llvm-project/llvm/lib/Target/Hexagon/HexagonISelLowering.cpp

3312 lines
126 KiB
C++

//===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the interfaces that Hexagon uses to lower LLVM code
// into a selection DAG.
//
//===----------------------------------------------------------------------===//
#include "HexagonISelLowering.h"
#include "HexagonMachineFunctionInfo.h"
#include "HexagonSubtarget.h"
#include "HexagonTargetMachine.h"
#include "HexagonTargetObjectFile.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "hexagon-lowering"
static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables",
cl::init(true), cl::Hidden,
cl::desc("Control jump table emission on Hexagon target"));
static cl::opt<bool> EnableHexSDNodeSched("enable-hexagon-sdnode-sched",
cl::Hidden, cl::ZeroOrMore, cl::init(false),
cl::desc("Enable Hexagon SDNode scheduling"));
static cl::opt<bool> EnableFastMath("ffast-math",
cl::Hidden, cl::ZeroOrMore, cl::init(false),
cl::desc("Enable Fast Math processing"));
static cl::opt<int> MinimumJumpTables("minimum-jump-tables",
cl::Hidden, cl::ZeroOrMore, cl::init(5),
cl::desc("Set minimum jump tables"));
static cl::opt<int> MaxStoresPerMemcpyCL("max-store-memcpy",
cl::Hidden, cl::ZeroOrMore, cl::init(6),
cl::desc("Max #stores to inline memcpy"));
static cl::opt<int> MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os",
cl::Hidden, cl::ZeroOrMore, cl::init(4),
cl::desc("Max #stores to inline memcpy"));
static cl::opt<int> MaxStoresPerMemmoveCL("max-store-memmove",
cl::Hidden, cl::ZeroOrMore, cl::init(6),
cl::desc("Max #stores to inline memmove"));
static cl::opt<int> MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os",
cl::Hidden, cl::ZeroOrMore, cl::init(4),
cl::desc("Max #stores to inline memmove"));
static cl::opt<int> MaxStoresPerMemsetCL("max-store-memset",
cl::Hidden, cl::ZeroOrMore, cl::init(8),
cl::desc("Max #stores to inline memset"));
static cl::opt<int> MaxStoresPerMemsetOptSizeCL("max-store-memset-Os",
cl::Hidden, cl::ZeroOrMore, cl::init(4),
cl::desc("Max #stores to inline memset"));
namespace {
class HexagonCCState : public CCState {
unsigned NumNamedVarArgParams;
public:
HexagonCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
int NumNamedVarArgParams)
: CCState(CC, isVarArg, MF, locs, C),
NumNamedVarArgParams(NumNamedVarArgParams) {}
unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
};
enum StridedLoadKind {
Even = 0,
Odd,
NoPattern
};
}
// Implement calling convention for Hexagon.
static bool isHvxVectorType(MVT ty);
static bool
CC_Hexagon(unsigned ValNo, MVT ValVT,
MVT LocVT, CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State);
static bool
CC_Hexagon32(unsigned ValNo, MVT ValVT,
MVT LocVT, CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State);
static bool
CC_Hexagon64(unsigned ValNo, MVT ValVT,
MVT LocVT, CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State);
static bool
CC_HexagonVector(unsigned ValNo, MVT ValVT,
MVT LocVT, CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State);
static bool
RetCC_Hexagon(unsigned ValNo, MVT ValVT,
MVT LocVT, CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State);
static bool
RetCC_Hexagon32(unsigned ValNo, MVT ValVT,
MVT LocVT, CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State);
static bool
RetCC_Hexagon64(unsigned ValNo, MVT ValVT,
MVT LocVT, CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State);
static bool
RetCC_HexagonVector(unsigned ValNo, MVT ValVT,
MVT LocVT, CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State);
static bool
CC_Hexagon_VarArg (unsigned ValNo, MVT ValVT,
MVT LocVT, CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
HexagonCCState &HState = static_cast<HexagonCCState &>(State);
if (ValNo < HState.getNumNamedVarArgParams()) {
// Deal with named arguments.
return CC_Hexagon(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State);
}
// Deal with un-named arguments.
unsigned Offset;
if (ArgFlags.isByVal()) {
// If pass-by-value, the size allocated on stack is decided
// by ArgFlags.getByValSize(), not by the size of LocVT.
Offset = State.AllocateStack(ArgFlags.getByValSize(),
ArgFlags.getByValAlign());
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return false;
}
if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) {
LocVT = MVT::i32;
ValVT = MVT::i32;
if (ArgFlags.isSExt())
LocInfo = CCValAssign::SExt;
else if (ArgFlags.isZExt())
LocInfo = CCValAssign::ZExt;
else
LocInfo = CCValAssign::AExt;
}
if (LocVT == MVT::i32 || LocVT == MVT::f32) {
Offset = State.AllocateStack(4, 4);
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return false;
}
if (LocVT == MVT::i64 || LocVT == MVT::f64) {
Offset = State.AllocateStack(8, 8);
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return false;
}
if (LocVT == MVT::v2i64 || LocVT == MVT::v4i32 || LocVT == MVT::v8i16 ||
LocVT == MVT::v16i8) {
Offset = State.AllocateStack(16, 16);
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return false;
}
if (LocVT == MVT::v4i64 || LocVT == MVT::v8i32 || LocVT == MVT::v16i16 ||
LocVT == MVT::v32i8) {
Offset = State.AllocateStack(32, 32);
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return false;
}
if (LocVT == MVT::v8i64 || LocVT == MVT::v16i32 || LocVT == MVT::v32i16 ||
LocVT == MVT::v64i8 || LocVT == MVT::v512i1) {
Offset = State.AllocateStack(64, 64);
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return false;
}
if (LocVT == MVT::v16i64 || LocVT == MVT::v32i32 || LocVT == MVT::v64i16 ||
LocVT == MVT::v128i8 || LocVT == MVT::v1024i1) {
Offset = State.AllocateStack(128, 128);
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return false;
}
if (LocVT == MVT::v32i64 || LocVT == MVT::v64i32 || LocVT == MVT::v128i16 ||
LocVT == MVT::v256i8) {
Offset = State.AllocateStack(256, 256);
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return false;
}
llvm_unreachable(nullptr);
}
static bool CC_Hexagon (unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) {
if (ArgFlags.isByVal()) {
// Passed on stack.
unsigned Offset = State.AllocateStack(ArgFlags.getByValSize(),
ArgFlags.getByValAlign());
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return false;
}
if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) {
LocVT = MVT::i32;
ValVT = MVT::i32;
if (ArgFlags.isSExt())
LocInfo = CCValAssign::SExt;
else if (ArgFlags.isZExt())
LocInfo = CCValAssign::ZExt;
else
LocInfo = CCValAssign::AExt;
} else if (LocVT == MVT::v4i8 || LocVT == MVT::v2i16) {
LocVT = MVT::i32;
LocInfo = CCValAssign::BCvt;
} else if (LocVT == MVT::v8i8 || LocVT == MVT::v4i16 || LocVT == MVT::v2i32) {
LocVT = MVT::i64;
LocInfo = CCValAssign::BCvt;
}
if (LocVT == MVT::i32 || LocVT == MVT::f32) {
if (!CC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
return false;
}
if (LocVT == MVT::i64 || LocVT == MVT::f64) {
if (!CC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
return false;
}
if (LocVT == MVT::v8i32 || LocVT == MVT::v16i16 || LocVT == MVT::v32i8) {
unsigned Offset = State.AllocateStack(ArgFlags.getByValSize(), 32);
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return false;
}
if (isHvxVectorType(LocVT)) {
if (!CC_HexagonVector(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
return false;
}
return true; // CC didn't match.
}
static bool CC_Hexagon32(unsigned ValNo, MVT ValVT,
MVT LocVT, CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
static const MCPhysReg RegList[] = {
Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4,
Hexagon::R5
};
if (unsigned Reg = State.AllocateReg(RegList)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
unsigned Offset = State.AllocateStack(4, 4);
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return false;
}
static bool CC_Hexagon64(unsigned ValNo, MVT ValVT,
MVT LocVT, CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
if (unsigned Reg = State.AllocateReg(Hexagon::D0)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
static const MCPhysReg RegList1[] = {
Hexagon::D1, Hexagon::D2
};
static const MCPhysReg RegList2[] = {
Hexagon::R1, Hexagon::R3
};
if (unsigned Reg = State.AllocateReg(RegList1, RegList2)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
unsigned Offset = State.AllocateStack(8, 8, Hexagon::D2);
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return false;
}
static bool CC_HexagonVector(unsigned ValNo, MVT ValVT,
MVT LocVT, CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
static const MCPhysReg VecLstS[] = {
Hexagon::V0, Hexagon::V1, Hexagon::V2, Hexagon::V3, Hexagon::V4,
Hexagon::V5, Hexagon::V6, Hexagon::V7, Hexagon::V8, Hexagon::V9,
Hexagon::V10, Hexagon::V11, Hexagon::V12, Hexagon::V13, Hexagon::V14,
Hexagon::V15
};
static const MCPhysReg VecLstD[] = {
Hexagon::W0, Hexagon::W1, Hexagon::W2, Hexagon::W3, Hexagon::W4,
Hexagon::W5, Hexagon::W6, Hexagon::W7
};
auto &MF = State.getMachineFunction();
auto &HST = MF.getSubtarget<HexagonSubtarget>();
bool UseHVX = HST.useHVXOps();
bool UseHVXDbl = HST.useHVXDblOps();
if ((UseHVX && !UseHVXDbl) &&
(LocVT == MVT::v8i64 || LocVT == MVT::v16i32 || LocVT == MVT::v32i16 ||
LocVT == MVT::v64i8 || LocVT == MVT::v512i1)) {
if (unsigned Reg = State.AllocateReg(VecLstS)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
unsigned Offset = State.AllocateStack(64, 64);
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return false;
}
if ((UseHVX && !UseHVXDbl) &&
(LocVT == MVT::v16i64 || LocVT == MVT::v32i32 || LocVT == MVT::v64i16 ||
LocVT == MVT::v128i8)) {
if (unsigned Reg = State.AllocateReg(VecLstD)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
unsigned Offset = State.AllocateStack(128, 128);
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return false;
}
// 128B Mode
if ((UseHVX && UseHVXDbl) &&
(LocVT == MVT::v32i64 || LocVT == MVT::v64i32 || LocVT == MVT::v128i16 ||
LocVT == MVT::v256i8)) {
if (unsigned Reg = State.AllocateReg(VecLstD)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
unsigned Offset = State.AllocateStack(256, 256);
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return false;
}
if ((UseHVX && UseHVXDbl) &&
(LocVT == MVT::v16i64 || LocVT == MVT::v32i32 || LocVT == MVT::v64i16 ||
LocVT == MVT::v128i8 || LocVT == MVT::v1024i1)) {
if (unsigned Reg = State.AllocateReg(VecLstS)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
unsigned Offset = State.AllocateStack(128, 128);
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return false;
}
return true;
}
static bool RetCC_Hexagon(unsigned ValNo, MVT ValVT,
MVT LocVT, CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
auto &MF = State.getMachineFunction();
auto &HST = MF.getSubtarget<HexagonSubtarget>();
bool UseHVX = HST.useHVXOps();
bool UseHVXDbl = HST.useHVXDblOps();
if (LocVT == MVT::i1) {
// Return values of type MVT::i1 still need to be assigned to R0, but
// the value type needs to remain i1. LowerCallResult will deal with it,
// but it needs to recognize i1 as the value type.
LocVT = MVT::i32;
} else if (LocVT == MVT::i8 || LocVT == MVT::i16) {
LocVT = MVT::i32;
ValVT = MVT::i32;
if (ArgFlags.isSExt())
LocInfo = CCValAssign::SExt;
else if (ArgFlags.isZExt())
LocInfo = CCValAssign::ZExt;
else
LocInfo = CCValAssign::AExt;
} else if (LocVT == MVT::v4i8 || LocVT == MVT::v2i16) {
LocVT = MVT::i32;
LocInfo = CCValAssign::BCvt;
} else if (LocVT == MVT::v8i8 || LocVT == MVT::v4i16 || LocVT == MVT::v2i32) {
LocVT = MVT::i64;
LocInfo = CCValAssign::BCvt;
} else if (LocVT == MVT::v64i8 || LocVT == MVT::v32i16 ||
LocVT == MVT::v16i32 || LocVT == MVT::v8i64 ||
LocVT == MVT::v512i1) {
LocVT = MVT::v16i32;
ValVT = MVT::v16i32;
LocInfo = CCValAssign::Full;
} else if (LocVT == MVT::v128i8 || LocVT == MVT::v64i16 ||
LocVT == MVT::v32i32 || LocVT == MVT::v16i64 ||
(LocVT == MVT::v1024i1 && UseHVX && UseHVXDbl)) {
LocVT = MVT::v32i32;
ValVT = MVT::v32i32;
LocInfo = CCValAssign::Full;
} else if (LocVT == MVT::v256i8 || LocVT == MVT::v128i16 ||
LocVT == MVT::v64i32 || LocVT == MVT::v32i64) {
LocVT = MVT::v64i32;
ValVT = MVT::v64i32;
LocInfo = CCValAssign::Full;
}
if (LocVT == MVT::i32 || LocVT == MVT::f32) {
if (!RetCC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
return false;
}
if (LocVT == MVT::i64 || LocVT == MVT::f64) {
if (!RetCC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
return false;
}
if (LocVT == MVT::v16i32 || LocVT == MVT::v32i32 || LocVT == MVT::v64i32) {
if (!RetCC_HexagonVector(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
return false;
}
return true; // CC didn't match.
}
static bool RetCC_Hexagon32(unsigned ValNo, MVT ValVT,
MVT LocVT, CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
if (LocVT == MVT::i32 || LocVT == MVT::f32) {
// Note that use of registers beyond R1 is not ABI compliant. However there
// are (experimental) IR passes which generate internal functions that
// return structs using these additional registers.
static const uint16_t RegList[] = { Hexagon::R0, Hexagon::R1,
Hexagon::R2, Hexagon::R3,
Hexagon::R4, Hexagon::R5 };
if (unsigned Reg = State.AllocateReg(RegList)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
unsigned Offset = State.AllocateStack(4, 4);
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return false;
}
static bool RetCC_Hexagon64(unsigned ValNo, MVT ValVT,
MVT LocVT, CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
if (LocVT == MVT::i64 || LocVT == MVT::f64) {
if (unsigned Reg = State.AllocateReg(Hexagon::D0)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
unsigned Offset = State.AllocateStack(8, 8);
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return false;
}
static bool RetCC_HexagonVector(unsigned ValNo, MVT ValVT,
MVT LocVT, CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
auto &MF = State.getMachineFunction();
auto &HST = MF.getSubtarget<HexagonSubtarget>();
bool UseHVX = HST.useHVXOps();
bool UseHVXDbl = HST.useHVXDblOps();
unsigned OffSiz = 64;
if (LocVT == MVT::v16i32) {
if (unsigned Reg = State.AllocateReg(Hexagon::V0)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
} else if (LocVT == MVT::v32i32) {
unsigned Req = (UseHVX && UseHVXDbl) ? Hexagon::V0 : Hexagon::W0;
if (unsigned Reg = State.AllocateReg(Req)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
OffSiz = 128;
} else if (LocVT == MVT::v64i32) {
if (unsigned Reg = State.AllocateReg(Hexagon::W0)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
OffSiz = 256;
}
unsigned Offset = State.AllocateStack(OffSiz, OffSiz);
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return false;
}
void HexagonTargetLowering::promoteLdStType(MVT VT, MVT PromotedLdStVT) {
if (VT != PromotedLdStVT) {
setOperationAction(ISD::LOAD, VT, Promote);
AddPromotedToType(ISD::LOAD, VT, PromotedLdStVT);
setOperationAction(ISD::STORE, VT, Promote);
AddPromotedToType(ISD::STORE, VT, PromotedLdStVT);
}
}
SDValue
HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
const {
return SDValue();
}
/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
/// by "Src" to address "Dst" of size "Size". Alignment information is
/// specified by the specific parameter attribute. The copy will be passed as
/// a byval function parameter. Sometimes what we are copying is the end of a
/// larger object, the part that does not fit in registers.
static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
SDValue Chain, ISD::ArgFlagsTy Flags,
SelectionDAG &DAG, const SDLoc &dl) {
SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
/*isVolatile=*/false, /*AlwaysInline=*/false,
/*isTailCall=*/false,
MachinePointerInfo(), MachinePointerInfo());
}
static bool isHvxVectorType(MVT Ty) {
switch (Ty.SimpleTy) {
case MVT::v8i64:
case MVT::v16i32:
case MVT::v32i16:
case MVT::v64i8:
case MVT::v16i64:
case MVT::v32i32:
case MVT::v64i16:
case MVT::v128i8:
case MVT::v32i64:
case MVT::v64i32:
case MVT::v128i16:
case MVT::v256i8:
case MVT::v512i1:
case MVT::v1024i1:
return true;
default:
return false;
}
}
// LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
// passed by value, the function prototype is modified to return void and
// the value is stored in memory pointed by a pointer passed by caller.
SDValue
HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &dl, SelectionDAG &DAG) const {
// CCValAssign - represent the assignment of the return value to locations.
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slot.
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
// Analyze return values of ISD::RET
CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
SDValue Flag;
SmallVector<SDValue, 4> RetOps(1, Chain);
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
// Guarantee that all emitted copies are stuck together with flags.
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
RetOps[0] = Chain; // Update chain.
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps);
}
bool HexagonTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
// If either no tail call or told not to tail call at all, don't.
auto Attr =
CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
if (!CI->isTailCall() || Attr.getValueAsString() == "true")
return false;
return true;
}
/// LowerCallResult - Lower the result values of an ISD::CALL into the
/// appropriate copies out of appropriate physical registers. This assumes that
/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
/// being lowered. Returns a SDNode with the same number of values as the
/// ISD::CALL.
SDValue HexagonTargetLowering::LowerCallResult(
SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const {
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
SDValue RetVal;
if (RVLocs[i].getValVT() == MVT::i1) {
// Return values of type MVT::i1 require special handling. The reason
// is that MVT::i1 is associated with the PredRegs register class, but
// values of that type are still returned in R0. Generate an explicit
// copy into a predicate register from R0, and treat the value of the
// predicate register as the call result.
auto &MRI = DAG.getMachineFunction().getRegInfo();
SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
MVT::i32, InFlag);
// FR0 = (Value, Chain, Glue)
unsigned PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR,
FR0.getValue(0), FR0.getValue(2));
// TPR = (Chain, Glue)
RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1,
TPR.getValue(1));
} else {
RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
RVLocs[i].getValVT(), InFlag);
}
InVals.push_back(RetVal.getValue(0));
Chain = RetVal.getValue(1);
InFlag = RetVal.getValue(2);
}
return Chain;
}
/// LowerCall - Functions arguments are copied from virtual regs to
/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
SDValue
HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &dl = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &IsTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool IsVarArg = CLI.IsVarArg;
bool DoesNotReturn = CLI.DoesNotReturn;
bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
MachineFunction &MF = DAG.getMachineFunction();
auto PtrVT = getPointerTy(MF.getDataLayout());
// Check for varargs.
unsigned NumNamedVarArgParams = -1U;
if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee)) {
const GlobalValue *GV = GAN->getGlobal();
Callee = DAG.getTargetGlobalAddress(GV, dl, MVT::i32);
if (const Function* F = dyn_cast<Function>(GV)) {
// If a function has zero args and is a vararg function, that's
// disallowed so it must be an undeclared function. Do not assume
// varargs if the callee is undefined.
if (F->isVarArg() && F->getFunctionType()->getNumParams() != 0)
NumNamedVarArgParams = F->getFunctionType()->getNumParams();
}
}
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
HexagonCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext(), NumNamedVarArgParams);
if (IsVarArg)
CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_VarArg);
else
CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
auto Attr = MF.getFunction()->getFnAttribute("disable-tail-calls");
if (Attr.getValueAsString() == "true")
IsTailCall = false;
if (IsTailCall) {
bool StructAttrFlag = MF.getFunction()->hasStructRetAttr();
IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
IsVarArg, IsStructRet,
StructAttrFlag,
Outs, OutVals, Ins, DAG);
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
if (VA.isMemLoc()) {
IsTailCall = false;
break;
}
}
DEBUG(dbgs() << (IsTailCall ? "Eligible for Tail Call\n"
: "Argument must be passed on stack. "
"Not eligible for Tail Call\n"));
}
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getNextStackOffset();
SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
auto &HRI = *Subtarget.getRegisterInfo();
SDValue StackPtr =
DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT);
bool NeedsArgAlign = false;
unsigned LargestAlignSeen = 0;
// Walk the register/memloc assignments, inserting copies/loads.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = OutVals[i];
ISD::ArgFlagsTy Flags = Outs[i].Flags;
// Record if we need > 8 byte alignment on an argument.
bool ArgAlign = isHvxVectorType(VA.getValVT());
NeedsArgAlign |= ArgAlign;
// Promote the value if needed.
switch (VA.getLocInfo()) {
default:
// Loc info must be one of Full, SExt, ZExt, or AExt.
llvm_unreachable("Unknown loc info!");
case CCValAssign::BCvt:
case CCValAssign::Full:
break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
break;
}
if (VA.isMemLoc()) {
unsigned LocMemOffset = VA.getLocMemOffset();
SDValue MemAddr = DAG.getConstant(LocMemOffset, dl,
StackPtr.getValueType());
MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr);
if (ArgAlign)
LargestAlignSeen = std::max(LargestAlignSeen,
VA.getLocVT().getStoreSizeInBits() >> 3);
if (Flags.isByVal()) {
// The argument is a struct passed by value. According to LLVM, "Arg"
// is is pointer.
MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain,
Flags, DAG, dl));
} else {
MachinePointerInfo LocPI = MachinePointerInfo::getStack(
DAG.getMachineFunction(), LocMemOffset);
SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI);
MemOpChains.push_back(S);
}
continue;
}
// Arguments that can be passed on register must be kept at RegsToPass
// vector.
if (VA.isRegLoc())
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
}
if (NeedsArgAlign && Subtarget.hasV60TOps()) {
DEBUG(dbgs() << "Function needs byte stack align due to call args\n");
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
// V6 vectors passed by value have 64 or 128 byte alignment depending
// on whether we are 64 byte vector mode or 128 byte.
bool UseHVXDbl = Subtarget.useHVXDblOps();
assert(Subtarget.useHVXOps());
const unsigned ObjAlign = UseHVXDbl ? 128 : 64;
LargestAlignSeen = std::max(LargestAlignSeen, ObjAlign);
MFI.ensureMaxAlignment(LargestAlignSeen);
}
// Transform all store nodes into one single node because all store
// nodes are independent of each other.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
if (!IsTailCall) {
SDValue C = DAG.getConstant(NumBytes, dl, PtrVT, true);
Chain = DAG.getCALLSEQ_START(Chain, C, dl);
}
// Build a sequence of copy-to-reg nodes chained together with token
// chain and flag operands which copy the outgoing args into registers.
// The Glue is necessary since all emitted instructions must be
// stuck together.
SDValue Glue;
if (!IsTailCall) {
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, Glue);
Glue = Chain.getValue(1);
}
} else {
// For tail calls lower the arguments to the 'real' stack slot.
//
// Force all the incoming stack arguments to be loaded from the stack
// before any new outgoing arguments are stored to the stack, because the
// outgoing stack slots may alias the incoming argument stack slots, and
// the alias isn't otherwise explicit. This is slightly more conservative
// than necessary, because it means that each store effectively depends
// on every argument instead of just those arguments it would clobber.
//
// Do not flag preceding copytoreg stuff together with the following stuff.
Glue = SDValue();
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, Glue);
Glue = Chain.getValue(1);
}
Glue = SDValue();
}
bool LongCalls = MF.getSubtarget<HexagonSubtarget>().useLongCalls();
unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0;
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
// node so that legalize doesn't hack it.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags);
} else if (ExternalSymbolSDNode *S =
dyn_cast<ExternalSymbolSDNode>(Callee)) {
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags);
}
// Returns a chain & a flag for retval copy to use.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are
// known live into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
}
if (Glue.getNode())
Ops.push_back(Glue);
if (IsTailCall) {
MF.getFrameInfo().setHasTailCall();
return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
}
unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL;
Chain = DAG.getNode(OpCode, dl, NodeTys, Ops);
Glue = Chain.getValue(1);
// Create the CALLSEQ_END node.
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
DAG.getIntPtrConstant(0, dl, true), Glue, dl);
Glue = Chain.getValue(1);
// Handle result values, copying them out of physregs into vregs that we
// return.
return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG,
InVals, OutVals, Callee);
}
static bool getIndexedAddressParts(SDNode *Ptr, EVT VT,
SDValue &Base, SDValue &Offset,
bool &IsInc, SelectionDAG &DAG) {
if (Ptr->getOpcode() != ISD::ADD)
return false;
auto &HST = static_cast<const HexagonSubtarget&>(DAG.getSubtarget());
bool UseHVX = HST.useHVXOps();
bool UseHVXDbl = HST.useHVXDblOps();
bool ValidHVXDblType =
(UseHVX && UseHVXDbl) && (VT == MVT::v32i32 || VT == MVT::v16i64 ||
VT == MVT::v64i16 || VT == MVT::v128i8);
bool ValidHVXType =
UseHVX && !UseHVXDbl && (VT == MVT::v16i32 || VT == MVT::v8i64 ||
VT == MVT::v32i16 || VT == MVT::v64i8);
if (ValidHVXDblType || ValidHVXType ||
VT == MVT::i64 || VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
IsInc = (Ptr->getOpcode() == ISD::ADD);
Base = Ptr->getOperand(0);
Offset = Ptr->getOperand(1);
// Ensure that Offset is a constant.
return isa<ConstantSDNode>(Offset);
}
return false;
}
/// getPostIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if this node can be
/// combined with a load / store to form a post-indexed load / store.
bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
SDValue &Base,
SDValue &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const
{
EVT VT;
SDValue Ptr;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
VT = LD->getMemoryVT();
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
VT = ST->getMemoryVT();
if (ST->getValue().getValueType() == MVT::i64 && ST->isTruncatingStore())
return false;
} else {
return false;
}
bool IsInc = false;
bool isLegal = getIndexedAddressParts(Op, VT, Base, Offset, IsInc, DAG);
if (isLegal) {
auto &HII = *Subtarget.getInstrInfo();
int32_t OffsetVal = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
if (HII.isValidAutoIncImm(VT, OffsetVal)) {
AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
return true;
}
}
return false;
}
SDValue
HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
SDNode *Node = Op.getNode();
MachineFunction &MF = DAG.getMachineFunction();
auto &FuncInfo = *MF.getInfo<HexagonMachineFunctionInfo>();
switch (Node->getOpcode()) {
case ISD::INLINEASM: {
unsigned NumOps = Node->getNumOperands();
if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
--NumOps; // Ignore the flag operand.
for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
if (FuncInfo.hasClobberLR())
break;
unsigned Flags =
cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
++i; // Skip the ID value.
switch (InlineAsm::getKind(Flags)) {
default: llvm_unreachable("Bad flags!");
case InlineAsm::Kind_RegDef:
case InlineAsm::Kind_RegUse:
case InlineAsm::Kind_Imm:
case InlineAsm::Kind_Clobber:
case InlineAsm::Kind_Mem: {
for (; NumVals; --NumVals, ++i) {}
break;
}
case InlineAsm::Kind_RegDefEarlyClobber: {
for (; NumVals; --NumVals, ++i) {
unsigned Reg =
cast<RegisterSDNode>(Node->getOperand(i))->getReg();
// Check it to be lr
const HexagonRegisterInfo *QRI = Subtarget.getRegisterInfo();
if (Reg == QRI->getRARegister()) {
FuncInfo.setHasClobberLR(true);
break;
}
}
break;
}
}
}
}
} // Node->getOpcode
return Op;
}
// Need to transform ISD::PREFETCH into something that doesn't inherit
// all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and
// SDNPMayStore.
SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op,
SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue Addr = Op.getOperand(1);
// Lower it to DCFETCH($reg, #0). A "pat" will try to merge the offset in,
// if the "reg" is fed by an "add".
SDLoc DL(Op);
SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
}
SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
// Lower the hexagon_prefetch builtin to DCFETCH, as above.
if (IntNo == Intrinsic::hexagon_prefetch) {
SDValue Addr = Op.getOperand(2);
SDLoc DL(Op);
SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
}
return SDValue();
}
SDValue
HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue Size = Op.getOperand(1);
SDValue Align = Op.getOperand(2);
SDLoc dl(Op);
ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align);
assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC");
unsigned A = AlignConst->getSExtValue();
auto &HFI = *Subtarget.getFrameLowering();
// "Zero" means natural stack alignment.
if (A == 0)
A = HFI.getStackAlignment();
DEBUG({
dbgs () << LLVM_FUNCTION_NAME << " Align: " << A << " Size: ";
Size.getNode()->dump(&DAG);
dbgs() << "\n";
});
SDValue AC = DAG.getConstant(A, dl, MVT::i32);
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC);
DAG.ReplaceAllUsesOfValueWith(Op, AA);
return AA;
}
SDValue HexagonTargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
auto &FuncInfo = *MF.getInfo<HexagonMachineFunctionInfo>();
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
// For LLVM, in the case when returning a struct by value (>8byte),
// the first argument is a pointer that points to the location on caller's
// stack where the return value will be stored. For Hexagon, the location on
// caller's stack is passed only when the struct size is smaller than (and
// equal to) 8 bytes. If not, no address will be passed into callee and
// callee return the result direclty through R0/R1.
SmallVector<SDValue, 8> MemOps;
bool UseHVX = Subtarget.useHVXOps(), UseHVXDbl = Subtarget.useHVXDblOps();
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
ISD::ArgFlagsTy Flags = Ins[i].Flags;
unsigned ObjSize;
unsigned StackLocation;
int FI;
if ( (VA.isRegLoc() && !Flags.isByVal())
|| (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() > 8)) {
// Arguments passed in registers
// 1. int, long long, ptr args that get allocated in register.
// 2. Large struct that gets an register to put its address in.
EVT RegVT = VA.getLocVT();
if (RegVT == MVT::i8 || RegVT == MVT::i16 ||
RegVT == MVT::i32 || RegVT == MVT::f32) {
unsigned VReg =
RegInfo.createVirtualRegister(&Hexagon::IntRegsRegClass);
RegInfo.addLiveIn(VA.getLocReg(), VReg);
InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
} else if (RegVT == MVT::i64 || RegVT == MVT::f64) {
unsigned VReg =
RegInfo.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
RegInfo.addLiveIn(VA.getLocReg(), VReg);
InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
// Single Vector
} else if ((RegVT == MVT::v8i64 || RegVT == MVT::v16i32 ||
RegVT == MVT::v32i16 || RegVT == MVT::v64i8)) {
unsigned VReg =
RegInfo.createVirtualRegister(&Hexagon::VectorRegsRegClass);
RegInfo.addLiveIn(VA.getLocReg(), VReg);
InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
} else if (UseHVX && UseHVXDbl &&
((RegVT == MVT::v16i64 || RegVT == MVT::v32i32 ||
RegVT == MVT::v64i16 || RegVT == MVT::v128i8))) {
unsigned VReg =
RegInfo.createVirtualRegister(&Hexagon::VectorRegs128BRegClass);
RegInfo.addLiveIn(VA.getLocReg(), VReg);
InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
// Double Vector
} else if ((RegVT == MVT::v16i64 || RegVT == MVT::v32i32 ||
RegVT == MVT::v64i16 || RegVT == MVT::v128i8)) {
unsigned VReg =
RegInfo.createVirtualRegister(&Hexagon::VecDblRegsRegClass);
RegInfo.addLiveIn(VA.getLocReg(), VReg);
InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
} else if (UseHVX && UseHVXDbl &&
((RegVT == MVT::v32i64 || RegVT == MVT::v64i32 ||
RegVT == MVT::v128i16 || RegVT == MVT::v256i8))) {
unsigned VReg =
RegInfo.createVirtualRegister(&Hexagon::VecDblRegs128BRegClass);
RegInfo.addLiveIn(VA.getLocReg(), VReg);
InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
} else if (RegVT == MVT::v512i1 || RegVT == MVT::v1024i1) {
assert(0 && "need to support VecPred regs");
unsigned VReg =
RegInfo.createVirtualRegister(&Hexagon::VecPredRegsRegClass);
RegInfo.addLiveIn(VA.getLocReg(), VReg);
InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
} else {
assert (0);
}
} else if (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() <= 8) {
assert (0 && "ByValSize must be bigger than 8 bytes");
} else {
// Sanity check.
assert(VA.isMemLoc());
if (Flags.isByVal()) {
// If it's a byval parameter, then we need to compute the
// "real" size, not the size of the pointer.
ObjSize = Flags.getByValSize();
} else {
ObjSize = VA.getLocVT().getStoreSizeInBits() >> 3;
}
StackLocation = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
// Create the frame index object for this incoming parameter...
FI = MFI.CreateFixedObject(ObjSize, StackLocation, true);
// Create the SelectionDAG nodes cordl, responding to a load
// from this parameter.
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
if (Flags.isByVal()) {
// If it's a pass-by-value aggregate, then do not dereference the stack
// location. Instead, we should generate a reference to the stack
// location.
InVals.push_back(FIN);
} else {
InVals.push_back(
DAG.getLoad(VA.getLocVT(), dl, Chain, FIN, MachinePointerInfo()));
}
}
}
if (!MemOps.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
if (isVarArg) {
// This will point to the next argument passed via stack.
int FrameIndex = MFI.CreateFixedObject(Hexagon_PointerSize,
HEXAGON_LRFP_SIZE +
CCInfo.getNextStackOffset(),
true);
FuncInfo.setVarArgsFrameIndex(FrameIndex);
}
return Chain;
}
SDValue
HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
// VASTART stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
MachineFunction &MF = DAG.getMachineFunction();
HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1),
MachinePointerInfo(SV));
}
// Creates a SPLAT instruction for a constant value VAL.
static SDValue createSplat(SelectionDAG &DAG, const SDLoc &dl, EVT VT,
SDValue Val) {
if (VT.getSimpleVT() == MVT::v4i8)
return DAG.getNode(HexagonISD::VSPLATB, dl, VT, Val);
if (VT.getSimpleVT() == MVT::v4i16)
return DAG.getNode(HexagonISD::VSPLATH, dl, VT, Val);
return SDValue();
}
static bool isSExtFree(SDValue N) {
// A sign-extend of a truncate of a sign-extend is free.
if (N.getOpcode() == ISD::TRUNCATE &&
N.getOperand(0).getOpcode() == ISD::AssertSext)
return true;
// We have sign-extended loads.
if (N.getOpcode() == ISD::LOAD)
return true;
return false;
}
SDValue HexagonTargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
SDValue InpVal = Op.getOperand(0);
if (isa<ConstantSDNode>(InpVal)) {
uint64_t V = cast<ConstantSDNode>(InpVal)->getZExtValue();
return DAG.getTargetConstant(countPopulation(V), dl, MVT::i64);
}
SDValue PopOut = DAG.getNode(HexagonISD::POPCOUNT, dl, MVT::i32, InpVal);
return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, PopOut);
}
SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue Cmp = Op.getOperand(2);
ISD::CondCode CC = cast<CondCodeSDNode>(Cmp)->get();
EVT VT = Op.getValueType();
EVT LHSVT = LHS.getValueType();
EVT RHSVT = RHS.getValueType();
if (LHSVT == MVT::v2i16) {
assert(ISD::isSignedIntSetCC(CC) || ISD::isUnsignedIntSetCC(CC));
unsigned ExtOpc = ISD::isSignedIntSetCC(CC) ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND;
SDValue LX = DAG.getNode(ExtOpc, dl, MVT::v2i32, LHS);
SDValue RX = DAG.getNode(ExtOpc, dl, MVT::v2i32, RHS);
SDValue SC = DAG.getNode(ISD::SETCC, dl, MVT::v2i1, LX, RX, Cmp);
return SC;
}
// Treat all other vector types as legal.
if (VT.isVector())
return Op;
// Equals and not equals should use sign-extend, not zero-extend, since
// we can represent small negative values in the compare instructions.
// The LLVM default is to use zero-extend arbitrarily in these cases.
if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
(RHSVT == MVT::i8 || RHSVT == MVT::i16) &&
(LHSVT == MVT::i8 || LHSVT == MVT::i16)) {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
if (C && C->getAPIntValue().isNegative()) {
LHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, LHS);
RHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, RHS);
return DAG.getNode(ISD::SETCC, dl, Op.getValueType(),
LHS, RHS, Op.getOperand(2));
}
if (isSExtFree(LHS) || isSExtFree(RHS)) {
LHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, LHS);
RHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, RHS);
return DAG.getNode(ISD::SETCC, dl, Op.getValueType(),
LHS, RHS, Op.getOperand(2));
}
}
return SDValue();
}
SDValue
HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
SDValue PredOp = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2);
EVT OpVT = Op1.getValueType();
SDLoc DL(Op);
if (OpVT == MVT::v2i16) {
SDValue X1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op1);
SDValue X2 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op2);
SDValue SL = DAG.getNode(ISD::VSELECT, DL, MVT::v2i32, PredOp, X1, X2);
SDValue TR = DAG.getNode(ISD::TRUNCATE, DL, MVT::v2i16, SL);
return TR;
}
return SDValue();
}
// Handle only specific vector loads.
SDValue HexagonTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc DL(Op);
LoadSDNode *LoadNode = cast<LoadSDNode>(Op);
SDValue Chain = LoadNode->getChain();
SDValue Ptr = Op.getOperand(1);
SDValue LoweredLoad;
SDValue Result;
SDValue Base = LoadNode->getBasePtr();
ISD::LoadExtType Ext = LoadNode->getExtensionType();
unsigned Alignment = LoadNode->getAlignment();
SDValue LoadChain;
if(Ext == ISD::NON_EXTLOAD)
Ext = ISD::ZEXTLOAD;
if (VT == MVT::v4i16) {
if (Alignment == 2) {
SDValue Loads[4];
// Base load.
Loads[0] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Base,
LoadNode->getPointerInfo(), MVT::i16, Alignment,
LoadNode->getMemOperand()->getFlags());
// Base+2 load.
SDValue Increment = DAG.getConstant(2, DL, MVT::i32);
Ptr = DAG.getNode(ISD::ADD, DL, Base.getValueType(), Base, Increment);
Loads[1] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Ptr,
LoadNode->getPointerInfo(), MVT::i16, Alignment,
LoadNode->getMemOperand()->getFlags());
// SHL 16, then OR base and base+2.
SDValue ShiftAmount = DAG.getConstant(16, DL, MVT::i32);
SDValue Tmp1 = DAG.getNode(ISD::SHL, DL, MVT::i32, Loads[1], ShiftAmount);
SDValue Tmp2 = DAG.getNode(ISD::OR, DL, MVT::i32, Tmp1, Loads[0]);
// Base + 4.
Increment = DAG.getConstant(4, DL, MVT::i32);
Ptr = DAG.getNode(ISD::ADD, DL, Base.getValueType(), Base, Increment);
Loads[2] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Ptr,
LoadNode->getPointerInfo(), MVT::i16, Alignment,
LoadNode->getMemOperand()->getFlags());
// Base + 6.
