llvm-project/clang/lib/Frontend/ASTUnit.cpp

2018 lines
77 KiB
C++

//===--- ASTUnit.cpp - ASTUnit utility ------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// ASTUnit Implementation.
//
//===----------------------------------------------------------------------===//
#include "clang/Frontend/ASTUnit.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/DeclVisitor.h"
#include "clang/AST/TypeOrdering.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Driver/Compilation.h"
#include "clang/Driver/Driver.h"
#include "clang/Driver/Job.h"
#include "clang/Driver/Tool.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/FrontendActions.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Frontend/FrontendOptions.h"
#include "clang/Frontend/Utils.h"
#include "clang/Serialization/ASTReader.h"
#include "clang/Serialization/ASTSerializationListener.h"
#include "clang/Serialization/ASTWriter.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Basic/TargetOptions.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Diagnostic.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/Atomic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Timer.h"
#include <cstdlib>
#include <cstdio>
#include <sys/stat.h>
using namespace clang;
using llvm::TimeRecord;
namespace {
class SimpleTimer {
bool WantTiming;
TimeRecord Start;
std::string Output;
public:
explicit SimpleTimer(bool WantTiming) : WantTiming(WantTiming) {
if (WantTiming)
Start = TimeRecord::getCurrentTime();
}
void setOutput(const llvm::Twine &Output) {
if (WantTiming)
this->Output = Output.str();
}
~SimpleTimer() {
if (WantTiming) {
TimeRecord Elapsed = TimeRecord::getCurrentTime();
Elapsed -= Start;
llvm::errs() << Output << ':';
Elapsed.print(Elapsed, llvm::errs());
llvm::errs() << '\n';
}
}
};
}
/// \brief After failing to build a precompiled preamble (due to
/// errors in the source that occurs in the preamble), the number of
/// reparses during which we'll skip even trying to precompile the
/// preamble.
const unsigned DefaultPreambleRebuildInterval = 5;
/// \brief Tracks the number of ASTUnit objects that are currently active.
///
/// Used for debugging purposes only.
static llvm::sys::cas_flag ActiveASTUnitObjects;
ASTUnit::ASTUnit(bool _MainFileIsAST)
: CaptureDiagnostics(false), MainFileIsAST(_MainFileIsAST),
CompleteTranslationUnit(true), WantTiming(getenv("LIBCLANG_TIMING")),
NumStoredDiagnosticsFromDriver(0),
ConcurrencyCheckValue(CheckUnlocked),
PreambleRebuildCounter(0), SavedMainFileBuffer(0), PreambleBuffer(0),
ShouldCacheCodeCompletionResults(false),
NumTopLevelDeclsAtLastCompletionCache(0),
CacheCodeCompletionCoolDown(0),
UnsafeToFree(false) {
if (getenv("LIBCLANG_OBJTRACKING")) {
llvm::sys::AtomicIncrement(&ActiveASTUnitObjects);
fprintf(stderr, "+++ %d translation units\n", ActiveASTUnitObjects);
}
}
ASTUnit::~ASTUnit() {
ConcurrencyCheckValue = CheckLocked;
CleanTemporaryFiles();
if (!PreambleFile.empty())
llvm::sys::Path(PreambleFile).eraseFromDisk();
// Free the buffers associated with remapped files. We are required to
// perform this operation here because we explicitly request that the
// compiler instance *not* free these buffers for each invocation of the
// parser.
if (Invocation.get()) {
PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts();
for (PreprocessorOptions::remapped_file_buffer_iterator
FB = PPOpts.remapped_file_buffer_begin(),
FBEnd = PPOpts.remapped_file_buffer_end();
FB != FBEnd;
++FB)
delete FB->second;
}
delete SavedMainFileBuffer;
delete PreambleBuffer;
ClearCachedCompletionResults();
if (getenv("LIBCLANG_OBJTRACKING")) {
llvm::sys::AtomicDecrement(&ActiveASTUnitObjects);
fprintf(stderr, "--- %d translation units\n", ActiveASTUnitObjects);
}
}
void ASTUnit::CleanTemporaryFiles() {
for (unsigned I = 0, N = TemporaryFiles.size(); I != N; ++I)
TemporaryFiles[I].eraseFromDisk();
TemporaryFiles.clear();
}
/// \brief Determine the set of code-completion contexts in which this
/// declaration should be shown.
