forked from OSchip/llvm-project
1219 lines
44 KiB
C++
1219 lines
44 KiB
C++
//===--- Sema.cpp - AST Builder and Semantic Analysis Implementation ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the actions class which performs semantic analysis and
|
|
// builds an AST out of a parse stream.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/Sema/DelayedDiagnostic.h"
|
|
#include "TargetAttributesSema.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/Support/CrashRecoveryContext.h"
|
|
#include "clang/Sema/CXXFieldCollector.h"
|
|
#include "clang/Sema/TemplateDeduction.h"
|
|
#include "clang/Sema/ExternalSemaSource.h"
|
|
#include "clang/Sema/ObjCMethodList.h"
|
|
#include "clang/Sema/PrettyDeclStackTrace.h"
|
|
#include "clang/Sema/Scope.h"
|
|
#include "clang/Sema/ScopeInfo.h"
|
|
#include "clang/Sema/SemaConsumer.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/ASTDiagnostic.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclFriend.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/StmtCXX.h"
|
|
#include "clang/Lex/HeaderSearch.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Basic/FileManager.h"
|
|
#include "clang/Basic/PartialDiagnostic.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
using namespace clang;
|
|
using namespace sema;
|
|
|
|
FunctionScopeInfo::~FunctionScopeInfo() { }
|
|
|
|
void FunctionScopeInfo::Clear() {
|
|
HasBranchProtectedScope = false;
|
|
HasBranchIntoScope = false;
|
|
HasIndirectGoto = false;
|
|
|
|
SwitchStack.clear();
|
|
Returns.clear();
|
|
ErrorTrap.reset();
|
|
PossiblyUnreachableDiags.clear();
|
|
}
|
|
|
|
BlockScopeInfo::~BlockScopeInfo() { }
|
|
LambdaScopeInfo::~LambdaScopeInfo() { }
|
|
|
|
PrintingPolicy Sema::getPrintingPolicy(const ASTContext &Context,
|
|
const Preprocessor &PP) {
|
|
PrintingPolicy Policy = Context.getPrintingPolicy();
|
|
Policy.Bool = Context.getLangOpts().Bool;
|
|
if (!Policy.Bool) {
|
|
if (MacroInfo *BoolMacro = PP.getMacroInfo(&Context.Idents.get("bool"))) {
|
|
Policy.Bool = BoolMacro->isObjectLike() &&
|
|
BoolMacro->getNumTokens() == 1 &&
|
|
BoolMacro->getReplacementToken(0).is(tok::kw__Bool);
|
|
}
|
|
}
|
|
|
|
return Policy;
|
|
}
|
|
|
|
void Sema::ActOnTranslationUnitScope(Scope *S) {
|
|
TUScope = S;
|
|
PushDeclContext(S, Context.getTranslationUnitDecl());
|
|
|
|
VAListTagName = PP.getIdentifierInfo("__va_list_tag");
|
|
}
|
|
|
|
Sema::Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer,
|
|
TranslationUnitKind TUKind,
|
|
CodeCompleteConsumer *CodeCompleter)
|
|
: TheTargetAttributesSema(0), FPFeatures(pp.getLangOpts()),
|
|
LangOpts(pp.getLangOpts()), PP(pp), Context(ctxt), Consumer(consumer),
|
|
Diags(PP.getDiagnostics()), SourceMgr(PP.getSourceManager()),
|
|
CollectStats(false), ExternalSource(0), CodeCompleter(CodeCompleter),
|
|
CurContext(0), OriginalLexicalContext(0),
|
|
PackContext(0), MSStructPragmaOn(false), VisContext(0),
|
|
ExprNeedsCleanups(false), LateTemplateParser(0), OpaqueParser(0),
|
|
IdResolver(pp), StdInitializerList(0), CXXTypeInfoDecl(0), MSVCGuidDecl(0),
|
|
NSNumberDecl(0),
|
|
NSStringDecl(0), StringWithUTF8StringMethod(0),
|
|
NSArrayDecl(0), ArrayWithObjectsMethod(0),
|
|
NSDictionaryDecl(0), DictionaryWithObjectsMethod(0),
|
|
GlobalNewDeleteDeclared(false),
|
|
ObjCShouldCallSuperDealloc(false),
|
|
ObjCShouldCallSuperFinalize(false),
|
|
TUKind(TUKind),
|
|
NumSFINAEErrors(0), InFunctionDeclarator(0),
|
|
AccessCheckingSFINAE(false), InNonInstantiationSFINAEContext(false),
|
|
NonInstantiationEntries(0), ArgumentPackSubstitutionIndex(-1),
|
|
CurrentInstantiationScope(0), TyposCorrected(0),
|
|
AnalysisWarnings(*this)
|
|
{
|
|
TUScope = 0;
|
|
|
|
LoadedExternalKnownNamespaces = false;
|
|
for (unsigned I = 0; I != NSAPI::NumNSNumberLiteralMethods; ++I)
|
|
NSNumberLiteralMethods[I] = 0;
|
|
|
|
if (getLangOpts().ObjC1)
|
|
NSAPIObj.reset(new NSAPI(Context));
|
|
|
|
if (getLangOpts().CPlusPlus)
|
|
FieldCollector.reset(new CXXFieldCollector());
|
|
|
|
// Tell diagnostics how to render things from the AST library.
|
|
PP.getDiagnostics().SetArgToStringFn(&FormatASTNodeDiagnosticArgument,
|
|
&Context);
|
|
|
|
ExprEvalContexts.push_back(
|
|
ExpressionEvaluationContextRecord(PotentiallyEvaluated, 0,
|
|
false, 0, false));
|
|
|
|
FunctionScopes.push_back(new FunctionScopeInfo(Diags));
|
|
}
|
|
|
|
void Sema::Initialize() {
|
|
// Tell the AST consumer about this Sema object.
|
|
Consumer.Initialize(Context);
|
|
|
|
// FIXME: Isn't this redundant with the initialization above?
|
|
if (SemaConsumer *SC = dyn_cast<SemaConsumer>(&Consumer))
|
|
SC->InitializeSema(*this);
|
|
|
|
// Tell the external Sema source about this Sema object.
|
|
if (ExternalSemaSource *ExternalSema
|
|
= dyn_cast_or_null<ExternalSemaSource>(Context.getExternalSource()))
|
|
ExternalSema->InitializeSema(*this);
|
|
|
|
// Initialize predefined 128-bit integer types, if needed.
|
|
if (PP.getTargetInfo().getPointerWidth(0) >= 64) {
|
|
// If either of the 128-bit integer types are unavailable to name lookup,
|
|
// define them now.
|
|
DeclarationName Int128 = &Context.Idents.get("__int128_t");
|
|
if (IdResolver.begin(Int128) == IdResolver.end())
|
|
PushOnScopeChains(Context.getInt128Decl(), TUScope);
|
|
|
|
DeclarationName UInt128 = &Context.Idents.get("__uint128_t");
|
|
if (IdResolver.begin(UInt128) == IdResolver.end())
|
|
PushOnScopeChains(Context.getUInt128Decl(), TUScope);
|
|
}
|
|
|
|
|
|
// Initialize predefined Objective-C types:
|
|
if (PP.getLangOpts().ObjC1) {
|
|
// If 'SEL' does not yet refer to any declarations, make it refer to the
|
|
// predefined 'SEL'.
|
|
DeclarationName SEL = &Context.Idents.get("SEL");
|
|
if (IdResolver.begin(SEL) == IdResolver.end())
|
|
PushOnScopeChains(Context.getObjCSelDecl(), TUScope);
|
|
|
|
// If 'id' does not yet refer to any declarations, make it refer to the
|
|
// predefined 'id'.
|
|
DeclarationName Id = &Context.Idents.get("id");
|
|
if (IdResolver.begin(Id) == IdResolver.end())
|
|
PushOnScopeChains(Context.getObjCIdDecl(), TUScope);
|
|
|
|
// Create the built-in typedef for 'Class'.
|
|
DeclarationName Class = &Context.Idents.get("Class");
|
|
if (IdResolver.begin(Class) == IdResolver.end())
|
|
PushOnScopeChains(Context.getObjCClassDecl(), TUScope);
|
|
|
|
// Create the built-in forward declaratino for 'Protocol'.
|
|
DeclarationName Protocol = &Context.Idents.get("Protocol");
|
|
if (IdResolver.begin(Protocol) == IdResolver.end())
|
|
PushOnScopeChains(Context.getObjCProtocolDecl(), TUScope);
|
|
}
|
|
}
|
|
|
|
Sema::~Sema() {
|
|
if (PackContext) FreePackedContext();
|
|
if (VisContext) FreeVisContext();
|
|
delete TheTargetAttributesSema;
|
|
MSStructPragmaOn = false;
|
|
// Kill all the active scopes.
|
|
for (unsigned I = 1, E = FunctionScopes.size(); I != E; ++I)
|
|
delete FunctionScopes[I];
|
|
if (FunctionScopes.size() == 1)
|
|
delete FunctionScopes[0];
|
|
|
|
// Tell the SemaConsumer to forget about us; we're going out of scope.
|
|
if (SemaConsumer *SC = dyn_cast<SemaConsumer>(&Consumer))
|
|
SC->ForgetSema();
|
|
|
|
// Detach from the external Sema source.
|
|
if (ExternalSemaSource *ExternalSema
|
|
= dyn_cast_or_null<ExternalSemaSource>(Context.getExternalSource()))
|
|
ExternalSema->ForgetSema();
|
|
}
|
|
|
|
/// makeUnavailableInSystemHeader - There is an error in the current
|
|
/// context. If we're still in a system header, and we can plausibly
|
|
/// make the relevant declaration unavailable instead of erroring, do
|
|
/// so and return true.
|
|
bool Sema::makeUnavailableInSystemHeader(SourceLocation loc,
|
|
StringRef msg) {
|
|
// If we're not in a function, it's an error.
|
|
FunctionDecl *fn = dyn_cast<FunctionDecl>(CurContext);
|
|
if (!fn) return false;
|
|
|
|
// If we're in template instantiation, it's an error.
|
|
if (!ActiveTemplateInstantiations.empty())
|
|
return false;
|
|
|
|
// If that function's not in a system header, it's an error.
|
|
if (!Context.getSourceManager().isInSystemHeader(loc))
|
|
return false;
|
|
|
|
// If the function is already unavailable, it's not an error.
|
|
if (fn->hasAttr<UnavailableAttr>()) return true;
|
|
|
|
fn->addAttr(new (Context) UnavailableAttr(loc, Context, msg));
|
|
return true;
|
|
}
|
|
|
|
ASTMutationListener *Sema::getASTMutationListener() const {
|
|
return getASTConsumer().GetASTMutationListener();
|
|
}
|
|
|
|
/// \brief Print out statistics about the semantic analysis.
|
|
void Sema::PrintStats() const {
|
|
llvm::errs() << "\n*** Semantic Analysis Stats:\n";
|
|
llvm::errs() << NumSFINAEErrors << " SFINAE diagnostics trapped.\n";
|
|
|
|
BumpAlloc.PrintStats();
|
|
AnalysisWarnings.PrintStats();
|
|
}
|
|
|
|
/// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit cast.
|
|
/// If there is already an implicit cast, merge into the existing one.
|
|
/// The result is of the given category.
|
|
ExprResult Sema::ImpCastExprToType(Expr *E, QualType Ty,
|
|
CastKind Kind, ExprValueKind VK,
|
|
const CXXCastPath *BasePath,
|
|
CheckedConversionKind CCK) {
|
|
#ifndef NDEBUG
|
|
if (VK == VK_RValue && !E->isRValue()) {
|
|
switch (Kind) {
|
|
default:
|
|
assert(0 && "can't implicitly cast lvalue to rvalue with this cast kind");
|
|
case CK_LValueToRValue:
|
|
case CK_ArrayToPointerDecay:
|
|
case CK_FunctionToPointerDecay:
|
|
case CK_ToVoid:
|
|
break;
|
|
}
|
|
}
|
|
assert((VK == VK_RValue || !E->isRValue()) && "can't cast rvalue to lvalue");
|
|
#endif
|
|
|
|
QualType ExprTy = Context.getCanonicalType(E->getType());
|
|
QualType TypeTy = Context.getCanonicalType(Ty);
|
|
|
|
if (ExprTy == TypeTy)
|
|
return Owned(E);
|
|
|
|
if (getLangOpts().ObjCAutoRefCount)
|
|
CheckObjCARCConversion(SourceRange(), Ty, E, CCK);
|
|
|
|
// If this is a derived-to-base cast to a through a virtual base, we
|
|
// need a vtable.
|
|
if (Kind == CK_DerivedToBase &&
|
|
BasePathInvolvesVirtualBase(*BasePath)) {
|
|
QualType T = E->getType();
|
|
if (const PointerType *Pointer = T->getAs<PointerType>())
|
|
T = Pointer->getPointeeType();
|
|
if (const RecordType *RecordTy = T->getAs<RecordType>())
|
|
MarkVTableUsed(E->getLocStart(),
|
|
cast<CXXRecordDecl>(RecordTy->getDecl()));
|
|
}
|
|
|
|
if (ImplicitCastExpr *ImpCast = dyn_cast<ImplicitCastExpr>(E)) {
|
|
if (ImpCast->getCastKind() == Kind && (!BasePath || BasePath->empty())) {
|
|
ImpCast->setType(Ty);
|
|
ImpCast->setValueKind(VK);
|
|
return Owned(E);
|
|
}
|
|
}
|
|
|
|
return Owned(ImplicitCastExpr::Create(Context, Ty, Kind, E, BasePath, VK));
|
|
}
|
|
|
|
/// ScalarTypeToBooleanCastKind - Returns the cast kind corresponding
|
|
/// to the conversion from scalar type ScalarTy to the Boolean type.
