llvm-project/mlir/lib/Analysis/AffineStructures.cpp

3786 lines
146 KiB
C++

//===- AffineStructures.cpp - MLIR Affine Structures Class-----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Structures for affine/polyhedral analysis of affine dialect ops.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/LinearTransform.h"
#include "mlir/Analysis/Presburger/Simplex.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "affine-structures"
using namespace mlir;
using llvm::SmallDenseMap;
using llvm::SmallDenseSet;
namespace {
// See comments for SimpleAffineExprFlattener.
// An AffineExprFlattener extends a SimpleAffineExprFlattener by recording
// constraint information associated with mod's, floordiv's, and ceildiv's
// in FlatAffineConstraints 'localVarCst'.
struct AffineExprFlattener : public SimpleAffineExprFlattener {
public:
// Constraints connecting newly introduced local variables (for mod's and
// div's) to existing (dimensional and symbolic) ones. These are always
// inequalities.
FlatAffineConstraints localVarCst;
AffineExprFlattener(unsigned nDims, unsigned nSymbols, MLIRContext *ctx)
: SimpleAffineExprFlattener(nDims, nSymbols) {
localVarCst.reset(nDims, nSymbols, /*numLocals=*/0);
}
private:
// Add a local identifier (needed to flatten a mod, floordiv, ceildiv expr).
// The local identifier added is always a floordiv of a pure add/mul affine
// function of other identifiers, coefficients of which are specified in
// `dividend' and with respect to the positive constant `divisor'. localExpr
// is the simplified tree expression (AffineExpr) corresponding to the
// quantifier.
void addLocalFloorDivId(ArrayRef<int64_t> dividend, int64_t divisor,
AffineExpr localExpr) override {
SimpleAffineExprFlattener::addLocalFloorDivId(dividend, divisor, localExpr);
// Update localVarCst.
localVarCst.addLocalFloorDiv(dividend, divisor);
}
};
} // namespace
// Flattens the expressions in map. Returns failure if 'expr' was unable to be
// flattened (i.e., semi-affine expressions not handled yet).
static LogicalResult
getFlattenedAffineExprs(ArrayRef<AffineExpr> exprs, unsigned numDims,
unsigned numSymbols,
std::vector<SmallVector<int64_t, 8>> *flattenedExprs,
FlatAffineConstraints *localVarCst) {
if (exprs.empty()) {
localVarCst->reset(numDims, numSymbols);
return success();
}
AffineExprFlattener flattener(numDims, numSymbols, exprs[0].getContext());
// Use the same flattener to simplify each expression successively. This way
// local identifiers / expressions are shared.
for (auto expr : exprs) {
if (!expr.isPureAffine())
return failure();
flattener.walkPostOrder(expr);
}
assert(flattener.operandExprStack.size() == exprs.size());
flattenedExprs->clear();
flattenedExprs->assign(flattener.operandExprStack.begin(),
flattener.operandExprStack.end());
if (localVarCst)
localVarCst->clearAndCopyFrom(flattener.localVarCst);
return success();
}
// Flattens 'expr' into 'flattenedExpr'. Returns failure if 'expr' was unable to
// be flattened (semi-affine expressions not handled yet).
LogicalResult
mlir::getFlattenedAffineExpr(AffineExpr expr, unsigned numDims,
unsigned numSymbols,
SmallVectorImpl<int64_t> *flattenedExpr,
FlatAffineConstraints *localVarCst) {
std::vector<SmallVector<int64_t, 8>> flattenedExprs;
LogicalResult ret = ::getFlattenedAffineExprs({expr}, numDims, numSymbols,
&flattenedExprs, localVarCst);
*flattenedExpr = flattenedExprs[0];
return ret;
}
/// Flattens the expressions in map. Returns failure if 'expr' was unable to be
/// flattened (i.e., semi-affine expressions not handled yet).
LogicalResult mlir::getFlattenedAffineExprs(
AffineMap map, std::vector<SmallVector<int64_t, 8>> *flattenedExprs,
FlatAffineConstraints *localVarCst) {
if (map.getNumResults() == 0) {
localVarCst->reset(map.getNumDims(), map.getNumSymbols());
return success();
}
return ::getFlattenedAffineExprs(map.getResults(), map.getNumDims(),
map.getNumSymbols(), flattenedExprs,
localVarCst);
}
LogicalResult mlir::getFlattenedAffineExprs(
IntegerSet set, std::vector<SmallVector<int64_t, 8>> *flattenedExprs,
FlatAffineConstraints *localVarCst) {
if (set.getNumConstraints() == 0) {
localVarCst->reset(set.getNumDims(), set.getNumSymbols());
return success();
}
return ::getFlattenedAffineExprs(set.getConstraints(), set.getNumDims(),
set.getNumSymbols(), flattenedExprs,
localVarCst);
}
//===----------------------------------------------------------------------===//
// FlatAffineConstraints / FlatAffineValueConstraints.
//===----------------------------------------------------------------------===//
// Clones this object.
std::unique_ptr<FlatAffineConstraints> FlatAffineConstraints::clone() const {
return std::make_unique<FlatAffineConstraints>(*this);
}
std::unique_ptr<FlatAffineValueConstraints>
FlatAffineValueConstraints::clone() const {
return std::make_unique<FlatAffineValueConstraints>(*this);
}
// Construct from an IntegerSet.
FlatAffineConstraints::FlatAffineConstraints(IntegerSet set)
: IntegerPolyhedron(set.getNumInequalities(), set.getNumEqualities(),
set.getNumDims() + set.getNumSymbols() + 1,
set.getNumDims(), set.getNumSymbols(),
/*numLocals=*/0) {
// Flatten expressions and add them to the constraint system.
std::vector<SmallVector<int64_t, 8>> flatExprs;
FlatAffineConstraints localVarCst;
if (failed(getFlattenedAffineExprs(set, &flatExprs, &localVarCst))) {
assert(false && "flattening unimplemented for semi-affine integer sets");
return;
}
assert(flatExprs.size() == set.getNumConstraints());
appendLocalId(/*num=*/localVarCst.getNumLocalIds());
for (unsigned i = 0, e = flatExprs.size(); i < e; ++i) {
const auto &flatExpr = flatExprs[i];
assert(flatExpr.size() == getNumCols());
if (set.getEqFlags()[i]) {
addEquality(flatExpr);
} else {
addInequality(flatExpr);
}
}
// Add the other constraints involving local id's from flattening.
append(localVarCst);
}
// Construct from an IntegerSet.
FlatAffineValueConstraints::FlatAffineValueConstraints(IntegerSet set)
: FlatAffineConstraints(set) {
values.resize(numIds, None);
}
// Construct a hyperrectangular constraint set from ValueRanges that represent
// induction variables, lower and upper bounds. `ivs`, `lbs` and `ubs` are
// expected to match one to one. The order of variables and constraints is:
//
// ivs | lbs | ubs | eq/ineq
// ----+-----+-----+---------
// 1 -1 0 >= 0
// ----+-----+-----+---------
// -1 0 1 >= 0
//
// All dimensions as set as DimId.
FlatAffineValueConstraints
FlatAffineValueConstraints::getHyperrectangular(ValueRange ivs, ValueRange lbs,
ValueRange ubs) {
FlatAffineValueConstraints res;
unsigned nIvs = ivs.size();
assert(nIvs == lbs.size() && "expected as many lower bounds as ivs");
assert(nIvs == ubs.size() && "expected as many upper bounds as ivs");
if (nIvs == 0)
return res;
res.appendDimId(ivs);
unsigned lbsStart = res.appendDimId(lbs);
unsigned ubsStart = res.appendDimId(ubs);
MLIRContext *ctx = ivs.front().getContext();
for (int ivIdx = 0, e = nIvs; ivIdx < e; ++ivIdx) {
// iv - lb >= 0
AffineMap lb = AffineMap::get(/*dimCount=*/3 * nIvs, /*symbolCount=*/0,
getAffineDimExpr(lbsStart + ivIdx, ctx));
if (failed(res.addBound(BoundType::LB, ivIdx, lb)))
llvm_unreachable("Unexpected FlatAffineValueConstraints creation error");
// -iv + ub >= 0
AffineMap ub = AffineMap::get(/*dimCount=*/3 * nIvs, /*symbolCount=*/0,
getAffineDimExpr(ubsStart + ivIdx, ctx));
if (failed(res.addBound(BoundType::UB, ivIdx, ub)))
llvm_unreachable("Unexpected FlatAffineValueConstraints creation error");
}
return res;
}
void FlatAffineValueConstraints::reset(unsigned numReservedInequalities,
unsigned numReservedEqualities,
unsigned newNumReservedCols,
unsigned newNumDims,
unsigned newNumSymbols,
unsigned newNumLocals) {
reset(numReservedInequalities, numReservedEqualities, newNumReservedCols,
newNumDims, newNumSymbols, newNumLocals, /*valArgs=*/{});
}
void FlatAffineValueConstraints::reset(
unsigned numReservedInequalities, unsigned numReservedEqualities,
unsigned newNumReservedCols, unsigned newNumDims, unsigned newNumSymbols,
unsigned newNumLocals, ArrayRef<Value> valArgs) {
assert(newNumReservedCols >= newNumDims + newNumSymbols + newNumLocals + 1 &&
"minimum 1 column");
SmallVector<Optional<Value>, 8> newVals;
if (!valArgs.empty())
newVals.assign(valArgs.begin(), valArgs.end());
*this = FlatAffineValueConstraints(
numReservedInequalities, numReservedEqualities, newNumReservedCols,
newNumDims, newNumSymbols, newNumLocals, newVals);
}
void FlatAffineValueConstraints::reset(unsigned newNumDims,
unsigned newNumSymbols,
unsigned newNumLocals,
ArrayRef<Value> valArgs) {
reset(0, 0, newNumDims + newNumSymbols + newNumLocals + 1, newNumDims,
newNumSymbols, newNumLocals, valArgs);
}
unsigned FlatAffineValueConstraints::appendDimId(ValueRange vals) {
unsigned pos = getNumDimIds();
insertId(IdKind::Dimension, pos, vals);
return pos;
}
unsigned FlatAffineValueConstraints::appendSymbolId(ValueRange vals) {
unsigned pos = getNumSymbolIds();
insertId(IdKind::Symbol, pos, vals);
return pos;
}
unsigned FlatAffineValueConstraints::insertDimId(unsigned pos,
ValueRange vals) {
return insertId(IdKind::Dimension, pos, vals);
}
unsigned FlatAffineValueConstraints::insertSymbolId(unsigned pos,
ValueRange vals) {
return insertId(IdKind::Symbol, pos, vals);
}
unsigned FlatAffineValueConstraints::insertId(IdKind kind, unsigned pos,
unsigned num) {
unsigned absolutePos = FlatAffineConstraints::insertId(kind, pos, num);
values.insert(values.begin() + absolutePos, num, None);
assert(values.size() == getNumIds());
return absolutePos;
}
unsigned FlatAffineValueConstraints::insertId(IdKind kind, unsigned pos,
ValueRange vals) {
assert(!vals.empty() && "expected ValueRange with Values");
unsigned num = vals.size();
unsigned absolutePos = FlatAffineConstraints::insertId(kind, pos, num);
// If a Value is provided, insert it; otherwise use None.
for (unsigned i = 0; i < num; ++i)
values.insert(values.begin() + absolutePos + i,
vals[i] ? Optional<Value>(vals[i]) : None);
assert(values.size() == getNumIds());
return absolutePos;
}
bool FlatAffineValueConstraints::hasValues() const {
return llvm::find_if(values, [](Optional<Value> id) {
return id.hasValue();
}) != values.end();
}
/// Checks if two constraint systems are in the same space, i.e., if they are
/// associated with the same set of identifiers, appearing in the same order.
static bool areIdsAligned(const FlatAffineValueConstraints &a,
const FlatAffineValueConstraints &b) {
return a.getNumDimIds() == b.getNumDimIds() &&
a.getNumSymbolIds() == b.getNumSymbolIds() &&
a.getNumIds() == b.getNumIds() &&
a.getMaybeValues().equals(b.getMaybeValues());
}
/// Calls areIdsAligned to check if two constraint systems have the same set
/// of identifiers in the same order.
bool FlatAffineValueConstraints::areIdsAlignedWithOther(
const FlatAffineValueConstraints &other) {
return areIdsAligned(*this, other);
}
/// Checks if the SSA values associated with `cst`'s identifiers in range
/// [start, end) are unique.
static bool LLVM_ATTRIBUTE_UNUSED areIdsUnique(
const FlatAffineValueConstraints &cst, unsigned start, unsigned end) {
assert(start <= cst.getNumIds() && "Start position out of bounds");
assert(end <= cst.getNumIds() && "End position out of bounds");
if (start >= end)
return true;
SmallPtrSet<Value, 8> uniqueIds;
ArrayRef<Optional<Value>> maybeValues = cst.getMaybeValues();
for (Optional<Value> val : maybeValues) {
if (val.hasValue() && !uniqueIds.insert(val.getValue()).second)
return false;
}
return true;
}
/// Checks if the SSA values associated with `cst`'s identifiers are unique.
static bool LLVM_ATTRIBUTE_UNUSED
areIdsUnique(const FlatAffineConstraints &cst) {
return areIdsUnique(cst, 0, cst.getNumIds());
}
/// Checks if the SSA values associated with `cst`'s identifiers of kind `kind`
/// are unique.
static bool LLVM_ATTRIBUTE_UNUSED areIdsUnique(
const FlatAffineValueConstraints &cst, FlatAffineConstraints::IdKind kind) {
if (kind == FlatAffineConstraints::IdKind::Dimension)
return areIdsUnique(cst, 0, cst.getNumDimIds());
if (kind == FlatAffineConstraints::IdKind::Symbol)
return areIdsUnique(cst, cst.getNumDimIds(), cst.getNumDimAndSymbolIds());
if (kind == FlatAffineConstraints::IdKind::Local)
return areIdsUnique(cst, cst.getNumDimAndSymbolIds(), cst.getNumIds());
llvm_unreachable("Unexpected IdKind");
}
/// Merge and align the identifiers of A and B starting at 'offset', so that
/// both constraint systems get the union of the contained identifiers that is
/// dimension-wise and symbol-wise unique; both constraint systems are updated
/// so that they have the union of all identifiers, with A's original
/// identifiers appearing first followed by any of B's identifiers that didn't
/// appear in A. Local identifiers in B that have the same division
/// representation as local identifiers in A are merged into one.
// E.g.: Input: A has ((%i, %j) [%M, %N]) and B has (%k, %j) [%P, %N, %M])
// Output: both A, B have (%i, %j, %k) [%M, %N, %P]
static void mergeAndAlignIds(unsigned offset, FlatAffineValueConstraints *a,
FlatAffineValueConstraints *b) {
assert(offset <= a->getNumDimIds() && offset <= b->getNumDimIds());
// A merge/align isn't meaningful if a cst's ids aren't distinct.
assert(areIdsUnique(*a) && "A's values aren't unique");
assert(areIdsUnique(*b) && "B's values aren't unique");
assert(std::all_of(a->getMaybeValues().begin() + offset,
a->getMaybeValues().begin() + a->getNumDimAndSymbolIds(),
[](Optional<Value> id) { return id.hasValue(); }));
assert(std::all_of(b->getMaybeValues().begin() + offset,
b->getMaybeValues().begin() + b->getNumDimAndSymbolIds(),
[](Optional<Value> id) { return id.hasValue(); }));
SmallVector<Value, 4> aDimValues;
a->getValues(offset, a->getNumDimIds(), &aDimValues);
{
// Merge dims from A into B.
unsigned d = offset;
for (auto aDimValue : aDimValues) {
unsigned loc;
if (b->findId(aDimValue, &loc)) {
assert(loc >= offset && "A's dim appears in B's aligned range");
assert(loc < b->getNumDimIds() &&
"A's dim appears in B's non-dim position");
b->swapId(d, loc);
} else {
b->insertDimId(d, aDimValue);
}
d++;
}
// Dimensions that are in B, but not in A, are added at the end.
for (unsigned t = a->getNumDimIds(), e = b->getNumDimIds(); t < e; t++) {
a->appendDimId(b->getValue(t));
}
assert(a->getNumDimIds() == b->getNumDimIds() &&
"expected same number of dims");
}
// Merge and align symbols of A and B
a->mergeSymbolIds(*b);
// Merge and align local ids of A and B
a->mergeLocalIds(*b);
assert(areIdsAligned(*a, *b) && "IDs expected to be aligned");
}
// Call 'mergeAndAlignIds' to align constraint systems of 'this' and 'other'.
void FlatAffineValueConstraints::mergeAndAlignIdsWithOther(
unsigned offset, FlatAffineValueConstraints *other) {
mergeAndAlignIds(offset, this, other);
}
LogicalResult
FlatAffineValueConstraints::composeMap(const AffineValueMap *vMap) {
return composeMatchingMap(
computeAlignedMap(vMap->getAffineMap(), vMap->getOperands()));
}
// Similar to `composeMap` except that no Values need be associated with the
// constraint system nor are they looked at -- the dimensions and symbols of
// `other` are expected to correspond 1:1 to `this` system.
LogicalResult FlatAffineConstraints::composeMatchingMap(AffineMap other) {
assert(other.getNumDims() == getNumDimIds() && "dim mismatch");
assert(other.getNumSymbols() == getNumSymbolIds() && "symbol mismatch");
std::vector<SmallVector<int64_t, 8>> flatExprs;
if (failed(flattenAlignedMapAndMergeLocals(other, &flatExprs)))
return failure();
assert(flatExprs.size() == other.getNumResults());
// Add dimensions corresponding to the map's results.
insertDimId(/*pos=*/0, /*num=*/other.getNumResults());
// We add one equality for each result connecting the result dim of the map to
// the other identifiers.
