llvm-project/mlir/lib/Rewrite/ByteCode.cpp

2195 lines
82 KiB
C++

//===- ByteCode.cpp - Pattern ByteCode Interpreter ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements MLIR to byte-code generation and the interpreter.
//
//===----------------------------------------------------------------------===//
#include "ByteCode.h"
#include "mlir/Analysis/Liveness.h"
#include "mlir/Dialect/PDL/IR/PDLTypes.h"
#include "mlir/Dialect/PDLInterp/IR/PDLInterp.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/RegionGraphTraits.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormatVariadic.h"
#include <numeric>
#define DEBUG_TYPE "pdl-bytecode"
using namespace mlir;
using namespace mlir::detail;
//===----------------------------------------------------------------------===//
// PDLByteCodePattern
//===----------------------------------------------------------------------===//
PDLByteCodePattern PDLByteCodePattern::create(pdl_interp::RecordMatchOp matchOp,
ByteCodeAddr rewriterAddr) {
SmallVector<StringRef, 8> generatedOps;
if (ArrayAttr generatedOpsAttr = matchOp.generatedOpsAttr())
generatedOps =
llvm::to_vector<8>(generatedOpsAttr.getAsValueRange<StringAttr>());
PatternBenefit benefit = matchOp.benefit();
MLIRContext *ctx = matchOp.getContext();
// Check to see if this is pattern matches a specific operation type.
if (Optional<StringRef> rootKind = matchOp.rootKind())
return PDLByteCodePattern(rewriterAddr, *rootKind, benefit, ctx,
generatedOps);
return PDLByteCodePattern(rewriterAddr, MatchAnyOpTypeTag(), benefit, ctx,
generatedOps);
}
//===----------------------------------------------------------------------===//
// PDLByteCodeMutableState
//===----------------------------------------------------------------------===//
/// Set the new benefit for a bytecode pattern. The `patternIndex` corresponds
/// to the position of the pattern within the range returned by
/// `PDLByteCode::getPatterns`.
void PDLByteCodeMutableState::updatePatternBenefit(unsigned patternIndex,
PatternBenefit benefit) {
currentPatternBenefits[patternIndex] = benefit;
}
/// Cleanup any allocated state after a full match/rewrite has been completed.
/// This method should be called irregardless of whether the match+rewrite was a
/// success or not.
void PDLByteCodeMutableState::cleanupAfterMatchAndRewrite() {
allocatedTypeRangeMemory.clear();
allocatedValueRangeMemory.clear();
}
//===----------------------------------------------------------------------===//
// Bytecode OpCodes
//===----------------------------------------------------------------------===//
namespace {
enum OpCode : ByteCodeField {
/// Apply an externally registered constraint.
ApplyConstraint,
/// Apply an externally registered rewrite.
ApplyRewrite,
/// Check if two generic values are equal.
AreEqual,
/// Check if two ranges are equal.
AreRangesEqual,
/// Unconditional branch.
Branch,
/// Compare the operand count of an operation with a constant.
CheckOperandCount,
/// Compare the name of an operation with a constant.
CheckOperationName,
/// Compare the result count of an operation with a constant.
CheckResultCount,
/// Compare a range of types to a constant range of types.
CheckTypes,
/// Continue to the next iteration of a loop.
Continue,
/// Create an operation.
CreateOperation,
/// Create a range of types.
CreateTypes,
/// Erase an operation.
EraseOp,
/// Extract the op from a range at the specified index.
ExtractOp,
/// Extract the type from a range at the specified index.
ExtractType,
/// Extract the value from a range at the specified index.
ExtractValue,
/// Terminate a matcher or rewrite sequence.
Finalize,
/// Iterate over a range of values.
ForEach,
/// Get a specific attribute of an operation.
GetAttribute,
/// Get the type of an attribute.
GetAttributeType,
/// Get the defining operation of a value.
GetDefiningOp,
/// Get a specific operand of an operation.
GetOperand0,
GetOperand1,
GetOperand2,
GetOperand3,
GetOperandN,
/// Get a specific operand group of an operation.
GetOperands,
/// Get a specific result of an operation.
GetResult0,
GetResult1,
GetResult2,
GetResult3,
GetResultN,
/// Get a specific result group of an operation.
GetResults,
/// Get the users of a value or a range of values.
GetUsers,
/// Get the type of a value.
GetValueType,
/// Get the types of a value range.
GetValueRangeTypes,
/// Check if a generic value is not null.
IsNotNull,
/// Record a successful pattern match.
RecordMatch,
/// Replace an operation.
ReplaceOp,
/// Compare an attribute with a set of constants.
SwitchAttribute,
/// Compare the operand count of an operation with a set of constants.
SwitchOperandCount,
/// Compare the name of an operation with a set of constants.
SwitchOperationName,
/// Compare the result count of an operation with a set of constants.
SwitchResultCount,
/// Compare a type with a set of constants.
SwitchType,
/// Compare a range of types with a set of constants.
SwitchTypes,
};
} // namespace
//===----------------------------------------------------------------------===//
// ByteCode Generation
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Generator
namespace {
struct ByteCodeLiveRange;
struct ByteCodeWriter;
/// Check if the given class `T` can be converted to an opaque pointer.
template <typename T, typename... Args>
using has_pointer_traits = decltype(std::declval<T>().getAsOpaquePointer());
/// This class represents the main generator for the pattern bytecode.
class Generator {
public:
Generator(MLIRContext *ctx, std::vector<const void *> &uniquedData,
SmallVectorImpl<ByteCodeField> &matcherByteCode,
SmallVectorImpl<ByteCodeField> &rewriterByteCode,
SmallVectorImpl<PDLByteCodePattern> &patterns,
ByteCodeField &maxValueMemoryIndex,
ByteCodeField &maxOpRangeMemoryIndex,
ByteCodeField &maxTypeRangeMemoryIndex,
ByteCodeField &maxValueRangeMemoryIndex,
ByteCodeField &maxLoopLevel,
llvm::StringMap<PDLConstraintFunction> &constraintFns,
llvm::StringMap<PDLRewriteFunction> &rewriteFns)
: ctx(ctx), uniquedData(uniquedData), matcherByteCode(matcherByteCode),
rewriterByteCode(rewriterByteCode), patterns(patterns),
maxValueMemoryIndex(maxValueMemoryIndex),
maxOpRangeMemoryIndex(maxOpRangeMemoryIndex),
maxTypeRangeMemoryIndex(maxTypeRangeMemoryIndex),
maxValueRangeMemoryIndex(maxValueRangeMemoryIndex),
maxLoopLevel(maxLoopLevel) {
for (auto it : llvm::enumerate(constraintFns))
constraintToMemIndex.try_emplace(it.value().first(), it.index());
for (auto it : llvm::enumerate(rewriteFns))
externalRewriterToMemIndex.try_emplace(it.value().first(), it.index());
}
/// Generate the bytecode for the given PDL interpreter module.
void generate(ModuleOp module);
/// Return the memory index to use for the given value.
ByteCodeField &getMemIndex(Value value) {
assert(valueToMemIndex.count(value) &&
"expected memory index to be assigned");
return valueToMemIndex[value];
}
/// Return the range memory index used to store the given range value.
ByteCodeField &getRangeStorageIndex(Value value) {
assert(valueToRangeIndex.count(value) &&
"expected range index to be assigned");
return valueToRangeIndex[value];
}
/// Return an index to use when referring to the given data that is uniqued in
/// the MLIR context.
template <typename T>
std::enable_if_t<!std::is_convertible<T, Value>::value, ByteCodeField &>
getMemIndex(T val) {
const void *opaqueVal = val.getAsOpaquePointer();
// Get or insert a reference to this value.
auto it = uniquedDataToMemIndex.try_emplace(
opaqueVal, maxValueMemoryIndex + uniquedData.size());
if (it.second)
uniquedData.push_back(opaqueVal);
return it.first->second;
}
private:
/// Allocate memory indices for the results of operations within the matcher
/// and rewriters.
void allocateMemoryIndices(FuncOp matcherFunc, ModuleOp rewriterModule);
/// Generate the bytecode for the given operation.
void generate(Region *region, ByteCodeWriter &writer);
void generate(Operation *op, ByteCodeWriter &writer);
void generate(pdl_interp::ApplyConstraintOp op, ByteCodeWriter &writer);
void generate(pdl_interp::ApplyRewriteOp op, ByteCodeWriter &writer);
void generate(pdl_interp::AreEqualOp op, ByteCodeWriter &writer);
void generate(pdl_interp::BranchOp op, ByteCodeWriter &writer);
void generate(pdl_interp::CheckAttributeOp op, ByteCodeWriter &writer);
void generate(pdl_interp::CheckOperandCountOp op, ByteCodeWriter &writer);
void generate(pdl_interp::CheckOperationNameOp op, ByteCodeWriter &writer);
void generate(pdl_interp::CheckResultCountOp op, ByteCodeWriter &writer);
void generate(pdl_interp::CheckTypeOp op, ByteCodeWriter &writer);
void generate(pdl_interp::CheckTypesOp op, ByteCodeWriter &writer);
void generate(pdl_interp::ContinueOp op, ByteCodeWriter &writer);
void generate(pdl_interp::CreateAttributeOp op, ByteCodeWriter &writer);
void generate(pdl_interp::CreateOperationOp op, ByteCodeWriter &writer);
void generate(pdl_interp::CreateTypeOp op, ByteCodeWriter &writer);
void generate(pdl_interp::CreateTypesOp op, ByteCodeWriter &writer);
void generate(pdl_interp::EraseOp op, ByteCodeWriter &writer);
void generate(pdl_interp::ExtractOp op, ByteCodeWriter &writer);
void generate(pdl_interp::FinalizeOp op, ByteCodeWriter &writer);
void generate(pdl_interp::ForEachOp op, ByteCodeWriter &writer);
void generate(pdl_interp::GetAttributeOp op, ByteCodeWriter &writer);
void generate(pdl_interp::GetAttributeTypeOp op, ByteCodeWriter &writer);
void generate(pdl_interp::GetDefiningOpOp op, ByteCodeWriter &writer);
void generate(pdl_interp::GetOperandOp op, ByteCodeWriter &writer);
void generate(pdl_interp::GetOperandsOp op, ByteCodeWriter &writer);
void generate(pdl_interp::GetResultOp op, ByteCodeWriter &writer);
void generate(pdl_interp::GetResultsOp op, ByteCodeWriter &writer);
void generate(pdl_interp::GetUsersOp op, ByteCodeWriter &writer);
void generate(pdl_interp::GetValueTypeOp op, ByteCodeWriter &writer);
void generate(pdl_interp::InferredTypesOp op, ByteCodeWriter &writer);
void generate(pdl_interp::IsNotNullOp op, ByteCodeWriter &writer);
void generate(pdl_interp::RecordMatchOp op, ByteCodeWriter &writer);
void generate(pdl_interp::ReplaceOp op, ByteCodeWriter &writer);
void generate(pdl_interp::SwitchAttributeOp op, ByteCodeWriter &writer);
void generate(pdl_interp::SwitchTypeOp op, ByteCodeWriter &writer);
void generate(pdl_interp::SwitchTypesOp op, ByteCodeWriter &writer);
void generate(pdl_interp::SwitchOperandCountOp op, ByteCodeWriter &writer);
void generate(pdl_interp::SwitchOperationNameOp op, ByteCodeWriter &writer);
void generate(pdl_interp::SwitchResultCountOp op, ByteCodeWriter &writer);
/// Mapping from value to its corresponding memory index.
DenseMap<Value, ByteCodeField> valueToMemIndex;
/// Mapping from a range value to its corresponding range storage index.
DenseMap<Value, ByteCodeField> valueToRangeIndex;
/// Mapping from the name of an externally registered rewrite to its index in
/// the bytecode registry.
llvm::StringMap<ByteCodeField> externalRewriterToMemIndex;
/// Mapping from the name of an externally registered constraint to its index
/// in the bytecode registry.
llvm::StringMap<ByteCodeField> constraintToMemIndex;
/// Mapping from rewriter function name to the bytecode address of the
/// rewriter function in byte.
llvm::StringMap<ByteCodeAddr> rewriterToAddr;
/// Mapping from a uniqued storage object to its memory index within
/// `uniquedData`.
DenseMap<const void *, ByteCodeField> uniquedDataToMemIndex;
/// The current level of the foreach loop.
ByteCodeField curLoopLevel = 0;
/// The current MLIR context.
MLIRContext *ctx;
/// Mapping from block to its address.
DenseMap<Block *, ByteCodeAddr> blockToAddr;
/// Data of the ByteCode class to be populated.
std::vector<const void *> &uniquedData;
SmallVectorImpl<ByteCodeField> &matcherByteCode;
SmallVectorImpl<ByteCodeField> &rewriterByteCode;
SmallVectorImpl<PDLByteCodePattern> &patterns;
ByteCodeField &maxValueMemoryIndex;
ByteCodeField &maxOpRangeMemoryIndex;
ByteCodeField &maxTypeRangeMemoryIndex;
ByteCodeField &maxValueRangeMemoryIndex;
ByteCodeField &maxLoopLevel;
};
/// This class provides utilities for writing a bytecode stream.
struct ByteCodeWriter {
ByteCodeWriter(SmallVectorImpl<ByteCodeField> &bytecode, Generator &generator)
: bytecode(bytecode), generator(generator) {}
/// Append a field to the bytecode.
void append(ByteCodeField field) { bytecode.push_back(field); }
void append(OpCode opCode) { bytecode.push_back(opCode); }
/// Append an address to the bytecode.
void append(ByteCodeAddr field) {
static_assert((sizeof(ByteCodeAddr) / sizeof(ByteCodeField)) == 2,
"unexpected ByteCode address size");
ByteCodeField fieldParts[2];
std::memcpy(fieldParts, &field, sizeof(ByteCodeAddr));
bytecode.append({fieldParts[0], fieldParts[1]});
}
/// Append a single successor to the bytecode, the exact address will need to
/// be resolved later.
void append(Block *successor) {
// Add back a reference to the successor so that the address can be resolved
// later.
unresolvedSuccessorRefs[successor].push_back(bytecode.size());
append(ByteCodeAddr(0));
}
/// Append a successor range to the bytecode, the exact address will need to
/// be resolved later.
void append(SuccessorRange successors) {
for (Block *successor : successors)
append(successor);
}
/// Append a range of values that will be read as generic PDLValues.
void appendPDLValueList(OperandRange values) {
bytecode.push_back(values.size());
for (Value value : values)
appendPDLValue(value);
}
/// Append a value as a PDLValue.
void appendPDLValue(Value value) {
appendPDLValueKind(value);
append(value);
}
/// Append the PDLValue::Kind of the given value.
void appendPDLValueKind(Value value) { appendPDLValueKind(value.getType()); }
/// Append the PDLValue::Kind of the given type.
void appendPDLValueKind(Type type) {
PDLValue::Kind kind =
TypeSwitch<Type, PDLValue::Kind>(type)
.Case<pdl::AttributeType>(
[](Type) { return PDLValue::Kind::Attribute; })
.Case<pdl::OperationType>(
[](Type) { return PDLValue::Kind::Operation; })
.Case<pdl::RangeType>([](pdl::RangeType rangeTy) {
if (rangeTy.getElementType().isa<pdl::TypeType>())
return PDLValue::Kind::TypeRange;
return PDLValue::Kind::ValueRange;
})
.Case<pdl::TypeType>([](Type) { return PDLValue::Kind::Type; })
.Case<pdl::ValueType>([](Type) { return PDLValue::Kind::Value; });
bytecode.push_back(static_cast<ByteCodeField>(kind));
}
/// Append a value that will be stored in a memory slot and not inline within
/// the bytecode.
template <typename T>
std::enable_if_t<llvm::is_detected<has_pointer_traits, T>::value ||
std::is_pointer<T>::value>
append(T value) {
bytecode.push_back(generator.getMemIndex(value));
}
/// Append a range of values.
template <typename T, typename IteratorT = llvm::detail::IterOfRange<T>>
std::enable_if_t<!llvm::is_detected<has_pointer_traits, T>::value>
append(T range) {
bytecode.push_back(llvm::size(range));
for (auto it : range)
append(it);
}
/// Append a variadic number of fields to the bytecode.
template <typename FieldTy, typename Field2Ty, typename... FieldTys>
void append(FieldTy field, Field2Ty field2, FieldTys... fields) {
append(field);
append(field2, fields...);
}
/// Appends a value as a pointer, stored inline within the bytecode.
template <typename T>
std::enable_if_t<llvm::is_detected<has_pointer_traits, T>::value>
appendInline(T value) {
constexpr size_t numParts = sizeof(const void *) / sizeof(ByteCodeField);
const void *pointer = value.getAsOpaquePointer();
ByteCodeField fieldParts[numParts];
std::memcpy(fieldParts, &pointer, sizeof(const void *));
bytecode.append(fieldParts, fieldParts + numParts);
}
/// Successor references in the bytecode that have yet to be resolved.
DenseMap<Block *, SmallVector<unsigned, 4>> unresolvedSuccessorRefs;
/// The underlying bytecode buffer.
SmallVectorImpl<ByteCodeField> &bytecode;
/// The main generator producing PDL.
Generator &generator;
};
/// This class represents a live range of PDL Interpreter values, containing
/// information about when values are live within a match/rewrite.
struct ByteCodeLiveRange {
using Set = llvm::IntervalMap<uint64_t, char, 16>;
using Allocator = Set::Allocator;
ByteCodeLiveRange(Allocator &alloc) : liveness(new Set(alloc)) {}
/// Union this live range with the one provided.
void unionWith(const ByteCodeLiveRange &rhs) {
for (auto it = rhs.liveness->begin(), e = rhs.liveness->end(); it != e;
++it)
liveness->insert(it.start(), it.stop(), /*dummyValue*/ 0);
}
/// Returns true if this range overlaps with the one provided.
bool overlaps(const ByteCodeLiveRange &rhs) const {
return llvm::IntervalMapOverlaps<Set, Set>(*liveness, *rhs.liveness)
.valid();
}
/// A map representing the ranges of the match/rewrite that a value is live in
/// the interpreter.
///
/// We use std::unique_ptr here, because IntervalMap does not provide a
/// correct copy or move constructor. We can eliminate the pointer once
/// https://reviews.llvm.org/D113240 lands.
std::unique_ptr<llvm::IntervalMap<uint64_t, char, 16>> liveness;
/// The operation range storage index for this range.
Optional<unsigned> opRangeIndex;
/// The type range storage index for this range.
Optional<unsigned> typeRangeIndex;
/// The value range storage index for this range.
Optional<unsigned> valueRangeIndex;
};
} // namespace
void Generator::generate(ModuleOp module) {
FuncOp matcherFunc = module.lookupSymbol<FuncOp>(
pdl_interp::PDLInterpDialect::getMatcherFunctionName());
ModuleOp rewriterModule = module.lookupSymbol<ModuleOp>(
pdl_interp::PDLInterpDialect::getRewriterModuleName());
assert(matcherFunc && rewriterModule && "invalid PDL Interpreter module");
// Allocate memory indices for the results of operations within the matcher
// and rewriters.
allocateMemoryIndices(matcherFunc, rewriterModule);
// Generate code for the rewriter functions.
ByteCodeWriter rewriterByteCodeWriter(rewriterByteCode, *this);
for (FuncOp rewriterFunc : rewriterModule.getOps<FuncOp>()) {
rewriterToAddr.try_emplace(rewriterFunc.getName(), rewriterByteCode.size());
for (Operation &op : rewriterFunc.getOps())
generate(&op, rewriterByteCodeWriter);
}
assert(rewriterByteCodeWriter.unresolvedSuccessorRefs.empty() &&
"unexpected branches in rewriter function");
// Generate code for the matcher function.
ByteCodeWriter matcherByteCodeWriter(matcherByteCode, *this);
generate(&matcherFunc.getBody(), matcherByteCodeWriter);
// Resolve successor references in the matcher.
for (auto &it : matcherByteCodeWriter.unresolvedSuccessorRefs) {
ByteCodeAddr addr = blockToAddr[it.first];
for (unsigned offsetToFix : it.second)
std::memcpy(&matcherByteCode[offsetToFix], &addr, sizeof(ByteCodeAddr));
}
}
void Generator::allocateMemoryIndices(FuncOp matcherFunc,
ModuleOp rewriterModule) {
// Rewriters use simplistic allocation scheme that simply assigns an index to
// each result.
for (FuncOp rewriterFunc : rewriterModule.getOps<FuncOp>()) {
ByteCodeField index = 0, typeRangeIndex = 0, valueRangeIndex = 0;
auto processRewriterValue = [&](Value val) {
valueToMemIndex.try_emplace(val, index++);
if (pdl::RangeType rangeType = val.getType().dyn_cast<pdl::RangeType>()) {
Type elementTy = rangeType.getElementType();
if (elementTy.isa<pdl::TypeType>())
valueToRangeIndex.try_emplace(val, typeRangeIndex++);
else if (elementTy.isa<pdl::ValueType>())
valueToRangeIndex.try_emplace(val, valueRangeIndex++);
}
};
for (BlockArgument arg : rewriterFunc.getArguments())
processRewriterValue(arg);
rewriterFunc.getBody().walk([&](Operation *op) {
for (Value result : op->getResults())
processRewriterValue(result);
});
if (index > maxValueMemoryIndex)
maxValueMemoryIndex = index;
if (typeRangeIndex > maxTypeRangeMemoryIndex)
maxTypeRangeMemoryIndex = typeRangeIndex;
if (valueRangeIndex > maxValueRangeMemoryIndex)
maxValueRangeMemoryIndex = valueRangeIndex;
}
// The matcher function uses a more sophisticated numbering that tries to
// minimize the number of memory indices assigned. This is done by determining
// a live range of the values within the matcher, then the allocation is just
// finding the minimal number of overlapping live ranges. This is essentially
// a simplified form of register allocation where we don't necessarily have a
// limited number of registers, but we still want to minimize the number used.
DenseMap<Operation *, unsigned> opToIndex;
matcherFunc.getBody().walk([&](Operation *op) {
opToIndex.insert(std::make_pair(op, opToIndex.size()));
});
// Liveness info for each of the defs within the matcher.
ByteCodeLiveRange::Allocator allocator;
DenseMap<Value, ByteCodeLiveRange> valueDefRanges;
// Assign the root operation being matched to slot 0.
BlockArgument rootOpArg = matcherFunc.getArgument(0);
valueToMemIndex[rootOpArg] = 0;
// Walk each of the blocks, computing the def interval that the value is used.
Liveness matcherLiveness(matcherFunc);
matcherFunc->walk([&](Block *block) {
const LivenessBlockInfo *info = matcherLiveness.getLiveness(block);
assert(info && "expected liveness info for block");
auto processValue = [&](Value value, Operation *firstUseOrDef) {
// We don't need to process the root op argument, this value is always
// assigned to the first memory slot.
if (value == rootOpArg)
return;
// Set indices for the range of this block that the value is used.
auto defRangeIt = valueDefRanges.try_emplace(value, allocator).first;
defRangeIt->second.liveness->insert(
opToIndex[firstUseOrDef],
opToIndex[info->getEndOperation(value, firstUseOrDef)],
/*dummyValue*/ 0);
// Check to see if this value is a range type.
if (auto rangeTy = value.getType().dyn_cast<pdl::RangeType>()) {
Type eleType = rangeTy.getElementType();
if (eleType.isa<pdl::OperationType>())
defRangeIt->second.opRangeIndex = 0;
else if (eleType.isa<pdl::TypeType>())
defRangeIt->second.typeRangeIndex = 0;
else if (eleType.isa<pdl::ValueType>())
defRangeIt->second.valueRangeIndex = 0;
}
};
// Process the live-ins of this block.
for (Value liveIn : info->in()) {
// Only process the value if it has been defined in the current region.
// Other values that span across pdl_interp.foreach will be added higher
// up. This ensures that the we keep them alive for the entire duration
// of the loop.
if (liveIn.getParentRegion() == block->getParent())
processValue(liveIn, &block->front());
}
// Process the block arguments for the entry block (those are not live-in).
if (block->isEntryBlock()) {
for (Value argument : block->getArguments())
processValue(argument, &block->front());
}
// Process any new defs within this block.
for (Operation &op : *block)
for (Value result : op.getResults())
processValue(result, &op);
});
// Greedily allocate memory slots using the computed def live ranges.
std::vector<ByteCodeLiveRange> allocatedIndices;
// The number of memory indices currently allocated (and its next value).
// Recall that the root gets allocated memory index 0.
ByteCodeField numIndices = 1;
// The number of memory ranges of various types (and their next values).
ByteCodeField numOpRanges = 0, numTypeRanges = 0, numValueRanges = 0;
for (auto &defIt : valueDefRanges) {
ByteCodeField &memIndex = valueToMemIndex[defIt.first];
ByteCodeLiveRange &defRange = defIt.second;
// Try to allocate to an existing index.
for (auto existingIndexIt : llvm::enumerate(allocatedIndices)) {
ByteCodeLiveRange &existingRange = existingIndexIt.value();
if (!defRange.overlaps(existingRange)) {
existingRange.unionWith(defRange);
memIndex = existingIndexIt.index() + 1;
if (defRange.opRangeIndex) {
if (!existingRange.opRangeIndex)
existingRange.opRangeIndex = numOpRanges++;
valueToRangeIndex[defIt.first] = *existingRange.opRangeIndex;
} else if (defRange.typeRangeIndex) {
if (!existingRange.typeRangeIndex)
existingRange.typeRangeIndex = numTypeRanges++;
valueToRangeIndex[defIt.first] = *existingRange.typeRangeIndex;
} else if (defRange.valueRangeIndex) {
if (!existingRange.valueRangeIndex)
existingRange.valueRangeIndex = numValueRanges++;
valueToRangeIndex[defIt.first] = *existingRange.valueRangeIndex;
}
break;
}
}
// If no existing index could be used, add a new one.
if (memIndex == 0) {
allocatedIndices.emplace_back(allocator);
ByteCodeLiveRange &newRange = allocatedIndices.back();
newRange.unionWith(defRange);
// Allocate an index for op/type/value ranges.
if (defRange.opRangeIndex) {
newRange.opRangeIndex = numOpRanges;
valueToRangeIndex[defIt.first] = numOpRanges++;
} else if (defRange.typeRangeIndex) {
newRange.typeRangeIndex = numTypeRanges;
valueToRangeIndex[defIt.first] = numTypeRanges++;
} else if (defRange.valueRangeIndex) {
newRange.valueRangeIndex = numValueRanges;
valueToRangeIndex[defIt.first] = numValueRanges++;
}
memIndex = allocatedIndices.size();
++numIndices;
}
}
// Print the index usage and ensure that we did not run out of index space.
LLVM_DEBUG({
llvm::dbgs() << "Allocated " << allocatedIndices.size() << " indices "
<< "(down from initial " << valueDefRanges.size() << ").\n";
});
assert(allocatedIndices.size() <= std::numeric_limits<ByteCodeField>::max() &&
"Ran out of memory for allocated indices");
// Update the max number of indices.
if (numIndices > maxValueMemoryIndex)
maxValueMemoryIndex = numIndices;
if (numOpRanges > maxOpRangeMemoryIndex)
maxOpRangeMemoryIndex = numOpRanges;
if (numTypeRanges > maxTypeRangeMemoryIndex)
maxTypeRangeMemoryIndex = numTypeRanges;
if (numValueRanges > maxValueRangeMemoryIndex)
maxValueRangeMemoryIndex = numValueRanges;
}
void Generator::generate(Region *region, ByteCodeWriter &writer) {
llvm::ReversePostOrderTraversal<Region *> rpot(region);
for (Block *block : rpot) {
// Keep track of where this block begins within the matcher function.
blockToAddr.try_emplace(block, matcherByteCode.size());
for (Operation &op : *block)
generate(&op, writer);
}
}
void Generator::generate(Operation *op, ByteCodeWriter &writer) {
LLVM_DEBUG({
// The following list must contain all the operations that do not
// produce any bytecode.
if (!isa<pdl_interp::CreateAttributeOp, pdl_interp::CreateTypeOp,
pdl_interp::InferredTypesOp>(op))
writer.appendInline(op->getLoc());
});
TypeSwitch<Operation *>(op)
.Case<pdl_interp::ApplyConstraintOp, pdl_interp::ApplyRewriteOp,
pdl_interp::AreEqualOp, pdl_interp::BranchOp,
pdl_interp::CheckAttributeOp, pdl_interp::CheckOperandCountOp,
pdl_interp::CheckOperationNameOp, pdl_interp::CheckResultCountOp,
pdl_interp::CheckTypeOp, pdl_interp::CheckTypesOp,
pdl_interp::ContinueOp, pdl_interp::CreateAttributeOp,
pdl_interp::CreateOperationOp, pdl_interp::CreateTypeOp,
pdl_interp::CreateTypesOp, pdl_interp::EraseOp,
pdl_interp::ExtractOp, pdl_interp::FinalizeOp,
pdl_interp::ForEachOp, pdl_interp::GetAttributeOp,
pdl_interp::GetAttributeTypeOp, pdl_interp::GetDefiningOpOp,
pdl_interp::GetOperandOp, pdl_interp::GetOperandsOp,
pdl_interp::GetResultOp, pdl_interp::GetResultsOp,
pdl_interp::GetUsersOp, pdl_interp::GetValueTypeOp,
pdl_interp::InferredTypesOp, pdl_interp::IsNotNullOp,
pdl_interp::RecordMatchOp, pdl_interp::ReplaceOp,
pdl_interp::SwitchAttributeOp, pdl_interp::SwitchTypeOp,
pdl_interp::SwitchTypesOp, pdl_interp::SwitchOperandCountOp,
pdl_interp::SwitchOperationNameOp, pdl_interp::SwitchResultCountOp>(
[&](auto interpOp) { this->generate(interpOp, writer); })
.Default([](Operation *) {
llvm_unreachable("unknown `pdl_interp` operation");
});
}
void Generator::generate(pdl_interp::ApplyConstraintOp op,
ByteCodeWriter &writer) {
assert(constraintToMemIndex.count(op.name()) &&
"expected index for constraint function");
writer.append(OpCode::ApplyConstraint, constraintToMemIndex[op.name()],
op.constParamsAttr());
writer.appendPDLValueList(op.args());
writer.append(op.getSuccessors());
}
void Generator::generate(pdl_interp::ApplyRewriteOp op,
ByteCodeWriter &writer) {
assert(externalRewriterToMemIndex.count(op.name()) &&
"expected index for rewrite function");
writer.append(OpCode::ApplyRewrite, externalRewriterToMemIndex[op.name()],
op.constParamsAttr());
writer.appendPDLValueList(op.args());
ResultRange results = op.results();
writer.append(ByteCodeField(results.size()));
for (Value result : results) {
// In debug mode we also record the expected kind of the result, so that we
// can provide extra verification of the native rewrite function.
#ifndef NDEBUG
writer.appendPDLValueKind(result);
#endif
// Range results also need to append the range storage index.
if (result.getType().isa<pdl::RangeType>())
writer.append(getRangeStorageIndex(result));
writer.append(result);
}
}
void Generator::generate(pdl_interp::AreEqualOp op, ByteCodeWriter &writer) {
Value lhs = op.lhs();
if (lhs.getType().isa<pdl::RangeType>()) {
writer.append(OpCode::AreRangesEqual);
writer.appendPDLValueKind(lhs);
writer.append(op.lhs(), op.rhs(), op.getSuccessors());
return;
}
writer.append(OpCode::AreEqual, lhs, op.rhs(), op.getSuccessors());
}
void Generator::generate(pdl_interp::BranchOp op, ByteCodeWriter &writer) {
writer.append(OpCode::Branch, SuccessorRange(op.getOperation()));
}
void Generator::generate(pdl_interp::CheckAttributeOp op,
ByteCodeWriter &writer) {
writer.append(OpCode::AreEqual, op.attribute(), op.constantValue(),
op.getSuccessors());
}
void Generator::generate(pdl_interp::CheckOperandCountOp op,
ByteCodeWriter &writer) {
writer.append(OpCode::CheckOperandCount, op.operation(), op.count(),
static_cast<ByteCodeField>(op.compareAtLeast()),
op.getSuccessors());
}
void Generator::generate(pdl_interp::CheckOperationNameOp op,
ByteCodeWriter &writer) {
writer.append(OpCode::CheckOperationName, op.operation(),
OperationName(op.name(), ctx), op.getSuccessors());
}
void Generator::generate(pdl_interp::CheckResultCountOp op,
ByteCodeWriter &writer) {
writer.append(OpCode::CheckResultCount, op.operation(), op.count(),
static_cast<ByteCodeField>(op.compareAtLeast()),
op.getSuccessors());
}
void Generator::generate(pdl_interp::CheckTypeOp op, ByteCodeWriter &writer) {
writer.append(OpCode::AreEqual, op.value(), op.type(), op.getSuccessors());
}
void Generator::generate(pdl_interp::CheckTypesOp op, ByteCodeWriter &writer) {
writer.append(OpCode::CheckTypes, op.value(), op.types(), op.getSuccessors());
}
void Generator::generate(pdl_interp::ContinueOp op, ByteCodeWriter &writer) {
assert(curLoopLevel > 0 && "encountered pdl_interp.continue at top level");
writer.append(OpCode::Continue, ByteCodeField(curLoopLevel - 1));
}
void Generator::generate(pdl_interp::CreateAttributeOp op,
ByteCodeWriter &writer) {
// Simply repoint the memory index of the result to the constant.
getMemIndex(op.attribute()) = getMemIndex(op.value());
}
void Generator::generate(pdl_interp::CreateOperationOp op,
ByteCodeWriter &writer) {
writer.append(OpCode::CreateOperation, op.operation(),
OperationName(op.name(), ctx));
writer.appendPDLValueList(op.operands());
// Add the attributes.
OperandRange attributes = op.attributes();
writer.append(static_cast<ByteCodeField>(attributes.size()));
for (auto it : llvm::zip(op.attributeNames(), op.attributes()))
writer.append(std::get<0>(it), std::get<1>(it));
writer.appendPDLValueList(op.types());
}
void Generator::generate(pdl_interp::CreateTypeOp op, ByteCodeWriter &writer) {
// Simply repoint the memory index of the result to the constant.
getMemIndex(op.result()) = getMemIndex(op.value());
}
void Generator::generate(pdl_interp::CreateTypesOp op, ByteCodeWriter &writer) {
writer.append(OpCode::CreateTypes, op.result(),
getRangeStorageIndex(op.result()), op.value());
}
void Generator::generate(pdl_interp::EraseOp op, ByteCodeWriter &writer) {
writer.append(OpCode::EraseOp, op.operation());
}
void Generator::generate(pdl_interp::ExtractOp op, ByteCodeWriter &writer) {
OpCode opCode =
TypeSwitch<Type, OpCode>(op.result().getType())
.Case([](pdl::OperationType) { return OpCode::ExtractOp; })
.Case([](pdl::ValueType) { return OpCode::ExtractValue; })
.Case([](pdl::TypeType) { return OpCode::ExtractType; })
.Default([](Type) -> OpCode {
llvm_unreachable("unsupported element type");
});
writer.append(opCode, op.range(), op.index(), op.result());
}
void Generator::generate(pdl_interp::FinalizeOp op, ByteCodeWriter &writer) {
writer.append(OpCode::Finalize);
}
void Generator::generate(pdl_interp::ForEachOp op, ByteCodeWriter &writer) {
BlockArgument arg = op.getLoopVariable();
writer.append(OpCode::ForEach, getRangeStorageIndex(op.values()), arg);
writer.appendPDLValueKind(arg.getType());
writer.append(curLoopLevel, op.successor());
++curLoopLevel;
if (curLoopLevel > maxLoopLevel)
maxLoopLevel = curLoopLevel;
generate(&op.region(), writer);
--curLoopLevel;
}
void Generator::generate(pdl_interp::GetAttributeOp op,
ByteCodeWriter &writer) {
writer.append(OpCode::GetAttribute, op.attribute(), op.operation(),
op.nameAttr());
}
void Generator::generate(pdl_interp::GetAttributeTypeOp op,
ByteCodeWriter &writer) {
writer.append(OpCode::GetAttributeType, op.result(), op.value());
}
void Generator::generate(pdl_interp::GetDefiningOpOp op,
ByteCodeWriter &writer) {
writer.append(OpCode::GetDefiningOp, op.operation());
writer.appendPDLValue(op.value());
}
void Generator::generate(pdl_interp::GetOperandOp op, ByteCodeWriter &writer) {
uint32_t index = op.index();
if (index < 4)
writer.append(static_cast<OpCode>(OpCode::GetOperand0 + index));
else
writer.append(OpCode::GetOperandN, index);
writer.append(op.operation(), op.value());
}
void Generator::generate(pdl_interp::GetOperandsOp op, ByteCodeWriter &writer) {
Value result = op.value();
Optional<uint32_t> index = op.index();
writer.append(OpCode::GetOperands,
index.getValueOr(std::numeric_limits<uint32_t>::max()),
op.operation());
if (result.getType().isa<pdl::RangeType>())
writer.append(getRangeStorageIndex(result));
else
writer.append(std::numeric_limits<ByteCodeField>::max());
writer.append(result);
}
void Generator::generate(pdl_interp::GetResultOp op, ByteCodeWriter &writer) {
uint32_t index = op.index();
if (index < 4)
writer.append(static_cast<OpCode>(OpCode::GetResult0 + index));
else
writer.append(OpCode::GetResultN, index);
writer.append(op.operation(), op.value());
}
void Generator::generate(pdl_interp::GetResultsOp op, ByteCodeWriter &writer) {
Value result = op.value();
Optional<uint32_t> index = op.index();
writer.append(OpCode::GetResults,
index.getValueOr(std::numeric_limits<uint32_t>::max()),
op.operation());
if (result.getType().isa<pdl::RangeType>())
writer.append(getRangeStorageIndex(result));
else
writer.append(std::numeric_limits<ByteCodeField>::max());
writer.append(result);
}
void Generator::generate(pdl_interp::GetUsersOp op, ByteCodeWriter &writer) {
Value operations = op.operations();
ByteCodeField rangeIndex = getRangeStorageIndex(operations);
writer.append(OpCode::GetUsers, operations, rangeIndex);
writer.appendPDLValue(op.value());
}
void Generator::generate(pdl_interp::GetValueTypeOp op,
ByteCodeWriter &writer) {
if (op.getType().isa<pdl::RangeType>()) {
Value result = op.result();
writer.append(OpCode::GetValueRangeTypes, result,
getRangeStorageIndex(result), op.value());
} else {
writer.append(OpCode::GetValueType, op.result(), op.value());
}
}
void Generator::generate(pdl_interp::InferredTypesOp op,
ByteCodeWriter &writer) {
// InferType maps to a null type as a marker for inferring result types.
getMemIndex(op.type()) = getMemIndex(Type());
}
void Generator::generate(pdl_interp::IsNotNullOp op, ByteCodeWriter &writer) {
writer.append(OpCode::IsNotNull, op.value(), op.getSuccessors());
}
void Generator::generate(pdl_interp::RecordMatchOp op, ByteCodeWriter &writer) {
ByteCodeField patternIndex = patterns.size();
patterns.emplace_back(PDLByteCodePattern::create(
op, rewriterToAddr[op.rewriter().getLeafReference().getValue()]));
writer.append(OpCode::RecordMatch, patternIndex,
SuccessorRange(op.getOperation()), op.matchedOps());
writer.appendPDLValueList(op.inputs());
}
void Generator::generate(pdl_interp::ReplaceOp op, ByteCodeWriter &writer) {
writer.append(OpCode::ReplaceOp, op.operation());
writer.appendPDLValueList(op.replValues());
}
void Generator::generate(pdl_interp::SwitchAttributeOp op,
ByteCodeWriter &writer) {
writer.append(OpCode::SwitchAttribute, op.attribute(), op.caseValuesAttr(),
op.getSuccessors());
}
void Generator::generate(pdl_interp::SwitchOperandCountOp op,
ByteCodeWriter &writer) {
writer.append(OpCode::SwitchOperandCount, op.operation(), op.caseValuesAttr(),
op.getSuccessors());
}
void Generator::generate(pdl_interp::SwitchOperationNameOp op,
ByteCodeWriter &writer) {
auto cases = llvm::map_range(op.caseValuesAttr(), [&](Attribute attr) {
return OperationName(attr.cast<StringAttr>().getValue(), ctx);
});
writer.append(OpCode::SwitchOperationName, op.operation(), cases,
op.getSuccessors());
}
void Generator::generate(pdl_interp::SwitchResultCountOp op,
ByteCodeWriter &writer) {
writer.append(OpCode::SwitchResultCount, op.operation(), op.caseValuesAttr(),
op.getSuccessors());
}
void Generator::generate(pdl_interp::SwitchTypeOp op, ByteCodeWriter &writer) {
writer.append(OpCode::SwitchType, op.value(), op.caseValuesAttr(),
op.getSuccessors());
}
void Generator::generate(pdl_interp::SwitchTypesOp op, ByteCodeWriter &writer) {
writer.append(OpCode::SwitchTypes, op.value(), op.caseValuesAttr(),
op.getSuccessors());
}
//===----------------------------------------------------------------------===//
// PDLByteCode
//===----------------------------------------------------------------------===//
PDLByteCode::PDLByteCode(ModuleOp module,
llvm::StringMap<PDLConstraintFunction> constraintFns,
llvm::StringMap<PDLRewriteFunction> rewriteFns) {
Generator generator(module.getContext(), uniquedData, matcherByteCode,
rewriterByteCode, patterns, maxValueMemoryIndex,
maxOpRangeCount, maxTypeRangeCount, maxValueRangeCount,
maxLoopLevel, constraintFns, rewriteFns);
generator.generate(module);
// Initialize the external functions.
for (auto &it : constraintFns)
constraintFunctions.push_back(std::move(it.second));
for (auto &it : rewriteFns)
rewriteFunctions.push_back(std::move(it.second));
}
/// Initialize the given state such that it can be used to execute the current
/// bytecode.
void PDLByteCode::initializeMutableState(PDLByteCodeMutableState &state) const {
state.memory.resize(maxValueMemoryIndex, nullptr);
state.opRangeMemory.resize(maxOpRangeCount);
state.typeRangeMemory.resize(maxTypeRangeCount, TypeRange());
state.valueRangeMemory.resize(maxValueRangeCount, ValueRange());
state.loopIndex.resize(maxLoopLevel, 0);
state.currentPatternBenefits.reserve(patterns.size());
for (const PDLByteCodePattern &pattern : patterns)
state.currentPatternBenefits.push_back(pattern.getBenefit());
}
//===----------------------------------------------------------------------===//
// ByteCode Execution
namespace {
/// This class provides support for executing a bytecode stream.
class ByteCodeExecutor {
public:
ByteCodeExecutor(
const ByteCodeField *curCodeIt, MutableArrayRef<const void *> memory,
MutableArrayRef<llvm::OwningArrayRef<Operation *>> opRangeMemory,
MutableArrayRef<TypeRange> typeRangeMemory,
std::vector<llvm::OwningArrayRef<Type>> &allocatedTypeRangeMemory,
MutableArrayRef<ValueRange> valueRangeMemory,
std::vector<llvm::OwningArrayRef<Value>> &allocatedValueRangeMemory,
MutableArrayRef<unsigned> loopIndex, ArrayRef<const void *> uniquedMemory,
ArrayRef<ByteCodeField> code,
ArrayRef<PatternBenefit> currentPatternBenefits,
ArrayRef<PDLByteCodePattern> patterns,
ArrayRef<PDLConstraintFunction> constraintFunctions,
ArrayRef<PDLRewriteFunction> rewriteFunctions)
: curCodeIt(curCodeIt), memory(memory), opRangeMemory(opRangeMemory),
typeRangeMemory(typeRangeMemory),
allocatedTypeRangeMemory(allocatedTypeRangeMemory),
valueRangeMemory(valueRangeMemory),
allocatedValueRangeMemory(allocatedValueRangeMemory),
loopIndex(loopIndex), uniquedMemory(uniquedMemory), code(code),
currentPatternBenefits(currentPatternBenefits), patterns(patterns),
constraintFunctions(constraintFunctions),
rewriteFunctions(rewriteFunctions) {}
/// Start executing the code at the current bytecode index. `matches` is an
/// optional field provided when this function is executed in a matching
/// context.
void execute(PatternRewriter &rewriter,
SmallVectorImpl<PDLByteCode::MatchResult> *matches = nullptr,
Optional<Location> mainRewriteLoc = {});
private:
/// Internal implementation of executing each of the bytecode commands.
void executeApplyConstraint(PatternRewriter &rewriter);
void executeApplyRewrite(PatternRewriter &rewriter);
void executeAreEqual();
void executeAreRangesEqual();
void executeBranch();
void executeCheckOperandCount();
void executeCheckOperationName();
void executeCheckResultCount();
void executeCheckTypes();
void executeContinue();
void executeCreateOperation(PatternRewriter &rewriter,
Location mainRewriteLoc);
void executeCreateTypes();
void executeEraseOp(PatternRewriter &rewriter);
template <typename T, typename Range, PDLValue::Kind kind>
void executeExtract();
void executeFinalize();
void executeForEach();
void executeGetAttribute();
void executeGetAttributeType();
void executeGetDefiningOp();
void executeGetOperand(unsigned index);
void executeGetOperands();
void executeGetResult(unsigned index);
void executeGetResults();
void executeGetUsers();
void executeGetValueType();
void executeGetValueRangeTypes();
void executeIsNotNull();
void executeRecordMatch(PatternRewriter &rewriter,
SmallVectorImpl<PDLByteCode::MatchResult> &matches);
void executeReplaceOp(PatternRewriter &rewriter);
void executeSwitchAttribute();
void executeSwitchOperandCount();
void executeSwitchOperationName();
void executeSwitchResultCount();
void executeSwitchType();
void executeSwitchTypes();
/// Pushes a code iterator to the stack.
void pushCodeIt(const ByteCodeField *it) { resumeCodeIt.push_back(it); }
/// Pops a code iterator from the stack, returning true on success.
void popCodeIt() {
assert(!resumeCodeIt.empty() && "attempt to pop code off empty stack");
curCodeIt = resumeCodeIt.back();
resumeCodeIt.pop_back();
}
/// Return the bytecode iterator at the start of the current op code.
const ByteCodeField *getPrevCodeIt() const {
LLVM_DEBUG({
// Account for the op code and the Location stored inline.
return curCodeIt - 1 - sizeof(const void *) / sizeof(ByteCodeField);
});
// Account for the op code only.
return curCodeIt - 1;
}
/// Read a value from the bytecode buffer, optionally skipping a certain
/// number of prefix values. These methods always update the buffer to point
/// to the next field after the read data.
template <typename T = ByteCodeField>
T read(size_t skipN = 0) {
curCodeIt += skipN;
return readImpl<T>();
}
ByteCodeField read(size_t skipN = 0) { return read<ByteCodeField>(skipN); }
/// Read a list of values from the bytecode buffer.
template <typename ValueT, typename T>
void readList(SmallVectorImpl<T> &list) {
list.clear();
for (unsigned i = 0, e = read(); i != e; ++i)
list.push_back(read<ValueT>());
}
/// Read a list of values from the bytecode buffer. The values may be encoded
/// as either Value or ValueRange elements.
void readValueList(SmallVectorImpl<Value> &list) {
for (unsigned i = 0, e = read(); i != e; ++i) {
if (read<PDLValue::Kind>() == PDLValue::Kind::Value) {
list.push_back(read<Value>());
} else {
ValueRange *values = read<ValueRange *>();
list.append(values->begin(), values->end());
}
}
}
/// Read a value stored inline as a pointer.
template <typename T>
std::enable_if_t<llvm::is_detected<has_pointer_traits, T>::value, T>
readInline() {
const void *pointer;
std::memcpy(&pointer, curCodeIt, sizeof(const void *));
curCodeIt += sizeof(const void *) / sizeof(ByteCodeField);
return T::getFromOpaquePointer(pointer);
}
/// Jump to a specific successor based on a predicate value.
void selectJump(bool isTrue) { selectJump(size_t(isTrue ? 0 : 1)); }
/// Jump to a specific successor based on a destination index.
void selectJump(size_t destIndex) {
curCodeIt = &code[read<ByteCodeAddr>(destIndex * 2)];
}
/// Handle a switch operation with the provided value and cases.
template <typename T, typename RangeT, typename Comparator = std::equal_to<T>>
void handleSwitch(const T &value, RangeT &&cases, Comparator cmp = {}) {
LLVM_DEBUG({
llvm::dbgs() << " * Value: " << value << "\n"
<< " * Cases: ";
llvm::interleaveComma(cases, llvm::dbgs());
llvm::dbgs() << "\n";
});
// Check to see if the attribute value is within the case list. Jump to
// the correct successor index based on the result.
for (auto it = cases.begin(), e = cases.end(); it != e; ++it)
if (cmp(*it, value))
return selectJump(size_t((it - cases.begin()) + 1));
selectJump(size_t(0));
}
/// Store a pointer to memory.
void storeToMemory(unsigned index, const void *value) {
memory[index] = value;
}
/// Store a value to memory as an opaque pointer.
template <typename T>
std::enable_if_t<llvm::is_detected<has_pointer_traits, T>::value>
storeToMemory(unsigned index, T value) {
memory[index] = value.getAsOpaquePointer();
}
/// Internal implementation of reading various data types from the bytecode
/// stream.
template <typename T>
const void *readFromMemory() {
size_t index = *curCodeIt++;
// If this type is an SSA value, it can only be stored in non-const memory.
if (llvm::is_one_of<T, Operation *, TypeRange *, ValueRange *,
Value>::value ||
index < memory.size())
return memory[index];
// Otherwise, if this index is not inbounds it is uniqued.
return uniquedMemory[index - memory.size()];
}
template <typename T>
std::enable_if_t<std::is_pointer<T>::value, T> readImpl() {
return reinterpret_cast<T>(const_cast<void *>(readFromMemory<T>()));
}
template <typename T>
std::enable_if_t<std::is_class<T>::value && !std::is_same<PDLValue, T>::value,
T>
readImpl() {
return T(T::getFromOpaquePointer(readFromMemory<T>()));
}
template <typename T>
std::enable_if_t<std::is_same<PDLValue, T>::value, T> readImpl() {
switch (read<PDLValue::Kind>()) {
case PDLValue::Kind::Attribute:
return read<Attribute>();
case PDLValue::Kind::Operation:
return read<Operation *>();
case PDLValue::Kind::Type:
return read<Type>();
case PDLValue::Kind::Value:
return read<Value>();
case PDLValue::Kind::TypeRange:
return read<TypeRange *>();
case PDLValue::Kind::ValueRange:
return read<ValueRange *>();
}
llvm_unreachable("unhandled PDLValue::Kind");
}
template <typename T>
std::enable_if_t<std::is_same<T, ByteCodeAddr>::value, T> readImpl() {
static_assert((sizeof(ByteCodeAddr) / sizeof(ByteCodeField)) == 2,
"unexpected ByteCode address size");
ByteCodeAddr result;
std::memcpy(&result, curCodeIt, sizeof(ByteCodeAddr));
curCodeIt += 2;
return result;
}
template <typename T>
std::enable_if_t<std::is_same<T, ByteCodeField>::value, T> readImpl() {
return *curCodeIt++;
}
template <typename T>
std::enable_if_t<std::is_same<T, PDLValue::Kind>::value, T> readImpl() {
return static_cast<PDLValue::Kind>(readImpl<ByteCodeField>());
}
/// The underlying bytecode buffer.
const ByteCodeField *curCodeIt;
/// The stack of bytecode positions at which to resume operation.
SmallVector<const ByteCodeField *> resumeCodeIt;
/// The current execution memory.
MutableArrayRef<const void *> memory;
MutableArrayRef<OwningOpRange> opRangeMemory;
MutableArrayRef<TypeRange> typeRangeMemory;
std::vector<llvm::OwningArrayRef<Type>> &allocatedTypeRangeMemory;
MutableArrayRef<ValueRange> valueRangeMemory;
std::vector<llvm::OwningArrayRef<Value>> &allocatedValueRangeMemory;
/// The current loop indices.
MutableArrayRef<unsigned> loopIndex;
/// References to ByteCode data necessary for execution.
ArrayRef<const void *> uniquedMemory;
ArrayRef<ByteCodeField> code;
ArrayRef<PatternBenefit> currentPatternBenefits;
ArrayRef<PDLByteCodePattern> patterns;
ArrayRef<PDLConstraintFunction> constraintFunctions;
ArrayRef<PDLRewriteFunction> rewriteFunctions;
};
/// This class is an instantiation of the PDLResultList that provides access to
/// the returned results. This API is not on `PDLResultList` to avoid
/// overexposing access to information specific solely to the ByteCode.
class ByteCodeRewriteResultList : public PDLResultList {
public:
ByteCodeRewriteResultList(unsigned maxNumResults)
: PDLResultList(maxNumResults) {}
/// Return the list of PDL results.
MutableArrayRef<PDLValue> getResults() { return results; }
/// Return the type ranges allocated by this list.
MutableArrayRef<llvm::OwningArrayRef<Type>> getAllocatedTypeRanges() {
return allocatedTypeRanges;
}
/// Return the value ranges allocated by this list.
MutableArrayRef<llvm::OwningArrayRef<Value>> getAllocatedValueRanges() {
return allocatedValueRanges;
}
};
} // namespace
void ByteCodeExecutor::executeApplyConstraint(PatternRewriter &rewriter) {
LLVM_DEBUG(llvm::dbgs() << "Executing ApplyConstraint:\n");
const PDLConstraintFunction &constraintFn = constraintFunctions[read()];
ArrayAttr constParams = read<ArrayAttr>();
SmallVector<PDLValue, 16> args;
readList<PDLValue>(args);
LLVM_DEBUG({
llvm::dbgs() << " * Arguments: ";
llvm::interleaveComma(args, llvm::dbgs());
llvm::dbgs() << "\n * Parameters: " << constParams << "\n";
});
// Invoke the constraint and jump to the proper destination.
selectJump(succeeded(constraintFn(args, constParams, rewriter)));
}
void ByteCodeExecutor::executeApplyRewrite(PatternRewriter &rewriter) {
LLVM_DEBUG(llvm::dbgs() << "Executing ApplyRewrite:\n");
const PDLRewriteFunction &rewriteFn = rewriteFunctions[read()];
ArrayAttr constParams = read<ArrayAttr>();
SmallVector<PDLValue, 16> args;
readList<PDLValue>(args);
LLVM_DEBUG({
llvm::dbgs() << " * Arguments: ";
llvm::interleaveComma(args, llvm::dbgs());
llvm::dbgs() << "\n * Parameters: " << constParams << "\n";
});
// Execute the rewrite function.
ByteCodeField numResults = read();
ByteCodeRewriteResultList results(numResults);
rewriteFn(args, constParams, rewriter, results);
assert(results.getResults().size() == numResults &&
"native PDL rewrite function returned unexpected number of results");
// Store the results in the bytecode memory.
for (PDLValue &result : results.getResults()) {
LLVM_DEBUG(llvm::dbgs() << " * Result: " << result << "\n");
// In debug mode we also verify the expected kind of the result.
#ifndef NDEBUG
assert(result.getKind() == read<PDLValue::Kind>() &&
"native PDL rewrite function returned an unexpected type of result");
#endif
// If the result is a range, we need to copy it over to the bytecodes
// range memory.
if (Optional<TypeRange> typeRange = result.dyn_cast<TypeRange>()) {
unsigned rangeIndex = read();
typeRangeMemory[rangeIndex] = *typeRange;
memory[read()] = &typeRangeMemory[rangeIndex];
} else if (Optional<ValueRange> valueRange =
result.dyn_cast<ValueRange>()) {
unsigned rangeIndex = read();
valueRangeMemory[rangeIndex] = *valueRange;
memory[read()] = &valueRangeMemory[rangeIndex];
} else {
memory[read()] = result.getAsOpaquePointer();
}
}
// Copy over any underlying storage allocated for result ranges.
for (auto &it : results.getAllocatedTypeRanges())
allocatedTypeRangeMemory.push_back(std::move(it));
for (auto &it : results.getAllocatedValueRanges())
allocatedValueRangeMemory.push_back(std::move(it));
}
void ByteCodeExecutor::executeAreEqual() {
LLVM_DEBUG(llvm::dbgs() << "Executing AreEqual:\n");
const void *lhs = read<const void *>();
const void *rhs = read<const void *>();
LLVM_DEBUG(llvm::dbgs() << " * " << lhs << " == " << rhs << "\n");
selectJump(lhs == rhs);
}
void ByteCodeExecutor::executeAreRangesEqual() {
LLVM_DEBUG(llvm::dbgs() << "Executing AreRangesEqual:\n");
PDLValue::Kind valueKind = read<PDLValue::Kind>();
const void *lhs = read<const void *>();
const void *rhs = read<const void *>();
switch (valueKind) {
case PDLValue::Kind::TypeRange: {
const TypeRange *lhsRange = reinterpret_cast<const TypeRange *>(lhs);
const TypeRange *rhsRange = reinterpret_cast<const TypeRange *>(rhs);
LLVM_DEBUG(llvm::dbgs() << " * " << lhs << " == " << rhs << "\n\n");
selectJump(*lhsRange == *rhsRange);
break;
}
case PDLValue::Kind::ValueRange: {
const auto *lhsRange = reinterpret_cast<const ValueRange *>(lhs);
const auto *rhsRange = reinterpret_cast<const ValueRange *>(rhs);
LLVM_DEBUG(llvm::dbgs() << " * " << lhs << " == " << rhs << "\n\n");
selectJump(*lhsRange == *rhsRange);
break;
}
default:
llvm_unreachable("unexpected `AreRangesEqual` value kind");
}
}
void ByteCodeExecutor::executeBranch() {
LLVM_DEBUG(llvm::dbgs() << "Executing Branch\n");
curCodeIt = &code[read<ByteCodeAddr>()];
}
void ByteCodeExecutor::executeCheckOperandCount() {
LLVM_DEBUG(llvm::dbgs() << "Executing CheckOperandCount:\n");
Operation *op = read<Operation *>();
uint32_t expectedCount = read<uint32_t>();
bool compareAtLeast = read();
LLVM_DEBUG(llvm::dbgs() << " * Found: " << op->getNumOperands() << "\n"
<< " * Expected: " << expectedCount << "\n"
<< " * Comparator: "
<< (compareAtLeast ? ">=" : "==") << "\n");
if (compareAtLeast)
selectJump(op->getNumOperands() >= expectedCount);
else
selectJump(op->getNumOperands() == expectedCount);
}
void ByteCodeExecutor::executeCheckOperationName() {
LLVM_DEBUG(llvm::dbgs() << "Executing CheckOperationName:\n");
Operation *op = read<Operation *>();
OperationName expectedName = read<OperationName>();
LLVM_DEBUG(llvm::dbgs() << " * Found: \"" << op->getName() << "\"\n"
<< " * Expected: \"" << expectedName << "\"\n");
selectJump(op->getName() == expectedName);
}
void ByteCodeExecutor::executeCheckResultCount() {
LLVM_DEBUG(llvm::dbgs() << "Executing CheckResultCount:\n");
Operation *op = read<Operation *>();
uint32_t expectedCount = read<uint32_t>();
bool compareAtLeast = read();
LLVM_DEBUG(llvm::dbgs() << " * Found: " << op->getNumResults() << "\n"
<< " * Expected: " << expectedCount << "\n"
<< " * Comparator: "
<< (compareAtLeast ? ">=" : "==") << "\n");
if (compareAtLeast)
selectJump(op->getNumResults() >= expectedCount);
else
selectJump(op->getNumResults() == expectedCount);
}
void ByteCodeExecutor::executeCheckTypes() {
LLVM_DEBUG(llvm::dbgs() << "Executing AreEqual:\n");
TypeRange *lhs = read<TypeRange *>();
Attribute rhs = read<Attribute>();
LLVM_DEBUG(llvm::dbgs() << " * " << lhs << " == " << rhs << "\n\n");
selectJump(*lhs == rhs.cast<ArrayAttr>().getAsValueRange<TypeAttr>());
}
void ByteCodeExecutor::executeContinue() {
ByteCodeField level = read();
LLVM_DEBUG(llvm::dbgs() << "Executing Continue\n"
<< " * Level: " << level << "\n");
++loopIndex[level];
popCodeIt();
}
void ByteCodeExecutor::executeCreateTypes() {
LLVM_DEBUG(llvm::dbgs() << "Executing CreateTypes:\n");
unsigned memIndex = read();
unsigned rangeIndex = read();
ArrayAttr typesAttr = read<Attribute>().cast<ArrayAttr>();
LLVM_DEBUG(llvm::dbgs() << " * Types: " << typesAttr << "\n\n");
// Allocate a buffer for this type range.
llvm::OwningArrayRef<Type> storage(typesAttr.size());
llvm::copy(typesAttr.getAsValueRange<TypeAttr>(), storage.begin());
allocatedTypeRangeMemory.emplace_back(std::move(storage));
// Assign this to the range slot and use the range as the value for the
// memory index.
typeRangeMemory[rangeIndex] = allocatedTypeRangeMemory.back();
memory[memIndex] = &typeRangeMemory[rangeIndex];
}
void ByteCodeExecutor::executeCreateOperation(PatternRewriter &rewriter,
Location mainRewriteLoc) {
LLVM_DEBUG(llvm::dbgs() << "Executing CreateOperation:\n");
unsigned memIndex = read();
OperationState state(mainRewriteLoc, read<OperationName>());
readValueList(state.operands);
for (unsigned i = 0, e = read(); i != e; ++i) {
StringAttr name = read<StringAttr>();
if (Attribute attr = read<Attribute>())
state.addAttribute(name, attr);
}
for (unsigned i = 0, e = read(); i != e; ++i) {
if (read<PDLValue::Kind>() == PDLValue::Kind::Type) {
state.types.push_back(read<Type>());
continue;
}
// If we find a null range, this signals that the types are infered.
if (TypeRange *resultTypes = read<TypeRange *>()) {
state.types.append(resultTypes->begin(), resultTypes->end());
continue;
}
// Handle the case where the operation has inferred types.
InferTypeOpInterface::Concept *concept =
state.name.getRegisteredInfo()->getInterface<InferTypeOpInterface>();
// TODO: Handle failure.
state.types.clear();
if (failed(concept->inferReturnTypes(
state.getContext(), state.location, state.operands,
state.attributes.getDictionary(state.getContext()), state.regions,
state.types)))
return;
break;
}
Operation *resultOp = rewriter.createOperation(state);
memory[memIndex] = resultOp;
LLVM_DEBUG({
llvm::dbgs() << " * Attributes: "
<< state.attributes.getDictionary(state.getContext())
<< "\n * Operands: ";
llvm::interleaveComma(state.operands, llvm::dbgs());
llvm::dbgs() << "\n * Result Types: ";
llvm::interleaveComma(state.types, llvm::dbgs());
llvm::dbgs() << "\n * Result: " << *resultOp << "\n";
});
}
void ByteCodeExecutor::executeEraseOp(PatternRewriter &rewriter) {
LLVM_DEBUG(llvm::dbgs() << "Executing EraseOp:\n");
Operation *op = read<Operation *>();
LLVM_DEBUG(llvm::dbgs() << " * Operation: " << *op << "\n");
rewriter.eraseOp(op);
}
template <typename T, typename Range, PDLValue::Kind kind>
void ByteCodeExecutor::executeExtract() {
LLVM_DEBUG(llvm::dbgs() << "Executing Extract" << kind << ":\n");
Range *range = read<Range *>();
unsigned index = read<uint32_t>();
unsigned memIndex = read();
if (!range) {
memory[memIndex] = nullptr;
return;
}
T result = index < range->size() ? (*range)[index] : T();
LLVM_DEBUG(llvm::dbgs() << " * " << kind << "s(" << range->size() << ")\n"
<< " * Index: " << index << "\n"
<< " * Result: " << result << "\n");
storeToMemory(memIndex, result);
}
void ByteCodeExecutor::executeFinalize() {
LLVM_DEBUG(llvm::dbgs() << "Executing Finalize\n");
}
void ByteCodeExecutor::executeForEach() {
LLVM_DEBUG(llvm::dbgs() << "Executing ForEach:\n");
const ByteCodeField *prevCodeIt = getPrevCodeIt();
unsigned rangeIndex = read();
unsigned memIndex = read();
const void *value = nullptr;
switch (read<PDLValue::Kind>()) {
case PDLValue::Kind::Operation: {
unsigned &index = loopIndex[read()];
ArrayRef<Operation *> array = opRangeMemory[rangeIndex];
assert(index <= array.size() && "iterated past the end");
if (index < array.size()) {
LLVM_DEBUG(llvm::dbgs() << " * Result: " << array[index] << "\n");
value = array[index];
break;
}
LLVM_DEBUG(llvm::dbgs() << " * Done\n");
index = 0;
selectJump(size_t(0));
return;
}
default:
llvm_unreachable("unexpected `ForEach` value kind");
}
// Store the iterate value and the stack address.
memory[memIndex] = value;
pushCodeIt(prevCodeIt);
// Skip over the successor (we will enter the body of the loop).
read<ByteCodeAddr>();
}
void ByteCodeExecutor::executeGetAttribute() {
LLVM_DEBUG(llvm::dbgs() << "Executing GetAttribute:\n");
unsigned memIndex = read();
Operation *op = read<Operation *>();
StringAttr attrName = read<StringAttr>();
Attribute attr = op->getAttr(attrName);
LLVM_DEBUG(llvm::dbgs() << " * Operation: " << *op << "\n"
<< " * Attribute: " << attrName << "\n"
<< " * Result: " << attr << "\n");
memory[memIndex] = attr.getAsOpaquePointer();
}
void ByteCodeExecutor::executeGetAttributeType() {
LLVM_DEBUG(llvm::dbgs() << "Executing GetAttributeType:\n");
unsigned memIndex = read();
Attribute attr = read<Attribute>();
Type type = attr ? attr.getType() : Type();
LLVM_DEBUG(llvm::dbgs() << " * Attribute: " << attr << "\n"
<< " * Result: " << type << "\n");
memory[memIndex] = type.getAsOpaquePointer();
}
void ByteCodeExecutor::executeGetDefiningOp() {
LLVM_DEBUG(llvm::dbgs() << "Executing GetDefiningOp:\n");
unsigned memIndex = read();
Operation *op = nullptr;
if (read<PDLValue::Kind>() == PDLValue::Kind::Value) {
Value value = read<Value>();
if (value)
op = value.getDefiningOp();
LLVM_DEBUG(llvm::dbgs() << " * Value: " << value << "\n");
} else {
ValueRange *values = read<ValueRange *>();
if (values && !values->empty()) {
op = values->front().getDefiningOp();
}
LLVM_DEBUG(llvm::dbgs() << " * Values: " << values << "\n");
}
LLVM_DEBUG(llvm::dbgs() << " * Result: " << op << "\n");
memory[memIndex] = op;
}
void ByteCodeExecutor::executeGetOperand(unsigned index) {
Operation *op = read<Operation *>();
unsigned memIndex = read();
Value operand =
index < op->getNumOperands() ? op->getOperand(index) : Value();
LLVM_DEBUG(llvm::dbgs() << " * Operation: " << *op << "\n"
<< " * Index: " << index << "\n"
<< " * Result: " << operand << "\n");
memory[memIndex] = operand.getAsOpaquePointer();
}
/// This function is the internal implementation of `GetResults` and
/// `GetOperands` that provides support for extracting a value range from the
/// given operation.
template <template <typename> class AttrSizedSegmentsT, typename RangeT>
static void *
executeGetOperandsResults(RangeT values, Operation *op, unsigned index,
ByteCodeField rangeIndex, StringRef attrSizedSegments,
MutableArrayRef<ValueRange> valueRangeMemory) {
// Check for the sentinel index that signals that all values should be
// returned.
if (index == std::numeric_limits<uint32_t>::max()) {
LLVM_DEBUG(llvm::dbgs() << " * Getting all values\n");
// `values` is already the full value range.
// Otherwise, check to see if this operation uses AttrSizedSegments.
} else if (op->hasTrait<AttrSizedSegmentsT>()) {
LLVM_DEBUG(llvm::dbgs()
<< " * Extracting values from `" << attrSizedSegments << "`\n");
auto segmentAttr = op->getAttrOfType<DenseElementsAttr>(attrSizedSegments);
if (!segmentAttr || segmentAttr.getNumElements() <= index)
return nullptr;
auto segments = segmentAttr.getValues<int32_t>();
unsigned startIndex =
std::accumulate(segments.begin(), segments.begin() + index, 0);
values = values.slice(startIndex, *std::next(segments.begin(), index));
LLVM_DEBUG(llvm::dbgs() << " * Extracting range[" << startIndex << ", "
<< *std::next(segments.begin(), index) << "]\n");
// Otherwise, assume this is the last operand group of the operation.
// FIXME: We currently don't support operations with
// SameVariadicOperandSize/SameVariadicResultSize here given that we don't
// have a way to detect it's presence.
} else if (values.size() >= index) {
LLVM_DEBUG(llvm::dbgs()
<< " * Treating values as trailing variadic range\n");
values = values.drop_front(index);
// If we couldn't detect a way to compute the values, bail out.
} else {
return nullptr;
}
// If the range index is valid, we are returning a range.
if (rangeIndex != std::numeric_limits<ByteCodeField>::max()) {
valueRangeMemory[rangeIndex] = values;
return &valueRangeMemory[rangeIndex];
}
// If a range index wasn't provided, the range is required to be non-variadic.
return values.size() != 1 ? nullptr : values.front().getAsOpaquePointer();
}
void ByteCodeExecutor::executeGetOperands() {
LLVM_DEBUG(llvm::dbgs() << "Executing GetOperands:\n");
unsigned index = read<uint32_t>();
Operation *op = read<Operation *>();
ByteCodeField rangeIndex = read();
void *result = executeGetOperandsResults<OpTrait::AttrSizedOperandSegments>(
op->getOperands(), op, index, rangeIndex, "operand_segment_sizes",
valueRangeMemory);
if (!result)
LLVM_DEBUG(llvm::dbgs() << " * Invalid operand range\n");
memory[read()] = result;
}
void ByteCodeExecutor::executeGetResult(unsigned index) {
Operation *op = read<Operation *>();
unsigned memIndex = read();
OpResult result =
index < op->getNumResults() ? op->getResult(index) : OpResult();
LLVM_DEBUG(llvm::dbgs() << " * Operation: " << *op << "\n"
<< " * Index: " << index << "\n"
<< " * Result: " << result << "\n");
memory[memIndex] = result.getAsOpaquePointer();
}
void ByteCodeExecutor::executeGetResults() {
LLVM_DEBUG(llvm::dbgs() << "Executing GetResults:\n");
unsigned index = read<uint32_t>();
Operation *op = read<Operation *>();
ByteCodeField rangeIndex = read();
void *result = executeGetOperandsResults<OpTrait::AttrSizedResultSegments>(
op->getResults(), op, index, rangeIndex, "result_segment_sizes",
valueRangeMemory);
if (!result)
LLVM_DEBUG(llvm::dbgs() << " * Invalid result range\n");
memory[read()] = result;
}
void ByteCodeExecutor::executeGetUsers() {
LLVM_DEBUG(llvm::dbgs() << "Executing GetUsers:\n");
unsigned memIndex = read();
unsigned rangeIndex = read();
OwningOpRange &range = opRangeMemory[rangeIndex];
memory[memIndex] = &range;
range = OwningOpRange();
if (read<PDLValue::Kind>() == PDLValue::Kind::Value) {
// Read the value.
Value value = read<Value>();
if (!value)
return;
LLVM_DEBUG(llvm::dbgs() << " * Value: " << value << "\n");
// Extract the users of a single value.
range = OwningOpRange(std::distance(value.user_begin(), value.user_end()));
llvm::copy(value.getUsers(), range.begin());
} else {
// Read a range of values.
ValueRange *values = read<ValueRange *>();
if (!values)
return;
LLVM_DEBUG({
llvm::dbgs() << " * Values (" << values->size() << "): ";
llvm::interleaveComma(*values, llvm::dbgs());
llvm::dbgs() << "\n";
});
// Extract all the users of a range of values.
SmallVector<Operation *> users;
for (Value value : *values)
users.append(value.user_begin(), value.user_end());
range = OwningOpRange(users.size());
llvm::copy(users, range.begin());
}
LLVM_DEBUG(llvm::dbgs() << " * Result: " << range.size() << " operations\n");
}
void ByteCodeExecutor::executeGetValueType() {
LLVM_DEBUG(llvm::dbgs() << "Executing GetValueType:\n");
unsigned memIndex = read();
Value value = read<Value>();
Type type = value ? value.getType() : Type();
LLVM_DEBUG(llvm::dbgs() << " * Value: " << value << "\n"
<< " * Result: " << type << "\n");
memory[memIndex] = type.getAsOpaquePointer();
}
void ByteCodeExecutor::executeGetValueRangeTypes() {
LLVM_DEBUG(llvm::dbgs() << "Executing GetValueRangeTypes:\n");
unsigned memIndex = read();
unsigned rangeIndex = read();
ValueRange *values = read<ValueRange *>();
if (!values) {
LLVM_DEBUG(llvm::dbgs() << " * Values: <NULL>\n\n");
memory[memIndex] = nullptr;
return;
}
LLVM_DEBUG({
llvm::dbgs() << " * Values (" << values->size() << "): ";
llvm::interleaveComma(*values, llvm::dbgs());
llvm::dbgs() << "\n * Result: ";
llvm::interleaveComma(values->getType(), llvm::dbgs());
llvm::dbgs() << "\n";
});
typeRangeMemory[rangeIndex] = values->getType();
memory[memIndex] = &typeRangeMemory[rangeIndex];
}
void ByteCodeExecutor::executeIsNotNull() {
LLVM_DEBUG(llvm::dbgs() << "Executing IsNotNull:\n");
const void *value = read<const void *>();
LLVM_DEBUG(llvm::dbgs() << " * Value: " << value << "\n");
selectJump(value != nullptr);
}
void ByteCodeExecutor::executeRecordMatch(
PatternRewriter &rewriter,
SmallVectorImpl<PDLByteCode::MatchResult> &matches) {
LLVM_DEBUG(llvm::dbgs() << "Executing RecordMatch:\n");
unsigned patternIndex = read();
PatternBenefit benefit = currentPatternBenefits[patternIndex];
const ByteCodeField *dest = &code[read<ByteCodeAddr>()];
// If the benefit of the pattern is impossible, skip the processing of the
// rest of the pattern.
if (benefit.isImpossibleToMatch()) {
LLVM_DEBUG(llvm::dbgs() << " * Benefit: Impossible To Match\n");
curCodeIt = dest;
return;
}
// Create a fused location containing the locations of each of the
// operations used in the match. This will be used as the location for
// created operations during the rewrite that don't already have an
// explicit location set.
unsigned numMatchLocs = read();
SmallVector<Location, 4> matchLocs;
matchLocs.reserve(numMatchLocs);
for (unsigned i = 0; i != numMatchLocs; ++i)
matchLocs.push_back(read<Operation *>()->getLoc());
Location matchLoc = rewriter.getFusedLoc(matchLocs);
LLVM_DEBUG(llvm::dbgs() << " * Benefit: " << benefit.getBenefit() << "\n"
<< " * Location: " << matchLoc << "\n");
matches.emplace_back(matchLoc, patterns[patternIndex], benefit);
PDLByteCode::MatchResult &match = matches.back();
// Record all of the inputs to the match. If any of the inputs are ranges, we
// will also need to remap the range pointer to memory stored in the match
// state.
unsigned numInputs = read();
match.values.reserve(numInputs);
match.typeRangeValues.reserve(numInputs);
match.valueRangeValues.reserve(numInputs);
for (unsigned i = 0; i < numInputs; ++i) {
switch (read<PDLValue::Kind>()) {
case PDLValue::Kind::TypeRange:
match.typeRangeValues.push_back(*read<TypeRange *>());
match.values.push_back(&match.typeRangeValues.back());
break;
case PDLValue::Kind::ValueRange:
match.valueRangeValues.push_back(*read<ValueRange *>());
match.values.push_back(&match.valueRangeValues.back());
break;
default:
match.values.push_back(read<const void *>());
break;
}
}
curCodeIt = dest;
}
void ByteCodeExecutor::executeReplaceOp(PatternRewriter &rewriter) {
LLVM_DEBUG(llvm::dbgs() << "Executing ReplaceOp:\n");
Operation *op = read<Operation *>();
SmallVector<Value, 16> args;
readValueList(args);
LLVM_DEBUG({
llvm::dbgs() << " * Operation: " << *op << "\n"
<< " * Values: ";
llvm::interleaveComma(args, llvm::dbgs());
llvm::dbgs() << "\n";
});
rewriter.replaceOp(op, args);
}
void ByteCodeExecutor::executeSwitchAttribute() {
LLVM_DEBUG(llvm::dbgs() << "Executing SwitchAttribute:\n");
Attribute value = read<Attribute>();
ArrayAttr cases = read<ArrayAttr>();
handleSwitch(value, cases);
}
void ByteCodeExecutor::executeSwitchOperandCount() {
LLVM_DEBUG(llvm::dbgs() << "Executing SwitchOperandCount:\n");
Operation *op = read<Operation *>();
auto cases = read<DenseIntOrFPElementsAttr>().getValues<uint32_t>();
LLVM_DEBUG(llvm::dbgs() << " * Operation: " << *op << "\n");
handleSwitch(op->getNumOperands(), cases);
}
void ByteCodeExecutor::executeSwitchOperationName() {
LLVM_DEBUG(llvm::dbgs() << "Executing SwitchOperationName:\n");
OperationName value = read<Operation *>()->getName();
size_t caseCount = read();
// The operation names are stored in-line, so to print them out for
// debugging purposes we need to read the array before executing the
// switch so that we can display all of the possible values.
LLVM_DEBUG({
const ByteCodeField *prevCodeIt = curCodeIt;
llvm::dbgs() << " * Value: " << value << "\n"
<< " * Cases: ";
llvm::interleaveComma(
llvm::map_range(llvm::seq<size_t>(0, caseCount),
[&](size_t) { return read<OperationName>(); }),
llvm::dbgs());
llvm::dbgs() << "\n";
curCodeIt = prevCodeIt;
});
// Try to find the switch value within any of the cases.
for (size_t i = 0; i != caseCount; ++i) {
if (read<OperationName>() == value) {
curCodeIt += (caseCount - i - 1);
return selectJump(i + 1);
}
}
selectJump(size_t(0));
}
void ByteCodeExecutor::executeSwitchResultCount() {
LLVM_DEBUG(llvm::dbgs() << "Executing SwitchResultCount:\n");
Operation *op = read<Operation *>();
auto cases = read<DenseIntOrFPElementsAttr>().getValues<uint32_t>();
LLVM_DEBUG(llvm::dbgs() << " * Operation: " << *op << "\n");
handleSwitch(op->getNumResults(), cases);
}
void ByteCodeExecutor::executeSwitchType() {
LLVM_DEBUG(llvm::dbgs() << "Executing SwitchType:\n");
Type value = read<Type>();
auto cases = read<ArrayAttr>().getAsValueRange<TypeAttr>();
handleSwitch(value, cases);
}
void ByteCodeExecutor::executeSwitchTypes() {
LLVM_DEBUG(llvm::dbgs() << "Executing SwitchTypes:\n");
TypeRange *value = read<TypeRange *>();
auto cases = read<ArrayAttr>().getAsRange<ArrayAttr>();
if (!value) {
LLVM_DEBUG(llvm::dbgs() << "Types: <NULL>\n");
return selectJump(size_t(0));
}
handleSwitch(*value, cases, [](ArrayAttr caseValue, const TypeRange &value) {
return value == caseValue.getAsValueRange<TypeAttr>();
});
}
void ByteCodeExecutor::execute(
PatternRewriter &rewriter,
SmallVectorImpl<PDLByteCode::MatchResult> *matches,
Optional<Location> mainRewriteLoc) {
while (true) {
// Print the location of the operation being executed.
LLVM_DEBUG(llvm::dbgs() << readInline<Location>() << "\n");
OpCode opCode = static_cast<OpCode>(read());
switch (opCode) {
case ApplyConstraint:
executeApplyConstraint(rewriter);
break;
case ApplyRewrite:
executeApplyRewrite(rewriter);
break;
case AreEqual:
executeAreEqual();
break;
case AreRangesEqual:
executeAreRangesEqual();
break;
case Branch:
executeBranch();
break;
case CheckOperandCount:
executeCheckOperandCount();
break;
case CheckOperationName:
executeCheckOperationName();
break;
case CheckResultCount:
executeCheckResultCount();
break;
case CheckTypes:
executeCheckTypes();
break;
case Continue:
executeContinue();
break;
case CreateOperation:
executeCreateOperation(rewriter, *mainRewriteLoc);
break;
case CreateTypes:
executeCreateTypes();
break;
case EraseOp:
executeEraseOp(rewriter);
break;
case ExtractOp:
executeExtract<Operation *, OwningOpRange, PDLValue::Kind::Operation>();
break;
case ExtractType:
executeExtract<Type, TypeRange, PDLValue::Kind::Type>();
break;
case ExtractValue:
executeExtract<Value, ValueRange, PDLValue::Kind::Value>();
break;
case Finalize:
executeFinalize();
LLVM_DEBUG(llvm::dbgs() << "\n");
return;
case ForEach:
executeForEach();
break;
case GetAttribute:
executeGetAttribute();
break;
case GetAttributeType:
executeGetAttributeType();
break;
case GetDefiningOp:
executeGetDefiningOp();
break;
case GetOperand0:
case GetOperand1:
case GetOperand2:
case GetOperand3: {
unsigned index = opCode - GetOperand0;
LLVM_DEBUG(llvm::dbgs() << "Executing GetOperand" << index << ":\n");
executeGetOperand(index);
break;
}
case GetOperandN:
LLVM_DEBUG(llvm::dbgs() << "Executing GetOperandN:\n");
executeGetOperand(read<uint32_t>());
break;
case GetOperands:
executeGetOperands();
break;
case GetResult0:
case GetResult1:
case GetResult2:
case GetResult3: {
unsigned index = opCode - GetResult0;
LLVM_DEBUG(llvm::dbgs() << "Executing GetResult" << index << ":\n");
executeGetResult(index);
break;
}
case GetResultN:
LLVM_DEBUG(llvm::dbgs() << "Executing GetResultN:\n");
executeGetResult(read<uint32_t>());
break;
case GetResults:
executeGetResults();
break;
case GetUsers:
executeGetUsers();
break;
case GetValueType:
executeGetValueType();
break;
case GetValueRangeTypes:
executeGetValueRangeTypes();
break;
case IsNotNull:
executeIsNotNull();
break;
case RecordMatch:
assert(matches &&
"expected matches to be provided when executing the matcher");
executeRecordMatch(rewriter, *matches);
break;
case ReplaceOp:
executeReplaceOp(rewriter);
break;
case SwitchAttribute:
executeSwitchAttribute();
break;
case SwitchOperandCount:
executeSwitchOperandCount();
break;
case SwitchOperationName:
executeSwitchOperationName();
break;
case SwitchResultCount:
executeSwitchResultCount();
break;
case SwitchType:
executeSwitchType();
break;
case SwitchTypes:
executeSwitchTypes();
break;
}
LLVM_DEBUG(llvm::dbgs() << "\n");
}
}
/// Run the pattern matcher on the given root operation, collecting the matched
/// patterns in `matches`.
void PDLByteCode::match(Operation *op, PatternRewriter &rewriter,
SmallVectorImpl<MatchResult> &matches,
PDLByteCodeMutableState &state) const {
// The first memory slot is always the root operation.
state.memory[0] = op;
// The matcher function always starts at code address 0.
ByteCodeExecutor executor(
matcherByteCode.data(), state.memory, state.opRangeMemory,
state.typeRangeMemory, state.allocatedTypeRangeMemory,
state.valueRangeMemory, state.allocatedValueRangeMemory, state.loopIndex,
uniquedData, matcherByteCode, state.currentPatternBenefits, patterns,
constraintFunctions, rewriteFunctions);
executor.execute(rewriter, &matches);
// Order the found matches by benefit.
std::stable_sort(matches.begin(), matches.end(),
[](const MatchResult &lhs, const MatchResult &rhs) {
return lhs.benefit > rhs.benefit;
});
}
/// Run the rewriter of the given pattern on the root operation `op`.
void PDLByteCode::rewrite(PatternRewriter &rewriter, const MatchResult &match,
PDLByteCodeMutableState &state) const {
// The arguments of the rewrite function are stored at the start of the
// memory buffer.
llvm::copy(match.values, state.memory.begin());
ByteCodeExecutor executor(
&rewriterByteCode[match.pattern->getRewriterAddr()], state.memory,
state.opRangeMemory, state.typeRangeMemory,
state.allocatedTypeRangeMemory, state.valueRangeMemory,
state.allocatedValueRangeMemory, state.loopIndex, uniquedData,
rewriterByteCode, state.currentPatternBenefits, patterns,
constraintFunctions, rewriteFunctions);
executor.execute(rewriter, /*matches=*/nullptr, match.location);
}