Increment = DAG.getConstant(6, DL, MVT::i32);
Ptr = DAG.getNode(ISD::ADD, DL, Base.getValueType(), Base, Increment);
Loads[3] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Ptr,
LoadNode->getPointerInfo(), MVT::i16, Alignment,
LoadNode->getMemOperand()->getFlags());
// SHL 16, then OR base+4 and base+6.
Tmp1 = DAG.getNode(ISD::SHL, DL, MVT::i32, Loads[3], ShiftAmount);
SDValue Tmp4 = DAG.getNode(ISD::OR, DL, MVT::i32, Tmp1, Loads[2]);
// Combine to i64. This could be optimised out later if we can
// affect reg allocation of this code.
Result = DAG.getNode(HexagonISD::COMBINE, DL, MVT::i64, Tmp4, Tmp2);
LoadChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
Loads[0].getValue(1), Loads[1].getValue(1),
Loads[2].getValue(1), Loads[3].getValue(1));
} else {
// Perform default type expansion.
Result = DAG.getLoad(MVT::i64, DL, Chain, Ptr, LoadNode->getPointerInfo(),
LoadNode->getAlignment(),
LoadNode->getMemOperand()->getFlags());
LoadChain = Result.getValue(1);
}
} else
llvm_unreachable("Custom lowering unsupported load");
Result = DAG.getNode(ISD::BITCAST, DL, VT, Result);
// Since we pretend to lower a load, we need the original chain
// info attached to the result.
SDValue Ops[] = { Result, LoadChain };
return DAG.getMergeValues(Ops, DL);
}
SDValue
HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
EVT ValTy = Op.getValueType();
ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op);
unsigned Align = CPN->getAlignment();
bool IsPositionIndependent = isPositionIndependent();
unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0;
unsigned Offset = 0;
SDValue T;
if (CPN->isMachineConstantPoolEntry())
T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Align, Offset,
TF);
else
T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Align, Offset,
TF);
assert(cast<ConstantPoolSDNode>(T)->getTargetFlags() == TF &&
"Inconsistent target flag encountered");
if (IsPositionIndependent)
return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T);
return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T);
}
SDValue
HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
int Idx = cast<JumpTableSDNode>(Op)->getIndex();
if (isPositionIndependent()) {
SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T);
}
SDValue T = DAG.getTargetJumpTable(Idx, VT);
return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T);
}
SDValue
HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setReturnAddressIsTaken(true);
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
return SDValue();
EVT VT = Op.getValueType();
SDLoc dl(Op);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
if (Depth) {
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
return DAG.getLoad(VT, dl, DAG.getEntryNode(),
DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
MachinePointerInfo());
}
// Return LR, which contains the return address. Mark it an implicit live-in.
unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32));
return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
}
SDValue
HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
MFI.setFrameAddressIsTaken(true);
EVT VT = Op.getValueType();
SDLoc dl(Op);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
HRI.getFrameRegister(), VT);
while (Depth--)
FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
MachinePointerInfo());
return FrameAddr;
}
SDValue
HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const {
SDLoc dl(Op);
return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
}
SDValue
HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
auto *GAN = cast<GlobalAddressSDNode>(Op);
auto PtrVT = getPointerTy(DAG.getDataLayout());
auto *GV = GAN->getGlobal();
int64_t Offset = GAN->getOffset();
auto &HLOF = *HTM.getObjFileLowering();
Reloc::Model RM = HTM.getRelocationModel();
if (RM == Reloc::Static) {
SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
if (HLOF.isGlobalInSmallSection(GV, HTM))
return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA);
return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA);
}
bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
if (UsePCRel) {
SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset,
HexagonII::MO_PCREL);
return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA);
}
// Use GOT index.
SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT);
SDValue Off = DAG.getConstant(Offset, dl, MVT::i32);
return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off);
}
// Specifies that for loads and stores VT can be promoted to PromotedLdStVT.
SDValue
HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
SDLoc dl(Op);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
Reloc::Model RM = HTM.getRelocationModel();
if (RM == Reloc::Static) {
SDValue A = DAG.getTargetBlockAddress(BA, PtrVT);
return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A);
}
SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL);
return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A);
}
SDValue
HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG)
const {
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT,
HexagonII::MO_PCREL);
return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym);
}
SDValue
HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain,
GlobalAddressSDNode *GA, SDValue *InFlag, EVT PtrVT, unsigned ReturnReg,
unsigned char OperandFlags) const {
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SDLoc dl(GA);
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
GA->getValueType(0),
GA->getOffset(),
OperandFlags);
// Create Operands for the call.The Operands should have the following:
// 1. Chain SDValue
// 2. Callee which in this case is the Global address value.
// 3. Registers live into the call.In this case its R0, as we
// have just one argument to be passed.
// 4. InFlag if there is any.
// Note: The order is important.
if (InFlag) {
SDValue Ops[] = { Chain, TGA,
DAG.getRegister(Hexagon::R0, PtrVT), *InFlag };
Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops);
} else {
SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT)};
Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops);
}
// Inform MFI that function has calls.
MFI.setAdjustsStack(true);
SDValue Flag = Chain.getValue(1);
return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
}
//
// Lower using the intial executable model for TLS addresses
//
SDValue
HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA,
SelectionDAG &DAG) const {
SDLoc dl(GA);
int64_t Offset = GA->getOffset();
auto PtrVT = getPointerTy(DAG.getDataLayout());
// Get the thread pointer.
SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
bool IsPositionIndependent = isPositionIndependent();
unsigned char TF =
IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE;
// First generate the TLS symbol address
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT,
Offset, TF);
SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
if (IsPositionIndependent) {
// Generate the GOT pointer in case of position independent code
SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG);
// Add the TLS Symbol address to GOT pointer.This gives
// GOT relative relocation for the symbol.
Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
}
// Load the offset value for TLS symbol.This offset is relative to
// thread pointer.
SDValue LoadOffset =
DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo());
// Address of the thread local variable is the add of thread
// pointer and the offset of the variable.
return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset);
}
//
// Lower using the local executable model for TLS addresses
//
SDValue
HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA,
SelectionDAG &DAG) const {
SDLoc dl(GA);
int64_t Offset = GA->getOffset();
auto PtrVT = getPointerTy(DAG.getDataLayout());
// Get the thread pointer.
SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
// Generate the TLS symbol address
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
HexagonII::MO_TPREL);
SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
// Address of the thread local variable is the add of thread
// pointer and the offset of the variable.
return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym);
}
//
// Lower using the general dynamic model for TLS addresses
//
SDValue
HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
SelectionDAG &DAG) const {
SDLoc dl(GA);
int64_t Offset = GA->getOffset();
auto PtrVT = getPointerTy(DAG.getDataLayout());
// First generate the TLS symbol address
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
HexagonII::MO_GDGOT);
// Then, generate the GOT pointer
SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG);
// Add the TLS symbol and the GOT pointer
SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
// Copy over the argument to R0
SDValue InFlag;
Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InFlag);
InFlag = Chain.getValue(1);
return GetDynamicTLSAddr(DAG, Chain, GA, &InFlag, PtrVT,
Hexagon::R0, HexagonII::MO_GDPLT);
}
//
// Lower TLS addresses.
//
// For now for dynamic models, we only support the general dynamic model.
//
SDValue
HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) const {
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
switch (HTM.getTLSModel(GA->getGlobal())) {
case TLSModel::GeneralDynamic:
case TLSModel::LocalDynamic:
return LowerToTLSGeneralDynamicModel(GA, DAG);
case TLSModel::InitialExec:
return LowerToTLSInitialExecModel(GA, DAG);
case TLSModel::LocalExec:
return LowerToTLSLocalExecModel(GA, DAG);
}
llvm_unreachable("Bogus TLS model");
}
//===----------------------------------------------------------------------===//
// TargetLowering Implementation
//===----------------------------------------------------------------------===//
HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
const HexagonSubtarget &ST)
: TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)),
Subtarget(ST) {
bool IsV4 = !Subtarget.hasV5TOps();
auto &HRI = *Subtarget.getRegisterInfo();
bool UseHVX = Subtarget.useHVXOps();
bool UseHVXSgl = Subtarget.useHVXSglOps();
bool UseHVXDbl = Subtarget.useHVXDblOps();
setPrefLoopAlignment(4);
setPrefFunctionAlignment(4);
setMinFunctionAlignment(2);
setStackPointerRegisterToSaveRestore(HRI.getStackRegister());
setMaxAtomicSizeInBitsSupported(64);
setMinCmpXchgSizeInBits(32);
if (EnableHexSDNodeSched)
setSchedulingPreference(Sched::VLIW);
else
setSchedulingPreference(Sched::Source);
// Limits for inline expansion of memcpy/memmove
MaxStoresPerMemcpy = MaxStoresPerMemcpyCL;
MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL;
MaxStoresPerMemmove = MaxStoresPerMemmoveCL;
MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL;
MaxStoresPerMemset = MaxStoresPerMemsetCL;
MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL;
//
// Set up register classes.
//
addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass);
addRegisterClass(MVT::v2i1, &Hexagon::PredRegsRegClass); // bbbbaaaa
addRegisterClass(MVT::v4i1, &Hexagon::PredRegsRegClass); // ddccbbaa
addRegisterClass(MVT::v8i1, &Hexagon::PredRegsRegClass); // hgfedcba
addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass);
addRegisterClass(MVT::v4i8, &Hexagon::IntRegsRegClass);
addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass);
addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass);
addRegisterClass(MVT::v8i8, &Hexagon::DoubleRegsRegClass);
addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass);
addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass);
if (Subtarget.hasV5TOps()) {
addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
}
if (Subtarget.hasV60TOps()) {
if (Subtarget.useHVXSglOps()) {
addRegisterClass(MVT::v64i8, &Hexagon::VectorRegsRegClass);
addRegisterClass(MVT::v32i16, &Hexagon::VectorRegsRegClass);
addRegisterClass(MVT::v16i32, &Hexagon::VectorRegsRegClass);
addRegisterClass(MVT::v8i64, &Hexagon::VectorRegsRegClass);
addRegisterClass(MVT::v128i8, &Hexagon::VecDblRegsRegClass);
addRegisterClass(MVT::v64i16, &Hexagon::VecDblRegsRegClass);
addRegisterClass(MVT::v32i32, &Hexagon::VecDblRegsRegClass);
addRegisterClass(MVT::v16i64, &Hexagon::VecDblRegsRegClass);
addRegisterClass(MVT::v512i1, &Hexagon::VecPredRegsRegClass);
} else if (Subtarget.useHVXDblOps()) {
addRegisterClass(MVT::v128i8, &Hexagon::VectorRegs128BRegClass);
addRegisterClass(MVT::v64i16, &Hexagon::VectorRegs128BRegClass);
addRegisterClass(MVT::v32i32, &Hexagon::VectorRegs128BRegClass);
addRegisterClass(MVT::v16i64, &Hexagon::VectorRegs128BRegClass);
addRegisterClass(MVT::v256i8, &Hexagon::VecDblRegs128BRegClass);
addRegisterClass(MVT::v128i16, &Hexagon::VecDblRegs128BRegClass);
addRegisterClass(MVT::v64i32, &Hexagon::VecDblRegs128BRegClass);
addRegisterClass(MVT::v32i64, &Hexagon::VecDblRegs128BRegClass);
addRegisterClass(MVT::v1024i1, &Hexagon::VecPredRegs128BRegClass);
}
}
//
// Handling of scalar operations.
//
// All operations default to "legal", except:
// - indexed loads and stores (pre-/post-incremented),
// - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS,
// ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN,
// FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP,
// FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG,
// which default to "expand" for at least one type.
// Misc operations.
setOperationAction(ISD::ConstantFP, MVT::f32, Legal); // Default: expand
setOperationAction(ISD::ConstantFP, MVT::f64, Legal); // Default: expand
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
setOperationAction(ISD::JumpTable, MVT::i32, Custom);
setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
// Custom legalize GlobalAddress nodes into CONST32.
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i8, Custom);
setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
// Hexagon needs to optimize cases with negative constants.
setOperationAction(ISD::SETCC, MVT::i8, Custom);
setOperationAction(ISD::SETCC, MVT::i16, Custom);
// VASTART needs to be custom lowered to use the VarArgsFrameIndex.
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
setOperationAction(ISD::VAARG, MVT::Other, Expand);
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
if (EmitJumpTables)
setMinimumJumpTableEntries(MinimumJumpTables);
else
setMinimumJumpTableEntries(INT_MAX);
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
// Hexagon has instructions for add/sub with carry. The problem with
// modeling these instructions is that they produce 2 results: Rdd and Px.