// E.g.: if the expression is 16*i0 + i1, and this is the r^th
// iteration/result of the value map, we are adding the equality:
// d_r - 16*i0 - i1 = 0. Similarly, when flattening (i0 + 1, i0 + 8*i2), we
// add two equalities: d_0 - i0 - 1 == 0, d1 - i0 - 8*i2 == 0.
for (unsigned r = 0, e = flatExprs.size(); r < e; r++) {
const auto &flatExpr = flatExprs[r];
assert(flatExpr.size() >= other.getNumInputs() + 1);
SmallVector<int64_t, 8> eqToAdd(getNumCols(), 0);
// Set the coefficient for this result to one.
eqToAdd[r] = 1;
// Dims and symbols.
for (unsigned i = 0, f = other.getNumInputs(); i < f; i++) {
// Negate `eq[r]` since the newly added dimension will be set to this one.
eqToAdd[e + i] = -flatExpr[i];
}
// Local columns of `eq` are at the beginning.
unsigned j = getNumDimIds() + getNumSymbolIds();
unsigned end = flatExpr.size() - 1;
for (unsigned i = other.getNumInputs(); i < end; i++, j++) {
eqToAdd[j] = -flatExpr[i];
}
// Constant term.
eqToAdd[getNumCols() - 1] = -flatExpr[flatExpr.size() - 1];
// Add the equality connecting the result of the map to this constraint set.
addEquality(eqToAdd);
}
return success();
}
// Turn a symbol into a dimension.
static void turnSymbolIntoDim(FlatAffineValueConstraints *cst, Value id) {
unsigned pos;
if (cst->findId(id, &pos) && pos >= cst->getNumDimIds() &&
pos < cst->getNumDimAndSymbolIds()) {
cst->swapId(pos, cst->getNumDimIds());
cst->setDimSymbolSeparation(cst->getNumSymbolIds() - 1);
}
}
/// Merge and align symbols of `this` and `other` such that both get union of
/// of symbols that are unique. Symbols in `this` and `other` should be
/// unique. Symbols with Value as `None` are considered to be inequal to all
/// other symbols.
void FlatAffineValueConstraints::mergeSymbolIds(
FlatAffineValueConstraints &other) {
assert(areIdsUnique(*this, IdKind::Symbol) && "Symbol ids are not unique");
assert(areIdsUnique(other, IdKind::Symbol) && "Symbol ids are not unique");
SmallVector<Value, 4> aSymValues;
getValues(getNumDimIds(), getNumDimAndSymbolIds(), &aSymValues);
// Merge symbols: merge symbols into `other` first from `this`.
unsigned s = other.getNumDimIds();
for (Value aSymValue : aSymValues) {
unsigned loc;
// If the id is a symbol in `other`, then align it, otherwise assume that
// it is a new symbol
if (other.findId(aSymValue, &loc) && loc >= other.getNumDimIds() &&
loc < other.getNumDimAndSymbolIds())
other.swapId(s, loc);
else
other.insertSymbolId(s - other.getNumDimIds(), aSymValue);
s++;
}
// Symbols that are in other, but not in this, are added at the end.
for (unsigned t = other.getNumDimIds() + getNumSymbolIds(),
e = other.getNumDimAndSymbolIds();
t < e; t++)
insertSymbolId(getNumSymbolIds(), other.getValue(t));
assert(getNumSymbolIds() == other.getNumSymbolIds() &&
"expected same number of symbols");
assert(areIdsUnique(*this, IdKind::Symbol) && "Symbol ids are not unique");
assert(areIdsUnique(other, IdKind::Symbol) && "Symbol ids are not unique");
}
// Changes all symbol identifiers which are loop IVs to dim identifiers.
void FlatAffineValueConstraints::convertLoopIVSymbolsToDims() {
// Gather all symbols which are loop IVs.
SmallVector<Value, 4> loopIVs;
for (unsigned i = getNumDimIds(), e = getNumDimAndSymbolIds(); i < e; i++) {
if (hasValue(i) && getForInductionVarOwner(getValue(i)))
loopIVs.push_back(getValue(i));
}
// Turn each symbol in 'loopIVs' into a dim identifier.
for (auto iv : loopIVs) {
turnSymbolIntoDim(this, iv);
}
}
void FlatAffineValueConstraints::addInductionVarOrTerminalSymbol(Value val) {
if (containsId(val))
return;
// Caller is expected to fully compose map/operands if necessary.
assert((isTopLevelValue(val) || isForInductionVar(val)) &&
"non-terminal symbol / loop IV expected");
// Outer loop IVs could be used in forOp's bounds.
if (auto loop = getForInductionVarOwner(val)) {
appendDimId(val);
if (failed(this->addAffineForOpDomain(loop)))
LLVM_DEBUG(
loop.emitWarning("failed to add domain info to constraint system"));
return;
}
// Add top level symbol.
appendSymbolId(val);
// Check if the symbol is a constant.
if (auto constOp = val.getDefiningOp<arith::ConstantIndexOp>())
addBound(BoundType::EQ, val, constOp.value());
}
LogicalResult
FlatAffineValueConstraints::addAffineForOpDomain(AffineForOp forOp) {
unsigned pos;
// Pre-condition for this method.
if (!findId(forOp.getInductionVar(), &pos)) {
assert(false && "Value not found");
return failure();
}
int64_t step = forOp.getStep();
if (step != 1) {
if (!forOp.hasConstantLowerBound())
LLVM_DEBUG(forOp.emitWarning("domain conservatively approximated"));
else {
// Add constraints for the stride.
// (iv - lb) % step = 0 can be written as:
// (iv - lb) - step * q = 0 where q = (iv - lb) / step.
// Add local variable 'q' and add the above equality.
// The first constraint is q = (iv - lb) floordiv step
SmallVector<int64_t, 8> dividend(getNumCols(), 0);
int64_t lb = forOp.getConstantLowerBound();
dividend[pos] = 1;
dividend.back() -= lb;
addLocalFloorDiv(dividend, step);
// Second constraint: (iv - lb) - step * q = 0.
SmallVector<int64_t, 8> eq(getNumCols(), 0);
eq[pos] = 1;
eq.back() -= lb;
// For the local var just added above.
eq[getNumCols() - 2] = -step;
addEquality(eq);
}
}
if (forOp.hasConstantLowerBound()) {
addBound(BoundType::LB, pos, forOp.getConstantLowerBound());
} else {
// Non-constant lower bound case.
if (failed(addBound(BoundType::LB, pos, forOp.getLowerBoundMap(),
forOp.getLowerBoundOperands())))
return failure();
}
if (forOp.hasConstantUpperBound()) {
addBound(BoundType::UB, pos, forOp.getConstantUpperBound() - 1);
return success();
}
// Non-constant upper bound case.
return addBound(BoundType::UB, pos, forOp.getUpperBoundMap(),
forOp.getUpperBoundOperands());
}
LogicalResult
FlatAffineValueConstraints::addDomainFromSliceMaps(ArrayRef<AffineMap> lbMaps,
ArrayRef<AffineMap> ubMaps,
ArrayRef<Value> operands) {
assert(lbMaps.size() == ubMaps.size());
assert(lbMaps.size() <= getNumDimIds());
for (unsigned i = 0, e = lbMaps.size(); i < e; ++i) {
AffineMap lbMap = lbMaps[i];
AffineMap ubMap = ubMaps[i];
assert(!lbMap || lbMap.getNumInputs() == operands.size());
assert(!ubMap || ubMap.getNumInputs() == operands.size());
// Check if this slice is just an equality along this dimension. If so,
// retrieve the existing loop it equates to and add it to the system.
if (lbMap && ubMap && lbMap.getNumResults() == 1 &&
ubMap.getNumResults() == 1 &&
lbMap.getResult(0) + 1 == ubMap.getResult(0) &&
// The condition above will be true for maps describing a single
// iteration (e.g., lbMap.getResult(0) = 0, ubMap.getResult(0) = 1).
// Make sure we skip those cases by checking that the lb result is not
// just a constant.
!lbMap.getResult(0).isa<AffineConstantExpr>()) {
// Limited support: we expect the lb result to be just a loop dimension.
// Not supported otherwise for now.
AffineDimExpr result = lbMap.getResult(0).dyn_cast<AffineDimExpr>();
if (!result)
return failure();
AffineForOp loop =
getForInductionVarOwner(operands[result.getPosition()]);
if (!loop)
return failure();
if (failed(addAffineForOpDomain(loop)))
return failure();
continue;
}
// This slice refers to a loop that doesn't exist in the IR yet. Add its
// bounds to the system assuming its dimension identifier position is the
// same as the position of the loop in the loop nest.
if (lbMap && failed(addBound(BoundType::LB, i, lbMap, operands)))
return failure();
if (ubMap && failed(addBound(BoundType::UB, i, ubMap, operands)))
return failure();
}
return success();
}
void FlatAffineValueConstraints::addAffineIfOpDomain(AffineIfOp ifOp) {
// Create the base constraints from the integer set attached to ifOp.
FlatAffineValueConstraints cst(ifOp.getIntegerSet());
// Bind ids in the constraints to ifOp operands.
SmallVector<Value, 4> operands = ifOp.getOperands();
cst.setValues(0, cst.getNumDimAndSymbolIds(), operands);
// Merge the constraints from ifOp to the current domain. We need first merge
// and align the IDs from both constraints, and then append the constraints
// from the ifOp into the current one.
mergeAndAlignIdsWithOther(0, &cst);
append(cst);
}
// Searches for a constraint with a non-zero coefficient at `colIdx` in
// equality (isEq=true) or inequality (isEq=false) constraints.
// Returns true and sets row found in search in `rowIdx`, false otherwise.
static bool findConstraintWithNonZeroAt(const FlatAffineConstraints &cst,
unsigned colIdx, bool isEq,
unsigned *rowIdx) {
assert(colIdx < cst.getNumCols() && "position out of bounds");
auto at = [&](unsigned rowIdx) -> int64_t {
return isEq ? cst.atEq(rowIdx, colIdx) : cst.atIneq(rowIdx, colIdx);
};
unsigned e = isEq ? cst.getNumEqualities() : cst.getNumInequalities();
for (*rowIdx = 0; *rowIdx < e; ++(*rowIdx)) {
if (at(*rowIdx) != 0) {
return true;
}
}
return false;
}
// Normalizes the coefficient values across all columns in `rowIdx` by their
// GCD in equality or inequality constraints as specified by `isEq`.
template <bool isEq>
static void normalizeConstraintByGCD(FlatAffineConstraints *constraints,
unsigned rowIdx) {
auto at = [&](unsigned colIdx) -> int64_t {
return isEq ? constraints->atEq(rowIdx, colIdx)
: constraints->atIneq(rowIdx, colIdx);
};
uint64_t gcd = std::abs(at(0));
for (unsigned j = 1, e = constraints->getNumCols(); j < e; ++j) {
gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(at(j)));
}
if (gcd > 0 && gcd != 1) {
for (unsigned j = 0, e = constraints->getNumCols(); j < e; ++j) {
int64_t v = at(j) / static_cast<int64_t>(gcd);
isEq ? constraints->atEq(rowIdx, j) = v
: constraints->atIneq(rowIdx, j) = v;
}
}
}
void FlatAffineConstraints::normalizeConstraintsByGCD() {
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
normalizeConstraintByGCD</*isEq=*/true>(this, i);
}
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
normalizeConstraintByGCD</*isEq=*/false>(this, i);
}
}
bool FlatAffineConstraints::hasConsistentState() const {
if (!inequalities.hasConsistentState())
return false;
if (!equalities.hasConsistentState())
return false;
// Catches errors where numDims, numSymbols, numIds aren't consistent.
if (numDims > numIds || numSymbols > numIds || numDims + numSymbols > numIds)
return false;
return true;
}
bool FlatAffineValueConstraints::hasConsistentState() const {
return FlatAffineConstraints::hasConsistentState() &&
values.size() == getNumIds();
}
bool FlatAffineConstraints::hasInvalidConstraint() const {
assert(hasConsistentState());
auto check = [&](bool isEq) -> bool {
unsigned numCols = getNumCols();
unsigned numRows = isEq ? getNumEqualities() : getNumInequalities();
for (unsigned i = 0, e = numRows; i < e; ++i) {
unsigned j;
for (j = 0; j < numCols - 1; ++j) {
int64_t v = isEq ? atEq(i, j) : atIneq(i, j);
// Skip rows with non-zero variable coefficients.
if (v != 0)
break;
}
if (j < numCols - 1) {
continue;
}
// Check validity of constant term at 'numCols - 1' w.r.t 'isEq'.
// Example invalid constraints include: '1 == 0' or '-1 >= 0'
int64_t v = isEq ? atEq(i, numCols - 1) : atIneq(i, numCols - 1);
if ((isEq && v != 0) || (!isEq && v < 0)) {
return true;
}
}
return false;
};
if (check(/*isEq=*/true))
return true;
return check(/*isEq=*/false);
}
/// Eliminate identifier from constraint at `rowIdx` based on coefficient at
/// pivotRow, pivotCol. Columns in range [elimColStart, pivotCol) will not be
/// updated as they have already been eliminated.
static void eliminateFromConstraint(FlatAffineConstraints *constraints,
unsigned rowIdx, unsigned pivotRow,
unsigned pivotCol, unsigned elimColStart,
bool isEq) {
// Skip if equality 'rowIdx' if same as 'pivotRow'.
if (isEq && rowIdx == pivotRow)
return;
auto at = [&](unsigned i, unsigned j) -> int64_t {
return isEq ? constraints->atEq(i, j) : constraints->atIneq(i, j);
};
int64_t leadCoeff = at(rowIdx, pivotCol);
// Skip if leading coefficient at 'rowIdx' is already zero.
if (leadCoeff == 0)
return;
int64_t pivotCoeff = constraints->atEq(pivotRow, pivotCol);
int64_t sign = (leadCoeff * pivotCoeff > 0) ? -1 : 1;
int64_t lcm = mlir::lcm(pivotCoeff, leadCoeff);
int64_t pivotMultiplier = sign * (lcm / std::abs(pivotCoeff));
int64_t rowMultiplier = lcm / std::abs(leadCoeff);
unsigned numCols = constraints->getNumCols();
for (unsigned j = 0; j < numCols; ++j) {
// Skip updating column 'j' if it was just eliminated.
if (j >= elimColStart && j < pivotCol)
continue;
int64_t v = pivotMultiplier * constraints->atEq(pivotRow, j) +
rowMultiplier * at(rowIdx, j);
isEq ? constraints->atEq(rowIdx, j) = v
: constraints->atIneq(rowIdx, j) = v;
}
}
void FlatAffineValueConstraints::removeIdRange(unsigned idStart,
unsigned idLimit) {
FlatAffineConstraints::removeIdRange(idStart, idLimit);
values.erase(values.begin() + idStart, values.begin() + idLimit);
}
/// Returns the position of the identifier that has the minimum <number of lower
/// bounds> times <number of upper bounds> from the specified range of
/// identifiers [start, end). It is often best to eliminate in the increasing
/// order of these counts when doing Fourier-Motzkin elimination since FM adds
/// that many new constraints.
static unsigned getBestIdToEliminate(const FlatAffineConstraints &cst,
unsigned start, unsigned end) {
assert(start < cst.getNumIds() && end < cst.getNumIds() + 1);
auto getProductOfNumLowerUpperBounds = [&](unsigned pos) {
unsigned numLb = 0;
unsigned numUb = 0;
for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) {
if (cst.atIneq(r, pos) > 0) {
++numLb;
} else if (cst.atIneq(r, pos) < 0) {
++numUb;
}
}
return numLb * numUb;
};
unsigned minLoc = start;
unsigned min = getProductOfNumLowerUpperBounds(start);
for (unsigned c = start + 1; c < end; c++) {
unsigned numLbUbProduct = getProductOfNumLowerUpperBounds(c);
if (numLbUbProduct < min) {
min = numLbUbProduct;
minLoc = c;
}
}
return minLoc;
}
// Checks for emptiness of the set by eliminating identifiers successively and
// using the GCD test (on all equality constraints) and checking for trivially
// invalid constraints. Returns 'true' if the constraint system is found to be
// empty; false otherwise.
bool FlatAffineConstraints::isEmpty() const {
if (isEmptyByGCDTest() || hasInvalidConstraint())
return true;
FlatAffineConstraints tmpCst(*this);
// First, eliminate as many local variables as possible using equalities.
tmpCst.removeRedundantLocalVars();
if (tmpCst.isEmptyByGCDTest() || tmpCst.hasInvalidConstraint())
return true;
// Eliminate as many identifiers as possible using Gaussian elimination.
unsigned currentPos = 0;
while (currentPos < tmpCst.getNumIds()) {
tmpCst.gaussianEliminateIds(currentPos, tmpCst.getNumIds());
++currentPos;
// We check emptiness through trivial checks after eliminating each ID to
// detect emptiness early. Since the checks isEmptyByGCDTest() and
// hasInvalidConstraint() are linear time and single sweep on the constraint
// buffer, this appears reasonable - but can optimize in the future.
if (tmpCst.hasInvalidConstraint() || tmpCst.isEmptyByGCDTest())
return true;
}
// Eliminate the remaining using FM.
for (unsigned i = 0, e = tmpCst.getNumIds(); i < e; i++) {
tmpCst.fourierMotzkinEliminate(
getBestIdToEliminate(tmpCst, 0, tmpCst.getNumIds()));
// Check for a constraint explosion. This rarely happens in practice, but
// this check exists as a safeguard against improperly constructed
// constraint systems or artificially created arbitrarily complex systems
// that aren't the intended use case for FlatAffineConstraints. This is
// needed since FM has a worst case exponential complexity in theory.
if (tmpCst.getNumConstraints() >= kExplosionFactor * getNumIds()) {
LLVM_DEBUG(llvm::dbgs() << "FM constraint explosion detected\n");
return false;
}
// FM wouldn't have modified the equalities in any way. So no need to again
// run GCD test. Check for trivial invalid constraints.
if (tmpCst.hasInvalidConstraint())
return true;
}
return false;
}
// Runs the GCD test on all equality constraints. Returns 'true' if this test
// fails on any equality. Returns 'false' otherwise.
// This test can be used to disprove the existence of a solution. If it returns
// true, no integer solution to the equality constraints can exist.
//
// GCD test definition:
//
// The equality constraint:
//
// c_1*x_1 + c_2*x_2 + ... + c_n*x_n = c_0
//
// has an integer solution iff:
//
// GCD of c_1, c_2, ..., c_n divides c_0.
//
bool FlatAffineConstraints::isEmptyByGCDTest() const {
assert(hasConsistentState());
unsigned numCols = getNumCols();
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
uint64_t gcd = std::abs(atEq(i, 0));
for (unsigned j = 1; j < numCols - 1; ++j) {
gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(atEq(i, j)));
}
int64_t v = std::abs(atEq(i, numCols - 1));
if (gcd > 0 && (v % gcd != 0)) {
return true;
}
}
return false;
}
// Returns a matrix where each row is a vector along which the polytope is
// bounded. The span of the returned vectors is guaranteed to contain all
// such vectors. The returned vectors are NOT guaranteed to be linearly
// independent. This function should not be called on empty sets.