|
|
CastKind Sema::ScalarTypeToBooleanCastKind(QualType ScalarTy) {
|
|
switch (ScalarTy->getScalarTypeKind()) {
|
|
case Type::STK_Bool: return CK_NoOp;
|
|
case Type::STK_CPointer: return CK_PointerToBoolean;
|
|
case Type::STK_BlockPointer: return CK_PointerToBoolean;
|
|
case Type::STK_ObjCObjectPointer: return CK_PointerToBoolean;
|
|
case Type::STK_MemberPointer: return CK_MemberPointerToBoolean;
|
|
case Type::STK_Integral: return CK_IntegralToBoolean;
|
|
case Type::STK_Floating: return CK_FloatingToBoolean;
|
|
case Type::STK_IntegralComplex: return CK_IntegralComplexToBoolean;
|
|
case Type::STK_FloatingComplex: return CK_FloatingComplexToBoolean;
|
|
}
|
|
return CK_Invalid;
|
|
}
|
|
|
|
/// \brief Used to prune the decls of Sema's UnusedFileScopedDecls vector.
|
|
static bool ShouldRemoveFromUnused(Sema *SemaRef, const DeclaratorDecl *D) {
|
|
if (D->isUsed())
|
|
return true;
|
|
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
// UnusedFileScopedDecls stores the first declaration.
|
|
// The declaration may have become definition so check again.
|
|
const FunctionDecl *DeclToCheck;
|
|
if (FD->hasBody(DeclToCheck))
|
|
return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck);
|
|
|
|
// Later redecls may add new information resulting in not having to warn,
|
|
// so check again.
|
|
DeclToCheck = FD->getMostRecentDecl();
|
|
if (DeclToCheck != FD)
|
|
return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck);
|
|
}
|
|
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
|
|
// UnusedFileScopedDecls stores the first declaration.
|
|
// The declaration may have become definition so check again.
|
|
const VarDecl *DeclToCheck = VD->getDefinition();
|
|
if (DeclToCheck)
|
|
return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck);
|
|
|
|
// Later redecls may add new information resulting in not having to warn,
|
|
// so check again.
|
|
DeclToCheck = VD->getMostRecentDecl();
|
|
if (DeclToCheck != VD)
|
|
return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
struct UndefinedInternal {
|
|
NamedDecl *decl;
|
|
FullSourceLoc useLoc;
|
|
|
|
UndefinedInternal(NamedDecl *decl, FullSourceLoc useLoc)
|
|
: decl(decl), useLoc(useLoc) {}
|
|
};
|
|
|
|
bool operator<(const UndefinedInternal &l, const UndefinedInternal &r) {
|
|
return l.useLoc.isBeforeInTranslationUnitThan(r.useLoc);
|
|
}
|
|
}
|
|
|
|
/// checkUndefinedInternals - Check for undefined objects with internal linkage.
|
|
static void checkUndefinedInternals(Sema &S) {
|
|
if (S.UndefinedInternals.empty()) return;
|
|
|
|
// Collect all the still-undefined entities with internal linkage.
|
|
SmallVector<UndefinedInternal, 16> undefined;
|
|
for (llvm::DenseMap<NamedDecl*,SourceLocation>::iterator
|
|
i = S.UndefinedInternals.begin(), e = S.UndefinedInternals.end();
|
|
i != e; ++i) {
|
|
NamedDecl *decl = i->first;
|
|
|
|
// Ignore attributes that have become invalid.
|
|
if (decl->isInvalidDecl()) continue;
|
|
|
|
// __attribute__((weakref)) is basically a definition.
|
|
if (decl->hasAttr<WeakRefAttr>()) continue;
|
|
|
|
if (FunctionDecl *fn = dyn_cast<FunctionDecl>(decl)) {
|
|
if (fn->isPure() || fn->hasBody())
|
|
continue;
|
|
} else {
|
|
if (cast<VarDecl>(decl)->hasDefinition() != VarDecl::DeclarationOnly)
|
|
continue;
|
|
}
|
|
|
|
// We build a FullSourceLoc so that we can sort with array_pod_sort.
|
|
FullSourceLoc loc(i->second, S.Context.getSourceManager());
|
|
undefined.push_back(UndefinedInternal(decl, loc));
|
|
}
|
|
|
|
if (undefined.empty()) return;
|
|
|
|
// Sort (in order of use site) so that we're not (as) dependent on
|
|
// the iteration order through an llvm::DenseMap.
|
|
llvm::array_pod_sort(undefined.begin(), undefined.end());
|
|
|
|
for (SmallVectorImpl<UndefinedInternal>::iterator
|
|
i = undefined.begin(), e = undefined.end(); i != e; ++i) {
|
|
NamedDecl *decl = i->decl;
|
|
S.Diag(decl->getLocation(), diag::warn_undefined_internal)
|
|
<< isa<VarDecl>(decl) << decl;
|
|
S.Diag(i->useLoc, diag::note_used_here);
|
|
}
|
|
}
|
|
|
|
void Sema::LoadExternalWeakUndeclaredIdentifiers() {
|
|
if (!ExternalSource)
|
|
return;
|
|
|
|
SmallVector<std::pair<IdentifierInfo *, WeakInfo>, 4> WeakIDs;
|
|
ExternalSource->ReadWeakUndeclaredIdentifiers(WeakIDs);
|
|
for (unsigned I = 0, N = WeakIDs.size(); I != N; ++I) {
|
|
llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator Pos
|
|
= WeakUndeclaredIdentifiers.find(WeakIDs[I].first);
|
|
if (Pos != WeakUndeclaredIdentifiers.end())
|
|
continue;
|
|
|
|
WeakUndeclaredIdentifiers.insert(WeakIDs[I]);
|
|
}
|
|
}
|
|
|
|
|
|
typedef llvm::DenseMap<const CXXRecordDecl*, bool> RecordCompleteMap;
|
|
|
|
/// \brief Returns true, if all methods and nested classes of the given
|
|
/// CXXRecordDecl are defined in this translation unit.
|
|
///
|
|
/// Should only be called from ActOnEndOfTranslationUnit so that all
|
|
/// definitions are actually read.
|
|
static bool MethodsAndNestedClassesComplete(const CXXRecordDecl *RD,
|
|
RecordCompleteMap &MNCComplete) {
|
|
RecordCompleteMap::iterator Cache = MNCComplete.find(RD);
|
|
if (Cache != MNCComplete.end())
|
|
return Cache->second;
|
|
if (!RD->isCompleteDefinition())
|
|
return false;
|
|
bool Complete = true;
|
|
for (DeclContext::decl_iterator I = RD->decls_begin(),
|
|
E = RD->decls_end();
|
|
I != E && Complete; ++I) {
|
|
if (const CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(*I))
|
|
Complete = M->isDefined() || (M->isPure() && !isa<CXXDestructorDecl>(M));
|
|
else if (const FunctionTemplateDecl *F = dyn_cast<FunctionTemplateDecl>(*I))
|
|
Complete = F->getTemplatedDecl()->isDefined();
|
|
else if (const CXXRecordDecl *R = dyn_cast<CXXRecordDecl>(*I)) {
|
|
if (R->isInjectedClassName())
|
|
continue;
|
|
if (R->hasDefinition())
|
|
Complete = MethodsAndNestedClassesComplete(R->getDefinition(),
|
|
MNCComplete);
|
|
else
|
|
Complete = false;
|
|
}
|
|
}
|
|
MNCComplete[RD] = Complete;
|
|
return Complete;
|
|
}
|
|
|
|
/// \brief Returns true, if the given CXXRecordDecl is fully defined in this
|
|
/// translation unit, i.e. all methods are defined or pure virtual and all
|
|
/// friends, friend functions and nested classes are fully defined in this
|
|
/// translation unit.
|
|
///
|
|
/// Should only be called from ActOnEndOfTranslationUnit so that all
|
|
/// definitions are actually read.
|
|
static bool IsRecordFullyDefined(const CXXRecordDecl *RD,
|
|
RecordCompleteMap &RecordsComplete,
|
|
RecordCompleteMap &MNCComplete) {
|
|
RecordCompleteMap::iterator Cache = RecordsComplete.find(RD);
|
|
if (Cache != RecordsComplete.end())
|
|
return Cache->second;
|
|
bool Complete = MethodsAndNestedClassesComplete(RD, MNCComplete);
|
|
for (CXXRecordDecl::friend_iterator I = RD->friend_begin(),
|
|
E = RD->friend_end();
|
|
I != E && Complete; ++I) {
|
|
// Check if friend classes and methods are complete.
|
|
if (TypeSourceInfo *TSI = (*I)->getFriendType()) {
|
|
// Friend classes are available as the TypeSourceInfo of the FriendDecl.
|
|
if (CXXRecordDecl *FriendD = TSI->getType()->getAsCXXRecordDecl())
|
|
Complete = MethodsAndNestedClassesComplete(FriendD, MNCComplete);
|
|
else
|
|
Complete = false;
|
|
} else {
|
|
// Friend functions are available through the NamedDecl of FriendDecl.
|
|
if (const FunctionDecl *FD =
|
|
dyn_cast<FunctionDecl>((*I)->getFriendDecl()))
|
|
Complete = FD->isDefined();
|
|
else
|
|
// This is a template friend, give up.
|
|
Complete = false;
|
|
}
|
|
}
|
|
RecordsComplete[RD] = Complete;
|
|
return Complete;
|
|
}
|
|
|
|
/// ActOnEndOfTranslationUnit - This is called at the very end of the
|
|
/// translation unit when EOF is reached and all but the top-level scope is
|
|
/// popped.
|
|
void Sema::ActOnEndOfTranslationUnit() {
|
|
assert(DelayedDiagnostics.getCurrentPool() == NULL
|
|
&& "reached end of translation unit with a pool attached?");
|
|
|
|
// Only complete translation units define vtables and perform implicit
|
|
// instantiations.
|
|
if (TUKind == TU_Complete) {
|
|
DiagnoseUseOfUnimplementedSelectors();
|
|
|
|
// If any dynamic classes have their key function defined within
|
|
// this translation unit, then those vtables are considered "used" and must
|
|
// be emitted.
|
|
for (DynamicClassesType::iterator I = DynamicClasses.begin(ExternalSource),
|
|
E = DynamicClasses.end();
|
|
I != E; ++I) {
|
|
assert(!(*I)->isDependentType() &&
|
|
"Should not see dependent types here!");
|
|
if (const CXXMethodDecl *KeyFunction = Context.getKeyFunction(*I)) {
|
|
const FunctionDecl *Definition = 0;
|
|
if (KeyFunction->hasBody(Definition))
|
|
MarkVTableUsed(Definition->getLocation(), *I, true);
|
|
}
|
|
}
|
|
|
|
// If DefinedUsedVTables ends up marking any virtual member functions it
|
|
// might lead to more pending template instantiations, which we then need
|
|
// to instantiate.
|
|
DefineUsedVTables();
|
|
|
|
// C++: Perform implicit template instantiations.
|
|
//
|
|
// FIXME: When we perform these implicit instantiations, we do not
|
|
// carefully keep track of the point of instantiation (C++ [temp.point]).
|
|
// This means that name lookup that occurs within the template
|
|
// instantiation will always happen at the end of the translation unit,
|
|
// so it will find some names that should not be found. Although this is
|
|
// common behavior for C++ compilers, it is technically wrong. In the
|
|
// future, we either need to be able to filter the results of name lookup
|
|
// or we need to perform template instantiations earlier.
|
|
PerformPendingInstantiations();
|
|
}
|
|
|
|
// Remove file scoped decls that turned out to be used.
|
|
UnusedFileScopedDecls.erase(std::remove_if(UnusedFileScopedDecls.begin(0,
|
|
true),
|
|
UnusedFileScopedDecls.end(),
|
|
std::bind1st(std::ptr_fun(ShouldRemoveFromUnused),
|
|
this)),
|
|
UnusedFileScopedDecls.end());
|
|
|
|
if (TUKind == TU_Prefix) {
|
|
// Translation unit prefixes don't need any of the checking below.
|
|
TUScope = 0;
|
|
return;
|
|
}
|
|
|
|
// Check for #pragma weak identifiers that were never declared
|
|
// FIXME: This will cause diagnostics to be emitted in a non-determinstic
|
|
// order! Iterating over a densemap like this is bad.
|
|
LoadExternalWeakUndeclaredIdentifiers();
|
|
for (llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator
|
|
I = WeakUndeclaredIdentifiers.begin(),
|
|
E = WeakUndeclaredIdentifiers.end(); I != E; ++I) {
|
|
if (I->second.getUsed()) continue;
|
|
|
|
Diag(I->second.getLocation(), diag::warn_weak_identifier_undeclared)
|
|
<< I->first;
|
|
}
|
|
|
|
if (TUKind == TU_Module) {
|
|
// If we are building a module, resolve all of the exported declarations
|
|
// now.
|
|
if (Module *CurrentModule = PP.getCurrentModule()) {
|
|
ModuleMap &ModMap = PP.getHeaderSearchInfo().getModuleMap();
|
|
|
|
llvm::SmallVector<Module *, 2> Stack;
|
|
Stack.push_back(CurrentModule);
|
|
while (!Stack.empty()) {
|
|
Module *Mod = Stack.back();
|
|
Stack.pop_back();
|
|
|
|
// Resolve the exported declarations.
|
|
// FIXME: Actually complain, once we figure out how to teach the
|
|
// diagnostic client to deal with complains in the module map at this
|
|
// point.
|
|
ModMap.resolveExports(Mod, /*Complain=*/false);
|
|
|
|
// Queue the submodules, so their exports will also be resolved.
|
|
for (Module::submodule_iterator Sub = Mod->submodule_begin(),
|
|
SubEnd = Mod->submodule_end();
|
|
Sub != SubEnd; ++Sub) {
|
|
Stack.push_back(*Sub);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Modules don't need any of the checking below.
|
|
TUScope = 0;
|
|
return;
|
|
}
|
|
|
|
// C99 6.9.2p2:
|
|
// A declaration of an identifier for an object that has file
|
|
// scope without an initializer, and without a storage-class
|
|
// specifier or with the storage-class specifier static,
|
|
// constitutes a tentative definition. If a translation unit
|
|
// contains one or more tentative definitions for an identifier,
|
|
// and the translation unit contains no external definition for
|
|
// that identifier, then the behavior is exactly as if the
|
|
// translation unit contains a file scope declaration of that
|
|
// identifier, with the composite type as of the end of the
|
|
// translation unit, with an initializer equal to 0.
|
|
llvm::SmallSet<VarDecl *, 32> Seen;
|
|
for (TentativeDefinitionsType::iterator
|
|
T = TentativeDefinitions.begin(ExternalSource),
|
|
TEnd = TentativeDefinitions.end();
|
|
T != TEnd; ++T)
|
|
{
|
|
VarDecl *VD = (*T)->getActingDefinition();
|
|
|
|
// If the tentative definition was completed, getActingDefinition() returns
|
|
// null. If we've already seen this variable before, insert()'s second
|
|
// return value is false.
|
|
if (VD == 0 || VD->isInvalidDecl() || !Seen.insert(VD))
|
|
continue;
|
|
|
|
if (const IncompleteArrayType *ArrayT
|
|
= Context.getAsIncompleteArrayType(VD->getType())) {
|
|
if (RequireCompleteType(VD->getLocation(),
|
|
ArrayT->getElementType(),
|
|
diag::err_tentative_def_incomplete_type_arr)) {
|
|
VD->setInvalidDecl();
|
|
continue;
|
|
}
|
|
|
|
// Set the length of the array to 1 (C99 6.9.2p5).
|
|
Diag(VD->getLocation(), diag::warn_tentative_incomplete_array);
|
|
llvm::APInt One(Context.getTypeSize(Context.getSizeType()), true);
|
|
QualType T = Context.getConstantArrayType(ArrayT->getElementType(),
|
|
One, ArrayType::Normal, 0);
|
|
VD->setType(T);
|
|
} else if (RequireCompleteType(VD->getLocation(), VD->getType(),
|
|
diag::err_tentative_def_incomplete_type))
|
|
VD->setInvalidDecl();
|
|
|
|
// Notify the consumer that we've completed a tentative definition.
|
|
if (!VD->isInvalidDecl())
|
|
Consumer.CompleteTentativeDefinition(VD);
|
|
|
|
}
|
|
|
|
if (LangOpts.CPlusPlus0x &&
|
|
Diags.getDiagnosticLevel(diag::warn_delegating_ctor_cycle,
|
|
SourceLocation())
|
|
!= DiagnosticsEngine::Ignored)
|
|
CheckDelegatingCtorCycles();
|
|
|
|
// If there were errors, disable 'unused' warnings since they will mostly be
|
|
// noise.
|
|
if (!Diags.hasErrorOccurred()) {
|
|
// Output warning for unused file scoped decls.
|
|
for (UnusedFileScopedDeclsType::iterator
|
|
I = UnusedFileScopedDecls.begin(ExternalSource),
|
|
E = UnusedFileScopedDecls.end(); I != E; ++I) {
|
|
if (ShouldRemoveFromUnused(this, *I))
|
|
continue;
|
|
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
|
|
const FunctionDecl *DiagD;
|
|
if (!FD->hasBody(DiagD))
|
|
DiagD = FD;
|
|
if (DiagD->isDeleted())
|
|
continue; // Deleted functions are supposed to be unused.
|
|
if (DiagD->isReferenced()) {
|
|
if (isa<CXXMethodDecl>(DiagD))
|
|
Diag(DiagD->getLocation(), diag::warn_unneeded_member_function)
|
|
<< DiagD->getDeclName();
|
|
else
|
|
Diag(DiagD->getLocation(), diag::warn_unneeded_internal_decl)
|
|
<< /*function*/0 << DiagD->getDeclName();
|
|
} else {
|
|
Diag(DiagD->getLocation(),
|
|
isa<CXXMethodDecl>(DiagD) ? diag::warn_unused_member_function
|
|
: diag::warn_unused_function)
|
|
<< DiagD->getDeclName();
|
|
}
|
|
} else {
|
|
const VarDecl *DiagD = cast<VarDecl>(*I)->getDefinition();
|
|
if (!DiagD)
|
|
DiagD = cast<VarDecl>(*I);
|
|
if (DiagD->isReferenced()) {
|
|
Diag(DiagD->getLocation(), diag::warn_unneeded_internal_decl)
|
|
<< /*variable*/1 << DiagD->getDeclName();
|
|
} else {
|
|
Diag(DiagD->getLocation(), diag::warn_unused_variable)
|
|
<< DiagD->getDeclName();
|
|
}
|
|
}
|
|
}
|
|
|
|
checkUndefinedInternals(*this);
|
|
}
|
|
|
|
if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
|
|
SourceLocation())
|
|
!= DiagnosticsEngine::Ignored) {
|
|
RecordCompleteMap RecordsComplete;
|
|
RecordCompleteMap MNCComplete;
|
|
for (NamedDeclSetType::iterator I = UnusedPrivateFields.begin(),
|
|
E = UnusedPrivateFields.end(); I != E; ++I) {
|
|
const NamedDecl *D = *I;
|
|
const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D->getDeclContext());
|
|
if (RD && !RD->isUnion() &&
|
|
IsRecordFullyDefined(RD, RecordsComplete, MNCComplete)) {
|
|
Diag(D->getLocation(), diag::warn_unused_private_field)
|
|
<< D->getDeclName();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check we've noticed that we're no longer parsing the initializer for every
|
|
// variable. If we miss cases, then at best we have a performance issue and
|
|
// at worst a rejects-valid bug.
|
|
assert(ParsingInitForAutoVars.empty() &&
|
|
"Didn't unmark var as having its initializer parsed");
|
|
|
|
TUScope = 0;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper functions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
DeclContext *Sema::getFunctionLevelDeclContext() {
|
|
DeclContext *DC = CurContext;
|
|
|
|
while (true) {
|
|
if (isa<BlockDecl>(DC) || isa<EnumDecl>(DC)) {
|
|
DC = DC->getParent();
|
|
} else if (isa<CXXMethodDecl>(DC) &&
|
|
cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call &&
|
|
cast<CXXRecordDecl>(DC->getParent())->isLambda()) {
|
|
DC = DC->getParent()->getParent();
|
|
}
|
|
else break;
|
|
}
|
|
|
|
return DC;
|
|
}
|
|
|
|
/// getCurFunctionDecl - If inside of a function body, this returns a pointer
|
|
/// to the function decl for the function being parsed. If we're currently
|
|
/// in a 'block', this returns the containing context.
|
|
FunctionDecl *Sema::getCurFunctionDecl() {
|
|
DeclContext *DC = getFunctionLevelDeclContext();
|
|
return dyn_cast<FunctionDecl>(DC);
|
|
}
|
|
|
|
ObjCMethodDecl *Sema::getCurMethodDecl() {
|
|
DeclContext *DC = getFunctionLevelDeclContext();
|
|
return dyn_cast<ObjCMethodDecl>(DC);
|
|
}
|
|
|
|
NamedDecl *Sema::getCurFunctionOrMethodDecl() {
|
|
DeclContext *DC = getFunctionLevelDeclContext();
|
|
if (isa<ObjCMethodDecl>(DC) || isa<FunctionDecl>(DC))
|
|
return cast<NamedDecl>(DC);
|
|
return 0;
|
|
}
|
|
|
|
void Sema::EmitCurrentDiagnostic(unsigned DiagID) {
|
|
// FIXME: It doesn't make sense to me that DiagID is an incoming argument here
|
|
// and yet we also use the current diag ID on the DiagnosticsEngine. This has
|
|
// been made more painfully obvious by the refactor that introduced this
|
|
// function, but it is possible that the incoming argument can be
|
|
// eliminnated. If it truly cannot be (for example, there is some reentrancy
|
|
// issue I am not seeing yet), then there should at least be a clarifying
|
|
// comment somewhere.
|
|
if (llvm::Optional<TemplateDeductionInfo*> Info = isSFINAEContext()) {
|
|
switch (DiagnosticIDs::getDiagnosticSFINAEResponse(
|
|
Diags.getCurrentDiagID())) {
|
|
case DiagnosticIDs::SFINAE_Report:
|
|
// We'll report the diagnostic below.
|
|
break;
|
|
|
|
case DiagnosticIDs::SFINAE_SubstitutionFailure:
|
|
// Count this failure so that we know that template argument deduction
|
|
// has failed.
|
|
++NumSFINAEErrors;
|
|
|
|
// Make a copy of this suppressed diagnostic and store it with the
|
|
// template-deduction information.
|
|
if (*Info && !(*Info)->hasSFINAEDiagnostic()) {
|
|
Diagnostic DiagInfo(&Diags);
|
|
(*Info)->addSFINAEDiagnostic(DiagInfo.getLocation(),
|
|
PartialDiagnostic(DiagInfo, Context.getDiagAllocator()));
|
|
}
|
|
|
|
Diags.setLastDiagnosticIgnored();
|
|
Diags.Clear();
|
|
return;
|
|
|
|
case DiagnosticIDs::SFINAE_AccessControl: {
|
|
// Per C++ Core Issue 1170, access control is part of SFINAE.
|
|
// Additionally, the AccessCheckingSFINAE flag can be used to temporarily
|
|
// make access control a part of SFINAE for the purposes of checking
|
|
// type traits.
|
|
if (!AccessCheckingSFINAE && !getLangOpts().CPlusPlus0x)
|
|
break;
|
|
|
|
SourceLocation Loc = Diags.getCurrentDiagLoc();
|
|
|
|
// Suppress this diagnostic.
|
|
++NumSFINAEErrors;
|
|
|
|
// Make a copy of this suppressed diagnostic and store it with the
|
|
// template-deduction information.
|
|
if (*Info && !(*Info)->hasSFINAEDiagnostic()) {
|
|
Diagnostic DiagInfo(&Diags);
|
|
(*Info)->addSFINAEDiagnostic(DiagInfo.getLocation(),
|
|
PartialDiagnostic(DiagInfo, Context.getDiagAllocator()));
|
|
}
|
|
|
|
Diags.setLastDiagnosticIgnored();
|
|
Diags.Clear();
|
|
|
|
// Now the diagnostic state is clear, produce a C++98 compatibility
|
|
// warning.
|
|
Diag(Loc, diag::warn_cxx98_compat_sfinae_access_control);
|
|
|
|
// The last diagnostic which Sema produced was ignored. Suppress any
|
|
// notes attached to it.
|
|
Diags.setLastDiagnosticIgnored();
|
|
return;
|
|
}
|
|
|
|
case DiagnosticIDs::SFINAE_Suppress:
|
|
// Make a copy of this suppressed diagnostic and store it with the
|
|
// template-deduction information;
|
|
if (*Info) {
|
|
Diagnostic DiagInfo(&Diags);
|
|
(*Info)->addSuppressedDiagnostic(DiagInfo.getLocation(),
|
|
PartialDiagnostic(DiagInfo, Context.getDiagAllocator()));
|
|
}
|
|
|
|
// Suppress this diagnostic.
|
|
Diags.setLastDiagnosticIgnored();
|
|
Diags.Clear();
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Set up the context's printing policy based on our current state.
|
|
Context.setPrintingPolicy(getPrintingPolicy());
|
|
|
|
// Emit the diagnostic.
|
|
if (!Diags.EmitCurrentDiagnostic())
|
|
return;
|
|
|
|
// If this is not a note, and we're in a template instantiation
|
|
// that is different from the last template instantiation where
|
|
// we emitted an error, print a template instantiation
|
|
// backtrace.
|
|
if (!DiagnosticIDs::isBuiltinNote(DiagID) &&
|
|
!ActiveTemplateInstantiations.empty() &&
|
|
ActiveTemplateInstantiations.back()
|
|
!= LastTemplateInstantiationErrorContext) {
|
|
PrintInstantiationStack();
|
|
LastTemplateInstantiationErrorContext = ActiveTemplateInstantiations.back();
|
|
}
|
|
}
|
|
|
|
Sema::SemaDiagnosticBuilder
|
|
Sema::Diag(SourceLocation Loc, const PartialDiagnostic& PD) {
|
|
SemaDiagnosticBuilder Builder(Diag(Loc, PD.getDiagID()));
|
|
PD.Emit(Builder);
|
|
|
|
return Builder;
|
|
}
|
|
|
|
/// \brief Looks through the macro-expansion chain for the given
|
|
/// location, looking for a macro expansion with the given name.
|
|
/// If one is found, returns true and sets the location to that
|
|
/// expansion loc.
|
|
bool Sema::findMacroSpelling(SourceLocation &locref, StringRef name) {
|
|
SourceLocation loc = locref;
|
|
if (!loc.isMacroID()) return false;
|
|
|
|
// There's no good way right now to look at the intermediate
|
|
// expansions, so just jump to the expansion location.
|
|
loc = getSourceManager().getExpansionLoc(loc);
|
|
|
|
// If that's written with the name, stop here.
|
|
SmallVector<char, 16> buffer;
|
|
if (getPreprocessor().getSpelling(loc, buffer) == name) {
|
|
locref = loc;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// \brief Determines the active Scope associated with the given declaration
|
|
/// context.
|
|
///
|
|
/// This routine maps a declaration context to the active Scope object that
|
|
/// represents that declaration context in the parser. It is typically used
|
|
/// from "scope-less" code (e.g., template instantiation, lazy creation of
|
|
/// declarations) that injects a name for name-lookup purposes and, therefore,
|
|
/// must update the Scope.
|
|
///
|
|
/// \returns The scope corresponding to the given declaraion context, or NULL
|
|
/// if no such scope is open.
|
|
Scope *Sema::getScopeForContext(DeclContext *Ctx) {
|
|
|
|
if (!Ctx)
|
|
return 0;
|
|
|
|
Ctx = Ctx->getPrimaryContext();
|
|
for (Scope *S = getCurScope(); S; S = S->getParent()) {
|
|
// Ignore scopes that cannot have declarations. This is important for
|
|
// out-of-line definitions of static class members.
|
|
if (S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope))
|
|
if (DeclContext *Entity = static_cast<DeclContext *> (S->getEntity()))
|
|
if (Ctx == Entity->getPrimaryContext())
|
|
return S;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// \brief Enter a new function scope
|
|
void Sema::PushFunctionScope() {
|
|
if (FunctionScopes.size() == 1) {
|
|
// Use the "top" function scope rather than having to allocate
|
|
// memory for a new scope.
|
|
FunctionScopes.back()->Clear();
|
|
FunctionScopes.push_back(FunctionScopes.back());
|
|
return;
|
|
}
|
|
|
|
FunctionScopes.push_back(new FunctionScopeInfo(getDiagnostics()));
|
|
}
|
|
|
|
void Sema::PushBlockScope(Scope *BlockScope, BlockDecl *Block) {
|
|
FunctionScopes.push_back(new BlockScopeInfo(getDiagnostics(),
|
|
BlockScope, Block));
|
|
}
|
|
|
|
void Sema::PushLambdaScope(CXXRecordDecl *Lambda,
|
|
CXXMethodDecl *CallOperator) {
|
|
FunctionScopes.push_back(new LambdaScopeInfo(getDiagnostics(), Lambda,
|
|
CallOperator));
|
|
}
|
|
|
|
void Sema::PopFunctionScopeInfo(const AnalysisBasedWarnings::Policy *WP,
|
|
const Decl *D, const BlockExpr *blkExpr) {
|
|
FunctionScopeInfo *Scope = FunctionScopes.pop_back_val();
|
|
assert(!FunctionScopes.empty() && "mismatched push/pop!");
|
|
|
|
// Issue any analysis-based warnings.
|
|
if (WP && D)
|
|
AnalysisWarnings.IssueWarnings(*WP, Scope, D, blkExpr);
|
|
else {
|
|
for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
|
|
i = Scope->PossiblyUnreachableDiags.begin(),
|
|
e = Scope->PossiblyUnreachableDiags.end();
|
|
i != e; ++i) {
|
|
const sema::PossiblyUnreachableDiag &D = *i;
|
|
Diag(D.Loc, D.PD);
|
|
}
|
|
}
|
|
|
|
if (FunctionScopes.back() != Scope) {
|
|
delete Scope;
|
|
}
|
|
}
|
|
|
|
void Sema::PushCompoundScope() {
|
|
getCurFunction()->CompoundScopes.push_back(CompoundScopeInfo());
|
|
}
|
|
|
|
void Sema::PopCompoundScope() {
|
|
FunctionScopeInfo *CurFunction = getCurFunction();
|
|
assert(!CurFunction->CompoundScopes.empty() && "mismatched push/pop");
|
|
|
|
CurFunction->CompoundScopes.pop_back();
|
|
}
|
|
|
|
/// \brief Determine whether any errors occurred within this function/method/
|
|
/// block.
|
|
bool Sema::hasAnyUnrecoverableErrorsInThisFunction() const {
|
|
return getCurFunction()->ErrorTrap.hasUnrecoverableErrorOccurred();
|
|
}
|
|
|
|
BlockScopeInfo *Sema::getCurBlock() {
|
|
if (FunctionScopes.empty())
|
|
return 0;
|
|
|
|
return dyn_cast<BlockScopeInfo>(FunctionScopes.back());
|
|
}
|
|
|
|
LambdaScopeInfo *Sema::getCurLambda() {
|
|
if (FunctionScopes.empty())
|
|
return 0;
|
|
|
|
return dyn_cast<LambdaScopeInfo>(FunctionScopes.back());
|
|
}
|
|
|
|
// Pin this vtable to this file.
|
|
ExternalSemaSource::~ExternalSemaSource() {}
|
|
|
|
void ExternalSemaSource::ReadMethodPool(Selector Sel) { }
|
|
|
|
void ExternalSemaSource::ReadKnownNamespaces(
|
|
SmallVectorImpl<NamespaceDecl *> &Namespaces) {
|
|
}
|
|
|
|
void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
|
|
SourceLocation Loc = this->Loc;
|
|
if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
|
|
if (Loc.isValid()) {
|
|
Loc.print(OS, S.getSourceManager());
|
|
OS << ": ";
|
|
}
|
|
OS << Message;
|
|
|
|
if (TheDecl && isa<NamedDecl>(TheDecl)) {
|
|
std::string Name = cast<NamedDecl>(TheDecl)->getNameAsString();
|
|
if (!Name.empty())
|
|
OS << " '" << Name << '\'';
|
|
}
|
|
|
|
OS << '\n';
|
|
}
|
|
|
|
/// \brief Figure out if an expression could be turned into a call.
|
|
///
|
|
/// Use this when trying to recover from an error where the programmer may have
|
|
/// written just the name of a function instead of actually calling it.
|
|
///
|
|
/// \param E - The expression to examine.
|
|
/// \param ZeroArgCallReturnTy - If the expression can be turned into a call
|
|
/// with no arguments, this parameter is set to the type returned by such a
|
|
/// call; otherwise, it is set to an empty QualType.
|
|
/// \param OverloadSet - If the expression is an overloaded function
|
|
/// name, this parameter is populated with the decls of the various overloads.
|
|
bool Sema::isExprCallable(const Expr &E, QualType &ZeroArgCallReturnTy,
|
|
UnresolvedSetImpl &OverloadSet) {
|
|
ZeroArgCallReturnTy = QualType();
|
|
OverloadSet.clear();
|
|
|
|
if (E.getType() == Context.OverloadTy) {
|
|
OverloadExpr::FindResult FR = OverloadExpr::find(const_cast<Expr*>(&E));
|
|
const OverloadExpr *Overloads = FR.Expression;
|
|
|
|
for (OverloadExpr::decls_iterator it = Overloads->decls_begin(),
|
|
DeclsEnd = Overloads->decls_end(); it != DeclsEnd; ++it) {
|
|
OverloadSet.addDecl(*it);
|
|
|
|
// Check whether the function is a non-template which takes no
|
|
// arguments.
|
|
if (const FunctionDecl *OverloadDecl
|
|
= dyn_cast<FunctionDecl>((*it)->getUnderlyingDecl())) {
|
|
if (OverloadDecl->getMinRequiredArguments() == 0)
|
|
ZeroArgCallReturnTy = OverloadDecl->getResultType();
|
|
}
|
|
}
|
|
|
|
// Ignore overloads that are pointer-to-member constants.
|
|
if (FR.HasFormOfMemberPointer)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
if (const DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E.IgnoreParens())) {
|
|
if (const FunctionDecl *Fun = dyn_cast<FunctionDecl>(DeclRef->getDecl())) {
|
|
if (Fun->getMinRequiredArguments() == 0)
|
|
ZeroArgCallReturnTy = Fun->getResultType();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// We don't have an expression that's convenient to get a FunctionDecl from,
|
|
// but we can at least check if the type is "function of 0 arguments".
|
|
QualType ExprTy = E.getType();
|
|
const FunctionType *FunTy = NULL;
|
|
QualType PointeeTy = ExprTy->getPointeeType();
|
|
if (!PointeeTy.isNull())
|
|
FunTy = PointeeTy->getAs<FunctionType>();
|
|
if (!FunTy)
|
|
FunTy = ExprTy->getAs<FunctionType>();
|
|
if (!FunTy && ExprTy == Context.BoundMemberTy) {
|
|
// Look for the bound-member type. If it's still overloaded, give up,
|
|
// although we probably should have fallen into the OverloadExpr case above
|
|
// if we actually have an overloaded bound member.
|
|
QualType BoundMemberTy = Expr::findBoundMemberType(&E);
|
|
if (!BoundMemberTy.isNull())
|
|
FunTy = BoundMemberTy->castAs<FunctionType>();
|
|
}
|
|
|
|
if (const FunctionProtoType *FPT =
|
|
dyn_cast_or_null<FunctionProtoType>(FunTy)) {
|
|
if (FPT->getNumArgs() == 0)
|
|
ZeroArgCallReturnTy = FunTy->getResultType();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// \brief Give notes for a set of overloads.
|
|
///
|
|
/// A companion to isExprCallable. In cases when the name that the programmer
|
|
/// wrote was an overloaded function, we may be able to make some guesses about
|
|
/// plausible overloads based on their return types; such guesses can be handed
|
|
/// off to this method to be emitted as notes.
|
|
///
|
|
/// \param Overloads - The overloads to note.
|
|
/// \param FinalNoteLoc - If we've suppressed printing some overloads due to
|
|
/// -fshow-overloads=best, this is the location to attach to the note about too
|
|
/// many candidates. Typically this will be the location of the original
|
|
/// ill-formed expression.
|
|
static void noteOverloads(Sema &S, const UnresolvedSetImpl &Overloads,
|
|
const SourceLocation FinalNoteLoc) {
|
|
int ShownOverloads = 0;
|
|
int SuppressedOverloads = 0;
|
|
for (UnresolvedSetImpl::iterator It = Overloads.begin(),
|
|
DeclsEnd = Overloads.end(); It != DeclsEnd; ++It) {
|
|
// FIXME: Magic number for max shown overloads stolen from
|
|
// OverloadCandidateSet::NoteCandidates.
|
|
if (ShownOverloads >= 4 &&
|
|
S.Diags.getShowOverloads() == DiagnosticsEngine::Ovl_Best) {
|
|
++SuppressedOverloads;
|
|
continue;
|
|
}
|
|
|
|
NamedDecl *Fn = (*It)->getUnderlyingDecl();
|
|
S.Diag(Fn->getLocation(), diag::note_possible_target_of_call);
|
|
++ShownOverloads;
|
|
}
|
|
|
|
if (SuppressedOverloads)
|
|
S.Diag(FinalNoteLoc, diag::note_ovl_too_many_candidates)
|
|
<< SuppressedOverloads;
|
|
}
|
|
|
|
static void notePlausibleOverloads(Sema &S, SourceLocation Loc,
|
|
const UnresolvedSetImpl &Overloads,
|
|
bool (*IsPlausibleResult)(QualType)) {
|
|
if (!IsPlausibleResult)
|
|
return noteOverloads(S, Overloads, Loc);
|
|
|
|
UnresolvedSet<2> PlausibleOverloads;
|
|
for (OverloadExpr::decls_iterator It = Overloads.begin(),
|
|
DeclsEnd = Overloads.end(); It != DeclsEnd; ++It) {
|
|
const FunctionDecl *OverloadDecl = cast<FunctionDecl>(*It);
|
|
QualType OverloadResultTy = OverloadDecl->getResultType();
|
|
if (IsPlausibleResult(OverloadResultTy))
|
|
PlausibleOverloads.addDecl(It.getDecl());
|
|
}
|
|
noteOverloads(S, PlausibleOverloads, Loc);
|
|
}
|
|
|
|
/// Determine whether the given expression can be called by just
|
|
/// putting parentheses after it. Notably, expressions with unary
|
|
/// operators can't be because the unary operator will start parsing
|
|
/// outside the call.
|
|
static bool IsCallableWithAppend(Expr *E) {
|
|
E = E->IgnoreImplicit();
|
|
return (!isa<CStyleCastExpr>(E) &&
|
|
!isa<UnaryOperator>(E) &&
|
|
!isa<BinaryOperator>(E) &&
|
|
!isa<CXXOperatorCallExpr>(E));
|
|
}
|
|
|
|
bool Sema::tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD,
|
|
bool ForceComplain,
|
|
bool (*IsPlausibleResult)(QualType)) {
|
|
SourceLocation Loc = E.get()->getExprLoc();
|
|
SourceRange Range = E.get()->getSourceRange();
|
|
|
|
QualType ZeroArgCallTy;
|
|
UnresolvedSet<4> Overloads;
|
|
if (isExprCallable(*E.get(), ZeroArgCallTy, Overloads) &&
|
|
!ZeroArgCallTy.isNull() &&
|
|
(!IsPlausibleResult || IsPlausibleResult(ZeroArgCallTy))) {
|
|
// At this point, we know E is potentially callable with 0
|
|
// arguments and that it returns something of a reasonable type,
|
|
// so we can emit a fixit and carry on pretending that E was
|
|
// actually a CallExpr.
|
|
SourceLocation ParenInsertionLoc =
|
|
PP.getLocForEndOfToken(Range.getEnd());
|
|
Diag(Loc, PD)
|
|
<< /*zero-arg*/ 1 << Range
|
|
<< (IsCallableWithAppend(E.get())
|
|
? FixItHint::CreateInsertion(ParenInsertionLoc, "()")
|
|
: FixItHint());
|
|
notePlausibleOverloads(*this, Loc, Overloads, IsPlausibleResult);
|
|
|
|
// FIXME: Try this before emitting the fixit, and suppress diagnostics
|
|
// while doing so.
|
|
E = ActOnCallExpr(0, E.take(), ParenInsertionLoc,
|
|
MultiExprArg(*this, 0, 0),
|
|
ParenInsertionLoc.getLocWithOffset(1));
|
|
return true;
|
|
}
|
|
|
|
if (!ForceComplain) return false;
|
|
|
|
Diag(Loc, PD) << /*not zero-arg*/ 0 << Range;
|
|
notePlausibleOverloads(*this, Loc, Overloads, IsPlausibleResult);
|
|
E = ExprError();
|
|
return true;
|
|
}
|