// To model the update of Px, we will have to use Defs[p0..p3] which will
// cause any predicate live range to spill. So, we pretend we dont't have
// these instructions.
setOperationAction(ISD::ADDE, MVT::i8, Expand);
setOperationAction(ISD::ADDE, MVT::i16, Expand);
setOperationAction(ISD::ADDE, MVT::i32, Expand);
setOperationAction(ISD::ADDE, MVT::i64, Expand);
setOperationAction(ISD::SUBE, MVT::i8, Expand);
setOperationAction(ISD::SUBE, MVT::i16, Expand);
setOperationAction(ISD::SUBE, MVT::i32, Expand);
setOperationAction(ISD::SUBE, MVT::i64, Expand);
setOperationAction(ISD::ADDC, MVT::i8, Expand);
setOperationAction(ISD::ADDC, MVT::i16, Expand);
setOperationAction(ISD::ADDC, MVT::i32, Expand);
setOperationAction(ISD::ADDC, MVT::i64, Expand);
setOperationAction(ISD::SUBC, MVT::i8, Expand);
setOperationAction(ISD::SUBC, MVT::i16, Expand);
setOperationAction(ISD::SUBC, MVT::i32, Expand);
setOperationAction(ISD::SUBC, MVT::i64, Expand);
// Only add and sub that detect overflow are the saturating ones.
for (MVT VT : MVT::integer_valuetypes()) {
setOperationAction(ISD::UADDO, VT, Expand);
setOperationAction(ISD::SADDO, VT, Expand);
setOperationAction(ISD::USUBO, VT, Expand);
setOperationAction(ISD::SSUBO, VT, Expand);
}
setOperationAction(ISD::CTLZ, MVT::i8, Promote);
setOperationAction(ISD::CTLZ, MVT::i16, Promote);
setOperationAction(ISD::CTTZ, MVT::i8, Promote);
setOperationAction(ISD::CTTZ, MVT::i16, Promote);
// In V5, popcount can count # of 1s in i64 but returns i32.
// On V4 it will be expanded (set later).
setOperationAction(ISD::CTPOP, MVT::i8, Promote);
setOperationAction(ISD::CTPOP, MVT::i16, Promote);
setOperationAction(ISD::CTPOP, MVT::i32, Promote);
setOperationAction(ISD::CTPOP, MVT::i64, Custom);
// We custom lower i64 to i64 mul, so that it is not considered as a legal
// operation. There is a pattern that will match i64 mul and transform it
// to a series of instructions.
setOperationAction(ISD::MUL, MVT::i64, Expand);
for (unsigned IntExpOp :
{ ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM,
ISD::SDIVREM, ISD::UDIVREM, ISD::ROTL, ISD::ROTR,
ISD::BSWAP, ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS,
ISD::SMUL_LOHI, ISD::UMUL_LOHI }) {
setOperationAction(IntExpOp, MVT::i32, Expand);
setOperationAction(IntExpOp, MVT::i64, Expand);
}
for (unsigned FPExpOp :
{ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS,
ISD::FPOW, ISD::FCOPYSIGN}) {
setOperationAction(FPExpOp, MVT::f32, Expand);
setOperationAction(FPExpOp, MVT::f64, Expand);
}
// No extending loads from i32.
for (MVT VT : MVT::integer_valuetypes()) {
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
}
// Turn FP truncstore into trunc + store.
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
// Turn FP extload into load/fpextend.
for (MVT VT : MVT::fp_valuetypes())
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
// Expand BR_CC and SELECT_CC for all integer and fp types.
for (MVT VT : MVT::integer_valuetypes()) {
setOperationAction(ISD::BR_CC, VT, Expand);
setOperationAction(ISD::SELECT_CC, VT, Expand);
}
for (MVT VT : MVT::fp_valuetypes()) {
setOperationAction(ISD::BR_CC, VT, Expand);
setOperationAction(ISD::SELECT_CC, VT, Expand);
}
setOperationAction(ISD::BR_CC, MVT::Other, Expand);
//
// Handling of vector operations.
//
// Custom lower v4i16 load only. Let v4i16 store to be
// promoted for now.
promoteLdStType(MVT::v4i8, MVT::i32);
promoteLdStType(MVT::v2i16, MVT::i32);
promoteLdStType(MVT::v8i8, MVT::i64);
promoteLdStType(MVT::v2i32, MVT::i64);
setOperationAction(ISD::LOAD, MVT::v4i16, Custom);
setOperationAction(ISD::STORE, MVT::v4i16, Promote);
AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::i64);
AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::i64);
// Set the action for vector operations to "expand", then override it with
// either "custom" or "legal" for specific cases.
static const unsigned VectExpOps[] = {
// Integer arithmetic:
ISD::ADD, ISD::SUB, ISD::MUL, ISD::SDIV, ISD::UDIV,
ISD::SREM, ISD::UREM, ISD::SDIVREM, ISD::UDIVREM, ISD::ADDC,
ISD::SUBC, ISD::SADDO, ISD::UADDO, ISD::SSUBO, ISD::USUBO,
ISD::SMUL_LOHI, ISD::UMUL_LOHI,
// Logical/bit:
ISD::AND, ISD::OR, ISD::XOR, ISD::ROTL, ISD::ROTR,
ISD::CTPOP, ISD::CTLZ, ISD::CTTZ,
// Floating point arithmetic/math functions:
ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FMA, ISD::FDIV,
ISD::FREM, ISD::FNEG, ISD::FABS, ISD::FSQRT, ISD::FSIN,
ISD::FCOS, ISD::FPOWI, ISD::FPOW, ISD::FLOG, ISD::FLOG2,
ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FCEIL, ISD::FTRUNC,
ISD::FRINT, ISD::FNEARBYINT, ISD::FROUND, ISD::FFLOOR,
ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS,
// Misc:
ISD::SELECT, ISD::ConstantPool,
// Vector:
ISD::BUILD_VECTOR, ISD::SCALAR_TO_VECTOR,
ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT,
ISD::EXTRACT_SUBVECTOR, ISD::INSERT_SUBVECTOR,
ISD::CONCAT_VECTORS, ISD::VECTOR_SHUFFLE
};
for (MVT VT : MVT::vector_valuetypes()) {
for (unsigned VectExpOp : VectExpOps)
setOperationAction(VectExpOp, VT, Expand);
// Expand all extended loads and truncating stores:
for (MVT TargetVT : MVT::vector_valuetypes()) {
setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand);
setTruncStoreAction(VT, TargetVT, Expand);
}
setOperationAction(ISD::SRA, VT, Custom);
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SRL, VT, Custom);
}
// Types natively supported:
for (MVT NativeVT : {MVT::v2i1, MVT::v4i1, MVT::v8i1, MVT::v32i1, MVT::v64i1,
MVT::v4i8, MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v1i32,
MVT::v2i32, MVT::v1i64}) {
setOperationAction(ISD::BUILD_VECTOR, NativeVT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, NativeVT, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, NativeVT, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, NativeVT, Custom);
setOperationAction(ISD::CONCAT_VECTORS, NativeVT, Custom);
setOperationAction(ISD::ADD, NativeVT, Legal);
setOperationAction(ISD::SUB, NativeVT, Legal);
setOperationAction(ISD::MUL, NativeVT, Legal);
setOperationAction(ISD::AND, NativeVT, Legal);
setOperationAction(ISD::OR, NativeVT, Legal);
setOperationAction(ISD::XOR, NativeVT, Legal);
}
setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
setOperationAction(ISD::VSELECT, MVT::v2i16, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
if (UseHVX) {
if (UseHVXSgl) {
setOperationAction(ISD::CONCAT_VECTORS, MVT::v128i8, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i16, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i32, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i64, Custom);
// We try to generate the vpack{e/o} instructions. If we fail
// we fall back upon ExpandOp.
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v64i8, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v32i16, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v64i8, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i16, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom);
} else if (UseHVXDbl) {
setOperationAction(ISD::CONCAT_VECTORS, MVT::v256i8, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v128i16, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i32, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i64, Custom);
// We try to generate the vpack{e/o} instructions. If we fail
// we fall back upon ExpandOp.
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v128i8, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v64i16, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v128i8, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v64i16, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom);
} else {
llvm_unreachable("Unrecognized HVX mode");
}
}
// Subtarget-specific operation actions.
//
if (Subtarget.hasV5TOps()) {
setOperationAction(ISD::FMA, MVT::f64, Expand);
setOperationAction(ISD::FADD, MVT::f64, Expand);
setOperationAction(ISD::FSUB, MVT::f64, Expand);
setOperationAction(ISD::FMUL, MVT::f64, Expand);
setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote);
setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote);
setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote);
setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote);
setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
} else { // V4
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
setOperationAction(ISD::FP_TO_SINT, MVT::f64, Expand);
setOperationAction(ISD::FP_TO_SINT, MVT::f32, Expand);
setOperationAction(ISD::FP_EXTEND, MVT::f32, Expand);
setOperationAction(ISD::FP_ROUND, MVT::f64, Expand);
setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
setOperationAction(ISD::CTPOP, MVT::i8, Expand);
setOperationAction(ISD::CTPOP, MVT::i16, Expand);
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
setOperationAction(ISD::CTPOP, MVT::i64, Expand);
// Expand these operations for both f32 and f64:
for (unsigned FPExpOpV4 :
{ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FABS, ISD::FNEG, ISD::FMA}) {
setOperationAction(FPExpOpV4, MVT::f32, Expand);
setOperationAction(FPExpOpV4, MVT::f64, Expand);
}
for (ISD::CondCode FPExpCCV4 :
{ISD::SETOEQ, ISD::SETOGT, ISD::SETOLT, ISD::SETOGE, ISD::SETOLE,
ISD::SETUO, ISD::SETO}) {
setCondCodeAction(FPExpCCV4, MVT::f32, Expand);
setCondCodeAction(FPExpCCV4, MVT::f64, Expand);
}
}
// Handling of indexed loads/stores: default is "expand".
//
for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
setIndexedLoadAction(ISD::POST_INC, VT, Legal);
setIndexedStoreAction(ISD::POST_INC, VT, Legal);
}
if (UseHVXSgl) {
for (MVT VT : {MVT::v64i8, MVT::v32i16, MVT::v16i32, MVT::v8i64,
MVT::v128i8, MVT::v64i16, MVT::v32i32, MVT::v16i64}) {
setIndexedLoadAction(ISD::POST_INC, VT, Legal);
setIndexedStoreAction(ISD::POST_INC, VT, Legal);
}
} else if (UseHVXDbl) {
for (MVT VT : {MVT::v128i8, MVT::v64i16, MVT::v32i32, MVT::v16i64,
MVT::v256i8, MVT::v128i16, MVT::v64i32, MVT::v32i64}) {
setIndexedLoadAction(ISD::POST_INC, VT, Legal);
setIndexedStoreAction(ISD::POST_INC, VT, Legal);
}
}
computeRegisterProperties(&HRI);
//
// Library calls for unsupported operations
//
bool FastMath = EnableFastMath;
setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
if (IsV4) {
// Handle single-precision floating point operations on V4.
if (FastMath) {
setLibcallName(RTLIB::ADD_F32, "__hexagon_fast_addsf3");
setLibcallName(RTLIB::SUB_F32, "__hexagon_fast_subsf3");
setLibcallName(RTLIB::MUL_F32, "__hexagon_fast_mulsf3");
setLibcallName(RTLIB::OGT_F32, "__hexagon_fast_gtsf2");
setLibcallName(RTLIB::OLT_F32, "__hexagon_fast_ltsf2");
// Double-precision compares.
setLibcallName(RTLIB::OGT_F64, "__hexagon_fast_gtdf2");
setLibcallName(RTLIB::OLT_F64, "__hexagon_fast_ltdf2");
} else {
setLibcallName(RTLIB::ADD_F32, "__hexagon_addsf3");
setLibcallName(RTLIB::SUB_F32, "__hexagon_subsf3");
setLibcallName(RTLIB::MUL_F32, "__hexagon_mulsf3");
setLibcallName(RTLIB::OGT_F32, "__hexagon_gtsf2");
setLibcallName(RTLIB::OLT_F32, "__hexagon_ltsf2");
// Double-precision compares.
setLibcallName(RTLIB::OGT_F64, "__hexagon_gtdf2");
setLibcallName(RTLIB::OLT_F64, "__hexagon_ltdf2");
}
}
// This is the only fast library function for sqrtd.
if (FastMath)
setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2");
// Prefix is: nothing for "slow-math",
// "fast2_" for V4 fast-math and V5+ fast-math double-precision
// (actually, keep fast-math and fast-math2 separate for now)
if (FastMath) {
setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3");
setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3");
setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3");
setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3");
// Calling __hexagon_fast2_divsf3 with fast-math on V5 (ok).
setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3");
} else {
setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
}
if (Subtarget.hasV5TOps()) {
if (FastMath)
setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf");
else
setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf");
} else {
// V4
setLibcallName(RTLIB::SINTTOFP_I32_F32, "__hexagon_floatsisf");
setLibcallName(RTLIB::SINTTOFP_I32_F64, "__hexagon_floatsidf");
setLibcallName(RTLIB::SINTTOFP_I64_F32, "__hexagon_floatdisf");
setLibcallName(RTLIB::SINTTOFP_I64_F64, "__hexagon_floatdidf");
setLibcallName(RTLIB::UINTTOFP_I32_F32, "__hexagon_floatunsisf");
setLibcallName(RTLIB::UINTTOFP_I32_F64, "__hexagon_floatunsidf");
setLibcallName(RTLIB::UINTTOFP_I64_F32, "__hexagon_floatundisf");
setLibcallName(RTLIB::UINTTOFP_I64_F64, "__hexagon_floatundidf");
setLibcallName(RTLIB::FPTOUINT_F32_I32, "__hexagon_fixunssfsi");
setLibcallName(RTLIB::FPTOUINT_F32_I64, "__hexagon_fixunssfdi");
setLibcallName(RTLIB::FPTOUINT_F64_I32, "__hexagon_fixunsdfsi");
setLibcallName(RTLIB::FPTOUINT_F64_I64, "__hexagon_fixunsdfdi");
setLibcallName(RTLIB::FPTOSINT_F32_I32, "__hexagon_fixsfsi");
setLibcallName(RTLIB::FPTOSINT_F32_I64, "__hexagon_fixsfdi");
setLibcallName(RTLIB::FPTOSINT_F64_I32, "__hexagon_fixdfsi");
setLibcallName(RTLIB::FPTOSINT_F64_I64, "__hexagon_fixdfdi");
setLibcallName(RTLIB::FPEXT_F32_F64, "__hexagon_extendsfdf2");
setLibcallName(RTLIB::FPROUND_F64_F32, "__hexagon_truncdfsf2");
setLibcallName(RTLIB::OEQ_F32, "__hexagon_eqsf2");
setLibcallName(RTLIB::OEQ_F64, "__hexagon_eqdf2");
setLibcallName(RTLIB::OGE_F32, "__hexagon_gesf2");
setLibcallName(RTLIB::OGE_F64, "__hexagon_gedf2");
setLibcallName(RTLIB::OLE_F32, "__hexagon_lesf2");
setLibcallName(RTLIB::OLE_F64, "__hexagon_ledf2");
setLibcallName(RTLIB::UNE_F32, "__hexagon_nesf2");
setLibcallName(RTLIB::UNE_F64, "__hexagon_nedf2");
setLibcallName(RTLIB::UO_F32, "__hexagon_unordsf2");
setLibcallName(RTLIB::UO_F64, "__hexagon_unorddf2");
setLibcallName(RTLIB::O_F32, "__hexagon_unordsf2");
setLibcallName(RTLIB::O_F64, "__hexagon_unorddf2");
}
// These cause problems when the shift amount is non-constant.
setLibcallName(RTLIB::SHL_I128, nullptr);
setLibcallName(RTLIB::SRL_I128, nullptr);
setLibcallName(RTLIB::SRA_I128, nullptr);
}
const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch ((HexagonISD::NodeType)Opcode) {
case HexagonISD::ALLOCA: return "HexagonISD::ALLOCA";
case HexagonISD::AT_GOT: return "HexagonISD::AT_GOT";
case HexagonISD::AT_PCREL: return "HexagonISD::AT_PCREL";
case HexagonISD::BARRIER: return "HexagonISD::BARRIER";
case HexagonISD::CALL: return "HexagonISD::CALL";
case HexagonISD::CALLnr: return "HexagonISD::CALLnr";
case HexagonISD::CALLR: return "HexagonISD::CALLR";
case HexagonISD::COMBINE: return "HexagonISD::COMBINE";
case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP";
case HexagonISD::CONST32: return "HexagonISD::CONST32";
case HexagonISD::CP: return "HexagonISD::CP";
case HexagonISD::DCFETCH: return "HexagonISD::DCFETCH";
case HexagonISD::EH_RETURN: return "HexagonISD::EH_RETURN";
case HexagonISD::EXTRACTU: return "HexagonISD::EXTRACTU";
case HexagonISD::EXTRACTURP: return "HexagonISD::EXTRACTURP";
case HexagonISD::INSERT: return "HexagonISD::INSERT";
case HexagonISD::INSERTRP: return "HexagonISD::INSERTRP";
case HexagonISD::JT: return "HexagonISD::JT";
case HexagonISD::PACKHL: return "HexagonISD::PACKHL";
case HexagonISD::POPCOUNT: return "HexagonISD::POPCOUNT";
case HexagonISD::RET_FLAG: return "HexagonISD::RET_FLAG";
case HexagonISD::SHUFFEB: return "HexagonISD::SHUFFEB";
case HexagonISD::SHUFFEH: return "HexagonISD::SHUFFEH";
case HexagonISD::SHUFFOB: return "HexagonISD::SHUFFOB";
case HexagonISD::SHUFFOH: return "HexagonISD::SHUFFOH";
case HexagonISD::TC_RETURN: return "HexagonISD::TC_RETURN";
case HexagonISD::VCMPBEQ: return "HexagonISD::VCMPBEQ";
case HexagonISD::VCMPBGT: return "HexagonISD::VCMPBGT";
case HexagonISD::VCMPBGTU: return "HexagonISD::VCMPBGTU";
case HexagonISD::VCMPHEQ: return "HexagonISD::VCMPHEQ";
case HexagonISD::VCMPHGT: return "HexagonISD::VCMPHGT";
case HexagonISD::VCMPHGTU: return "HexagonISD::VCMPHGTU";
case HexagonISD::VCMPWEQ: return "HexagonISD::VCMPWEQ";
case HexagonISD::VCMPWGT: return "HexagonISD::VCMPWGT";
case HexagonISD::VCMPWGTU: return "HexagonISD::VCMPWGTU";
case HexagonISD::VCOMBINE: return "HexagonISD::VCOMBINE";
case HexagonISD::VPACK: return "HexagonISD::VPACK";
case HexagonISD::VSHLH: return "HexagonISD::VSHLH";
case HexagonISD::VSHLW: return "HexagonISD::VSHLW";
case HexagonISD::VSPLATB: return "HexagonISD::VSPLTB";
case HexagonISD::VSPLATH: return "HexagonISD::VSPLATH";
case HexagonISD::VSRAH: return "HexagonISD::VSRAH";
case HexagonISD::VSRAW: return "HexagonISD::VSRAW";
case HexagonISD::VSRLH: return "HexagonISD::VSRLH";
case HexagonISD::VSRLW: return "HexagonISD::VSRLW";
case HexagonISD::VSXTBH: return "HexagonISD::VSXTBH";
case HexagonISD::VSXTBW: return "HexagonISD::VSXTBW";
case HexagonISD::OP_END: break;
}
return nullptr;
}
bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
EVT MTy1 = EVT::getEVT(Ty1);
EVT MTy2 = EVT::getEVT(Ty2);
if (!MTy1.isSimple() || !MTy2.isSimple())
return false;
return (MTy1.getSimpleVT() == MVT::i64) && (MTy2.getSimpleVT() == MVT::i32);
}
bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
if (!VT1.isSimple() || !VT2.isSimple())
return false;
return (VT1.getSimpleVT() == MVT::i64) && (VT2.getSimpleVT() == MVT::i32);
}
bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
return isOperationLegalOrCustom(ISD::FMA, VT);
}
// Should we expand the build vector with shuffles?
bool
HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT,
unsigned DefinedValues) const {
// Hexagon vector shuffle operates on element sizes of bytes or halfwords
EVT EltVT = VT.getVectorElementType();
int EltBits = EltVT.getSizeInBits();
if ((EltBits != 8) && (EltBits != 16))
return false;
return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
}
static StridedLoadKind isStridedLoad(ArrayRef<int> &Mask) {
int even_start = -2;
int odd_start = -1;
size_t mask_len = Mask.size();
for (auto idx : Mask) {
if ((idx - even_start) == 2)
even_start = idx;
else
break;
}
if (even_start == (int)(mask_len * 2) - 2)
return StridedLoadKind::Even;
for (auto idx : Mask) {
if ((idx - odd_start) == 2)
odd_start = idx;
else
break;
}
if (odd_start == (int)(mask_len * 2) - 1)
return StridedLoadKind::Odd;
return StridedLoadKind::NoPattern;
}
// Lower a vector shuffle (V1, V2, V3). V1 and V2 are the two vectors
// to select data from, V3 is the permutation.
SDValue
HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG)
const {
const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
SDLoc dl(Op);
EVT VT = Op.getValueType();
bool UseHVX = Subtarget.useHVXOps();
if (V2.isUndef())
V2 = V1;
if (SVN->isSplat()) {
int Lane = SVN->getSplatIndex();
if (Lane == -1) Lane = 0;
// Test if V1 is a SCALAR_TO_VECTOR.
if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
return createSplat(DAG, dl, VT, V1.getOperand(0));
// Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
// (and probably will turn into a SCALAR_TO_VECTOR once legalization
// reaches it).
if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
!isa<ConstantSDNode>(V1.getOperand(0))) {
bool IsScalarToVector = true;
for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i) {
if (!V1.getOperand(i).isUndef()) {
IsScalarToVector = false;
break;
}
}
if (IsScalarToVector)
return createSplat(DAG, dl, VT, V1.getOperand(0));
}
return createSplat(DAG, dl, VT, DAG.getConstant(Lane, dl, MVT::i32));
}
if (UseHVX) {
ArrayRef<int> Mask = SVN->getMask();
size_t MaskLen = Mask.size();
int ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
if ((Subtarget.useHVXSglOps() && (ElemSizeInBits * MaskLen) == 64 * 8) ||
(Subtarget.useHVXDblOps() && (ElemSizeInBits * MaskLen) == 128 * 8)) {
// Return 1 for odd and 2 of even
StridedLoadKind Pattern = isStridedLoad(Mask);
if (Pattern == StridedLoadKind::NoPattern)
return SDValue();
SDValue Vec0 = Op.getOperand(0);
SDValue Vec1 = Op.getOperand(1);
SDValue StridePattern = DAG.getConstant(Pattern, dl, MVT::i32);
SDValue Ops[] = { Vec1, Vec0, StridePattern };
return DAG.getNode(HexagonISD::VPACK, dl, VT, Ops);
}
// We used to assert in the "else" part here, but that is bad for Halide
// Halide creates intermediate double registers by interleaving two
// concatenated vector registers. The interleaving requires vector_shuffle
// nodes and we shouldn't barf on a double register result of a
// vector_shuffle because it is most likely an intermediate result.
}
// FIXME: We need to support more general vector shuffles. See
// below the comment from the ARM backend that deals in the general
// case with the vector shuffles. For now, let expand handle these.
return SDValue();
// If the shuffle is not directly supported and it has 4 elements, use
// the PerfectShuffle-generated table to synthesize it from other shuffles.
}
// If BUILD_VECTOR has same base element repeated several times,
// report true.
static bool isCommonSplatElement(BuildVectorSDNode *BVN) {
unsigned NElts = BVN->getNumOperands();
SDValue V0 = BVN->getOperand(0);
for (unsigned i = 1, e = NElts; i != e; ++i) {
if (BVN->getOperand(i) != V0)
return false;
}
return true;
}
// Lower a vector shift. Try to convert
// <VT> = SHL/SRA/SRL <VT> by <VT> to Hexagon specific
// <VT> = SHL/SRA/SRL <VT> by <IT/i32>.
SDValue
HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const {
BuildVectorSDNode *BVN = 0;
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
SDValue V3;
SDLoc dl(Op);
EVT VT = Op.getValueType();
if ((BVN = dyn_cast<BuildVectorSDNode>(V1.getNode())) &&
isCommonSplatElement(BVN))
V3 = V2;
else if ((BVN = dyn_cast<BuildVectorSDNode>(V2.getNode())) &&
isCommonSplatElement(BVN))
V3 = V1;
else
return SDValue();
SDValue CommonSplat = BVN->getOperand(0);
SDValue Result;
if (VT.getSimpleVT() == MVT::v4i16) {
switch (Op.getOpcode()) {
case ISD::SRA:
Result = DAG.getNode(HexagonISD::VSRAH, dl, VT, V3, CommonSplat);
break;
case ISD::SHL:
Result = DAG.getNode(HexagonISD::VSHLH, dl, VT, V3, CommonSplat);
break;
case ISD::SRL:
Result = DAG.getNode(HexagonISD::VSRLH, dl, VT, V3, CommonSplat);
break;
default:
return SDValue();
}
} else if (VT.getSimpleVT() == MVT::v2i32) {
switch (Op.getOpcode()) {
case ISD::SRA:
Result = DAG.getNode(HexagonISD::VSRAW, dl, VT, V3, CommonSplat);
break;
case ISD::SHL:
Result = DAG.getNode(HexagonISD::VSHLW, dl, VT, V3, CommonSplat);
break;
case ISD::SRL:
Result = DAG.getNode(HexagonISD::VSRLW, dl, VT, V3, CommonSplat);
break;
default:
return SDValue();
}
} else {
return SDValue();
}
return DAG.getNode(ISD::BITCAST, dl, VT, Result);
}
SDValue
HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
SDLoc dl(Op);
EVT VT = Op.getValueType();
unsigned Size = VT.getSizeInBits();
// Only handle vectors of 64 bits or shorter.
if (Size > 64)
return SDValue();
APInt APSplatBits, APSplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
unsigned NElts = BVN->getNumOperands();
// Try to generate a SPLAT instruction.
if ((VT.getSimpleVT() == MVT::v4i8 || VT.getSimpleVT() == MVT::v4i16) &&
(BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
HasAnyUndefs, 0, true) && SplatBitSize <= 16)) {
unsigned SplatBits = APSplatBits.getZExtValue();
int32_t SextVal = ((int32_t) (SplatBits << (32 - SplatBitSize)) >>
(32 - SplatBitSize));
return createSplat(DAG, dl, VT, DAG.getConstant(SextVal, dl, MVT::i32));
}
// Try to generate COMBINE to build v2i32 vectors.
if (VT.getSimpleVT() == MVT::v2i32) {
SDValue V0 = BVN->getOperand(0);
SDValue V1 = BVN->getOperand(1);
if (V0.isUndef())
V0 = DAG.getConstant(0, dl, MVT::i32);
if (V1.isUndef())
V1 = DAG.getConstant(0, dl, MVT::i32);
ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(V0);
ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(V1);
// If the element isn't a constant, it is in a register:
// generate a COMBINE Register Register instruction.
if (!C0 || !C1)
return DAG.getNode(HexagonISD::COMBINE, dl, VT, V1, V0);
// If one of the operands is an 8 bit integer constant, generate
// a COMBINE Immediate Immediate instruction.
if (isInt<8>(C0->getSExtValue()) ||
isInt<8>(C1->getSExtValue()))
return DAG.getNode(HexagonISD::COMBINE, dl, VT, V1, V0);
}
// Try to generate a S2_packhl to build v2i16 vectors.
if (VT.getSimpleVT() == MVT::v2i16) {
for (unsigned i = 0, e = NElts; i != e; ++i) {
if (BVN->getOperand(i).isUndef())
continue;
ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(BVN->getOperand(i));
// If the element isn't a constant, it is in a register:
// generate a S2_packhl instruction.
if (!Cst) {
SDValue pack = DAG.getNode(HexagonISD::PACKHL, dl, MVT::v4i16,
BVN->getOperand(1), BVN->getOperand(0));
return DAG.getTargetExtractSubreg(Hexagon::subreg_loreg, dl, MVT::v2i16,
pack);
}
}
}
// In the general case, generate a CONST32 or a CONST64 for constant vectors,
// and insert_vector_elt for all the other cases.
uint64_t Res = 0;
unsigned EltSize = Size / NElts;
SDValue ConstVal;
uint64_t Mask = ~uint64_t(0ULL) >> (64 - EltSize);
bool HasNonConstantElements = false;
for (unsigned i = 0, e = NElts; i != e; ++i) {
// LLVM's BUILD_VECTOR operands are in Little Endian mode, whereas Hexagon's
// combine, const64, etc. are Big Endian.
unsigned OpIdx = NElts - i - 1;
SDValue Operand = BVN->getOperand(OpIdx);
if (Operand.isUndef())
continue;
int64_t Val = 0;
if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Operand))
Val = Cst->getSExtValue();
else
HasNonConstantElements = true;
Val &= Mask;
Res = (Res << EltSize) | Val;
}
if (Size > 64)
return SDValue();
if (Size == 64)
ConstVal = DAG.getConstant(Res, dl, MVT::i64);
else
ConstVal = DAG.getConstant(Res, dl, MVT::i32);
// When there are non constant operands, add them with INSERT_VECTOR_ELT to
// ConstVal, the constant part of the vector.
if (HasNonConstantElements) {
EVT EltVT = VT.getVectorElementType();
SDValue Width = DAG.getConstant(EltVT.getSizeInBits(), dl, MVT::i64);
SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width,
DAG.getConstant(32, dl, MVT::i64));
for (unsigned i = 0, e = NElts; i != e; ++i) {
// LLVM's BUILD_VECTOR operands are in Little Endian mode, whereas Hexagon
// is Big Endian.
unsigned OpIdx = NElts - i - 1;
SDValue Operand = BVN->getOperand(OpIdx);
if (isa<ConstantSDNode>(Operand))
// This operand is already in ConstVal.
continue;
if (VT.getSizeInBits() == 64 &&
Operand.getValueType().getSizeInBits() == 32) {
SDValue C = DAG.getConstant(0, dl, MVT::i32);
Operand = DAG.getNode(HexagonISD::COMBINE, dl, VT, C, Operand);
}
SDValue Idx = DAG.getConstant(OpIdx, dl, MVT::i64);
SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i64, Idx, Width);
SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset);
const SDValue Ops[] = {ConstVal, Operand, Combined};
if (VT.getSizeInBits() == 32)
ConstVal = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i32, Ops);
else
ConstVal = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i64, Ops);
}
}
return DAG.getNode(ISD::BITCAST, dl, VT, ConstVal);
}
SDValue
HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
bool UseHVX = Subtarget.useHVXOps();
EVT VT = Op.getValueType();
unsigned NElts = Op.getNumOperands();
SDValue Vec0 = Op.getOperand(0);
EVT VecVT = Vec0.getValueType();
unsigned Width = VecVT.getSizeInBits();
if (NElts == 2) {
MVT ST = VecVT.getSimpleVT();
// We are trying to concat two v2i16 to a single v4i16, or two v4i8
// into a single v8i8.
if (ST == MVT::v2i16 || ST == MVT::v4i8)
return DAG.getNode(HexagonISD::COMBINE, dl, VT, Op.getOperand(1), Vec0);
if (UseHVX) {
assert((Width == 64*8 && Subtarget.useHVXSglOps()) ||
(Width == 128*8 && Subtarget.useHVXDblOps()));
SDValue Vec1 = Op.getOperand(1);
MVT OpTy = Subtarget.useHVXSglOps() ? MVT::v16i32 : MVT::v32i32;
MVT ReTy = Subtarget.useHVXSglOps() ? MVT::v32i32 : MVT::v64i32;
SDValue B0 = DAG.getNode(ISD::BITCAST, dl, OpTy, Vec0);
SDValue B1 = DAG.getNode(ISD::BITCAST, dl, OpTy, Vec1);
SDValue VC = DAG.getNode(HexagonISD::VCOMBINE, dl, ReTy, B1, B0);
return DAG.getNode(ISD::BITCAST, dl, VT, VC);
}
}
if (VT.getSizeInBits() != 32 && VT.getSizeInBits() != 64)
return SDValue();
SDValue C0 = DAG.getConstant(0, dl, MVT::i64);
SDValue C32 = DAG.getConstant(32, dl, MVT::i64);
SDValue W = DAG.getConstant(Width, dl, MVT::i64);
// Create the "width" part of the argument to insert_rp/insertp_rp.
SDValue S = DAG.getNode(ISD::SHL, dl, MVT::i64, W, C32);
SDValue V = C0;
for (unsigned i = 0, e = NElts; i != e; ++i) {
unsigned N = NElts-i-1;
SDValue OpN = Op.getOperand(N);
if (VT.getSizeInBits() == 64 && OpN.getValueType().getSizeInBits() == 32) {
SDValue C = DAG.getConstant(0, dl, MVT::i32);
OpN = DAG.getNode(HexagonISD::COMBINE, dl, VT, C, OpN);
}
SDValue Idx = DAG.getConstant(N, dl, MVT::i64);
SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i64, Idx, W);
SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, S, Offset);
if (VT.getSizeInBits() == 32)
V = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i32, {V, OpN, Or});
else if (VT.getSizeInBits() == 64)
V = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i64, {V, OpN, Or});
else
return SDValue();
}
return DAG.getNode(ISD::BITCAST, dl, VT, V);
}
SDValue
HexagonTargetLowering::LowerEXTRACT_SUBVECTOR_HVX(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getOperand(0).getValueType();
SDLoc dl(Op);
bool UseHVX = Subtarget.useHVXOps();
bool UseHVXSgl = Subtarget.useHVXSglOps();
// Just in case...
if (!VT.isVector() || !UseHVX)
return SDValue();
EVT ResVT = Op.getValueType();
unsigned ResSize = ResVT.getSizeInBits();
unsigned VectorSizeInBits = UseHVXSgl ? (64 * 8) : (128 * 8);
unsigned OpSize = VT.getSizeInBits();
// We deal only with cases where the result is the vector size
// and the vector operand is a double register.
if (!(ResVT.isByteSized() && ResSize == VectorSizeInBits) ||
!(VT.isByteSized() && OpSize == 2 * VectorSizeInBits))
return SDValue();
ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
if (!Cst)
return SDValue();
unsigned Val = Cst->getZExtValue();
// These two will get lowered to an appropriate EXTRACT_SUBREG in ISel.
if (Val == 0) {
SDValue Vec = Op.getOperand(0);
unsigned Subreg = Hexagon::subreg_loreg;
return DAG.getTargetExtractSubreg(Subreg, dl, ResVT, Vec);
}
if (ResVT.getVectorNumElements() == Val) {
SDValue Vec = Op.getOperand(0);
unsigned Subreg = Hexagon::subreg_hireg;
return DAG.getTargetExtractSubreg(Subreg, dl, ResVT, Vec);
}
return SDValue();
}
SDValue
HexagonTargetLowering::LowerEXTRACT_VECTOR(SDValue Op,
SelectionDAG &DAG) const {
// If we are dealing with EXTRACT_SUBVECTOR on a HVX type, we may
// be able to simplify it to an EXTRACT_SUBREG.
if (Op.getOpcode() == ISD::EXTRACT_SUBVECTOR && Subtarget.useHVXOps() &&
isHvxVectorType(Op.getValueType().getSimpleVT()))
return LowerEXTRACT_SUBVECTOR_HVX(Op, DAG);
EVT VT = Op.getValueType();
int VTN = VT.isVector() ? VT.getVectorNumElements() : 1;
SDLoc dl(Op);
SDValue Idx = Op.getOperand(1);
SDValue Vec = Op.getOperand(0);
EVT VecVT = Vec.getValueType();
EVT EltVT = VecVT.getVectorElementType();
int EltSize = EltVT.getSizeInBits();
SDValue Width = DAG.getConstant(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT ?
EltSize : VTN * EltSize, dl, MVT::i64);
// Constant element number.
if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Idx)) {
uint64_t X = CI->getZExtValue();
SDValue Offset = DAG.getConstant(X * EltSize, dl, MVT::i32);
const SDValue Ops[] = {Vec, Width, Offset};
ConstantSDNode *CW = dyn_cast<ConstantSDNode>(Width);
assert(CW && "Non constant width in LowerEXTRACT_VECTOR");
SDValue N;
MVT SVT = VecVT.getSimpleVT();
uint64_t W = CW->getZExtValue();
if (W == 32) {
// Translate this node into EXTRACT_SUBREG.
unsigned Subreg = (X == 0) ? Hexagon::subreg_loreg : 0;
if (X == 0)
Subreg = Hexagon::subreg_loreg;
else if (SVT == MVT::v2i32 && X == 1)
Subreg = Hexagon::subreg_hireg;
else if (SVT == MVT::v4i16 && X == 2)
Subreg = Hexagon::subreg_hireg;
else if (SVT == MVT::v8i8 && X == 4)
Subreg = Hexagon::subreg_hireg;
else
llvm_unreachable("Bad offset");
N = DAG.getTargetExtractSubreg(Subreg, dl, MVT::i32, Vec);
} else if (SVT.getSizeInBits() == 32) {
N = DAG.getNode(HexagonISD::EXTRACTU, dl, MVT::i32, Ops);
} else if (SVT.getSizeInBits() == 64) {
N = DAG.getNode(HexagonISD::EXTRACTU, dl, MVT::i64, Ops);
if (VT.getSizeInBits() == 32)
N = DAG.getTargetExtractSubreg(Hexagon::subreg_loreg, dl, MVT::i32, N);
} else
return SDValue();
return DAG.getNode(ISD::BITCAST, dl, VT, N);
}
// Variable element number.
SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i32, Idx,
DAG.getConstant(EltSize, dl, MVT::i32));
SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width,
DAG.getConstant(32, dl, MVT::i64));
SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset);
const SDValue Ops[] = {Vec, Combined};
SDValue N;
if (VecVT.getSizeInBits() == 32) {
N = DAG.getNode(HexagonISD::EXTRACTURP, dl, MVT::i32, Ops);
} else {
N = DAG.getNode(HexagonISD::EXTRACTURP, dl, MVT::i64, Ops);
if (VT.getSizeInBits() == 32)
N = DAG.getTargetExtractSubreg(Hexagon::subreg_loreg, dl, MVT::i32, N);
}
return DAG.getNode(ISD::BITCAST, dl, VT, N);
}
SDValue
HexagonTargetLowering::LowerINSERT_VECTOR(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
int VTN = VT.isVector() ? VT.getVectorNumElements() : 1;
SDLoc dl(Op);
SDValue Vec = Op.getOperand(0);
SDValue Val = Op.getOperand(1);
SDValue Idx = Op.getOperand(2);
EVT VecVT = Vec.getValueType();
EVT EltVT = VecVT.getVectorElementType();
int EltSize = EltVT.getSizeInBits();
SDValue Width = DAG.getConstant(Op.getOpcode() == ISD::INSERT_VECTOR_ELT ?
EltSize : VTN * EltSize, dl, MVT::i64);
if (ConstantSDNode *C = cast<ConstantSDNode>(Idx)) {
SDValue Offset = DAG.getConstant(C->getSExtValue() * EltSize, dl, MVT::i32);
const SDValue Ops[] = {Vec, Val, Width, Offset};
SDValue N;
if (VT.getSizeInBits() == 32)
N = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32, Ops);
else if (VT.getSizeInBits() == 64)
N = DAG.getNode(HexagonISD::INSERT, dl, MVT::i64, Ops);
else
return SDValue();
return DAG.getNode(ISD::BITCAST, dl, VT, N);
}
// Variable element number.
SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i32, Idx,
DAG.getConstant(EltSize, dl, MVT::i32));
SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width,
DAG.getConstant(32, dl, MVT::i64));
SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset);
if (VT.getSizeInBits() == 64 &&
Val.getValueType().getSizeInBits() == 32) {
SDValue C = DAG.getConstant(0, dl, MVT::i32);
Val = DAG.getNode(HexagonISD::COMBINE, dl, VT, C, Val);
}
const SDValue Ops[] = {Vec, Val, Combined};
SDValue N;
if (VT.getSizeInBits() == 32)
N = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i32, Ops);
else if (VT.getSizeInBits() == 64)
N = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i64, Ops);
else
return SDValue();
return DAG.getNode(ISD::BITCAST, dl, VT, N);
}
bool
HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
// Assuming the caller does not have either a signext or zeroext modifier, and
// only one value is accepted, any reasonable truncation is allowed.
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
return false;
// FIXME: in principle up to 64-bit could be made safe, but it would be very
// fragile at the moment: any support for multiple value returns would be
// liable to disallow tail calls involving i64 -> iN truncation in many cases.
return Ty1->getPrimitiveSizeInBits() <= 32;
}
SDValue
HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue Offset = Op.getOperand(1);
SDValue Handler = Op.getOperand(2);
SDLoc dl(Op);
auto PtrVT = getPointerTy(DAG.getDataLayout());
// Mark function as containing a call to EH_RETURN.
HexagonMachineFunctionInfo *FuncInfo =
DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
FuncInfo->setHasEHReturn();
unsigned OffsetReg = Hexagon::R28;
SDValue StoreAddr =
DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT),
DAG.getIntPtrConstant(4, dl));
Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo());
Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
// Not needed we already use it as explict input to EH_RETURN.
// MF.getRegInfo().addLiveOut(OffsetReg);
return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
}
SDValue
HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
unsigned Opc = Op.getOpcode();
switch (Opc) {
default:
#ifndef NDEBUG
Op.getNode()->dumpr(&DAG);
if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END)
errs() << "Check for a non-legal type in this operation\n";
#endif
llvm_unreachable("Should not custom lower this!");
case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
case ISD::INSERT_SUBVECTOR: return LowerINSERT_VECTOR(Op, DAG);
case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR(Op, DAG);
case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_VECTOR(Op, DAG);
case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR(Op, DAG);
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
case ISD::SRA:
case ISD::SHL:
case ISD::SRL: return LowerVECTOR_SHIFT(Op, DAG);
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
// Frame & Return address. Currently unimplemented.
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG);
case ISD::GlobalAddress: return LowerGLOBALADDRESS(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG);
// Custom lower some vector loads.
case ISD::LOAD: return LowerLOAD(Op, DAG);
case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
case ISD::SETCC: return LowerSETCC(Op, DAG);
case ISD::VSELECT: return LowerVSELECT(Op, DAG);
case ISD::CTPOP: return LowerCTPOP(Op, DAG);
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
case ISD::INLINEASM: return LowerINLINEASM(Op, DAG);
case ISD::PREFETCH: return LowerPREFETCH(Op, DAG);
}
}
/// Returns relocation base for the given PIC jumptable.
SDValue
HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table,
SelectionDAG &DAG) const {
int Idx = cast<JumpTableSDNode>(Table)->getIndex();
EVT VT = Table.getValueType();
SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T);
}
//===----------------------------------------------------------------------===//
// Inline Assembly Support
//===----------------------------------------------------------------------===//
TargetLowering::ConstraintType
HexagonTargetLowering::getConstraintType(StringRef Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'q':
case 'v':
if (Subtarget.useHVXOps())
return C_Register;
break;
}
}
return TargetLowering::getConstraintType(Constraint);
}
std::pair<unsigned, const TargetRegisterClass*>
HexagonTargetLowering::getRegForInlineAsmConstraint(
const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
bool UseHVX = Subtarget.useHVXOps(), UseHVXDbl = Subtarget.useHVXDblOps();
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'r': // R0-R31
switch (VT.SimpleTy) {
default:
llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type");
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::f32:
return std::make_pair(0U, &Hexagon::IntRegsRegClass);
case MVT::i64:
case MVT::f64:
return std::make_pair(0U, &Hexagon::DoubleRegsRegClass);
}
case 'q': // q0-q3
switch (VT.SimpleTy) {
default:
llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type");
case MVT::v1024i1:
case MVT::v512i1:
case MVT::v32i16:
case MVT::v16i32:
case MVT::v64i8:
case MVT::v8i64:
return std::make_pair(0U, &Hexagon::VecPredRegsRegClass);
}
case 'v': // V0-V31
switch (VT.SimpleTy) {
default:
llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type");
case MVT::v16i32:
case MVT::v32i16:
case MVT::v64i8:
case MVT::v8i64:
return std::make_pair(0U, &Hexagon::VectorRegsRegClass);
case MVT::v32i32:
case MVT::v64i16:
case MVT::v16i64:
case MVT::v128i8:
if (Subtarget.hasV60TOps() && UseHVX && UseHVXDbl)
return std::make_pair(0U, &Hexagon::VectorRegs128BRegClass);
return std::make_pair(0U, &Hexagon::VecDblRegsRegClass);
case MVT::v256i8:
case MVT::v128i16:
case MVT::v64i32:
case MVT::v32i64:
return std::make_pair(0U, &Hexagon::VecDblRegs128BRegClass);
}
default:
llvm_unreachable("Unknown asm register class");
}
}
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}
/// isFPImmLegal - Returns true if the target can instruction select the
/// specified FP immediate natively. If false, the legalizer will
/// materialize the FP immediate as a load from a constant pool.
bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
return Subtarget.hasV5TOps();
}
/// isLegalAddressingMode - Return true if the addressing mode represented by
/// AM is legal for this target, for a load/store of the specified type.
bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS) const {
if (Ty->isSized()) {
// When LSR detects uses of the same base address to access different
// types (e.g. unions), it will assume a conservative type for these
// uses:
// LSR Use: Kind=Address of void in addrspace(4294967295), ...
// The type Ty passed here would then be "void". Skip the alignment
// checks, but do not return false right away, since that confuses
// LSR into crashing.
unsigned A = DL.getABITypeAlignment(Ty);
// The base offset must be a multiple of the alignment.
if ((AM.BaseOffs % A) != 0)
return false;
// The shifted offset must fit in 11 bits.
if (!isInt<11>(AM.BaseOffs >> Log2_32(A)))
return false;
}
// No global is ever allowed as a base.
if (AM.BaseGV)
return false;
int Scale = AM.Scale;
if (Scale < 0)
Scale = -Scale;
switch (Scale) {
case 0: // No scale reg, "r+i", "r", or just "i".
break;
default: // No scaled addressing mode.
return false;
}
return true;
}
/// Return true if folding a constant offset with the given GlobalAddress is
/// legal. It is frequently not legal in PIC relocation models.
bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA)
const {
return HTM.getRelocationModel() == Reloc::Static;
}
/// isLegalICmpImmediate - Return true if the specified immediate is legal
/// icmp immediate, that is the target has icmp instructions which can compare
/// a register against the immediate without having to materialize the
/// immediate into a register.
bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
return Imm >= -512 && Imm <= 511;
}
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
/// for tail call optimization. Targets which want to do tail call
/// optimization should implement this function.
bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
SDValue Callee,
CallingConv::ID CalleeCC,
bool isVarArg,
bool isCalleeStructRet,
bool isCallerStructRet,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
SelectionDAG& DAG) const {
const Function *CallerF = DAG.getMachineFunction().getFunction();
CallingConv::ID CallerCC = CallerF->getCallingConv();
bool CCMatch = CallerCC == CalleeCC;
// ***************************************************************************
// Look for obvious safe cases to perform tail call optimization that do not
// require ABI changes.
// ***************************************************************************
// If this is a tail call via a function pointer, then don't do it!
if (!isa<GlobalAddressSDNode>(Callee) &&
!isa<ExternalSymbolSDNode>(Callee)) {
return false;
}
// Do not optimize if the calling conventions do not match and the conventions
// used are not C or Fast.
if (!CCMatch) {
bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast);
bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast);
// If R & E, then ok.
if (!R || !E)
return false;
}
// Do not tail call optimize vararg calls.
if (isVarArg)
return false;
// Also avoid tail call optimization if either caller or callee uses struct
// return semantics.
if (isCalleeStructRet || isCallerStructRet)
return false;
// In addition to the cases above, we also disable Tail Call Optimization if
// the calling convention code that at least one outgoing argument needs to
// go on the stack. We cannot check that here because at this point that
// information is not available.
return true;
}
/// Returns the target specific optimal type for load and store operations as
/// a result of memset, memcpy, and memmove lowering.
///
/// If DstAlign is zero that means it's safe to destination alignment can
/// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
/// a need to check it against alignment requirement, probably because the
/// source does not need to be loaded. If 'IsMemset' is true, that means it's
/// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
/// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
/// does not need to be loaded. It returns EVT::Other if the type should be
/// determined using generic target-independent logic.
EVT HexagonTargetLowering::getOptimalMemOpType(uint64_t Size,
unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset,
bool MemcpyStrSrc, MachineFunction &MF) const {
auto Aligned = [](unsigned GivenA, unsigned MinA) -> bool {
return (GivenA % MinA) == 0;
};
if (Size >= 8 && Aligned(DstAlign, 8) && (IsMemset || Aligned(SrcAlign, 8)))
return MVT::i64;
if (Size >= 4 && Aligned(DstAlign, 4) && (IsMemset || Aligned(SrcAlign, 4)))
return MVT::i32;
if (Size >= 2 && Aligned(DstAlign, 2) && (IsMemset || Aligned(SrcAlign, 2)))
return MVT::i16;
return MVT::Other;
}
// Return true when the given node fits in a positive half word.
bool llvm::isPositiveHalfWord(SDNode *N) {
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
if (CN && CN->getSExtValue() > 0 && isInt<16>(CN->getSExtValue()))
return true;
switch (N->getOpcode()) {
default:
return false;
case ISD::SIGN_EXTEND_INREG:
return true;
}
}
bool HexagonTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
unsigned AS, unsigned Align, bool *Fast) const {
if (Fast)
*Fast = false;
switch (VT.getSimpleVT().SimpleTy) {
default:
return false;
case MVT::v64i8:
case MVT::v128i8:
case MVT::v256i8:
case MVT::v32i16:
case MVT::v64i16:
case MVT::v128i16:
case MVT::v16i32:
case MVT::v32i32:
case MVT::v64i32:
case MVT::v8i64:
case MVT::v16i64:
case MVT::v32i64:
return true;
}
return false;
}
std::pair<const TargetRegisterClass*, uint8_t>
HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
MVT VT) const {
const TargetRegisterClass *RRC = nullptr;
uint8_t Cost = 1;
switch (VT.SimpleTy) {
default:
return TargetLowering::findRepresentativeClass(TRI, VT);
case MVT::v64i8:
case MVT::v32i16:
case MVT::v16i32:
case MVT::v8i64:
RRC = &Hexagon::VectorRegsRegClass;
break;
case MVT::v128i8:
case MVT::v64i16:
case MVT::v32i32:
case MVT::v16i64:
if (Subtarget.hasV60TOps() && Subtarget.useHVXOps() &&
Subtarget.useHVXDblOps())
RRC = &Hexagon::VectorRegs128BRegClass;
else
RRC = &Hexagon::VecDblRegsRegClass;
break;
case MVT::v256i8:
case MVT::v128i16:
case MVT::v64i32:
case MVT::v32i64:
RRC = &Hexagon::VecDblRegs128BRegClass;
break;
}
return std::make_pair(RRC, Cost);
}
Value *HexagonTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
AtomicOrdering Ord) const {
BasicBlock *BB = Builder.GetInsertBlock();
Module *M = BB->getParent()->getParent();
Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
unsigned SZ = Ty->getPrimitiveSizeInBits();
assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported");
Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked
: Intrinsic::hexagon_L4_loadd_locked;
Value *Fn = Intrinsic::getDeclaration(M, IntID);
return Builder.CreateCall(Fn, Addr, "larx");
}
/// Perform a store-conditional operation to Addr. Return the status of the
/// store. This should be 0 if the store succeeded, non-zero otherwise.
Value *HexagonTargetLowering::emitStoreConditional(IRBuilder<> &Builder,
Value *Val, Value *Addr, AtomicOrdering Ord) const {
BasicBlock *BB = Builder.GetInsertBlock();
Module *M = BB->getParent()->getParent();
Type *Ty = Val->getType();
unsigned SZ = Ty->getPrimitiveSizeInBits();
assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported");
Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked
: Intrinsic::hexagon_S4_stored_locked;
Value *Fn = Intrinsic::getDeclaration(M, IntID);
Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx");
Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), "");
Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext()));
return Ext;
}
TargetLowering::AtomicExpansionKind
HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
// Do not expand loads and stores that don't exceed 64 bits.
return LI->getType()->getPrimitiveSizeInBits() > 64
? AtomicExpansionKind::LLOnly
: AtomicExpansionKind::None;
}
bool HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
// Do not expand loads and stores that don't exceed 64 bits.
return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64;
}
bool HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR(
AtomicCmpXchgInst *AI) const {
const DataLayout &DL = AI->getModule()->getDataLayout();
unsigned Size = DL.getTypeStoreSize(AI->getCompareOperand()->getType());
return Size >= 4 && Size <= 8;
}