//
// It is sufficient to check the perpendiculars of the constraints, as the set
// of perpendiculars which are bounded must span all bounded directions.
Matrix FlatAffineConstraints::getBoundedDirections() const {
// Note that it is necessary to add the equalities too (which the constructor
// does) even though we don't need to check if they are bounded; whether an
// inequality is bounded or not depends on what other constraints, including
// equalities, are present.
Simplex simplex(*this);
assert(!simplex.isEmpty() && "It is not meaningful to ask whether a "
"direction is bounded in an empty set.");
SmallVector<unsigned, 8> boundedIneqs;
// The constructor adds the inequalities to the simplex first, so this
// processes all the inequalities.
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
if (simplex.isBoundedAlongConstraint(i))
boundedIneqs.push_back(i);
}
// The direction vector is given by the coefficients and does not include the
// constant term, so the matrix has one fewer column.
unsigned dirsNumCols = getNumCols() - 1;
Matrix dirs(boundedIneqs.size() + getNumEqualities(), dirsNumCols);
// Copy the bounded inequalities.
unsigned row = 0;
for (unsigned i : boundedIneqs) {
for (unsigned col = 0; col < dirsNumCols; ++col)
dirs(row, col) = atIneq(i, col);
++row;
}
// Copy the equalities. All the equalities' perpendiculars are bounded.
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
for (unsigned col = 0; col < dirsNumCols; ++col)
dirs(row, col) = atEq(i, col);
++row;
}
return dirs;
}
bool eqInvolvesSuffixDims(const FlatAffineConstraints &fac, unsigned eqIndex,
unsigned numDims) {
for (unsigned e = fac.getNumIds(), j = e - numDims; j < e; ++j)
if (fac.atEq(eqIndex, j) != 0)
return true;
return false;
}
bool ineqInvolvesSuffixDims(const FlatAffineConstraints &fac,
unsigned ineqIndex, unsigned numDims) {
for (unsigned e = fac.getNumIds(), j = e - numDims; j < e; ++j)
if (fac.atIneq(ineqIndex, j) != 0)
return true;
return false;
}
void removeConstraintsInvolvingSuffixDims(FlatAffineConstraints &fac,
unsigned unboundedDims) {
// We iterate backwards so that whether we remove constraint i - 1 or not, the
// next constraint to be tested is always i - 2.
for (unsigned i = fac.getNumEqualities(); i > 0; i--)
if (eqInvolvesSuffixDims(fac, i - 1, unboundedDims))
fac.removeEquality(i - 1);
for (unsigned i = fac.getNumInequalities(); i > 0; i--)
if (ineqInvolvesSuffixDims(fac, i - 1, unboundedDims))
fac.removeInequality(i - 1);
}
bool FlatAffineConstraints::isIntegerEmpty() const {
return !findIntegerSample().hasValue();
}
/// Let this set be S. If S is bounded then we directly call into the GBR
/// sampling algorithm. Otherwise, there are some unbounded directions, i.e.,
/// vectors v such that S extends to infinity along v or -v. In this case we
/// use an algorithm described in the integer set library (isl) manual and used
/// by the isl_set_sample function in that library. The algorithm is:
///
/// 1) Apply a unimodular transform T to S to obtain S*T, such that all
/// dimensions in which S*T is bounded lie in the linear span of a prefix of the
/// dimensions.
///
/// 2) Construct a set B by removing all constraints that involve
/// the unbounded dimensions and then deleting the unbounded dimensions. Note
/// that B is a Bounded set.
///
/// 3) Try to obtain a sample from B using the GBR sampling
/// algorithm. If no sample is found, return that S is empty.
///
/// 4) Otherwise, substitute the obtained sample into S*T to obtain a set
/// C. C is a full-dimensional Cone and always contains a sample.
///
/// 5) Obtain an integer sample from C.
///
/// 6) Return T*v, where v is the concatenation of the samples from B and C.
///
/// The following is a sketch of a proof that
/// a) If the algorithm returns empty, then S is empty.
/// b) If the algorithm returns a sample, it is a valid sample in S.
///
/// The algorithm returns empty only if B is empty, in which case S*T is
/// certainly empty since B was obtained by removing constraints and then
/// deleting unconstrained dimensions from S*T. Since T is unimodular, a vector
/// v is in S*T iff T*v is in S. So in this case, since
/// S*T is empty, S is empty too.
///
/// Otherwise, the algorithm substitutes the sample from B into S*T. All the
/// constraints of S*T that did not involve unbounded dimensions are satisfied
/// by this substitution. All dimensions in the linear span of the dimensions
/// outside the prefix are unbounded in S*T (step 1). Substituting values for
/// the bounded dimensions cannot make these dimensions bounded, and these are
/// the only remaining dimensions in C, so C is unbounded along every vector (in
/// the positive or negative direction, or both). C is hence a full-dimensional
/// cone and therefore always contains an integer point.
///
/// Concatenating the samples from B and C gives a sample v in S*T, so the
/// returned sample T*v is a sample in S.
Optional<SmallVector<int64_t, 8>>
FlatAffineConstraints::findIntegerSample() const {
// First, try the GCD test heuristic.
if (isEmptyByGCDTest())
return {};
Simplex simplex(*this);
if (simplex.isEmpty())
return {};
// For a bounded set, we directly call into the GBR sampling algorithm.
if (!simplex.isUnbounded())
return simplex.findIntegerSample();
// The set is unbounded. We cannot directly use the GBR algorithm.
//
// m is a matrix containing, in each row, a vector in which S is
// bounded, such that the linear span of all these dimensions contains all
// bounded dimensions in S.
Matrix m = getBoundedDirections();
// In column echelon form, each row of m occupies only the first rank(m)
// columns and has zeros on the other columns. The transform T that brings S
// to column echelon form is unimodular as well, so this is a suitable
// transform to use in step 1 of the algorithm.
std::pair<unsigned, LinearTransform> result =
LinearTransform::makeTransformToColumnEchelon(std::move(m));
const LinearTransform &transform = result.second;
// 1) Apply T to S to obtain S*T.
FlatAffineConstraints transformedSet = transform.applyTo(*this);
// 2) Remove the unbounded dimensions and constraints involving them to
// obtain a bounded set.
FlatAffineConstraints boundedSet = transformedSet;
unsigned numBoundedDims = result.first;
unsigned numUnboundedDims = getNumIds() - numBoundedDims;
removeConstraintsInvolvingSuffixDims(boundedSet, numUnboundedDims);
boundedSet.removeIdRange(numBoundedDims, boundedSet.getNumIds());
// 3) Try to obtain a sample from the bounded set.
Optional<SmallVector<int64_t, 8>> boundedSample =
Simplex(boundedSet).findIntegerSample();
if (!boundedSample)
return {};
assert(boundedSet.containsPoint(*boundedSample) &&
"Simplex returned an invalid sample!");
// 4) Substitute the values of the bounded dimensions into S*T to obtain a
// full-dimensional cone, which necessarily contains an integer sample.
transformedSet.setAndEliminate(0, *boundedSample);
FlatAffineConstraints &cone = transformedSet;
// 5) Obtain an integer sample from the cone.
//
// We shrink the cone such that for any rational point in the shrunken cone,
// rounding up each of the point's coordinates produces a point that still
// lies in the original cone.
//
// Rounding up a point x adds a number e_i in [0, 1) to each coordinate x_i.
// For each inequality sum_i a_i x_i + c >= 0 in the original cone, the
// shrunken cone will have the inequality tightened by some amount s, such
// that if x satisfies the shrunken cone's tightened inequality, then x + e
// satisfies the original inequality, i.e.,
//
// sum_i a_i x_i + c + s >= 0 implies sum_i a_i (x_i + e_i) + c >= 0
//
// for any e_i values in [0, 1). In fact, we will handle the slightly more
// general case where e_i can be in [0, 1]. For example, consider the
// inequality 2x_1 - 3x_2 - 7x_3 - 6 >= 0, and let x = (3, 0, 0). How low
// could the LHS go if we added a number in [0, 1] to each coordinate? The LHS
// is minimized when we add 1 to the x_i with negative coefficient a_i and
// keep the other x_i the same. In the example, we would get x = (3, 1, 1),
// changing the value of the LHS by -3 + -7 = -10.
//
// In general, the value of the LHS can change by at most the sum of the
// negative a_i, so we accomodate this by shifting the inequality by this
// amount for the shrunken cone.
for (unsigned i = 0, e = cone.getNumInequalities(); i < e; ++i) {
for (unsigned j = 0; j < cone.numIds; ++j) {
int64_t coeff = cone.atIneq(i, j);
if (coeff < 0)
cone.atIneq(i, cone.numIds) += coeff;
}
}
// Obtain an integer sample in the cone by rounding up a rational point from
// the shrunken cone. Shrinking the cone amounts to shifting its apex
// "inwards" without changing its "shape"; the shrunken cone is still a
// full-dimensional cone and is hence non-empty.
Simplex shrunkenConeSimplex(cone);
assert(!shrunkenConeSimplex.isEmpty() && "Shrunken cone cannot be empty!");
SmallVector<Fraction, 8> shrunkenConeSample =
shrunkenConeSimplex.getRationalSample();
SmallVector<int64_t, 8> coneSample(llvm::map_range(shrunkenConeSample, ceil));
// 6) Return transform * concat(boundedSample, coneSample).
SmallVector<int64_t, 8> &sample = boundedSample.getValue();
sample.append(coneSample.begin(), coneSample.end());
return transform.preMultiplyColumn(sample);
}
/// Helper to evaluate an affine expression at a point.
/// The expression is a list of coefficients for the dimensions followed by the
/// constant term.
static int64_t valueAt(ArrayRef<int64_t> expr, ArrayRef<int64_t> point) {
assert(expr.size() == 1 + point.size() &&
"Dimensionalities of point and expression don't match!");
int64_t value = expr.back();
for (unsigned i = 0; i < point.size(); ++i)
value += expr[i] * point[i];
return value;
}
/// A point satisfies an equality iff the value of the equality at the
/// expression is zero, and it satisfies an inequality iff the value of the
/// inequality at that point is non-negative.
bool FlatAffineConstraints::containsPoint(ArrayRef<int64_t> point) const {
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
if (valueAt(getEquality(i), point) != 0)
return false;
}
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
if (valueAt(getInequality(i), point) < 0)
return false;
}
return true;
}
/// Check if the pos^th identifier can be represented as a division using upper
/// bound inequality at position `ubIneq` and lower bound inequality at position
/// `lbIneq`.
///
/// Let `id` be the pos^th identifier, then `id` is equivalent to
/// `expr floordiv divisor` if there are constraints of the form:
/// 0 <= expr - divisor * id <= divisor - 1
/// Rearranging, we have:
/// divisor * id - expr + (divisor - 1) >= 0 <-- Lower bound for 'id'
/// -divisor * id + expr >= 0 <-- Upper bound for 'id'
///
/// For example:
/// 32*k >= 16*i + j - 31 <-- Lower bound for 'k'
/// 32*k <= 16*i + j <-- Upper bound for 'k'
/// expr = 16*i + j, divisor = 32
/// k = ( 16*i + j ) floordiv 32
///
/// 4q >= i + j - 2 <-- Lower bound for 'q'
/// 4q <= i + j + 1 <-- Upper bound for 'q'
/// expr = i + j + 1, divisor = 4
/// q = (i + j + 1) floordiv 4
//
/// This function also supports detecting divisions from bounds that are
/// strictly tighter than the division bounds described above, since tighter
/// bounds imply the division bounds. For example:
/// 4q - i - j + 2 >= 0 <-- Lower bound for 'q'
/// -4q + i + j >= 0 <-- Tight upper bound for 'q'
///
/// To extract floor divisions with tighter bounds, we assume that that the
/// constraints are of the form:
/// c <= expr - divisior * id <= divisor - 1, where 0 <= c <= divisor - 1
/// Rearranging, we have:
/// divisor * id - expr + (divisor - 1) >= 0 <-- Lower bound for 'id'
/// -divisor * id + expr - c >= 0 <-- Upper bound for 'id'
///
/// If successful, `expr` is set to dividend of the division and `divisor` is
/// set to the denominator of the division.
static LogicalResult getDivRepr(const FlatAffineConstraints &cst, unsigned pos,
unsigned ubIneq, unsigned lbIneq,
SmallVector<int64_t, 8> &expr,
unsigned &divisor) {
assert(pos <= cst.getNumIds() && "Invalid identifier position");
assert(ubIneq <= cst.getNumInequalities() &&
"Invalid upper bound inequality position");
assert(lbIneq <= cst.getNumInequalities() &&
"Invalid upper bound inequality position");
// Extract divisor from the lower bound.
divisor = cst.atIneq(lbIneq, pos);
// First, check if the constraints are opposite of each other except the
// constant term.
unsigned i = 0, e = 0;
for (i = 0, e = cst.getNumIds(); i < e; ++i)
if (cst.atIneq(ubIneq, i) != -cst.atIneq(lbIneq, i))
break;
if (i < e)
return failure();
// Then, check if the constant term is of the proper form.
// Due to the form of the upper/lower bound inequalities, the sum of their
// constants is `divisor - 1 - c`. From this, we can extract c:
int64_t constantSum = cst.atIneq(lbIneq, cst.getNumCols() - 1) +
cst.atIneq(ubIneq, cst.getNumCols() - 1);
int64_t c = divisor - 1 - constantSum;
// Check if `c` satisfies the condition `0 <= c <= divisor - 1`. This also
// implictly checks that `divisor` is positive.
if (!(c >= 0 && c <= divisor - 1))
return failure();
// The inequality pair can be used to extract the division.
// Set `expr` to the dividend of the division except the constant term, which
// is set below.
expr.resize(cst.getNumCols(), 0);
for (i = 0, e = cst.getNumIds(); i < e; ++i)
if (i != pos)
expr[i] = cst.atIneq(ubIneq, i);
// From the upper bound inequality's form, its constant term is equal to the
// constant term of `expr`, minus `c`. From this,
// constant term of `expr` = constant term of upper bound + `c`.
expr.back() = cst.atIneq(ubIneq, cst.getNumCols() - 1) + c;
return success();
}
/// Check if the pos^th identifier can be expressed as a floordiv of an affine
/// function of other identifiers (where the divisor is a positive constant).
/// `foundRepr` contains a boolean for each identifier indicating if the
/// explicit representation for that identifier has already been computed.
/// Returns the upper and lower bound inequalities using which the floordiv can
/// be computed. If the representation could be computed, `dividend` and
/// `denominator` are set. If the representation could not be computed,
/// `llvm::None` is returned.
static Optional<std::pair<unsigned, unsigned>>
computeSingleVarRepr(const FlatAffineConstraints &cst,
const SmallVector<bool, 8> &foundRepr, unsigned pos,
SmallVector<int64_t, 8> &dividend, unsigned &divisor) {
assert(pos < cst.getNumIds() && "invalid position");
assert(foundRepr.size() == cst.getNumIds() &&
"Size of foundRepr does not match total number of variables");
SmallVector<unsigned, 4> lbIndices, ubIndices;
cst.getLowerAndUpperBoundIndices(pos, &lbIndices, &ubIndices);
for (unsigned ubPos : ubIndices) {
for (unsigned lbPos : lbIndices) {
// Attempt to get divison representation from ubPos, lbPos.
if (failed(getDivRepr(cst, pos, ubPos, lbPos, dividend, divisor)))
continue;
// Check if the inequalities depend on a variable for which
// an explicit representation has not been found yet.
// Exit to avoid circular dependencies between divisions.
unsigned c, f;
for (c = 0, f = cst.getNumIds(); c < f; ++c) {
if (c == pos)
continue;
if (!foundRepr[c] && dividend[c] != 0)
break;
}
// Expression can't be constructed as it depends on a yet unknown
// identifier.
// TODO: Visit/compute the identifiers in an order so that this doesn't
// happen. More complex but much more efficient.
if (c < f)
continue;
return std::make_pair(ubPos, lbPos);
}
}
return llvm::None;
}
void FlatAffineConstraints::getLocalReprs(
std::vector<llvm::Optional<std::pair<unsigned, unsigned>>> &repr) const {
std::vector<SmallVector<int64_t, 8>> dividends(getNumLocalIds());
SmallVector<unsigned, 4> denominators(getNumLocalIds());
getLocalReprs(dividends, denominators, repr);
}
void FlatAffineConstraints::getLocalReprs(
std::vector<SmallVector<int64_t, 8>> &dividends,
SmallVector<unsigned, 4> &denominators) const {
std::vector<llvm::Optional<std::pair<unsigned, unsigned>>> repr(
getNumLocalIds());
getLocalReprs(dividends, denominators, repr);
}
void FlatAffineConstraints::getLocalReprs(
std::vector<SmallVector<int64_t, 8>> &dividends,
SmallVector<unsigned, 4> &denominators,
std::vector<llvm::Optional<std::pair<unsigned, unsigned>>> &repr) const {
repr.resize(getNumLocalIds());
dividends.resize(getNumLocalIds());
denominators.resize(getNumLocalIds());
SmallVector<bool, 8> foundRepr(getNumIds(), false);
for (unsigned i = 0, e = getNumDimAndSymbolIds(); i < e; ++i)
foundRepr[i] = true;
unsigned divOffset = getNumDimAndSymbolIds();
bool changed;
do {
// Each time changed is true, at end of this iteration, one or more local
// vars have been detected as floor divs.
changed = false;
for (unsigned i = 0, e = getNumLocalIds(); i < e; ++i) {
if (!foundRepr[i + divOffset]) {
if (auto res = computeSingleVarRepr(*this, foundRepr, divOffset + i,
dividends[i], denominators[i])) {
foundRepr[i + divOffset] = true;
repr[i] = res;
changed = true;
}
}
}
} while (changed);
// Set 0 denominator for identifiers for which no division representation
// could be found.
for (unsigned i = 0, e = repr.size(); i < e; ++i)
if (!repr[i].hasValue())
denominators[i] = 0;
}
/// Tightens inequalities given that we are dealing with integer spaces. This is
/// analogous to the GCD test but applied to inequalities. The constant term can
/// be reduced to the preceding multiple of the GCD of the coefficients, i.e.,
/// 64*i - 100 >= 0 => 64*i - 128 >= 0 (since 'i' is an integer). This is a
/// fast method - linear in the number of coefficients.
// Example on how this affects practical cases: consider the scenario:
// 64*i >= 100, j = 64*i; without a tightening, elimination of i would yield
// j >= 100 instead of the tighter (exact) j >= 128.
void FlatAffineConstraints::gcdTightenInequalities() {
unsigned numCols = getNumCols();
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
uint64_t gcd = std::abs(atIneq(i, 0));
for (unsigned j = 1; j < numCols - 1; ++j) {
gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(atIneq(i, j)));
}
if (gcd > 0 && gcd != 1) {
int64_t gcdI = static_cast<int64_t>(gcd);
// Tighten the constant term and normalize the constraint by the GCD.
atIneq(i, numCols - 1) = mlir::floorDiv(atIneq(i, numCols - 1), gcdI);
for (unsigned j = 0, e = numCols - 1; j < e; ++j)
atIneq(i, j) /= gcdI;
}
}
}
// Eliminates all identifier variables in column range [posStart, posLimit).
// Returns the number of variables eliminated.
unsigned FlatAffineConstraints::gaussianEliminateIds(unsigned posStart,
unsigned posLimit) {
// Return if identifier positions to eliminate are out of range.
assert(posLimit <= numIds);
assert(hasConsistentState());
if (posStart >= posLimit)
return 0;
gcdTightenInequalities();
unsigned pivotCol = 0;
for (pivotCol = posStart; pivotCol < posLimit; ++pivotCol) {
// Find a row which has a non-zero coefficient in column 'j'.
unsigned pivotRow;
if (!findConstraintWithNonZeroAt(*this, pivotCol, /*isEq=*/true,
&pivotRow)) {
// No pivot row in equalities with non-zero at 'pivotCol'.
if (!findConstraintWithNonZeroAt(*this, pivotCol, /*isEq=*/false,
&pivotRow)) {
// If inequalities are also non-zero in 'pivotCol', it can be
// eliminated.
continue;
}
break;
}
// Eliminate identifier at 'pivotCol' from each equality row.
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
eliminateFromConstraint(this, i, pivotRow, pivotCol, posStart,
/*isEq=*/true);
normalizeConstraintByGCD</*isEq=*/true>(this, i);
}
// Eliminate identifier at 'pivotCol' from each inequality row.
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
eliminateFromConstraint(this, i, pivotRow, pivotCol, posStart,
/*isEq=*/false);
normalizeConstraintByGCD</*isEq=*/false>(this, i);
}
removeEquality(pivotRow);
gcdTightenInequalities();
}
// Update position limit based on number eliminated.
posLimit = pivotCol;
// Remove eliminated columns from all constraints.
removeIdRange(posStart, posLimit);
return posLimit - posStart;
}
// Determine whether the identifier at 'pos' (say id_r) can be expressed as
// modulo of another known identifier (say id_n) w.r.t a constant. For example,
// if the following constraints hold true:
// ```
// 0 <= id_r <= divisor - 1
// id_n - (divisor * q_expr) = id_r
// ```
// where `id_n` is a known identifier (called dividend), and `q_expr` is an
// `AffineExpr` (called the quotient expression), `id_r` can be written as:
//
// `id_r = id_n mod divisor`.
//
// Additionally, in a special case of the above constaints where `q_expr` is an
// identifier itself that is not yet known (say `id_q`), it can be written as a
// floordiv in the following way:
//
// `id_q = id_n floordiv divisor`.
//
// Returns true if the above mod or floordiv are detected, updating 'memo' with
// these new expressions. Returns false otherwise.
static bool detectAsMod(const FlatAffineConstraints &cst, unsigned pos,
int64_t lbConst, int64_t ubConst,
SmallVectorImpl<AffineExpr> &memo,
MLIRContext *context) {
assert(pos < cst.getNumIds() && "invalid position");
// Check if a divisor satisfying the condition `0 <= id_r <= divisor - 1` can
// be determined.
if (lbConst != 0 || ubConst < 1)
return false;
int64_t divisor = ubConst + 1;
// Check for the aforementioned conditions in each equality.
for (unsigned curEquality = 0, numEqualities = cst.getNumEqualities();
curEquality < numEqualities; curEquality++) {
int64_t coefficientAtPos = cst.atEq(curEquality, pos);
// If current equality does not involve `id_r`, continue to the next
// equality.
if (coefficientAtPos == 0)
continue;
// Constant term should be 0 in this equality.
if (cst.atEq(curEquality, cst.getNumCols() - 1) != 0)
continue;
// Traverse through the equality and construct the dividend expression
// `dividendExpr`, to contain all the identifiers which are known and are
// not divisible by `(coefficientAtPos * divisor)`. Hope here is that the
// `dividendExpr` gets simplified into a single identifier `id_n` discussed
// above.
auto dividendExpr = getAffineConstantExpr(0, context);
// Track the terms that go into quotient expression, later used to detect
// additional floordiv.
unsigned quotientCount = 0;
int quotientPosition = -1;
int quotientSign = 1;
// Consider each term in the current equality.
unsigned curId, e;
for (curId = 0, e = cst.getNumDimAndSymbolIds(); curId < e; ++curId) {
// Ignore id_r.
if (curId == pos)
continue;
int64_t coefficientOfCurId = cst.atEq(curEquality, curId);
// Ignore ids that do not contribute to the current equality.
if (coefficientOfCurId == 0)
continue;
// Check if the current id goes into the quotient expression.
if (coefficientOfCurId % (divisor * coefficientAtPos) == 0) {
quotientCount++;
quotientPosition = curId;
quotientSign = (coefficientOfCurId * coefficientAtPos) > 0 ? 1 : -1;
continue;
}
// Identifiers that are part of dividendExpr should be known.
if (!memo[curId])
break;
// Append the current identifier to the dividend expression.
dividendExpr = dividendExpr + memo[curId] * coefficientOfCurId;
}
// Can't construct expression as it depends on a yet uncomputed id.
if (curId < e)
continue;
// Express `id_r` in terms of the other ids collected so far.
if (coefficientAtPos > 0)
dividendExpr = (-dividendExpr).floorDiv(coefficientAtPos);
else
dividendExpr = dividendExpr.floorDiv(-coefficientAtPos);
// Simplify the expression.
dividendExpr = simplifyAffineExpr(dividendExpr, cst.getNumDimIds(),
cst.getNumSymbolIds());
// Only if the final dividend expression is just a single id (which we call
// `id_n`), we can proceed.
// TODO: Handle AffineSymbolExpr as well. There is no reason to restrict it
// to dims themselves.
auto dimExpr = dividendExpr.dyn_cast<AffineDimExpr>();
if (!dimExpr)
continue;
// Express `id_r` as `id_n % divisor` and store the expression in `memo`.
if (quotientCount >= 1) {
auto ub = cst.getConstantBound(FlatAffineConstraints::BoundType::UB,
dimExpr.getPosition());
// If `id_n` has an upperbound that is less than the divisor, mod can be
// eliminated altogether.
if (ub.hasValue() && ub.getValue() < divisor)
memo[pos] = dimExpr;
else
memo[pos] = dimExpr % divisor;
// If a unique quotient `id_q` was seen, it can be expressed as
// `id_n floordiv divisor`.
if (quotientCount == 1 && !memo[quotientPosition])
memo[quotientPosition] = dimExpr.floorDiv(divisor) * quotientSign;
return true;
}
}
return false;
}
/// Gather all lower and upper bounds of the identifier at `pos`, and
/// optionally any equalities on it. In addition, the bounds are to be
/// independent of identifiers in position range [`offset`, `offset` + `num`).
void FlatAffineConstraints::getLowerAndUpperBoundIndices(
unsigned pos, SmallVectorImpl<unsigned> *lbIndices,
SmallVectorImpl<unsigned> *ubIndices, SmallVectorImpl<unsigned> *eqIndices,
unsigned offset, unsigned num) const {
assert(pos < getNumIds() && "invalid position");
assert(offset + num < getNumCols() && "invalid range");
// Checks for a constraint that has a non-zero coeff for the identifiers in
// the position range [offset, offset + num) while ignoring `pos`.
auto containsConstraintDependentOnRange = [&](unsigned r, bool isEq) {
unsigned c, f;
auto cst = isEq ? getEquality(r) : getInequality(r);
for (c = offset, f = offset + num; c < f; ++c) {
if (c == pos)
continue;
if (cst[c] != 0)
break;
}
return c < f;
};
// Gather all lower bounds and upper bounds of the variable. Since the
// canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
// bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
// The bounds are to be independent of [offset, offset + num) columns.
if (containsConstraintDependentOnRange(r, /*isEq=*/false))
continue;
if (atIneq(r, pos) >= 1) {
// Lower bound.
lbIndices->push_back(r);
} else if (atIneq(r, pos) <= -1) {
// Upper bound.
ubIndices->push_back(r);
}
}
// An equality is both a lower and upper bound. Record any equalities
// involving the pos^th identifier.
if (!eqIndices)
return;
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
if (atEq(r, pos) == 0)
continue;
if (containsConstraintDependentOnRange(r, /*isEq=*/true))
continue;
eqIndices->push_back(r);
}
}
/// Check if the pos^th identifier can be expressed as a floordiv of an affine
/// function of other identifiers (where the divisor is a positive constant)
/// given the initial set of expressions in `exprs`. If it can be, the
/// corresponding position in `exprs` is set as the detected affine expr. For
/// eg: 4q <= i + j <= 4q + 3 <=> q = (i + j) floordiv 4. An equality can
/// also yield a floordiv: eg. 4q = i + j <=> q = (i + j) floordiv 4. 32q + 28
/// <= i <= 32q + 31 => q = i floordiv 32.
static bool detectAsFloorDiv(const FlatAffineConstraints &cst, unsigned pos,
MLIRContext *context,
SmallVectorImpl<AffineExpr> &exprs) {
assert(pos < cst.getNumIds() && "invalid position");
// Get upper-lower bound pair for this variable.
SmallVector<bool, 8> foundRepr(cst.getNumIds(), false);
for (unsigned i = 0, e = cst.getNumIds(); i < e; ++i)
if (exprs[i])
foundRepr[i] = true;
SmallVector<int64_t, 8> dividend;
unsigned divisor;
auto ulPair = computeSingleVarRepr(cst, foundRepr, pos, dividend, divisor);
// No upper-lower bound pair found for this var.
if (!ulPair)
return false;
// Construct the dividend expression.
auto dividendExpr = getAffineConstantExpr(dividend.back(), context);
for (unsigned c = 0, f = cst.getNumIds(); c < f; c++)
if (dividend[c] != 0)
dividendExpr = dividendExpr + dividend[c] * exprs[c];
// Successfully detected the floordiv.
exprs[pos] = dividendExpr.floorDiv(divisor);
return true;
}
// Fills an inequality row with the value 'val'.
static inline void fillInequality(FlatAffineConstraints *cst, unsigned r,
int64_t val) {
for (unsigned c = 0, f = cst->getNumCols(); c < f; c++) {
cst->atIneq(r, c) = val;
}
}
// Negates an inequality.
static inline void negateInequality(FlatAffineConstraints *cst, unsigned r) {
for (unsigned c = 0, f = cst->getNumCols(); c < f; c++) {
cst->atIneq(r, c) = -cst->atIneq(r, c);
}
}
// A more complex check to eliminate redundant inequalities. Uses FourierMotzkin
// to check if a constraint is redundant.
void FlatAffineConstraints::removeRedundantInequalities() {
SmallVector<bool, 32> redun(getNumInequalities(), false);
// To check if an inequality is redundant, we replace the inequality by its
// complement (for eg., i - 1 >= 0 by i <= 0), and check if the resulting
// system is empty. If it is, the inequality is redundant.
FlatAffineConstraints tmpCst(*this);
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
// Change the inequality to its complement.
negateInequality(&tmpCst, r);
tmpCst.atIneq(r, tmpCst.getNumCols() - 1)--;
if (tmpCst.isEmpty()) {
redun[r] = true;
// Zero fill the redundant inequality.
fillInequality(this, r, /*val=*/0);
fillInequality(&tmpCst, r, /*val=*/0);
} else {
// Reverse the change (to avoid recreating tmpCst each time).
tmpCst.atIneq(r, tmpCst.getNumCols() - 1)++;
negateInequality(&tmpCst, r);
}
}
// Scan to get rid of all rows marked redundant, in-place.
auto copyRow = [&](unsigned src, unsigned dest) {
if (src == dest)
return;
for (unsigned c = 0, e = getNumCols(); c < e; c++) {
atIneq(dest, c) = atIneq(src, c);
}
};
unsigned pos = 0;
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
if (!redun[r])
copyRow(r, pos++);
}
inequalities.resizeVertically(pos);
}
// A more complex check to eliminate redundant inequalities and equalities. Uses
// Simplex to check if a constraint is redundant.
void FlatAffineConstraints::removeRedundantConstraints() {
// First, we run gcdTightenInequalities. This allows us to catch some
// constraints which are not redundant when considering rational solutions
// but are redundant in terms of integer solutions.
gcdTightenInequalities();
Simplex simplex(*this);
simplex.detectRedundant();
auto copyInequality = [&](unsigned src, unsigned dest) {
if (src == dest)
return;
for (unsigned c = 0, e = getNumCols(); c < e; c++)
atIneq(dest, c) = atIneq(src, c);
};
unsigned pos = 0;
unsigned numIneqs = getNumInequalities();
// Scan to get rid of all inequalities marked redundant, in-place. In Simplex,
// the first constraints added are the inequalities.
for (unsigned r = 0; r < numIneqs; r++) {
if (!simplex.isMarkedRedundant(r))
copyInequality(r, pos++);
}
inequalities.resizeVertically(pos);
// Scan to get rid of all equalities marked redundant, in-place. In Simplex,
// after the inequalities, a pair of constraints for each equality is added.
// An equality is redundant if both the inequalities in its pair are
// redundant.
auto copyEquality = [&](unsigned src, unsigned dest) {
if (src == dest)
return;
for (unsigned c = 0, e = getNumCols(); c < e; c++)
atEq(dest, c) = atEq(src, c);
};
pos = 0;
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
if (!(simplex.isMarkedRedundant(numIneqs + 2 * r) &&
simplex.isMarkedRedundant(numIneqs + 2 * r + 1)))
copyEquality(r, pos++);
}
equalities.resizeVertically(pos);
}
/// Eliminate `pos2^th` local identifier, replacing its every instance with
/// `pos1^th` local identifier. This function is intended to be used to remove
/// redundancy when local variables at position `pos1` and `pos2` are restricted
/// to have the same value.
static void eliminateRedundantLocalId(FlatAffineConstraints &fac, unsigned pos1,
unsigned pos2) {
assert(pos1 < fac.getNumLocalIds() && "Invalid local id position");
assert(pos2 < fac.getNumLocalIds() && "Invalid local id position");
unsigned localOffset = fac.getNumDimAndSymbolIds();
pos1 += localOffset;
pos2 += localOffset;
for (unsigned i = 0, e = fac.getNumInequalities(); i < e; ++i)
fac.atIneq(i, pos1) += fac.atIneq(i, pos2);
for (unsigned i = 0, e = fac.getNumEqualities(); i < e; ++i)
fac.atEq(i, pos1) += fac.atEq(i, pos2);
fac.removeId(pos2);
}
/// Adds additional local ids to the sets such that they both have the union
/// of the local ids in each set, without changing the set of points that
/// lie in `this` and `other`.
///
/// To detect local ids that always take the same in both sets, each local id is
/// represented as a floordiv with constant denominator in terms of other ids.
/// After extracting these divisions, local ids with the same division
/// representation are considered duplicate and are merged. It is possible that
/// division representation for some local id cannot be obtained, and thus these
/// local ids are not considered for detecting duplicates.
void FlatAffineConstraints::mergeLocalIds(FlatAffineConstraints &other) {
assert(getNumDimIds() == other.getNumDimIds() &&
"Number of dimension ids should match");
assert(getNumSymbolIds() == other.getNumSymbolIds() &&
"Number of symbol ids should match");
FlatAffineConstraints &facA = *this;
FlatAffineConstraints &facB = other;
// Merge local ids of facA and facB without using division information,
// i.e. append local ids of `facB` to `facA` and insert local ids of `facA`
// to `facB` at start of its local ids.
unsigned initLocals = facA.getNumLocalIds();
insertLocalId(facA.getNumLocalIds(), facB.getNumLocalIds());
facB.insertLocalId(0, initLocals);
// Get division representations from each FAC.
std::vector<SmallVector<int64_t, 8>> divsA, divsB;
SmallVector<unsigned, 4> denomsA, denomsB;
facA.getLocalReprs(divsA, denomsA);
facB.getLocalReprs(divsB, denomsB);
// Copy division information for facB into `divsA` and `denomsA`, so that
// these have the combined division information of both FACs. Since newly
// added local variables in facA and facB have no constraints, they will not
// have any division representation.
std::copy(divsB.begin() + initLocals, divsB.end(),
divsA.begin() + initLocals);
std::copy(denomsB.begin() + initLocals, denomsB.end(),
denomsA.begin() + initLocals);
// Find and merge duplicate divisions.
// TODO: Add division normalization to support divisions that differ by
// a constant.
// TODO: Add division ordering such that a division representation for local
// identifier at position `i` only depends on local identifiers at position <
// `i`. This would make sure that all divisions depending on other local
// variables that can be merged, are merged.
unsigned localOffset = getIdKindOffset(IdKind::Local);
for (unsigned i = 0; i < divsA.size(); ++i) {
// Check if a division representation exists for the `i^th` local id.
if (denomsA[i] == 0)
continue;
// Check if a division exists which is a duplicate of the division at `i`.
for (unsigned j = i + 1; j < divsA.size(); ++j) {
// Check if a division representation exists for the `j^th` local id.
if (denomsA[j] == 0)
continue;
// Check if the denominators match.
if (denomsA[i] != denomsA[j])
continue;
// Check if the representations are equal.
if (divsA[i] != divsA[j])
continue;
// Merge divisions at position `j` into division at position `i`.
eliminateRedundantLocalId(facA, i, j);
eliminateRedundantLocalId(facB, i, j);
for (unsigned k = 0, g = divsA.size(); k < g; ++k) {
SmallVector<int64_t, 8> &div = divsA[k];
if (denomsA[k] != 0) {
div[localOffset + i] += div[localOffset + j];
div.erase(div.begin() + localOffset + j);
}
}
divsA.erase(divsA.begin() + j);
denomsA.erase(denomsA.begin() + j);
// Since `j` can never be zero, we do not need to worry about overflows.
--j;
}
}
}
/// Removes local variables using equalities. Each equality is checked if it
/// can be reduced to the form: `e = affine-expr`, where `e` is a local
/// variable and `affine-expr` is an affine expression not containing `e`.
/// If an equality satisfies this form, the local variable is replaced in
/// each constraint and then removed. The equality used to replace this local
/// variable is also removed.
void FlatAffineConstraints::removeRedundantLocalVars() {
// Normalize the equality constraints to reduce coefficients of local
// variables to 1 wherever possible.
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i)
normalizeConstraintByGCD</*isEq=*/true>(this, i);
while (true) {
unsigned i, e, j, f;
for (i = 0, e = getNumEqualities(); i < e; ++i) {
// Find a local variable to eliminate using ith equality.
for (j = getNumDimAndSymbolIds(), f = getNumIds(); j < f; ++j)
if (std::abs(atEq(i, j)) == 1)
break;
// Local variable can be eliminated using ith equality.
if (j < f)
break;
}
// No equality can be used to eliminate a local variable.
if (i == e)
break;
// Use the ith equality to simplify other equalities. If any changes
// are made to an equality constraint, it is normalized by GCD.
for (unsigned k = 0, t = getNumEqualities(); k < t; ++k) {
if (atEq(k, j) != 0) {
eliminateFromConstraint(this, k, i, j, j, /*isEq=*/true);
normalizeConstraintByGCD</*isEq=*/true>(this, k);
}
}
// Use the ith equality to simplify inequalities.
for (unsigned k = 0, t = getNumInequalities(); k < t; ++k)
eliminateFromConstraint(this, k, i, j, j, /*isEq=*/false);
// Remove the ith equality and the found local variable.
removeId(j);
removeEquality(i);
}
}
void FlatAffineConstraints::convertDimToLocal(unsigned dimStart,
unsigned dimLimit) {
assert(dimLimit <= getNumDimIds() && "Invalid dim pos range");
if (dimStart >= dimLimit)
return;
// Append new local variables corresponding to the dimensions to be converted.
unsigned convertCount = dimLimit - dimStart;
unsigned newLocalIdStart = getNumIds();
appendLocalId(convertCount);
// Swap the new local variables with dimensions.
for (unsigned i = 0; i < convertCount; ++i)
swapId(i + dimStart, i + newLocalIdStart);
// Remove dimensions converted to local variables.
removeIdRange(dimStart, dimLimit);
}
std::pair<AffineMap, AffineMap> FlatAffineConstraints::getLowerAndUpperBound(
unsigned pos, unsigned offset, unsigned num, unsigned symStartPos,
ArrayRef<AffineExpr> localExprs, MLIRContext *context) const {
assert(pos + offset < getNumDimIds() && "invalid dim start pos");
assert(symStartPos >= (pos + offset) && "invalid sym start pos");
assert(getNumLocalIds() == localExprs.size() &&
"incorrect local exprs count");
SmallVector<unsigned, 4> lbIndices, ubIndices, eqIndices;
getLowerAndUpperBoundIndices(pos + offset, &lbIndices, &ubIndices, &eqIndices,
offset, num);
/// Add to 'b' from 'a' in set [0, offset) U [offset + num, symbStartPos).
auto addCoeffs = [&](ArrayRef<int64_t> a, SmallVectorImpl<int64_t> &b) {
b.clear();
for (unsigned i = 0, e = a.size(); i < e; ++i) {
if (i < offset || i >= offset + num)
b.push_back(a[i]);
}
};
SmallVector<int64_t, 8> lb, ub;
SmallVector<AffineExpr, 4> lbExprs;
unsigned dimCount = symStartPos - num;
unsigned symCount = getNumDimAndSymbolIds() - symStartPos;
lbExprs.reserve(lbIndices.size() + eqIndices.size());
// Lower bound expressions.
for (auto idx : lbIndices) {
auto ineq = getInequality(idx);
// Extract the lower bound (in terms of other coeff's + const), i.e., if
// i - j + 1 >= 0 is the constraint, 'pos' is for i the lower bound is j
// - 1.
addCoeffs(ineq, lb);
std::transform(lb.begin(), lb.end(), lb.begin(), std::negate<int64_t>());
auto expr =
getAffineExprFromFlatForm(lb, dimCount, symCount, localExprs, context);
// expr ceildiv divisor is (expr + divisor - 1) floordiv divisor
int64_t divisor = std::abs(ineq[pos + offset]);
expr = (expr + divisor - 1).floorDiv(divisor);
lbExprs.push_back(expr);
}
SmallVector<AffineExpr, 4> ubExprs;
ubExprs.reserve(ubIndices.size() + eqIndices.size());
// Upper bound expressions.
for (auto idx : ubIndices) {
auto ineq = getInequality(idx);
// Extract the upper bound (in terms of other coeff's + const).
addCoeffs(ineq, ub);
auto expr =
getAffineExprFromFlatForm(ub, dimCount, symCount, localExprs, context);
expr = expr.floorDiv(std::abs(ineq[pos + offset]));
// Upper bound is exclusive.
ubExprs.push_back(expr + 1);
}
// Equalities. It's both a lower and a upper bound.
SmallVector<int64_t, 4> b;
for (auto idx : eqIndices) {
auto eq = getEquality(idx);
addCoeffs(eq, b);
if (eq[pos + offset] > 0)
std::transform(b.begin(), b.end(), b.begin(), std::negate<int64_t>());
// Extract the upper bound (in terms of other coeff's + const).
auto expr =
getAffineExprFromFlatForm(b, dimCount, symCount, localExprs, context);
expr = expr.floorDiv(std::abs(eq[pos + offset]));
// Upper bound is exclusive.
ubExprs.push_back(expr + 1);
// Lower bound.
expr =
getAffineExprFromFlatForm(b, dimCount, symCount, localExprs, context);
expr = expr.ceilDiv(std::abs(eq[pos + offset]));
lbExprs.push_back(expr);
}
auto lbMap = AffineMap::get(dimCount, symCount, lbExprs, context);
auto ubMap = AffineMap::get(dimCount, symCount, ubExprs, context);
return {lbMap, ubMap};
}
/// Computes the lower and upper bounds of the first 'num' dimensional
/// identifiers (starting at 'offset') as affine maps of the remaining
/// identifiers (dimensional and symbolic identifiers). Local identifiers are
/// themselves explicitly computed as affine functions of other identifiers in
/// this process if needed.
void FlatAffineConstraints::getSliceBounds(unsigned offset, unsigned num,
MLIRContext *context,
SmallVectorImpl<AffineMap> *lbMaps,
SmallVectorImpl<AffineMap> *ubMaps) {
assert(num < getNumDimIds() && "invalid range");
// Basic simplification.
normalizeConstraintsByGCD();
LLVM_DEBUG(llvm::dbgs() << "getSliceBounds for first " << num
<< " identifiers\n");
LLVM_DEBUG(dump());
// Record computed/detected identifiers.
SmallVector<AffineExpr, 8> memo(getNumIds());
// Initialize dimensional and symbolic identifiers.
for (unsigned i = 0, e = getNumDimIds(); i < e; i++) {
if (i < offset)
memo[i] = getAffineDimExpr(i, context);
else if (i >= offset + num)
memo[i] = getAffineDimExpr(i - num, context);
}
for (unsigned i = getNumDimIds(), e = getNumDimAndSymbolIds(); i < e; i++)
memo[i] = getAffineSymbolExpr(i - getNumDimIds(), context);
bool changed;
do {
changed = false;
// Identify yet unknown identifiers as constants or mod's / floordiv's of
// other identifiers if possible.
for (unsigned pos = 0; pos < getNumIds(); pos++) {
if (memo[pos])
continue;
auto lbConst = getConstantBound(BoundType::LB, pos);
auto ubConst = getConstantBound(BoundType::UB, pos);
if (lbConst.hasValue() && ubConst.hasValue()) {
// Detect equality to a constant.
if (lbConst.getValue() == ubConst.getValue()) {
memo[pos] = getAffineConstantExpr(lbConst.getValue(), context);
changed = true;
continue;
}
// Detect an identifier as modulo of another identifier w.r.t a
// constant.
if (detectAsMod(*this, pos, lbConst.getValue(), ubConst.getValue(),
memo, context)) {
changed = true;
continue;
}
}
// Detect an identifier as a floordiv of an affine function of other
// identifiers (divisor is a positive constant).
if (detectAsFloorDiv(*this, pos, context, memo)) {
changed = true;
continue;
}
// Detect an identifier as an expression of other identifiers.
unsigned idx;
if (!findConstraintWithNonZeroAt(*this, pos, /*isEq=*/true, &idx)) {
continue;
}
// Build AffineExpr solving for identifier 'pos' in terms of all others.
auto expr = getAffineConstantExpr(0, context);
unsigned j, e;
for (j = 0, e = getNumIds(); j < e; ++j) {
if (j == pos)
continue;
int64_t c = atEq(idx, j);
if (c == 0)
continue;
// If any of the involved IDs hasn't been found yet, we can't proceed.
if (!memo[j])
break;
expr = expr + memo[j] * c;
}
if (j < e)
// Can't construct expression as it depends on a yet uncomputed
// identifier.
continue;
// Add constant term to AffineExpr.
expr = expr + atEq(idx, getNumIds());
int64_t vPos = atEq(idx, pos);
assert(vPos != 0 && "expected non-zero here");
if (vPos > 0)
expr = (-expr).floorDiv(vPos);
else
// vPos < 0.
expr = expr.floorDiv(-vPos);
// Successfully constructed expression.
memo[pos] = expr;
changed = true;
}
// This loop is guaranteed to reach a fixed point - since once an
// identifier's explicit form is computed (in memo[pos]), it's not updated
// again.
} while (changed);
// Set the lower and upper bound maps for all the identifiers that were
// computed as affine expressions of the rest as the "detected expr" and
// "detected expr + 1" respectively; set the undetected ones to null.
Optional<FlatAffineConstraints> tmpClone;
for (unsigned pos = 0; pos < num; pos++) {
unsigned numMapDims = getNumDimIds() - num;
unsigned numMapSymbols = getNumSymbolIds();
AffineExpr expr = memo[pos + offset];
if (expr)
expr = simplifyAffineExpr(expr, numMapDims, numMapSymbols);
AffineMap &lbMap = (*lbMaps)[pos];
AffineMap &ubMap = (*ubMaps)[pos];
if (expr) {
lbMap = AffineMap::get(numMapDims, numMapSymbols, expr);
ubMap = AffineMap::get(numMapDims, numMapSymbols, expr + 1);
} else {
// TODO: Whenever there are local identifiers in the dependence
// constraints, we'll conservatively over-approximate, since we don't
// always explicitly compute them above (in the while loop).
if (getNumLocalIds() == 0) {
// Work on a copy so that we don't update this constraint system.
if (!tmpClone) {
tmpClone.emplace(FlatAffineConstraints(*this));
// Removing redundant inequalities is necessary so that we don't get
// redundant loop bounds.
tmpClone->removeRedundantInequalities();
}
std::tie(lbMap, ubMap) = tmpClone->getLowerAndUpperBound(
pos, offset, num, getNumDimIds(), /*localExprs=*/{}, context);
}
// If the above fails, we'll just use the constant lower bound and the
// constant upper bound (if they exist) as the slice bounds.
// TODO: being conservative for the moment in cases that
// lead to multiple bounds - until getConstDifference in LoopFusion.cpp is
// fixed (b/126426796).
if (!lbMap || lbMap.getNumResults() > 1) {
LLVM_DEBUG(llvm::dbgs()
<< "WARNING: Potentially over-approximating slice lb\n");
auto lbConst = getConstantBound(BoundType::LB, pos + offset);
if (lbConst.hasValue()) {
lbMap = AffineMap::get(
numMapDims, numMapSymbols,
getAffineConstantExpr(lbConst.getValue(), context));
}
}
if (!ubMap || ubMap.getNumResults() > 1) {
LLVM_DEBUG(llvm::dbgs()
<< "WARNING: Potentially over-approximating slice ub\n");
auto ubConst = getConstantBound(BoundType::UB, pos + offset);
if (ubConst.hasValue()) {
(ubMap) = AffineMap::get(
numMapDims, numMapSymbols,
getAffineConstantExpr(ubConst.getValue() + 1, context));
}
}
}
LLVM_DEBUG(llvm::dbgs()
<< "lb map for pos = " << Twine(pos + offset) << ", expr: ");
LLVM_DEBUG(lbMap.dump(););
LLVM_DEBUG(llvm::dbgs()
<< "ub map for pos = " << Twine(pos + offset) << ", expr: ");
LLVM_DEBUG(ubMap.dump(););
}
}
LogicalResult FlatAffineConstraints::flattenAlignedMapAndMergeLocals(
AffineMap map, std::vector<SmallVector<int64_t, 8>> *flattenedExprs) {
FlatAffineConstraints localCst;
if (failed(getFlattenedAffineExprs(map, flattenedExprs, &localCst))) {
LLVM_DEBUG(llvm::dbgs()
<< "composition unimplemented for semi-affine maps\n");
return failure();
}
// Add localCst information.
if (localCst.getNumLocalIds() > 0) {
unsigned numLocalIds = getNumLocalIds();
// Insert local dims of localCst at the beginning.
insertLocalId(/*pos=*/0, /*num=*/localCst.getNumLocalIds());
// Insert local dims of `this` at the end of localCst.
localCst.appendLocalId(/*num=*/numLocalIds);
// Dimensions of localCst and this constraint set match. Append localCst to
// this constraint set.
append(localCst);
}
return success();
}
LogicalResult FlatAffineConstraints::addBound(BoundType type, unsigned pos,
AffineMap boundMap) {
assert(boundMap.getNumDims() == getNumDimIds() && "dim mismatch");
assert(boundMap.getNumSymbols() == getNumSymbolIds() && "symbol mismatch");
assert(pos < getNumDimAndSymbolIds() && "invalid position");
// Equality follows the logic of lower bound except that we add an equality
// instead of an inequality.
assert((type != BoundType::EQ || boundMap.getNumResults() == 1) &&
"single result expected");
bool lower = type == BoundType::LB || type == BoundType::EQ;
std::vector<SmallVector<int64_t, 8>> flatExprs;
if (failed(flattenAlignedMapAndMergeLocals(boundMap, &flatExprs)))
return failure();
assert(flatExprs.size() == boundMap.getNumResults());
// Add one (in)equality for each result.
for (const auto &flatExpr : flatExprs) {
SmallVector<int64_t> ineq(getNumCols(), 0);
// Dims and symbols.
for (unsigned j = 0, e = boundMap.getNumInputs(); j < e; j++) {
ineq[j] = lower ? -flatExpr[j] : flatExpr[j];
}
// Invalid bound: pos appears in `boundMap`.
// TODO: This should be an assertion. Fix `addDomainFromSliceMaps` and/or
// its callers to prevent invalid bounds from being added.
if (ineq[pos] != 0)
continue;
ineq[pos] = lower ? 1 : -1;
// Local columns of `ineq` are at the beginning.
unsigned j = getNumDimIds() + getNumSymbolIds();
unsigned end = flatExpr.size() - 1;
for (unsigned i = boundMap.getNumInputs(); i < end; i++, j++) {
ineq[j] = lower ? -flatExpr[i] : flatExpr[i];
}
// Constant term.
ineq[getNumCols() - 1] =
lower ? -flatExpr[flatExpr.size() - 1]
// Upper bound in flattenedExpr is an exclusive one.
: flatExpr[flatExpr.size() - 1] - 1;
type == BoundType::EQ ? addEquality(ineq) : addInequality(ineq);
}
return success();
}
AffineMap
FlatAffineValueConstraints::computeAlignedMap(AffineMap map,
ValueRange operands) const {
assert(map.getNumInputs() == operands.size() && "number of inputs mismatch");
SmallVector<Value> dims, syms;
#ifndef NDEBUG
SmallVector<Value> newSyms;
SmallVector<Value> *newSymsPtr = &newSyms;
#else
SmallVector<Value> *newSymsPtr = nullptr;
#endif // NDEBUG
dims.reserve(numDims);
syms.reserve(numSymbols);
for (unsigned i = 0; i < numDims; ++i)
dims.push_back(values[i] ? *values[i] : Value());
for (unsigned i = numDims, e = numDims + numSymbols; i < e; ++i)
syms.push_back(values[i] ? *values[i] : Value());
AffineMap alignedMap =
alignAffineMapWithValues(map, operands, dims, syms, newSymsPtr);
// All symbols are already part of this FlatAffineConstraints.
assert(syms.size() == newSymsPtr->size() && "unexpected new/missing symbols");
assert(std::equal(syms.begin(), syms.end(), newSymsPtr->begin()) &&
"unexpected new/missing symbols");
return alignedMap;
}
LogicalResult FlatAffineValueConstraints::addBound(BoundType type, unsigned pos,
AffineMap boundMap,
ValueRange boundOperands) {
// Fully compose map and operands; canonicalize and simplify so that we
// transitively get to terminal symbols or loop IVs.
auto map = boundMap;
SmallVector<Value, 4> operands(boundOperands.begin(), boundOperands.end());
fullyComposeAffineMapAndOperands(&map, &operands);
map = simplifyAffineMap(map);
canonicalizeMapAndOperands(&map, &operands);
for (auto operand : operands)
addInductionVarOrTerminalSymbol(operand);
return addBound(type, pos, computeAlignedMap(map, operands));
}
// Adds slice lower bounds represented by lower bounds in 'lbMaps' and upper
// bounds in 'ubMaps' to each value in `values' that appears in the constraint
// system. Note that both lower/upper bounds share the same operand list
// 'operands'.
// This function assumes 'values.size' == 'lbMaps.size' == 'ubMaps.size', and
// skips any null AffineMaps in 'lbMaps' or 'ubMaps'.
// Note that both lower/upper bounds use operands from 'operands'.
// Returns failure for unimplemented cases such as semi-affine expressions or
// expressions with mod/floordiv.
LogicalResult FlatAffineValueConstraints::addSliceBounds(
ArrayRef<Value> values, ArrayRef<AffineMap> lbMaps,
ArrayRef<AffineMap> ubMaps, ArrayRef<Value> operands) {
assert(values.size() == lbMaps.size());
assert(lbMaps.size() == ubMaps.size());
for (unsigned i = 0, e = lbMaps.size(); i < e; ++i) {
unsigned pos;
if (!findId(values[i], &pos))
continue;
AffineMap lbMap = lbMaps[i];
AffineMap ubMap = ubMaps[i];
assert(!lbMap || lbMap.getNumInputs() == operands.size());
assert(!ubMap || ubMap.getNumInputs() == operands.size());
// Check if this slice is just an equality along this dimension.
if (lbMap && ubMap && lbMap.getNumResults() == 1 &&
ubMap.getNumResults() == 1 &&
lbMap.getResult(0) + 1 == ubMap.getResult(0)) {
if (failed(addBound(BoundType::EQ, pos, lbMap, operands)))
return failure();
continue;
}
// If lower or upper bound maps are null or provide no results, it implies
// that the source loop was not at all sliced, and the entire loop will be a
// part of the slice.
if (lbMap && lbMap.getNumResults() != 0 && ubMap &&
ubMap.getNumResults() != 0) {
if (failed(addBound(BoundType::LB, pos, lbMap, operands)))
return failure();
if (failed(addBound(BoundType::UB, pos, ubMap, operands)))
return failure();
} else {
auto loop = getForInductionVarOwner(values[i]);
if (failed(this->addAffineForOpDomain(loop)))
return failure();
}
}
return success();
}
void FlatAffineConstraints::addBound(BoundType type, unsigned pos,
int64_t value) {
assert(pos < getNumCols());
if (type == BoundType::EQ) {
unsigned row = equalities.appendExtraRow();
equalities(row, pos) = 1;
equalities(row, getNumCols() - 1) = -value;
} else {
unsigned row = inequalities.appendExtraRow();
inequalities(row, pos) = type == BoundType::LB ? 1 : -1;
inequalities(row, getNumCols() - 1) =
type == BoundType::LB ? -value : value;
}
}
void FlatAffineConstraints::addBound(BoundType type, ArrayRef<int64_t> expr,
int64_t value) {
assert(type != BoundType::EQ && "EQ not implemented");
assert(expr.size() == getNumCols());
unsigned row = inequalities.appendExtraRow();
for (unsigned i = 0, e = expr.size(); i < e; ++i)
inequalities(row, i) = type == BoundType::LB ? expr[i] : -expr[i];
inequalities(inequalities.getNumRows() - 1, getNumCols() - 1) +=
type == BoundType::LB ? -value : value;
}
/// Adds a new local identifier as the floordiv of an affine function of other
/// identifiers, the coefficients of which are provided in 'dividend' and with
/// respect to a positive constant 'divisor'. Two constraints are added to the
/// system to capture equivalence with the floordiv.
/// q = expr floordiv c <=> c*q <= expr <= c*q + c - 1.
void FlatAffineConstraints::addLocalFloorDiv(ArrayRef<int64_t> dividend,
int64_t divisor) {
assert(dividend.size() == getNumCols() && "incorrect dividend size");
assert(divisor > 0 && "positive divisor expected");
appendLocalId();
// Add two constraints for this new identifier 'q'.
SmallVector<int64_t, 8> bound(dividend.size() + 1);
// dividend - q * divisor >= 0
std::copy(dividend.begin(), dividend.begin() + dividend.size() - 1,
bound.begin());
bound.back() = dividend.back();
bound[getNumIds() - 1] = -divisor;
addInequality(bound);
// -dividend +qdivisor * q + divisor - 1 >= 0
std::transform(bound.begin(), bound.end(), bound.begin(),
std::negate<int64_t>());
bound[bound.size() - 1] += divisor - 1;
addInequality(bound);
}
bool FlatAffineValueConstraints::findId(Value val, unsigned *pos) const {
unsigned i = 0;
for (const auto &mayBeId : values) {
if (mayBeId.hasValue() && mayBeId.getValue() == val) {
*pos = i;
return true;
}
i++;
}
return false;
}
bool FlatAffineValueConstraints::containsId(Value val) const {
return llvm::any_of(values, [&](const Optional<Value> &mayBeId) {
return mayBeId.hasValue() && mayBeId.getValue() == val;
});
}
void FlatAffineValueConstraints::swapId(unsigned posA, unsigned posB) {
FlatAffineConstraints::swapId(posA, posB);
std::swap(values[posA], values[posB]);
}
void FlatAffineConstraints::setDimSymbolSeparation(unsigned newSymbolCount) {
assert(newSymbolCount <= numDims + numSymbols &&
"invalid separation position");
numDims = numDims + numSymbols - newSymbolCount;
numSymbols = newSymbolCount;
}
void FlatAffineValueConstraints::addBound(BoundType type, Value val,
int64_t value) {
unsigned pos;
if (!findId(val, &pos))
// This is a pre-condition for this method.
assert(0 && "id not found");
addBound(type, pos, value);
}
/// Finds an equality that equates the specified identifier to a constant.
/// Returns the position of the equality row. If 'symbolic' is set to true,
/// symbols are also treated like a constant, i.e., an affine function of the
/// symbols is also treated like a constant. Returns -1 if such an equality
/// could not be found.
static int findEqualityToConstant(const FlatAffineConstraints &cst,
unsigned pos, bool symbolic = false) {
assert(pos < cst.getNumIds() && "invalid position");
for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) {
int64_t v = cst.atEq(r, pos);
if (v * v != 1)
continue;
unsigned c;
unsigned f = symbolic ? cst.getNumDimIds() : cst.getNumIds();
// This checks for zeros in all positions other than 'pos' in [0, f)
for (c = 0; c < f; c++) {
if (c == pos)
continue;
if (cst.atEq(r, c) != 0) {
// Dependent on another identifier.
break;
}
}
if (c == f)
// Equality is free of other identifiers.
return r;
}
return -1;
}
void FlatAffineConstraints::setAndEliminate(unsigned pos,
ArrayRef<int64_t> values) {
if (values.empty())
return;
assert(pos + values.size() <= getNumIds() &&
"invalid position or too many values");
// Setting x_j = p in sum_i a_i x_i + c is equivalent to adding p*a_j to the
// constant term and removing the id x_j. We do this for all the ids
// pos, pos + 1, ... pos + values.size() - 1.
for (unsigned r = 0, e = getNumInequalities(); r < e; r++)
for (unsigned i = 0, numVals = values.size(); i < numVals; ++i)
atIneq(r, getNumCols() - 1) += atIneq(r, pos + i) * values[i];
for (unsigned r = 0, e = getNumEqualities(); r < e; r++)
for (unsigned i = 0, numVals = values.size(); i < numVals; ++i)
atEq(r, getNumCols() - 1) += atEq(r, pos + i) * values[i];
removeIdRange(pos, pos + values.size());
}
LogicalResult FlatAffineConstraints::constantFoldId(unsigned pos) {
assert(pos < getNumIds() && "invalid position");
int rowIdx;
if ((rowIdx = findEqualityToConstant(*this, pos)) == -1)
return failure();
// atEq(rowIdx, pos) is either -1 or 1.
assert(atEq(rowIdx, pos) * atEq(rowIdx, pos) == 1);
int64_t constVal = -atEq(rowIdx, getNumCols() - 1) / atEq(rowIdx, pos);
setAndEliminate(pos, constVal);
return success();
}
void FlatAffineConstraints::constantFoldIdRange(unsigned pos, unsigned num) {
for (unsigned s = pos, t = pos, e = pos + num; s < e; s++) {
if (failed(constantFoldId(t)))
t++;
}
}
/// Returns a non-negative constant bound on the extent (upper bound - lower
/// bound) of the specified identifier if it is found to be a constant; returns
/// None if it's not a constant. This methods treats symbolic identifiers
/// specially, i.e., it looks for constant differences between affine
/// expressions involving only the symbolic identifiers. See comments at
/// function definition for example. 'lb', if provided, is set to the lower
/// bound associated with the constant difference. Note that 'lb' is purely
/// symbolic and thus will contain the coefficients of the symbolic identifiers
/// and the constant coefficient.
// Egs: 0 <= i <= 15, return 16.
// s0 + 2 <= i <= s0 + 17, returns 16. (s0 has to be a symbol)
// s0 + s1 + 16 <= d0 <= s0 + s1 + 31, returns 16.
// s0 - 7 <= 8*j <= s0 returns 1 with lb = s0, lbDivisor = 8 (since lb =
// ceil(s0 - 7 / 8) = floor(s0 / 8)).
Optional<int64_t> FlatAffineConstraints::getConstantBoundOnDimSize(
unsigned pos, SmallVectorImpl<int64_t> *lb, int64_t *boundFloorDivisor,
SmallVectorImpl<int64_t> *ub, unsigned *minLbPos,
unsigned *minUbPos) const {
assert(pos < getNumDimIds() && "Invalid identifier position");
// Find an equality for 'pos'^th identifier that equates it to some function
// of the symbolic identifiers (+ constant).
int eqPos = findEqualityToConstant(*this, pos, /*symbolic=*/true);
if (eqPos != -1) {
auto eq = getEquality(eqPos);
// If the equality involves a local var, punt for now.
// TODO: this can be handled in the future by using the explicit
// representation of the local vars.
if (!std::all_of(eq.begin() + getNumDimAndSymbolIds(), eq.end() - 1,
[](int64_t coeff) { return coeff == 0; }))
return None;
// This identifier can only take a single value.
if (lb) {
// Set lb to that symbolic value.
lb->resize(getNumSymbolIds() + 1);
if (ub)
ub->resize(getNumSymbolIds() + 1);
for (unsigned c = 0, f = getNumSymbolIds() + 1; c < f; c++) {
int64_t v = atEq(eqPos, pos);
// atEq(eqRow, pos) is either -1 or 1.
assert(v * v == 1);
(*lb)[c] = v < 0 ? atEq(eqPos, getNumDimIds() + c) / -v
: -atEq(eqPos, getNumDimIds() + c) / v;
// Since this is an equality, ub = lb.
if (ub)
(*ub)[c] = (*lb)[c];
}
assert(boundFloorDivisor &&
"both lb and divisor or none should be provided");
*boundFloorDivisor = 1;
}
if (minLbPos)
*minLbPos = eqPos;
if (minUbPos)
*minUbPos = eqPos;
return 1;
}
// Check if the identifier appears at all in any of the inequalities.
unsigned r, e;
for (r = 0, e = getNumInequalities(); r < e; r++) {
if (atIneq(r, pos) != 0)
break;
}
if (r == e)
// If it doesn't, there isn't a bound on it.
return None;
// Positions of constraints that are lower/upper bounds on the variable.
SmallVector<unsigned, 4> lbIndices, ubIndices;
// Gather all symbolic lower bounds and upper bounds of the variable, i.e.,
// the bounds can only involve symbolic (and local) identifiers. Since the
// canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
// bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
getLowerAndUpperBoundIndices(pos, &lbIndices, &ubIndices,
/*eqIndices=*/nullptr, /*offset=*/0,
/*num=*/getNumDimIds());
Optional<int64_t> minDiff = None;
unsigned minLbPosition = 0, minUbPosition = 0;
for (auto ubPos : ubIndices) {
for (auto lbPos : lbIndices) {
// Look for a lower bound and an upper bound that only differ by a
// constant, i.e., pairs of the form 0 <= c_pos - f(c_i's) <= diffConst.
// For example, if ii is the pos^th variable, we are looking for
// constraints like ii >= i, ii <= ii + 50, 50 being the difference. The
// minimum among all such constant differences is kept since that's the
// constant bounding the extent of the pos^th variable.
unsigned j, e;
for (j = 0, e = getNumCols() - 1; j < e; j++)
if (atIneq(ubPos, j) != -atIneq(lbPos, j)) {
break;
}
if (j < getNumCols() - 1)
continue;
int64_t diff = ceilDiv(atIneq(ubPos, getNumCols() - 1) +
atIneq(lbPos, getNumCols() - 1) + 1,
atIneq(lbPos, pos));
// This bound is non-negative by definition.
diff = std::max<int64_t>(diff, 0);
if (minDiff == None || diff < minDiff) {
minDiff = diff;
minLbPosition = lbPos;
minUbPosition = ubPos;
}
}
}
if (lb && minDiff.hasValue()) {
// Set lb to the symbolic lower bound.
lb->resize(getNumSymbolIds() + 1);
if (ub)
ub->resize(getNumSymbolIds() + 1);
// The lower bound is the ceildiv of the lb constraint over the coefficient
// of the variable at 'pos'. We express the ceildiv equivalently as a floor
// for uniformity. For eg., if the lower bound constraint was: 32*d0 - N +
// 31 >= 0, the lower bound for d0 is ceil(N - 31, 32), i.e., floor(N, 32).
*boundFloorDivisor = atIneq(minLbPosition, pos);
assert(*boundFloorDivisor == -atIneq(minUbPosition, pos));
for (unsigned c = 0, e = getNumSymbolIds() + 1; c < e; c++) {
(*lb)[c] = -atIneq(minLbPosition, getNumDimIds() + c);
}
if (ub) {
for (unsigned c = 0, e = getNumSymbolIds() + 1; c < e; c++)
(*ub)[c] = atIneq(minUbPosition, getNumDimIds() + c);
}
// The lower bound leads to a ceildiv while the upper bound is a floordiv
// whenever the coefficient at pos != 1. ceildiv (val / d) = floordiv (val +
// d - 1 / d); hence, the addition of 'atIneq(minLbPosition, pos) - 1' to
// the constant term for the lower bound.
(*lb)[getNumSymbolIds()] += atIneq(minLbPosition, pos) - 1;
}
if (minLbPos)
*minLbPos = minLbPosition;
if (minUbPos)
*minUbPos = minUbPosition;
return minDiff;
}
template <bool isLower>
Optional<int64_t>
FlatAffineConstraints::computeConstantLowerOrUpperBound(unsigned pos) {
assert(pos < getNumIds() && "invalid position");
// Project to 'pos'.
projectOut(0, pos);
projectOut(1, getNumIds() - 1);
// Check if there's an equality equating the '0'^th identifier to a constant.
int eqRowIdx = findEqualityToConstant(*this, 0, /*symbolic=*/false);
if (eqRowIdx != -1)
// atEq(rowIdx, 0) is either -1 or 1.
return -atEq(eqRowIdx, getNumCols() - 1) / atEq(eqRowIdx, 0);
// Check if the identifier appears at all in any of the inequalities.
unsigned r, e;
for (r = 0, e = getNumInequalities(); r < e; r++) {
if (atIneq(r, 0) != 0)
break;
}
if (r == e)
// If it doesn't, there isn't a bound on it.
return None;
Optional<int64_t> minOrMaxConst = None;
// Take the max across all const lower bounds (or min across all constant
// upper bounds).
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
if (isLower) {
if (atIneq(r, 0) <= 0)
// Not a lower bound.
continue;
} else if (atIneq(r, 0) >= 0) {
// Not an upper bound.
continue;
}
unsigned c, f;
for (c = 0, f = getNumCols() - 1; c < f; c++)
if (c != 0 && atIneq(r, c) != 0)
break;
if (c < getNumCols() - 1)
// Not a constant bound.
continue;
int64_t boundConst =
isLower ? mlir::ceilDiv(-atIneq(r, getNumCols() - 1), atIneq(r, 0))
: mlir::floorDiv(atIneq(r, getNumCols() - 1), -atIneq(r, 0));
if (isLower) {
if (minOrMaxConst == None || boundConst > minOrMaxConst)
minOrMaxConst = boundConst;
} else {
if (minOrMaxConst == None || boundConst < minOrMaxConst)
minOrMaxConst = boundConst;
}
}
return minOrMaxConst;
}
Optional<int64_t> FlatAffineConstraints::getConstantBound(BoundType type,
unsigned pos) const {
assert(type != BoundType::EQ && "EQ not implemented");
FlatAffineConstraints tmpCst(*this);
if (type == BoundType::LB)
return tmpCst.computeConstantLowerOrUpperBound</*isLower=*/true>(pos);
return tmpCst.computeConstantLowerOrUpperBound</*isLower=*/false>(pos);
}
// A simple (naive and conservative) check for hyper-rectangularity.
bool FlatAffineConstraints::isHyperRectangular(unsigned pos,
unsigned num) const {
assert(pos < getNumCols() - 1);
// Check for two non-zero coefficients in the range [pos, pos + sum).
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
unsigned sum = 0;
for (unsigned c = pos; c < pos + num; c++) {
if (atIneq(r, c) != 0)
sum++;
}
if (sum > 1)
return false;
}
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
unsigned sum = 0;
for (unsigned c = pos; c < pos + num; c++) {
if (atEq(r, c) != 0)
sum++;
}
if (sum > 1)
return false;
}
return true;
}
void FlatAffineConstraints::print(raw_ostream &os) const {
assert(hasConsistentState());
os << "\nConstraints (" << getNumDimIds() << " dims, " << getNumSymbolIds()
<< " symbols, " << getNumLocalIds() << " locals), (" << getNumConstraints()
<< " constraints)\n";
os << "(";
for (unsigned i = 0, e = getNumIds(); i < e; i++) {
if (auto *valueCstr = dyn_cast<const FlatAffineValueConstraints>(this)) {
if (valueCstr->hasValue(i))
os << "Value ";
else
os << "None ";
} else {
os << "None ";
}
}
os << " const)\n";
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
for (unsigned j = 0, f = getNumCols(); j < f; ++j) {
os << atEq(i, j) << " ";
}
os << "= 0\n";
}
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
for (unsigned j = 0, f = getNumCols(); j < f; ++j) {
os << atIneq(i, j) << " ";
}
os << ">= 0\n";
}
os << '\n';
}
void FlatAffineConstraints::dump() const { print(llvm::errs()); }
/// Removes duplicate constraints, trivially true constraints, and constraints
/// that can be detected as redundant as a result of differing only in their
/// constant term part. A constraint of the form <non-negative constant> >= 0 is
/// considered trivially true.
// Uses a DenseSet to hash and detect duplicates followed by a linear scan to
// remove duplicates in place.
void FlatAffineConstraints::removeTrivialRedundancy() {
gcdTightenInequalities();
normalizeConstraintsByGCD();
// A map used to detect redundancy stemming from constraints that only differ
// in their constant term. The value stored is <row position, const term>
// for a given row.
SmallDenseMap<ArrayRef<int64_t>, std::pair<unsigned, int64_t>>
rowsWithoutConstTerm;
// To unique rows.
SmallDenseSet<ArrayRef<int64_t>, 8> rowSet;
// Check if constraint is of the form <non-negative-constant> >= 0.
auto isTriviallyValid = [&](unsigned r) -> bool {
for (unsigned c = 0, e = getNumCols() - 1; c < e; c++) {
if (atIneq(r, c) != 0)
return false;
}
return atIneq(r, getNumCols() - 1) >= 0;
};
// Detect and mark redundant constraints.
SmallVector<bool, 256> redunIneq(getNumInequalities(), false);
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
int64_t *rowStart = &inequalities(r, 0);
auto row = ArrayRef<int64_t>(rowStart, getNumCols());
if (isTriviallyValid(r) || !rowSet.insert(row).second) {
redunIneq[r] = true;
continue;
}
// Among constraints that only differ in the constant term part, mark
// everything other than the one with the smallest constant term redundant.
// (eg: among i - 16j - 5 >= 0, i - 16j - 1 >=0, i - 16j - 7 >= 0, the
// former two are redundant).
int64_t constTerm = atIneq(r, getNumCols() - 1);
auto rowWithoutConstTerm = ArrayRef<int64_t>(rowStart, getNumCols() - 1);
const auto &ret =
rowsWithoutConstTerm.insert({rowWithoutConstTerm, {r, constTerm}});
if (!ret.second) {
// Check if the other constraint has a higher constant term.
auto &val = ret.first->second;
if (val.second > constTerm) {
// The stored row is redundant. Mark it so, and update with this one.
redunIneq[val.first] = true;
val = {r, constTerm};
} else {
// The one stored makes this one redundant.
redunIneq[r] = true;
}
}
}
// Scan to get rid of all rows marked redundant, in-place.
unsigned pos = 0;
for (unsigned r = 0, e = getNumInequalities(); r < e; r++)
if (!redunIneq[r])
inequalities.copyRow(r, pos++);
inequalities.resizeVertically(pos);
// TODO: consider doing this for equalities as well, but probably not worth
// the savings.
}
void FlatAffineConstraints::clearAndCopyFrom(
const FlatAffineConstraints &other) {
if (auto *otherValueSet = dyn_cast<const FlatAffineValueConstraints>(&other))
assert(!otherValueSet->hasValues() &&
"cannot copy associated Values into FlatAffineConstraints");
// Note: Assigment operator does not vtable pointer, so kind does not change.
*this = other;
}
void FlatAffineValueConstraints::clearAndCopyFrom(
const FlatAffineConstraints &other) {
if (auto *otherValueSet =
dyn_cast<const FlatAffineValueConstraints>(&other)) {
*this = *otherValueSet;
} else {
*static_cast<FlatAffineConstraints *>(this) = other;
values.clear();
values.resize(numIds, None);
}
}
static std::pair<unsigned, unsigned>
getNewNumDimsSymbols(unsigned pos, const FlatAffineConstraints &cst) {
unsigned numDims = cst.getNumDimIds();
unsigned numSymbols = cst.getNumSymbolIds();
unsigned newNumDims, newNumSymbols;
if (pos < numDims) {
newNumDims = numDims - 1;
newNumSymbols = numSymbols;
} else if (pos < numDims + numSymbols) {
assert(numSymbols >= 1);
newNumDims = numDims;
newNumSymbols = numSymbols - 1;
} else {
newNumDims = numDims;
newNumSymbols = numSymbols;
}
return {newNumDims, newNumSymbols};
}
#undef DEBUG_TYPE
#define DEBUG_TYPE "fm"
/// Eliminates identifier at the specified position using Fourier-Motzkin
/// variable elimination. This technique is exact for rational spaces but
/// conservative (in "rare" cases) for integer spaces. The operation corresponds
/// to a projection operation yielding the (convex) set of integer points
/// contained in the rational shadow of the set. An emptiness test that relies
/// on this method will guarantee emptiness, i.e., it disproves the existence of
/// a solution if it says it's empty.
/// If a non-null isResultIntegerExact is passed, it is set to true if the
/// result is also integer exact. If it's set to false, the obtained solution
/// *may* not be exact, i.e., it may contain integer points that do not have an
/// integer pre-image in the original set.
///
/// Eg:
/// j >= 0, j <= i + 1
/// i >= 0, i <= N + 1
/// Eliminating i yields,
/// j >= 0, 0 <= N + 1, j - 1 <= N + 1
///
/// If darkShadow = true, this method computes the dark shadow on elimination;
/// the dark shadow is a convex integer subset of the exact integer shadow. A
/// non-empty dark shadow proves the existence of an integer solution. The
/// elimination in such a case could however be an under-approximation, and thus
/// should not be used for scanning sets or used by itself for dependence
/// checking.
///
/// Eg: 2-d set, * represents grid points, 'o' represents a point in the set.
/// ^
/// |
/// | * * * * o o
/// i | * * o o o o
/// | o * * * * *
/// --------------->
/// j ->
///
/// Eliminating i from this system (projecting on the j dimension):
/// rational shadow / integer light shadow: 1 <= j <= 6
/// dark shadow: 3 <= j <= 6
/// exact integer shadow: j = 1 \union 3 <= j <= 6
/// holes/splinters: j = 2
///
/// darkShadow = false, isResultIntegerExact = nullptr are default values.
// TODO: a slight modification to yield dark shadow version of FM (tightened),
// which can prove the existence of a solution if there is one.
void FlatAffineConstraints::fourierMotzkinEliminate(
unsigned pos, bool darkShadow, bool *isResultIntegerExact) {
LLVM_DEBUG(llvm::dbgs() << "FM input (eliminate pos " << pos << "):\n");
LLVM_DEBUG(dump());
assert(pos < getNumIds() && "invalid position");
assert(hasConsistentState());
// Check if this identifier can be eliminated through a substitution.
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
if (atEq(r, pos) != 0) {
// Use Gaussian elimination here (since we have an equality).
LogicalResult ret = gaussianEliminateId(pos);
(void)ret;
assert(succeeded(ret) && "Gaussian elimination guaranteed to succeed");
LLVM_DEBUG(llvm::dbgs() << "FM output (through Gaussian elimination):\n");
LLVM_DEBUG(dump());
return;
}
}
// A fast linear time tightening.
gcdTightenInequalities();
// Check if the identifier appears at all in any of the inequalities.
unsigned r, e;
for (r = 0, e = getNumInequalities(); r < e; r++) {
if (atIneq(r, pos) != 0)
break;
}
if (r == getNumInequalities()) {
// If it doesn't appear, just remove the column and return.
// TODO: refactor removeColumns to use it from here.
removeId(pos);
LLVM_DEBUG(llvm::dbgs() << "FM output:\n");
LLVM_DEBUG(dump());
return;
}
// Positions of constraints that are lower bounds on the variable.
SmallVector<unsigned, 4> lbIndices;
// Positions of constraints that are lower bounds on the variable.
SmallVector<unsigned, 4> ubIndices;
// Positions of constraints that do not involve the variable.
std::vector<unsigned> nbIndices;
nbIndices.reserve(getNumInequalities());
// Gather all lower bounds and upper bounds of the variable. Since the
// canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
// bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
if (atIneq(r, pos) == 0) {
// Id does not appear in bound.
nbIndices.push_back(r);
} else if (atIneq(r, pos) >= 1) {
// Lower bound.
lbIndices.push_back(r);
} else {
// Upper bound.
ubIndices.push_back(r);
}
}
// Set the number of dimensions, symbols in the resulting system.
const auto &dimsSymbols = getNewNumDimsSymbols(pos, *this);
unsigned newNumDims = dimsSymbols.first;
unsigned newNumSymbols = dimsSymbols.second;
/// Create the new system which has one identifier less.
FlatAffineConstraints newFac(
lbIndices.size() * ubIndices.size() + nbIndices.size(),
getNumEqualities(), getNumCols() - 1, newNumDims, newNumSymbols,
/*numLocals=*/getNumIds() - 1 - newNumDims - newNumSymbols);
// This will be used to check if the elimination was integer exact.
unsigned lcmProducts = 1;
// Let x be the variable we are eliminating.
// For each lower bound, lb <= c_l*x, and each upper bound c_u*x <= ub, (note
// that c_l, c_u >= 1) we have:
// lb*lcm(c_l, c_u)/c_l <= lcm(c_l, c_u)*x <= ub*lcm(c_l, c_u)/c_u
// We thus generate a constraint:
// lcm(c_l, c_u)/c_l*lb <= lcm(c_l, c_u)/c_u*ub.
// Note if c_l = c_u = 1, all integer points captured by the resulting
// constraint correspond to integer points in the original system (i.e., they
// have integer pre-images). Hence, if the lcm's are all 1, the elimination is
// integer exact.
for (auto ubPos : ubIndices) {
for (auto lbPos : lbIndices) {
SmallVector<int64_t, 4> ineq;
ineq.reserve(newFac.getNumCols());
int64_t lbCoeff = atIneq(lbPos, pos);
// Note that in the comments above, ubCoeff is the negation of the
// coefficient in the canonical form as the view taken here is that of the
// term being moved to the other size of '>='.
int64_t ubCoeff = -atIneq(ubPos, pos);
// TODO: refactor this loop to avoid all branches inside.
for (unsigned l = 0, e = getNumCols(); l < e; l++) {
if (l == pos)
continue;
assert(lbCoeff >= 1 && ubCoeff >= 1 && "bounds wrongly identified");
int64_t lcm = mlir::lcm(lbCoeff, ubCoeff);
ineq.push_back(atIneq(ubPos, l) * (lcm / ubCoeff) +
atIneq(lbPos, l) * (lcm / lbCoeff));
lcmProducts *= lcm;
}
if (darkShadow) {
// The dark shadow is a convex subset of the exact integer shadow. If
// there is a point here, it proves the existence of a solution.
ineq[ineq.size() - 1] += lbCoeff * ubCoeff - lbCoeff - ubCoeff + 1;
}
// TODO: we need to have a way to add inequalities in-place in
// FlatAffineConstraints instead of creating and copying over.
newFac.addInequality(ineq);
}
}
LLVM_DEBUG(llvm::dbgs() << "FM isResultIntegerExact: " << (lcmProducts == 1)
<< "\n");
if (lcmProducts == 1 && isResultIntegerExact)
*isResultIntegerExact = true;
// Copy over the constraints not involving this variable.
for (auto nbPos : nbIndices) {
SmallVector<int64_t, 4> ineq;
ineq.reserve(getNumCols() - 1);
for (unsigned l = 0, e = getNumCols(); l < e; l++) {
if (l == pos)
continue;
ineq.push_back(atIneq(nbPos, l));
}
newFac.addInequality(ineq);
}
assert(newFac.getNumConstraints() ==
lbIndices.size() * ubIndices.size() + nbIndices.size());
// Copy over the equalities.
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
SmallVector<int64_t, 4> eq;
eq.reserve(newFac.getNumCols());
for (unsigned l = 0, e = getNumCols(); l < e; l++) {
if (l == pos)
continue;
eq.push_back(atEq(r, l));
}
newFac.addEquality(eq);
}
// GCD tightening and normalization allows detection of more trivially
// redundant constraints.
newFac.gcdTightenInequalities();
newFac.normalizeConstraintsByGCD();
newFac.removeTrivialRedundancy();
clearAndCopyFrom(newFac);
LLVM_DEBUG(llvm::dbgs() << "FM output:\n");
LLVM_DEBUG(dump());
}
#undef DEBUG_TYPE
#define DEBUG_TYPE "affine-structures"
void FlatAffineValueConstraints::fourierMotzkinEliminate(
unsigned pos, bool darkShadow, bool *isResultIntegerExact) {
SmallVector<Optional<Value>, 8> newVals;
newVals.reserve(numIds - 1);
newVals.append(values.begin(), values.begin() + pos);
newVals.append(values.begin() + pos + 1, values.end());
// Note: Base implementation discards all associated Values.
FlatAffineConstraints::fourierMotzkinEliminate(pos, darkShadow,
isResultIntegerExact);
values = newVals;
assert(values.size() == getNumIds());
}
void FlatAffineConstraints::projectOut(unsigned pos, unsigned num) {
if (num == 0)
return;
// 'pos' can be at most getNumCols() - 2 if num > 0.
assert((getNumCols() < 2 || pos <= getNumCols() - 2) && "invalid position");
assert(pos + num < getNumCols() && "invalid range");
// Eliminate as many identifiers as possible using Gaussian elimination.
unsigned currentPos = pos;
unsigned numToEliminate = num;
unsigned numGaussianEliminated = 0;
while (currentPos < getNumIds()) {
unsigned curNumEliminated =
gaussianEliminateIds(currentPos, currentPos + numToEliminate);
++currentPos;
numToEliminate -= curNumEliminated + 1;
numGaussianEliminated += curNumEliminated;
}
// Eliminate the remaining using Fourier-Motzkin.
for (unsigned i = 0; i < num - numGaussianEliminated; i++) {
unsigned numToEliminate = num - numGaussianEliminated - i;
fourierMotzkinEliminate(
getBestIdToEliminate(*this, pos, pos + numToEliminate));
}
// Fast/trivial simplifications.
gcdTightenInequalities();
// Normalize constraints after tightening since the latter impacts this, but
// not the other way round.
normalizeConstraintsByGCD();
}
void FlatAffineValueConstraints::projectOut(Value val) {
unsigned pos;
bool ret = findId(val, &pos);
assert(ret);
(void)ret;
fourierMotzkinEliminate(pos);
}
namespace {
enum BoundCmpResult { Greater, Less, Equal, Unknown };
/// Compares two affine bounds whose coefficients are provided in 'first' and
/// 'second'. The last coefficient is the constant term.
static BoundCmpResult compareBounds(ArrayRef<int64_t> a, ArrayRef<int64_t> b) {
assert(a.size() == b.size());
// For the bounds to be comparable, their corresponding identifier
// coefficients should be equal; the constant terms are then compared to
// determine less/greater/equal.
if (!std::equal(a.begin(), a.end() - 1, b.begin()))
return Unknown;
if (a.back() == b.back())
return Equal;
return a.back() < b.back() ? Less : Greater;
}
} // namespace
// Returns constraints that are common to both A & B.
static void getCommonConstraints(const FlatAffineConstraints &a,
const FlatAffineConstraints &b,
FlatAffineConstraints &c) {
c.reset(a.getNumDimIds(), a.getNumSymbolIds(), a.getNumLocalIds());
// a naive O(n^2) check should be enough here given the input sizes.
for (unsigned r = 0, e = a.getNumInequalities(); r < e; ++r) {
for (unsigned s = 0, f = b.getNumInequalities(); s < f; ++s) {
if (a.getInequality(r) == b.getInequality(s)) {
c.addInequality(a.getInequality(r));
break;
}
}
}
for (unsigned r = 0, e = a.getNumEqualities(); r < e; ++r) {
for (unsigned s = 0, f = b.getNumEqualities(); s < f; ++s) {
if (a.getEquality(r) == b.getEquality(s)) {
c.addEquality(a.getEquality(r));
break;
}
}
}
}
// Computes the bounding box with respect to 'other' by finding the min of the
// lower bounds and the max of the upper bounds along each of the dimensions.
LogicalResult
FlatAffineConstraints::unionBoundingBox(const FlatAffineConstraints &otherCst) {
assert(otherCst.getNumDimIds() == numDims && "dims mismatch");
assert(otherCst.getNumLocalIds() == 0 && "local ids not supported here");
assert(getNumLocalIds() == 0 && "local ids not supported yet here");
// Get the constraints common to both systems; these will be added as is to
// the union.
FlatAffineConstraints commonCst;
getCommonConstraints(*this, otherCst, commonCst);
std::vector<SmallVector<int64_t, 8>> boundingLbs;
std::vector<SmallVector<int64_t, 8>> boundingUbs;
boundingLbs.reserve(2 * getNumDimIds());
boundingUbs.reserve(2 * getNumDimIds());
// To hold lower and upper bounds for each dimension.
SmallVector<int64_t, 4> lb, otherLb, ub, otherUb;
// To compute min of lower bounds and max of upper bounds for each dimension.
SmallVector<int64_t, 4> minLb(getNumSymbolIds() + 1);
SmallVector<int64_t, 4> maxUb(getNumSymbolIds() + 1);
// To compute final new lower and upper bounds for the union.
SmallVector<int64_t, 8> newLb(getNumCols()), newUb(getNumCols());
int64_t lbFloorDivisor, otherLbFloorDivisor;
for (unsigned d = 0, e = getNumDimIds(); d < e; ++d) {
auto extent = getConstantBoundOnDimSize(d, &lb, &lbFloorDivisor, &ub);
if (!extent.hasValue())
// TODO: symbolic extents when necessary.
// TODO: handle union if a dimension is unbounded.
return failure();
auto otherExtent = otherCst.getConstantBoundOnDimSize(
d, &otherLb, &otherLbFloorDivisor, &otherUb);
if (!otherExtent.hasValue() || lbFloorDivisor != otherLbFloorDivisor)
// TODO: symbolic extents when necessary.
return failure();
assert(lbFloorDivisor > 0 && "divisor always expected to be positive");
auto res = compareBounds(lb, otherLb);
// Identify min.
if (res == BoundCmpResult::Less || res == BoundCmpResult::Equal) {
minLb = lb;
// Since the divisor is for a floordiv, we need to convert to ceildiv,
// i.e., i >= expr floordiv div <=> i >= (expr - div + 1) ceildiv div <=>
// div * i >= expr - div + 1.
minLb.back() -= lbFloorDivisor - 1;
} else if (res == BoundCmpResult::Greater) {
minLb = otherLb;
minLb.back() -= otherLbFloorDivisor - 1;
} else {
// Uncomparable - check for constant lower/upper bounds.
auto constLb = getConstantBound(BoundType::LB, d);
auto constOtherLb = otherCst.getConstantBound(BoundType::LB, d);
if (!constLb.hasValue() || !constOtherLb.hasValue())
return failure();
std::fill(minLb.begin(), minLb.end(), 0);
minLb.back() = std::min(constLb.getValue(), constOtherLb.getValue());
}
// Do the same for ub's but max of upper bounds. Identify max.
auto uRes = compareBounds(ub, otherUb);
if (uRes == BoundCmpResult::Greater || uRes == BoundCmpResult::Equal) {
maxUb = ub;
} else if (uRes == BoundCmpResult::Less) {
maxUb = otherUb;
} else {
// Uncomparable - check for constant lower/upper bounds.
auto constUb = getConstantBound(BoundType::UB, d);
auto constOtherUb = otherCst.getConstantBound(BoundType::UB, d);
if (!constUb.hasValue() || !constOtherUb.hasValue())
return failure();
std::fill(maxUb.begin(), maxUb.end(), 0);
maxUb.back() = std::max(constUb.getValue(), constOtherUb.getValue());
}
std::fill(newLb.begin(), newLb.end(), 0);
std::fill(newUb.begin(), newUb.end(), 0);
// The divisor for lb, ub, otherLb, otherUb at this point is lbDivisor,
// and so it's the divisor for newLb and newUb as well.
newLb[d] = lbFloorDivisor;
newUb[d] = -lbFloorDivisor;
// Copy over the symbolic part + constant term.
std::copy(minLb.begin(), minLb.end(), newLb.begin() + getNumDimIds());
std::transform(newLb.begin() + getNumDimIds(), newLb.end(),
newLb.begin() + getNumDimIds(), std::negate<int64_t>());
std::copy(maxUb.begin(), maxUb.end(), newUb.begin() + getNumDimIds());
boundingLbs.push_back(newLb);
boundingUbs.push_back(newUb);
}
// Clear all constraints and add the lower/upper bounds for the bounding box.
clearConstraints();
for (unsigned d = 0, e = getNumDimIds(); d < e; ++d) {
addInequality(boundingLbs[d]);
addInequality(boundingUbs[d]);
}
// Add the constraints that were common to both systems.
append(commonCst);
removeTrivialRedundancy();
// TODO: copy over pure symbolic constraints from this and 'other' over to the
// union (since the above are just the union along dimensions); we shouldn't
// be discarding any other constraints on the symbols.
return success();
}
LogicalResult FlatAffineValueConstraints::unionBoundingBox(
const FlatAffineValueConstraints &otherCst) {
assert(otherCst.getNumDimIds() == numDims && "dims mismatch");
assert(otherCst.getMaybeValues()
.slice(0, getNumDimIds())
.equals(getMaybeValues().slice(0, getNumDimIds())) &&
"dim values mismatch");
assert(otherCst.getNumLocalIds() == 0 && "local ids not supported here");
assert(getNumLocalIds() == 0 && "local ids not supported yet here");
// Align `other` to this.
if (!areIdsAligned(*this, otherCst)) {
FlatAffineValueConstraints otherCopy(otherCst);
mergeAndAlignIds(/*offset=*/numDims, this, &otherCopy);
return FlatAffineConstraints::unionBoundingBox(otherCopy);
}
return FlatAffineConstraints::unionBoundingBox(otherCst);
}
/// Compute an explicit representation for local vars. For all systems coming
/// from MLIR integer sets, maps, or expressions where local vars were
/// introduced to model floordivs and mods, this always succeeds.
static LogicalResult computeLocalVars(const FlatAffineConstraints &cst,
SmallVectorImpl<AffineExpr> &memo,
MLIRContext *context) {
unsigned numDims = cst.getNumDimIds();
unsigned numSyms = cst.getNumSymbolIds();
// Initialize dimensional and symbolic identifiers.
for (unsigned i = 0; i < numDims; i++)
memo[i] = getAffineDimExpr(i, context);
for (unsigned i = numDims, e = numDims + numSyms; i < e; i++)
memo[i] = getAffineSymbolExpr(i - numDims, context);
bool changed;
do {
// Each time `changed` is true at the end of this iteration, one or more
// local vars would have been detected as floordivs and set in memo; so the
// number of null entries in memo[...] strictly reduces; so this converges.
changed = false;
for (unsigned i = 0, e = cst.getNumLocalIds(); i < e; ++i)
if (!memo[numDims + numSyms + i] &&
detectAsFloorDiv(cst, /*pos=*/numDims + numSyms + i, context, memo))
changed = true;
} while (changed);
ArrayRef<AffineExpr> localExprs =
ArrayRef<AffineExpr>(memo).take_back(cst.getNumLocalIds());
return success(
llvm::all_of(localExprs, [](AffineExpr expr) { return expr; }));
}
void FlatAffineValueConstraints::getIneqAsAffineValueMap(
unsigned pos, unsigned ineqPos, AffineValueMap &vmap,
MLIRContext *context) const {
unsigned numDims = getNumDimIds();
unsigned numSyms = getNumSymbolIds();
assert(pos < numDims && "invalid position");
assert(ineqPos < getNumInequalities() && "invalid inequality position");
// Get expressions for local vars.
SmallVector<AffineExpr, 8> memo(getNumIds(), AffineExpr());
if (failed(computeLocalVars(*this, memo, context)))
assert(false &&
"one or more local exprs do not have an explicit representation");
auto localExprs = ArrayRef<AffineExpr>(memo).take_back(getNumLocalIds());
// Compute the AffineExpr lower/upper bound for this inequality.
ArrayRef<int64_t> inequality = getInequality(ineqPos);
SmallVector<int64_t, 8> bound;
bound.reserve(getNumCols() - 1);
// Everything other than the coefficient at `pos`.
bound.append(inequality.begin(), inequality.begin() + pos);
bound.append(inequality.begin() + pos + 1, inequality.end());
if (inequality[pos] > 0)
// Lower bound.
std::transform(bound.begin(), bound.end(), bound.begin(),
std::negate<int64_t>());
else
// Upper bound (which is exclusive).
bound.back() += 1;
// Convert to AffineExpr (tree) form.
auto boundExpr = getAffineExprFromFlatForm(bound, numDims - 1, numSyms,
localExprs, context);
// Get the values to bind to this affine expr (all dims and symbols).
SmallVector<Value, 4> operands;
getValues(0, pos, &operands);
SmallVector<Value, 4> trailingOperands;
getValues(pos + 1, getNumDimAndSymbolIds(), &trailingOperands);
operands.append(trailingOperands.begin(), trailingOperands.end());
vmap.reset(AffineMap::get(numDims - 1, numSyms, boundExpr), operands);
}
/// Returns true if the pos^th column is all zero for both inequalities and
/// equalities..
static bool isColZero(const FlatAffineConstraints &cst, unsigned pos) {
unsigned rowPos;
return !findConstraintWithNonZeroAt(cst, pos, /*isEq=*/false, &rowPos) &&
!findConstraintWithNonZeroAt(cst, pos, /*isEq=*/true, &rowPos);
}
IntegerSet FlatAffineConstraints::getAsIntegerSet(MLIRContext *context) const {
if (getNumConstraints() == 0)
// Return universal set (always true): 0 == 0.
return IntegerSet::get(getNumDimIds(), getNumSymbolIds(),
getAffineConstantExpr(/*constant=*/0, context),
/*eqFlags=*/true);
// Construct local references.
SmallVector<AffineExpr, 8> memo(getNumIds(), AffineExpr());
if (failed(computeLocalVars(*this, memo, context))) {
// Check if the local variables without an explicit representation have
// zero coefficients everywhere.
SmallVector<unsigned> noLocalRepVars;
unsigned numDimsSymbols = getNumDimAndSymbolIds();
for (unsigned i = numDimsSymbols, e = getNumIds(); i < e; ++i) {
if (!memo[i] && !isColZero(*this, /*pos=*/i))
noLocalRepVars.push_back(i - numDimsSymbols);
}
if (!noLocalRepVars.empty()) {
LLVM_DEBUG({
llvm::dbgs() << "local variables at position(s) ";
llvm::interleaveComma(noLocalRepVars, llvm::dbgs());
llvm::dbgs() << " do not have an explicit representation in:\n";
this->dump();
});
return IntegerSet();
}
}
ArrayRef<AffineExpr> localExprs =
ArrayRef<AffineExpr>(memo).take_back(getNumLocalIds());
// Construct the IntegerSet from the equalities/inequalities.
unsigned numDims = getNumDimIds();
unsigned numSyms = getNumSymbolIds();
SmallVector<bool, 16> eqFlags(getNumConstraints());
std::fill(eqFlags.begin(), eqFlags.begin() + getNumEqualities(), true);
std::fill(eqFlags.begin() + getNumEqualities(), eqFlags.end(), false);
SmallVector<AffineExpr, 8> exprs;
exprs.reserve(getNumConstraints());
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i)
exprs.push_back(getAffineExprFromFlatForm(getEquality(i), numDims, numSyms,
localExprs, context));
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i)
exprs.push_back(getAffineExprFromFlatForm(getInequality(i), numDims,
numSyms, localExprs, context));
return IntegerSet::get(numDims, numSyms, exprs, eqFlags);
}
/// Find positions of inequalities and equalities that do not have a coefficient
/// for [pos, pos + num) identifiers.
static void getIndependentConstraints(const FlatAffineConstraints &cst,
unsigned pos, unsigned num,
SmallVectorImpl<unsigned> &nbIneqIndices,
SmallVectorImpl<unsigned> &nbEqIndices) {
assert(pos < cst.getNumIds() && "invalid start position");
assert(pos + num <= cst.getNumIds() && "invalid limit");
for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) {
// The bounds are to be independent of [offset, offset + num) columns.
unsigned c;
for (c = pos; c < pos + num; ++c) {
if (cst.atIneq(r, c) != 0)
break;
}
if (c == pos + num)
nbIneqIndices.push_back(r);
}
for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) {
// The bounds are to be independent of [offset, offset + num) columns.
unsigned c;
for (c = pos; c < pos + num; ++c) {
if (cst.atEq(r, c) != 0)
break;
}
if (c == pos + num)
nbEqIndices.push_back(r);
}
}
void FlatAffineConstraints::removeIndependentConstraints(unsigned pos,
unsigned num) {
assert(pos + num <= getNumIds() && "invalid range");
// Remove constraints that are independent of these identifiers.
SmallVector<unsigned, 4> nbIneqIndices, nbEqIndices;
getIndependentConstraints(*this, /*pos=*/0, num, nbIneqIndices, nbEqIndices);
// Iterate in reverse so that indices don't have to be updated.
// TODO: This method can be made more efficient (because removal of each
// inequality leads to much shifting/copying in the underlying buffer).
for (auto nbIndex : llvm::reverse(nbIneqIndices))
removeInequality(nbIndex);
for (auto nbIndex : llvm::reverse(nbEqIndices))
removeEquality(nbIndex);
}
AffineMap mlir::alignAffineMapWithValues(AffineMap map, ValueRange operands,
ValueRange dims, ValueRange syms,
SmallVector<Value> *newSyms) {
assert(operands.size() == map.getNumInputs() &&
"expected same number of operands and map inputs");
MLIRContext *ctx = map.getContext();
Builder builder(ctx);
SmallVector<AffineExpr> dimReplacements(map.getNumDims(), {});
unsigned numSymbols = syms.size();
SmallVector<AffineExpr> symReplacements(map.getNumSymbols(), {});
if (newSyms) {
newSyms->clear();
newSyms->append(syms.begin(), syms.end());
}
for (auto operand : llvm::enumerate(operands)) {
// Compute replacement dim/sym of operand.
AffineExpr replacement;
auto dimIt = std::find(dims.begin(), dims.end(), operand.value());
auto symIt = std::find(syms.begin(), syms.end(), operand.value());
if (dimIt != dims.end()) {
replacement =
builder.getAffineDimExpr(std::distance(dims.begin(), dimIt));
} else if (symIt != syms.end()) {
replacement =
builder.getAffineSymbolExpr(std::distance(syms.begin(), symIt));
} else {
// This operand is neither a dimension nor a symbol. Add it as a new
// symbol.
replacement = builder.getAffineSymbolExpr(numSymbols++);
if (newSyms)
newSyms->push_back(operand.value());
}
// Add to corresponding replacements vector.
if (operand.index() < map.getNumDims()) {
dimReplacements[operand.index()] = replacement;
} else {
symReplacements[operand.index() - map.getNumDims()] = replacement;
}
}
return map.replaceDimsAndSymbols(dimReplacements, symReplacements,
dims.size(), numSymbols);
}
FlatAffineValueConstraints FlatAffineRelation::getDomainSet() const {
FlatAffineValueConstraints domain = *this;
// Convert all range variables to local variables.
domain.convertDimToLocal(getNumDomainDims(),
getNumDomainDims() + getNumRangeDims());
return domain;
}
FlatAffineValueConstraints FlatAffineRelation::getRangeSet() const {
FlatAffineValueConstraints range = *this;
// Convert all domain variables to local variables.
range.convertDimToLocal(0, getNumDomainDims());
return range;
}
void FlatAffineRelation::compose(const FlatAffineRelation &other) {
assert(getNumDomainDims() == other.getNumRangeDims() &&
"Domain of this and range of other do not match");
assert(std::equal(values.begin(), values.begin() + getNumDomainDims(),
other.values.begin() + other.getNumDomainDims()) &&
"Domain of this and range of other do not match");
FlatAffineRelation rel = other;
// Convert `rel` from
// [otherDomain] -> [otherRange]
// to
// [otherDomain] -> [otherRange thisRange]
// and `this` from
// [thisDomain] -> [thisRange]
// to
// [otherDomain thisDomain] -> [thisRange].
unsigned removeDims = rel.getNumRangeDims();
insertDomainId(0, rel.getNumDomainDims());
rel.appendRangeId(getNumRangeDims());
// Merge symbol and local identifiers.
mergeSymbolIds(rel);
mergeLocalIds(rel);
// Convert `rel` from [otherDomain] -> [otherRange thisRange] to
// [otherDomain] -> [thisRange] by converting first otherRange range ids
// to local ids.
rel.convertDimToLocal(rel.getNumDomainDims(),
rel.getNumDomainDims() + removeDims);
// Convert `this` from [otherDomain thisDomain] -> [thisRange] to
// [otherDomain] -> [thisRange] by converting last thisDomain domain ids
// to local ids.
convertDimToLocal(getNumDomainDims() - removeDims, getNumDomainDims());
auto thisMaybeValues = getMaybeDimValues();
auto relMaybeValues = rel.getMaybeDimValues();
// Add and match domain of `rel` to domain of `this`.
for (unsigned i = 0, e = rel.getNumDomainDims(); i < e; ++i)
if (relMaybeValues[i].hasValue())
setValue(i, relMaybeValues[i].getValue());
// Add and match range of `this` to range of `rel`.
for (unsigned i = 0, e = getNumRangeDims(); i < e; ++i) {
unsigned rangeIdx = rel.getNumDomainDims() + i;
if (thisMaybeValues[rangeIdx].hasValue())
rel.setValue(rangeIdx, thisMaybeValues[rangeIdx].getValue());
}
// Append `this` to `rel` and simplify constraints.
rel.append(*this);
rel.removeRedundantLocalVars();
*this = rel;
}
void FlatAffineRelation::inverse() {
unsigned oldDomain = getNumDomainDims();
unsigned oldRange = getNumRangeDims();
// Add new range ids.
appendRangeId(oldDomain);
// Swap new ids with domain.
for (unsigned i = 0; i < oldDomain; ++i)
swapId(i, oldDomain + oldRange + i);
// Remove the swapped domain.
removeIdRange(0, oldDomain);
// Set domain and range as inverse.
numDomainDims = oldRange;
numRangeDims = oldDomain;
}
void FlatAffineRelation::insertDomainId(unsigned pos, unsigned num) {
assert(pos <= getNumDomainDims() &&
"Id cannot be inserted at invalid position");
insertDimId(pos, num);
numDomainDims += num;
}
void FlatAffineRelation::insertRangeId(unsigned pos, unsigned num) {
assert(pos <= getNumRangeDims() &&
"Id cannot be inserted at invalid position");
insertDimId(getNumDomainDims() + pos, num);
numRangeDims += num;
}
void FlatAffineRelation::appendDomainId(unsigned num) {
insertDimId(getNumDomainDims(), num);
numDomainDims += num;
}
void FlatAffineRelation::appendRangeId(unsigned num) {
insertDimId(getNumDimIds(), num);
numRangeDims += num;
}
void FlatAffineRelation::removeIdRange(unsigned idStart, unsigned idLimit) {
if (idStart >= idLimit)
return;
// Compute number of domain and range identifiers to remove. This is done by
// intersecting the range of domain/range ids with range of ids to remove.
unsigned intersectDomainLHS = std::min(idLimit, getNumDomainDims());
unsigned intersectDomainRHS = idStart;
unsigned intersectRangeLHS = std::min(idLimit, getNumDimIds());
unsigned intersectRangeRHS = std::max(idStart, getNumDomainDims());
FlatAffineValueConstraints::removeIdRange(idStart, idLimit);
if (intersectDomainLHS > intersectDomainRHS)
numDomainDims -= intersectDomainLHS - intersectDomainRHS;
if (intersectRangeLHS > intersectRangeRHS)
numRangeDims -= intersectRangeLHS - intersectRangeRHS;
}
LogicalResult mlir::getRelationFromMap(AffineMap &map,
FlatAffineRelation &rel) {
// Get flattened affine expressions.
std::vector<SmallVector<int64_t, 8>> flatExprs;
FlatAffineConstraints localVarCst;
if (failed(getFlattenedAffineExprs(map, &flatExprs, &localVarCst)))
return failure();
unsigned oldDimNum = localVarCst.getNumDimIds();
unsigned oldCols = localVarCst.getNumCols();
unsigned numRangeIds = map.getNumResults();
unsigned numDomainIds = map.getNumDims();
// Add range as the new expressions.
localVarCst.appendDimId(numRangeIds);
// Add equalities between source and range.
SmallVector<int64_t, 8> eq(localVarCst.getNumCols());
for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) {
// Zero fill.
std::fill(eq.begin(), eq.end(), 0);
// Fill equality.
for (unsigned j = 0, f = oldDimNum; j < f; ++j)
eq[j] = flatExprs[i][j];
for (unsigned j = oldDimNum, f = oldCols; j < f; ++j)
eq[j + numRangeIds] = flatExprs[i][j];
// Set this dimension to -1 to equate lhs and rhs and add equality.
eq[numDomainIds + i] = -1;
localVarCst.addEquality(eq);
}
// Create relation and return success.
rel = FlatAffineRelation(numDomainIds, numRangeIds, localVarCst);
return success();
}
LogicalResult mlir::getRelationFromMap(const AffineValueMap &map,
FlatAffineRelation &rel) {
AffineMap affineMap = map.getAffineMap();
if (failed(getRelationFromMap(affineMap, rel)))
return failure();
// Set symbol values for domain dimensions and symbols.
for (unsigned i = 0, e = rel.getNumDomainDims(); i < e; ++i)
rel.setValue(i, map.getOperand(i));
for (unsigned i = rel.getNumDimIds(), e = rel.getNumDimAndSymbolIds(); i < e;
++i)
rel.setValue(i, map.getOperand(i - rel.getNumRangeDims()));
return success();
}