forked from OSchip/llvm-project
133 lines
5.0 KiB
Markdown
133 lines
5.0 KiB
Markdown
# Background: declarative builders API
|
|
|
|
The main purpose of the declarative builders API is to provide an intuitive way
|
|
of constructing MLIR programmatically. In the majority of cases, the IR we wish
|
|
to construct exhibits structured control-flow. Declarative builders provide an
|
|
API to make MLIR construction and manipulation very idiomatic, for the
|
|
structured control-flow case, in C++.
|
|
|
|
## ScopedContext
|
|
|
|
`mlir::edsc::ScopedContext` provides an implicit thread-local context,
|
|
supporting a simple declarative API with globally accessible builders. These
|
|
declarative builders are available within the lifetime of a `ScopedContext`.
|
|
|
|
## ValueHandle and IndexHandle
|
|
|
|
`mlir::edsc::ValueHandle` and `mlir::edsc::IndexHandle` provide typed
|
|
abstractions around an `mlir::Value`. These abstractions are "delayed", in the
|
|
sense that they allow separating declaration from definition. They may capture
|
|
IR snippets, as they are built, for programmatic manipulation. Intuitive
|
|
operators are provided to allow concise and idiomatic expressions.
|
|
|
|
```c++
|
|
ValueHandle zero = constant_index(0);
|
|
IndexHandle i, j, k;
|
|
```
|
|
|
|
## Intrinsics
|
|
|
|
`mlir::edsc::ValueBuilder` is a generic wrapper for the `mlir::Builder::create`
|
|
method that operates on `ValueHandle` objects and return a single ValueHandle.
|
|
For instructions that return no values or that return multiple values, the
|
|
`mlir::edsc::InstructionBuilder` can be used. Named intrinsics are provided as
|
|
syntactic sugar to further reduce boilerplate.
|
|
|
|
```c++
|
|
using load = ValueBuilder<LoadOp>;
|
|
using store = InstructionBuilder<StoreOp>;
|
|
```
|
|
|
|
## LoopBuilder and AffineLoopNestBuilder
|
|
|
|
`mlir::edsc::AffineLoopNestBuilder` provides an interface to allow writing
|
|
concise and structured loop nests.
|
|
|
|
```c++
|
|
ScopedContext scope(f.get());
|
|
ValueHandle i(indexType),
|
|
j(indexType),
|
|
lb(f->getArgument(0)),
|
|
ub(f->getArgument(1));
|
|
ValueHandle f7(constant_float(llvm::APFloat(7.0f), f32Type)),
|
|
f13(constant_float(llvm::APFloat(13.0f), f32Type)),
|
|
i7(constant_int(7, 32)),
|
|
i13(constant_int(13, 32));
|
|
AffineLoopNestBuilder(&i, lb, ub, 3)([&]{
|
|
lb * index_t(3) + ub;
|
|
lb + index_t(3);
|
|
AffineLoopNestBuilder(&j, lb, ub, 2)([&]{
|
|
ceilDiv(index_t(31) * floorDiv(i + j * index_t(3), index_t(32)),
|
|
index_t(32));
|
|
((f7 + f13) / f7) % f13 - f7 * f13;
|
|
((i7 + i13) / i7) % i13 - i7 * i13;
|
|
});
|
|
});
|
|
```
|
|
|
|
## IndexedValue
|
|
|
|
`mlir::edsc::IndexedValue` provides an index notation around load and store
|
|
operations on abstract data types by overloading the C++ assignment and
|
|
parenthesis operators. The relevant loads and stores are emitted as appropriate.
|
|
|
|
## Putting it all together
|
|
|
|
With declarative builders, it becomes fairly concise to build rank and
|
|
type-agnostic custom operations even though MLIR does not yet have generic
|
|
types. Here is what a definition of a general pointwise add looks in
|
|
Tablegen with declarative builders.
|
|
|
|
```c++
|
|
def AddOp : Op<"x.add">,
|
|
Arguments<(ins Tensor:$A, Tensor:$B)>,
|
|
Results<(outs Tensor: $C)> {
|
|
code referenceImplementation = [{
|
|
auto ivs = makeIndexHandles(view_A.rank());
|
|
auto pivs = makePIndexHandles(ivs);
|
|
IndexedValue A(arg_A), B(arg_B), C(arg_C);
|
|
AffineLoopNestBuilder(pivs, view_A.getLbs(), view_A.getUbs(), view_A.getSteps())(
|
|
[&]{
|
|
C(ivs) = A(ivs) + B(ivs)
|
|
});
|
|
}];
|
|
}
|
|
```
|
|
|
|
Depending on the function signature on which this emitter is called, the
|
|
generated IR resembles the following, for a 4-D memref of `vector<4xi8>`:
|
|
|
|
```
|
|
// CHECK-LABEL: func @t1(%lhs: memref<3x4x5x6xvector<4xi8>>, %rhs: memref<3x4x5x6xvector<4xi8>>, %result: memref<3x4x5x6xvector<4xi8>>) -> () {
|
|
// CHECK: affine.for {{.*}} = 0 to 3 {
|
|
// CHECK: affine.for {{.*}} = 0 to 4 {
|
|
// CHECK: affine.for {{.*}} = 0 to 5 {
|
|
// CHECK: affine.for {{.*}}= 0 to 6 {
|
|
// CHECK: {{.*}} = load %arg1[{{.*}}] : memref<3x4x5x6xvector<4xi8>>
|
|
// CHECK: {{.*}} = load %arg0[{{.*}}] : memref<3x4x5x6xvector<4xi8>>
|
|
// CHECK: {{.*}} = addi {{.*}} : vector<4xi8>
|
|
// CHECK: store {{.*}}, %arg2[{{.*}}] : memref<3x4x5x6xvector<4xi8>>
|
|
```
|
|
|
|
or the following, for a 0-D `memref<f32>`:
|
|
|
|
```
|
|
// CHECK-LABEL: func @t3(%lhs: memref<f32>, %rhs: memref<f32>, %result: memref<f32>) -> () {
|
|
// CHECK: {{.*}} = load %arg1[] : memref<f32>
|
|
// CHECK: {{.*}} = load %arg0[] : memref<f32>
|
|
// CHECK: {{.*}} = addf {{.*}}, {{.*}} : f32
|
|
// CHECK: store {{.*}}, %arg2[] : memref<f32>
|
|
```
|
|
|
|
Similar APIs are provided to emit the lower-level `loop.for` op with
|
|
`LoopNestBuilder`. See the `builder-api-test.cpp` test for more usage examples.
|
|
|
|
Since the implementation of declarative builders is in C++, it is also available
|
|
to program the IR with an embedded-DSL flavor directly integrated in MLIR. We
|
|
make use of these properties in the tutorial.
|
|
|
|
Spoiler: MLIR also provides Python bindings for these builders, and a
|
|
full-fledged Python machine learning DSL with automatic differentiation
|
|
targeting MLIR was built as an early research collaboration.
|
|
|