static unsigned getDeclShowContexts(NamedDecl *ND,
const LangOptions &LangOpts,
bool &IsNestedNameSpecifier) {
IsNestedNameSpecifier = false;
if (isa<UsingShadowDecl>(ND))
ND = dyn_cast<NamedDecl>(ND->getUnderlyingDecl());
if (!ND)
return 0;
unsigned Contexts = 0;
if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND) ||
isa<ClassTemplateDecl>(ND) || isa<TemplateTemplateParmDecl>(ND)) {
// Types can appear in these contexts.
if (LangOpts.CPlusPlus || !isa<TagDecl>(ND))
Contexts |= (1 << (CodeCompletionContext::CCC_TopLevel - 1))
| (1 << (CodeCompletionContext::CCC_ObjCIvarList - 1))
| (1 << (CodeCompletionContext::CCC_ClassStructUnion - 1))
| (1 << (CodeCompletionContext::CCC_Statement - 1))
| (1 << (CodeCompletionContext::CCC_Type - 1))
| (1 << (CodeCompletionContext::CCC_ParenthesizedExpression - 1));
// In C++, types can appear in expressions contexts (for functional casts).
if (LangOpts.CPlusPlus)
Contexts |= (1 << (CodeCompletionContext::CCC_Expression - 1));
// In Objective-C, message sends can send interfaces. In Objective-C++,
// all types are available due to functional casts.
if (LangOpts.CPlusPlus || isa<ObjCInterfaceDecl>(ND))
Contexts |= (1 << (CodeCompletionContext::CCC_ObjCMessageReceiver - 1));
// Deal with tag names.
if (isa<EnumDecl>(ND)) {
Contexts |= (1 << (CodeCompletionContext::CCC_EnumTag - 1));
// Part of the nested-name-specifier in C++0x.
if (LangOpts.CPlusPlus0x)
IsNestedNameSpecifier = true;
} else if (RecordDecl *Record = dyn_cast<RecordDecl>(ND)) {
if (Record->isUnion())
Contexts |= (1 << (CodeCompletionContext::CCC_UnionTag - 1));
else
Contexts |= (1 << (CodeCompletionContext::CCC_ClassOrStructTag - 1));
if (LangOpts.CPlusPlus)
IsNestedNameSpecifier = true;
} else if (isa<ClassTemplateDecl>(ND))
IsNestedNameSpecifier = true;
} else if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
// Values can appear in these contexts.
Contexts = (1 << (CodeCompletionContext::CCC_Statement - 1))
| (1 << (CodeCompletionContext::CCC_Expression - 1))
| (1 << (CodeCompletionContext::CCC_ParenthesizedExpression - 1))
| (1 << (CodeCompletionContext::CCC_ObjCMessageReceiver - 1));
} else if (isa<ObjCProtocolDecl>(ND)) {
Contexts = (1 << (CodeCompletionContext::CCC_ObjCProtocolName - 1));
} else if (isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND)) {
Contexts = (1 << (CodeCompletionContext::CCC_Namespace - 1));
// Part of the nested-name-specifier.
IsNestedNameSpecifier = true;
}
return Contexts;
}
void ASTUnit::CacheCodeCompletionResults() {
if (!TheSema)
return;
SimpleTimer Timer(WantTiming);
Timer.setOutput("Cache global code completions for " + getMainFileName());
// Clear out the previous results.
ClearCachedCompletionResults();
// Gather the set of global code completions.
typedef CodeCompletionResult Result;
llvm::SmallVector<Result, 8> Results;
TheSema->GatherGlobalCodeCompletions(CachedCompletionAllocator, Results);
// Translate global code completions into cached completions.
llvm::DenseMap<CanQualType, unsigned> CompletionTypes;
for (unsigned I = 0, N = Results.size(); I != N; ++I) {
switch (Results[I].Kind) {
case Result::RK_Declaration: {
bool IsNestedNameSpecifier = false;
CachedCodeCompletionResult CachedResult;
CachedResult.Completion = Results[I].CreateCodeCompletionString(*TheSema,
CachedCompletionAllocator);
CachedResult.ShowInContexts = getDeclShowContexts(Results[I].Declaration,
Ctx->getLangOptions(),
IsNestedNameSpecifier);
CachedResult.Priority = Results[I].Priority;
CachedResult.Kind = Results[I].CursorKind;
CachedResult.Availability = Results[I].Availability;
// Keep track of the type of this completion in an ASTContext-agnostic
// way.
QualType UsageType = getDeclUsageType(*Ctx, Results[I].Declaration);
if (UsageType.isNull()) {
CachedResult.TypeClass = STC_Void;
CachedResult.Type = 0;
} else {
CanQualType CanUsageType
= Ctx->getCanonicalType(UsageType.getUnqualifiedType());
CachedResult.TypeClass = getSimplifiedTypeClass(CanUsageType);
// Determine whether we have already seen this type. If so, we save
// ourselves the work of formatting the type string by using the
// temporary, CanQualType-based hash table to find the associated value.
unsigned &TypeValue = CompletionTypes[CanUsageType];
if (TypeValue == 0) {
TypeValue = CompletionTypes.size();
CachedCompletionTypes[QualType(CanUsageType).getAsString()]
= TypeValue;
}
CachedResult.Type = TypeValue;
}
CachedCompletionResults.push_back(CachedResult);
/// Handle nested-name-specifiers in C++.
if (TheSema->Context.getLangOptions().CPlusPlus &&
IsNestedNameSpecifier && !Results[I].StartsNestedNameSpecifier) {
// The contexts in which a nested-name-specifier can appear in C++.
unsigned NNSContexts
= (1 << (CodeCompletionContext::CCC_TopLevel - 1))
| (1 << (CodeCompletionContext::CCC_ObjCIvarList - 1))
| (1 << (CodeCompletionContext::CCC_ClassStructUnion - 1))
| (1 << (CodeCompletionContext::CCC_Statement - 1))
| (1 << (CodeCompletionContext::CCC_Expression - 1))
| (1 << (CodeCompletionContext::CCC_ObjCMessageReceiver - 1))
| (1 << (CodeCompletionContext::CCC_EnumTag - 1))
| (1 << (CodeCompletionContext::CCC_UnionTag - 1))
| (1 << (CodeCompletionContext::CCC_ClassOrStructTag - 1))
| (1 << (CodeCompletionContext::CCC_Type - 1))
| (1 << (CodeCompletionContext::CCC_PotentiallyQualifiedName - 1))
| (1 << (CodeCompletionContext::CCC_ParenthesizedExpression - 1));
if (isa<NamespaceDecl>(Results[I].Declaration) ||
isa<NamespaceAliasDecl>(Results[I].Declaration))
NNSContexts |= (1 << (CodeCompletionContext::CCC_Namespace - 1));
if (unsigned RemainingContexts
= NNSContexts & ~CachedResult.ShowInContexts) {
// If there any contexts where this completion can be a
// nested-name-specifier but isn't already an option, create a
// nested-name-specifier completion.
Results[I].StartsNestedNameSpecifier = true;
CachedResult.Completion
= Results[I].CreateCodeCompletionString(*TheSema,
CachedCompletionAllocator);
CachedResult.ShowInContexts = RemainingContexts;
CachedResult.Priority = CCP_NestedNameSpecifier;
CachedResult.TypeClass = STC_Void;
CachedResult.Type = 0;
CachedCompletionResults.push_back(CachedResult);
}
}
break;
}
case Result::RK_Keyword:
case Result::RK_Pattern:
// Ignore keywords and patterns; we don't care, since they are so
// easily regenerated.
break;
case Result::RK_Macro: {
CachedCodeCompletionResult CachedResult;
CachedResult.Completion
= Results[I].CreateCodeCompletionString(*TheSema,
CachedCompletionAllocator);
CachedResult.ShowInContexts
= (1 << (CodeCompletionContext::CCC_TopLevel - 1))
| (1 << (CodeCompletionContext::CCC_ObjCInterface - 1))
| (1 << (CodeCompletionContext::CCC_ObjCImplementation - 1))
| (1 << (CodeCompletionContext::CCC_ObjCIvarList - 1))
| (1 << (CodeCompletionContext::CCC_ClassStructUnion - 1))
| (1 << (CodeCompletionContext::CCC_Statement - 1))
| (1 << (CodeCompletionContext::CCC_Expression - 1))
| (1 << (CodeCompletionContext::CCC_ObjCMessageReceiver - 1))
| (1 << (CodeCompletionContext::CCC_MacroNameUse - 1))
| (1 << (CodeCompletionContext::CCC_PreprocessorExpression - 1))
| (1 << (CodeCompletionContext::CCC_ParenthesizedExpression - 1));
CachedResult.Priority = Results[I].Priority;
CachedResult.Kind = Results[I].CursorKind;
CachedResult.Availability = Results[I].Availability;
CachedResult.TypeClass = STC_Void;
CachedResult.Type = 0;
CachedCompletionResults.push_back(CachedResult);
break;
}
}
}
// Make a note of the state when we performed this caching.
NumTopLevelDeclsAtLastCompletionCache = top_level_size();
}
void ASTUnit::ClearCachedCompletionResults() {
CachedCompletionResults.clear();
CachedCompletionTypes.clear();
CachedCompletionAllocator.Reset();
}
namespace {
/// \brief Gathers information from ASTReader that will be used to initialize
/// a Preprocessor.
class ASTInfoCollector : public ASTReaderListener {
LangOptions &LangOpt;
HeaderSearch &HSI;
std::string &TargetTriple;
std::string &Predefines;
unsigned &Counter;
unsigned NumHeaderInfos;
public:
ASTInfoCollector(LangOptions &LangOpt, HeaderSearch &HSI,
std::string &TargetTriple, std::string &Predefines,
unsigned &Counter)
: LangOpt(LangOpt), HSI(HSI), TargetTriple(TargetTriple),
Predefines(Predefines), Counter(Counter), NumHeaderInfos(0) {}
virtual bool ReadLanguageOptions(const LangOptions &LangOpts) {
LangOpt = LangOpts;
return false;
}
virtual bool ReadTargetTriple(llvm::StringRef Triple) {
TargetTriple = Triple;
return false;
}
virtual bool ReadPredefinesBuffer(const PCHPredefinesBlocks &Buffers,
llvm::StringRef OriginalFileName,
std::string &SuggestedPredefines) {
Predefines = Buffers[0].Data;
for (unsigned I = 1, N = Buffers.size(); I != N; ++I) {
Predefines += Buffers[I].Data;
}
return false;
}
virtual void ReadHeaderFileInfo(const HeaderFileInfo &HFI, unsigned ID) {
HSI.setHeaderFileInfoForUID(HFI, NumHeaderInfos++);
}
virtual void ReadCounter(unsigned Value) {
Counter = Value;
}
};
class StoredDiagnosticClient : public DiagnosticClient {
llvm::SmallVectorImpl<StoredDiagnostic> &StoredDiags;
public:
explicit StoredDiagnosticClient(
llvm::SmallVectorImpl<StoredDiagnostic> &StoredDiags)
: StoredDiags(StoredDiags) { }
virtual void HandleDiagnostic(Diagnostic::Level Level,
const DiagnosticInfo &Info);
};
/// \brief RAII object that optionally captures diagnostics, if
/// there is no diagnostic client to capture them already.
class CaptureDroppedDiagnostics {
Diagnostic &Diags;
StoredDiagnosticClient Client;
DiagnosticClient *PreviousClient;
public:
CaptureDroppedDiagnostics(bool RequestCapture, Diagnostic &Diags,
llvm::SmallVectorImpl<StoredDiagnostic> &StoredDiags)
: Diags(Diags), Client(StoredDiags), PreviousClient(0)
{
if (RequestCapture || Diags.getClient() == 0) {
PreviousClient = Diags.takeClient();
Diags.setClient(&Client);
}
}
~CaptureDroppedDiagnostics() {
if (Diags.getClient() == &Client) {
Diags.takeClient();
Diags.setClient(PreviousClient);
}
}
};
} // anonymous namespace
void StoredDiagnosticClient::HandleDiagnostic(Diagnostic::Level Level,
const DiagnosticInfo &Info) {
// Default implementation (Warnings/errors count).
DiagnosticClient::HandleDiagnostic(Level, Info);
StoredDiags.push_back(StoredDiagnostic(Level, Info));
}
const std::string &ASTUnit::getOriginalSourceFileName() {
return OriginalSourceFile;
}
const std::string &ASTUnit::getASTFileName() {
assert(isMainFileAST() && "Not an ASTUnit from an AST file!");
return static_cast<ASTReader *>(Ctx->getExternalSource())->getFileName();
}
llvm::MemoryBuffer *ASTUnit::getBufferForFile(llvm::StringRef Filename,
std::string *ErrorStr) {
assert(FileMgr);
return FileMgr->getBufferForFile(Filename, ErrorStr);
}
/// \brief Configure the diagnostics object for use with ASTUnit.
void ASTUnit::ConfigureDiags(llvm::IntrusiveRefCntPtr<Diagnostic> &Diags,
const char **ArgBegin, const char **ArgEnd,
ASTUnit &AST, bool CaptureDiagnostics) {
if (!Diags.getPtr()) {
// No diagnostics engine was provided, so create our own diagnostics object
// with the default options.
DiagnosticOptions DiagOpts;
DiagnosticClient *Client = 0;
if (CaptureDiagnostics)
Client = new StoredDiagnosticClient(AST.StoredDiagnostics);
Diags = CompilerInstance::createDiagnostics(DiagOpts, ArgEnd- ArgBegin,
ArgBegin, Client);
} else if (CaptureDiagnostics) {
Diags->setClient(new StoredDiagnosticClient(AST.StoredDiagnostics));
}
}
ASTUnit *ASTUnit::LoadFromASTFile(const std::string &Filename,
llvm::IntrusiveRefCntPtr<Diagnostic> Diags,
const FileSystemOptions &FileSystemOpts,
bool OnlyLocalDecls,
RemappedFile *RemappedFiles,
unsigned NumRemappedFiles,
bool CaptureDiagnostics) {
llvm::OwningPtr<ASTUnit> AST(new ASTUnit(true));
ConfigureDiags(Diags, 0, 0, *AST, CaptureDiagnostics);
AST->OnlyLocalDecls = OnlyLocalDecls;
AST->CaptureDiagnostics = CaptureDiagnostics;
AST->Diagnostics = Diags;
AST->FileMgr.reset(new FileManager(FileSystemOpts));
AST->SourceMgr.reset(new SourceManager(AST->getDiagnostics(),
AST->getFileManager()));
AST->HeaderInfo.reset(new HeaderSearch(AST->getFileManager()));
for (unsigned I = 0; I != NumRemappedFiles; ++I) {
// Create the file entry for the file that we're mapping from.
const FileEntry *FromFile
= AST->getFileManager().getVirtualFile(RemappedFiles[I].first,
RemappedFiles[I].second->getBufferSize(),
0);
if (!FromFile) {
AST->getDiagnostics().Report(diag::err_fe_remap_missing_from_file)
<< RemappedFiles[I].first;
delete RemappedFiles[I].second;
continue;
}
// Override the contents of the "from" file with the contents of
// the "to" file.
AST->getSourceManager().overrideFileContents(FromFile,
RemappedFiles[I].second);
}
// Gather Info for preprocessor construction later on.
LangOptions LangInfo;
HeaderSearch &HeaderInfo = *AST->HeaderInfo.get();
std::string TargetTriple;
std::string Predefines;
unsigned Counter;
llvm::OwningPtr<ASTReader> Reader;
Reader.reset(new ASTReader(AST->getSourceManager(), AST->getFileManager(),
AST->getDiagnostics()));
Reader->setListener(new ASTInfoCollector(LangInfo, HeaderInfo, TargetTriple,
Predefines, Counter));
switch (Reader->ReadAST(Filename, ASTReader::MainFile)) {
case ASTReader::Success:
break;
case ASTReader::Failure:
case ASTReader::IgnorePCH:
AST->getDiagnostics().Report(diag::err_fe_unable_to_load_pch);
return NULL;
}
AST->OriginalSourceFile = Reader->getOriginalSourceFile();
// AST file loaded successfully. Now create the preprocessor.
// Get information about the target being compiled for.
//
// FIXME: This is broken, we should store the TargetOptions in the AST file.
TargetOptions TargetOpts;
TargetOpts.ABI = "";
TargetOpts.CXXABI = "";
TargetOpts.CPU = "";
TargetOpts.Features.clear();
TargetOpts.Triple = TargetTriple;
AST->Target.reset(TargetInfo::CreateTargetInfo(AST->getDiagnostics(),
TargetOpts));
AST->PP.reset(new Preprocessor(AST->getDiagnostics(), LangInfo,
*AST->Target.get(),
AST->getSourceManager(), HeaderInfo));
Preprocessor &PP = *AST->PP.get();
PP.setPredefines(Reader->getSuggestedPredefines());
PP.setCounterValue(Counter);
Reader->setPreprocessor(PP);
// Create and initialize the ASTContext.
AST->Ctx.reset(new ASTContext(LangInfo,
AST->getSourceManager(),
*AST->Target.get(),
PP.getIdentifierTable(),
PP.getSelectorTable(),
PP.getBuiltinInfo(),
/* size_reserve = */0));
ASTContext &Context = *AST->Ctx.get();
Reader->InitializeContext(Context);
// Attach the AST reader to the AST context as an external AST
// source, so that declarations will be deserialized from the
// AST file as needed.
ASTReader *ReaderPtr = Reader.get();
llvm::OwningPtr<ExternalASTSource> Source(Reader.take());
Context.setExternalSource(Source);
// Create an AST consumer, even though it isn't used.
AST->Consumer.reset(new ASTConsumer);
// Create a semantic analysis object and tell the AST reader about it.
AST->TheSema.reset(new Sema(PP, Context, *AST->Consumer));
AST->TheSema->Initialize();
ReaderPtr->InitializeSema(*AST->TheSema);
return AST.take();
}
namespace {
class TopLevelDeclTrackerConsumer : public ASTConsumer {
ASTUnit &Unit;
public:
TopLevelDeclTrackerConsumer(ASTUnit &_Unit) : Unit(_Unit) {}
void HandleTopLevelDecl(DeclGroupRef D) {
for (DeclGroupRef::iterator it = D.begin(), ie = D.end(); it != ie; ++it) {
Decl *D = *it;
// FIXME: Currently ObjC method declarations are incorrectly being
// reported as top-level declarations, even though their DeclContext
// is the containing ObjC @interface/@implementation. This is a
// fundamental problem in the parser right now.
if (isa<ObjCMethodDecl>(D))
continue;
Unit.addTopLevelDecl(D);
}
}
// We're not interested in "interesting" decls.
void HandleInterestingDecl(DeclGroupRef) {}
};
class TopLevelDeclTrackerAction : public ASTFrontendAction {
public:
ASTUnit &Unit;
virtual ASTConsumer *CreateASTConsumer(CompilerInstance &CI,
llvm::StringRef InFile) {
return new TopLevelDeclTrackerConsumer(Unit);
}
public:
TopLevelDeclTrackerAction(ASTUnit &_Unit) : Unit(_Unit) {}
virtual bool hasCodeCompletionSupport() const { return false; }
virtual bool usesCompleteTranslationUnit() {
return Unit.isCompleteTranslationUnit();
}
};
class PrecompilePreambleConsumer : public PCHGenerator,
public ASTSerializationListener {
ASTUnit &Unit;
std::vector<Decl *> TopLevelDecls;
public:
PrecompilePreambleConsumer(ASTUnit &Unit,
const Preprocessor &PP, bool Chaining,
const char *isysroot, llvm::raw_ostream *Out)
: PCHGenerator(PP, Chaining, isysroot, Out), Unit(Unit) { }
virtual void HandleTopLevelDecl(DeclGroupRef D) {
for (DeclGroupRef::iterator it = D.begin(), ie = D.end(); it != ie; ++it) {
Decl *D = *it;
// FIXME: Currently ObjC method declarations are incorrectly being
// reported as top-level declarations, even though their DeclContext
// is the containing ObjC @interface/@implementation. This is a
// fundamental problem in the parser right now.
if (isa<ObjCMethodDecl>(D))
continue;
TopLevelDecls.push_back(D);
}
}
virtual void HandleTranslationUnit(ASTContext &Ctx) {
PCHGenerator::HandleTranslationUnit(Ctx);
if (!Unit.getDiagnostics().hasErrorOccurred()) {
// Translate the top-level declarations we captured during
// parsing into declaration IDs in the precompiled
// preamble. This will allow us to deserialize those top-level
// declarations when requested.
for (unsigned I = 0, N = TopLevelDecls.size(); I != N; ++I)
Unit.addTopLevelDeclFromPreamble(
getWriter().getDeclID(TopLevelDecls[I]));
}
}
virtual void SerializedPreprocessedEntity(PreprocessedEntity *Entity,
uint64_t Offset) {
Unit.addPreprocessedEntityFromPreamble(Offset);
}
virtual ASTSerializationListener *GetASTSerializationListener() {
return this;
}
};
class PrecompilePreambleAction : public ASTFrontendAction {
ASTUnit &Unit;
public:
explicit PrecompilePreambleAction(ASTUnit &Unit) : Unit(Unit) {}
virtual ASTConsumer *CreateASTConsumer(CompilerInstance &CI,
llvm::StringRef InFile) {
std::string Sysroot;
llvm::raw_ostream *OS = 0;
bool Chaining;
if (GeneratePCHAction::ComputeASTConsumerArguments(CI, InFile, Sysroot,
OS, Chaining))
return 0;
const char *isysroot = CI.getFrontendOpts().RelocatablePCH ?
Sysroot.c_str() : 0;
return new PrecompilePreambleConsumer(Unit, CI.getPreprocessor(), Chaining,
isysroot, OS);
}
virtual bool hasCodeCompletionSupport() const { return false; }
virtual bool hasASTFileSupport() const { return false; }
virtual bool usesCompleteTranslationUnit() { return false; }
};
}
/// Parse the source file into a translation unit using the given compiler
/// invocation, replacing the current translation unit.
///
/// \returns True if a failure occurred that causes the ASTUnit not to
/// contain any translation-unit information, false otherwise.
bool ASTUnit::Parse(llvm::MemoryBuffer *OverrideMainBuffer) {
delete SavedMainFileBuffer;
SavedMainFileBuffer = 0;
if (!Invocation.get()) {
delete OverrideMainBuffer;
return true;
}
// Create the compiler instance to use for building the AST.
CompilerInstance Clang;
Clang.setInvocation(Invocation.take());
OriginalSourceFile = Clang.getFrontendOpts().Inputs[0].second;
// Set up diagnostics, capturing any diagnostics that would
// otherwise be dropped.
Clang.setDiagnostics(&getDiagnostics());
// