmp:
|
|
// X == undef -> undef. Other comparisons get more complicated.
|
|
if (cast<ICmpInst>(&I)->isEquality())
|
|
break;
|
|
markOverdefined(&I);
|
|
return true;
|
|
case Instruction::Call:
|
|
case Instruction::Invoke:
|
|
// There are two reasons a call can have an undef result
|
|
// 1. It could be tracked.
|
|
// 2. It could be constant-foldable.
|
|
// Because of the way we solve return values, tracked calls must
|
|
// never be marked overdefined in ResolvedUndefsIn.
|
|
if (Function *F = CallSite(&I).getCalledFunction())
|
|
if (TrackedRetVals.count(F))
|
|
break;
|
|
|
|
// If the call is constant-foldable, we mark it overdefined because
|
|
// we do not know what return values are valid.
|
|
markOverdefined(&I);
|
|
return true;
|
|
default:
|
|
// If we don't know what should happen here, conservatively mark it
|
|
// overdefined.
|
|
markOverdefined(&I);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Check to see if we have a branch or switch on an undefined value. If so
|
|
// we force the branch to go one way or the other to make the successor
|
|
// values live. It doesn't really matter which way we force it.
|
|
TerminatorInst *TI = BB.getTerminator();
|
|
if (auto *BI = dyn_cast<BranchInst>(TI)) {
|
|
if (!BI->isConditional()) continue;
|
|
if (!getValueState(BI->getCondition()).isUnknown())
|
|
continue;
|
|
|
|
// If the input to SCCP is actually branch on undef, fix the undef to
|
|
// false.
|
|
if (isa<UndefValue>(BI->getCondition())) {
|
|
BI->setCondition(ConstantInt::getFalse(BI->getContext()));
|
|
markEdgeExecutable(&BB, TI->getSuccessor(1));
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, it is a branch on a symbolic value which is currently
|
|
// considered to be undef. Handle this by forcing the input value to the
|
|
// branch to false.
|
|
markForcedConstant(BI->getCondition(),
|
|
ConstantInt::getFalse(TI->getContext()));
|
|
return true;
|
|
}
|
|
|
|
if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) {
|
|
// Indirect branch with no successor ?. Its ok to assume it branches
|
|
// to no target.
|
|
if (IBR->getNumSuccessors() < 1)
|
|
continue;
|
|
|
|
if (!getValueState(IBR->getAddress()).isUnknown())
|
|
continue;
|
|
|
|
// If the input to SCCP is actually branch on undef, fix the undef to
|
|
// the first successor of the indirect branch.
|
|
if (isa<UndefValue>(IBR->getAddress())) {
|
|
IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0)));
|
|
markEdgeExecutable(&BB, IBR->getSuccessor(0));
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, it is a branch on a symbolic value which is currently
|
|
// considered to be undef. Handle this by forcing the input value to the
|
|
// branch to the first successor.
|
|
markForcedConstant(IBR->getAddress(),
|
|
BlockAddress::get(IBR->getSuccessor(0)));
|
|
return true;
|
|
}
|
|
|
|
if (auto *SI = dyn_cast<SwitchInst>(TI)) {
|
|
if (!SI->getNumCases() || !getValueState(SI->getCondition()).isUnknown())
|
|
continue;
|
|
|
|
// If the input to SCCP is actually switch on undef, fix the undef to
|
|
// the first constant.
|
|
if (isa<UndefValue>(SI->getCondition())) {
|
|
SI->setCondition(SI->case_begin()->getCaseValue());
|
|
markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor());
|
|
return true;
|
|
}
|
|
|
|
markForcedConstant(SI->getCondition(), SI->case_begin()->getCaseValue());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool tryToReplaceWithConstantRange(SCCPSolver &Solver, Value *V) {
|
|
bool Changed = false;
|
|
|
|
// Currently we only use range information for integer values.
|
|
if (!V->getType()->isIntegerTy())
|
|
return false;
|
|
|
|
const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
|
|
if (!IV.isConstantRange())
|
|
return false;
|
|
|
|
for (auto UI = V->uses().begin(), E = V->uses().end(); UI != E;) {
|
|
const Use &U = *UI++;
|
|
auto *Icmp = dyn_cast<ICmpInst>(U.getUser());
|
|
if (!Icmp || !Solver.isBlockExecutable(Icmp->getParent()))
|
|
continue;
|
|
|
|
auto getIcmpLatticeValue = [&](Value *Op) {
|
|
if (auto *C = dyn_cast<Constant>(Op))
|
|
return ValueLatticeElement::get(C);
|
|
return Solver.getLatticeValueFor(Op);
|
|
};
|
|
|
|
ValueLatticeElement A = getIcmpLatticeValue(Icmp->getOperand(0));
|
|
ValueLatticeElement B = getIcmpLatticeValue(Icmp->getOperand(1));
|
|
|
|
Constant *C = A.getCompare(Icmp->getPredicate(), Icmp->getType(), B);
|
|
if (C) {
|
|
Icmp->replaceAllUsesWith(C);
|
|
LLVM_DEBUG(dbgs() << "Replacing " << *Icmp << " with " << *C
|
|
<< ", because of range information " << A << " " << B
|
|
<< "\n");
|
|
Icmp->eraseFromParent();
|
|
Changed = true;
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) {
|
|
Constant *Const = nullptr;
|
|
if (V->getType()->isStructTy()) {
|
|
std::vector<LatticeVal> IVs = Solver.getStructLatticeValueFor(V);
|
|
if (llvm::any_of(IVs,
|
|
[](const LatticeVal &LV) { return LV.isOverdefined(); }))
|
|
return false;
|
|
std::vector<Constant *> ConstVals;
|
|
auto *ST = dyn_cast<StructType>(V->getType());
|
|
for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
|
|
LatticeVal V = IVs[i];
|
|
ConstVals.push_back(V.isConstant()
|
|
? V.getConstant()
|
|
: UndefValue::get(ST->getElementType(i)));
|
|
}
|
|
Const = ConstantStruct::get(ST, ConstVals);
|
|
} else {
|
|
const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
|
|
if (IV.isOverdefined())
|
|
return false;
|
|
|
|
if (IV.isConstantRange()) {
|
|
if (IV.getConstantRange().isSingleElement())
|
|
Const =
|
|
ConstantInt::get(V->getType(), IV.asConstantInteger().getValue());
|
|
else
|
|
return false;
|
|
} else
|
|
Const =
|
|
IV.isConstant() ? IV.getConstant() : UndefValue::get(V->getType());
|
|
}
|
|
assert(Const && "Constant is nullptr here!");
|
|
|
|
// Replacing `musttail` instructions with constant breaks `musttail` invariant
|
|
// unless the call itself can be removed
|
|
CallInst *CI = dyn_cast<CallInst>(V);
|
|
if (CI && CI->isMustTailCall() && !CI->isSafeToRemove()) {
|
|
CallSite CS(CI);
|
|
Function *F = CS.getCalledFunction();
|
|
|
|
// Don't zap returns of the callee
|
|
if (F)
|
|
Solver.AddMustTailCallee(F);
|
|
|
|
LLVM_DEBUG(dbgs() << " Can\'t treat the result of musttail call : " << *CI
|
|
<< " as a constant\n");
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n');
|
|
|
|
// Replaces all of the uses of a variable with uses of the constant.
|
|
V->replaceAllUsesWith(Const);
|
|
return true;
|
|
}
|
|
|
|
// runSCCP() - Run the Sparse Conditional Constant Propagation algorithm,
|
|
// and return true if the function was modified.
|
|
static bool runSCCP(Function &F, const DataLayout &DL,
|
|
const TargetLibraryInfo *TLI) {
|
|
LLVM_DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
|
|
SCCPSolver Solver(DL, TLI);
|
|
|
|
// Mark the first block of the function as being executable.
|
|
Solver.MarkBlockExecutable(&F.front());
|
|
|
|
// Mark all arguments to the function as being overdefined.
|
|
for (Argument &AI : F.args())
|
|
Solver.markOverdefined(&AI);
|
|
|
|
// Solve for constants.
|
|
bool ResolvedUndefs = true;
|
|
while (ResolvedUndefs) {
|
|
Solver.Solve();
|
|
LLVM_DEBUG(dbgs() << "RESOLVING UNDEFs\n");
|
|
ResolvedUndefs = Solver.ResolvedUndefsIn(F);
|
|
}
|
|
|
|
bool MadeChanges = false;
|
|
|
|
// If we decided that there are basic blocks that are dead in this function,
|
|
// delete their contents now. Note that we cannot actually delete the blocks,
|
|
// as we cannot modify the CFG of the function.
|
|
|
|
for (BasicBlock &BB : F) {
|
|
if (!Solver.isBlockExecutable(&BB)) {
|
|
LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB);
|
|
|
|
++NumDeadBlocks;
|
|
NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB);
|
|
|
|
MadeChanges = true;
|
|
continue;
|
|
}
|
|
|
|
// Iterate over all of the instructions in a function, replacing them with
|
|
// constants if we have found them to be of constant values.
|
|
for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
|
|
Instruction *Inst = &*BI++;
|
|
if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
|
|
continue;
|
|
|
|
if (tryToReplaceWithConstant(Solver, Inst)) {
|
|
if (isInstructionTriviallyDead(Inst))
|
|
Inst->eraseFromParent();
|
|
// Hey, we just changed something!
|
|
MadeChanges = true;
|
|
++NumInstRemoved;
|
|
}
|
|
}
|
|
}
|
|
|
|
return MadeChanges;
|
|
}
|
|
|
|
PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) {
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
|
|
if (!runSCCP(F, DL, &TLI))
|
|
return PreservedAnalyses::all();
|
|
|
|
auto PA = PreservedAnalyses();
|
|
PA.preserve<GlobalsAA>();
|
|
return PA;
|
|
}
|
|
|
|
namespace {
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
//
|
|
/// SCCP Class - This class uses the SCCPSolver to implement a per-function
|
|
/// Sparse Conditional Constant Propagator.
|
|
///
|
|
class SCCPLegacyPass : public FunctionPass {
|
|
public:
|
|
// Pass identification, replacement for typeid
|
|
static char ID;
|
|
|
|
SCCPLegacyPass() : FunctionPass(ID) {
|
|
initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
}
|
|
|
|
// runOnFunction - Run the Sparse Conditional Constant Propagation
|
|
// algorithm, and return true if the function was modified.
|
|
bool runOnFunction(Function &F) override {
|
|
if (skipFunction(F))
|
|
return false;
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
const TargetLibraryInfo *TLI =
|
|
&getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
|
|
return runSCCP(F, DL, TLI);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char SCCPLegacyPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp",
|
|
"Sparse Conditional Constant Propagation", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_END(SCCPLegacyPass, "sccp",
|
|
"Sparse Conditional Constant Propagation", false, false)
|
|
|
|
// createSCCPPass - This is the public interface to this file.
|
|
FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); }
|
|
|
|
static void findReturnsToZap(Function &F,
|
|
SmallVector<ReturnInst *, 8> &ReturnsToZap,
|
|
SCCPSolver &Solver) {
|
|
// We can only do this if we know that nothing else can call the function.
|
|
if (!Solver.isArgumentTrackedFunction(&F))
|
|
return;
|
|
|
|
// There is a non-removable musttail call site of this function. Zapping
|
|
// returns is not allowed.
|
|
if (Solver.isMustTailCallee(&F)) {
|
|
LLVM_DEBUG(dbgs() << "Can't zap returns of the function : " << F.getName()
|
|
<< " due to present musttail call of it\n");
|
|
return;
|
|
}
|
|
|
|
for (BasicBlock &BB : F) {
|
|
if (CallInst *CI = BB.getTerminatingMustTailCall()) {
|
|
LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present "
|
|
<< "musttail call : " << *CI << "\n");
|
|
(void)CI;
|
|
return;
|
|
}
|
|
|
|
if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
|
|
if (!isa<UndefValue>(RI->getOperand(0)))
|
|
ReturnsToZap.push_back(RI);
|
|
}
|
|
}
|
|
|
|
bool llvm::runIPSCCP(Module &M, const DataLayout &DL,
|
|
const TargetLibraryInfo *TLI) {
|
|
SCCPSolver Solver(DL, TLI);
|
|
|
|
// Loop over all functions, marking arguments to those with their addresses
|
|
// taken or that are external as overdefined.
|
|
for (Function &F : M) {
|
|
if (F.isDeclaration())
|
|
continue;
|
|
|
|
// Determine if we can track the function's return values. If so, add the
|
|
// function to the solver's set of return-tracked functions.
|
|
if (canTrackReturnsInterprocedurally(&F))
|
|
Solver.AddTrackedFunction(&F);
|
|
|
|
// Determine if we can track the function's arguments. If so, add the
|
|
// function to the solver's set of argument-tracked functions.
|
|
if (canTrackArgumentsInterprocedurally(&F)) {
|
|
Solver.AddArgumentTrackedFunction(&F);
|
|
continue;
|
|
}
|
|
|
|
// Assume the function is called.
|
|
Solver.MarkBlockExecutable(&F.front());
|
|
|
|
// Assume nothing about the incoming arguments.
|
|
for (Argument &AI : F.args())
|
|
Solver.markOverdefined(&AI);
|
|
}
|
|
|
|
// Determine if we can track any of the module's global variables. If so, add
|
|
// the global variables we can track to the solver's set of tracked global
|
|
// variables.
|
|
for (GlobalVariable &G : M.globals()) {
|
|
G.removeDeadConstantUsers();
|
|
if (canTrackGlobalVariableInterprocedurally(&G))
|
|
Solver.TrackValueOfGlobalVariable(&G);
|
|
}
|
|
|
|
// Solve for constants.
|
|
bool ResolvedUndefs = true;
|
|
while (ResolvedUndefs) {
|
|
Solver.Solve();
|
|
|
|
LLVM_DEBUG(dbgs() << "RESOLVING UNDEFS\n");
|
|
ResolvedUndefs = false;
|
|
for (Function &F : M)
|
|
ResolvedUndefs |= Solver.ResolvedUndefsIn(F);
|
|
}
|
|
|
|
bool MadeChanges = false;
|
|
|
|
// Iterate over all of the instructions in the module, replacing them with
|
|
// constants if we have found them to be of constant values.
|
|
SmallVector<BasicBlock*, 512> BlocksToErase;
|
|
|
|
for (Function &F : M) {
|
|
if (F.isDeclaration())
|
|
continue;
|
|
|
|
if (Solver.isBlockExecutable(&F.front()))
|
|
for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;
|
|
++AI) {
|
|
if (!AI->use_empty() && tryToReplaceWithConstant(Solver, &*AI)) {
|
|
++IPNumArgsElimed;
|
|
continue;
|
|
}
|
|
|
|
if (!AI->use_empty() && tryToReplaceWithConstantRange(Solver, &*AI))
|
|
++IPNumRangeInfoUsed;
|
|
}
|
|
|
|
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
|
|
if (!Solver.isBlockExecutable(&*BB)) {
|
|
LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
|
|
|
|
++NumDeadBlocks;
|
|
NumInstRemoved +=
|
|
changeToUnreachable(BB->getFirstNonPHI(), /*UseLLVMTrap=*/false);
|
|
|
|
MadeChanges = true;
|
|
|
|
if (&*BB != &F.front())
|
|
BlocksToErase.push_back(&*BB);
|
|
continue;
|
|
}
|
|
|
|
for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
|
|
Instruction *Inst = &*BI++;
|
|
if (Inst->getType()->isVoidTy())
|
|
continue;
|
|
if (tryToReplaceWithConstant(Solver, Inst)) {
|
|
if (Inst->isSafeToRemove())
|
|
Inst->eraseFromParent();
|
|
// Hey, we just changed something!
|
|
MadeChanges = true;
|
|
++IPNumInstRemoved;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now that all instructions in the function are constant folded, erase dead
|
|
// blocks, because we can now use ConstantFoldTerminator to get rid of
|
|
// in-edges.
|
|
for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
|
|
// If there are any PHI nodes in this successor, drop entries for BB now.
|
|
BasicBlock *DeadBB = BlocksToErase[i];
|
|
for (Value::user_iterator UI = DeadBB->user_begin(),
|
|
UE = DeadBB->user_end();
|
|
UI != UE;) {
|
|
// Grab the user and then increment the iterator early, as the user
|
|
// will be deleted. Step past all adjacent uses from the same user.
|
|
auto *I = dyn_cast<Instruction>(*UI);
|
|
do { ++UI; } while (UI != UE && *UI == I);
|
|
|
|
// Ignore blockaddress users; BasicBlock's dtor will handle them.
|
|
if (!I) continue;
|
|
|
|
bool Folded = ConstantFoldTerminator(I->getParent());
|
|
assert(Folded &&
|
|
"Expect TermInst on constantint or blockaddress to be folded");
|
|
(void) Folded;
|
|
}
|
|
|
|
// Finally, delete the basic block.
|
|
F.getBasicBlockList().erase(DeadBB);
|
|
}
|
|
BlocksToErase.clear();
|
|
}
|
|
|
|
// If we inferred constant or undef return values for a function, we replaced
|
|
// all call uses with the inferred value. This means we don't need to bother
|
|
// actually returning anything from the function. Replace all return
|
|
// instructions with return undef.
|
|
//
|
|
// Do this in two stages: first identify the functions we should process, then
|
|
// actually zap their returns. This is important because we can only do this
|
|
// if the address of the function isn't taken. In cases where a return is the
|
|
// last use of a function, the order of processing functions would affect
|
|
// whether other functions are optimizable.
|
|
SmallVector<ReturnInst*, 8> ReturnsToZap;
|
|
|
|
const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
|
|
for (const auto &I : RV) {
|
|
Function *F = I.first;
|
|
if (I.second.isOverdefined() || F->getReturnType()->isVoidTy())
|
|
continue;
|
|
findReturnsToZap(*F, ReturnsToZap, Solver);
|
|
}
|
|
|
|
for (const auto &F : Solver.getMRVFunctionsTracked()) {
|
|
assert(F->getReturnType()->isStructTy() &&
|
|
"The return type should be a struct");
|
|
StructType *STy = cast<StructType>(F->getReturnType());
|
|
if (Solver.isStructLatticeConstant(F, STy))
|
|
findReturnsToZap(*F, ReturnsToZap, Solver);
|
|
}
|
|
|
|
// Zap all returns which we've identified as zap to change.
|
|
for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
|
|
Function *F = ReturnsToZap[i]->getParent()->getParent();
|
|
ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
|
|
}
|
|
|
|
// If we inferred constant or undef values for globals variables, we can
|
|
// delete the global and any stores that remain to it.
|
|
const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
|
|
for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
|
|
E = TG.end(); I != E; ++I) {
|
|
GlobalVariable *GV = I->first;
|
|
assert(!I->second.isOverdefined() &&
|
|
"Overdefined values should have been taken out of the map!");
|
|
LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName()
|
|
<< "' is constant!\n");
|
|
while (!GV->use_empty()) {
|
|
StoreInst *SI = cast<StoreInst>(GV->user_back());
|
|
SI->eraseFromParent();
|
|
}
|
|
M.getGlobalList().erase(GV);
|
|
++IPNumGlobalConst;
|
|
}
|
|
|
|
return MadeChanges;
|
|
}
|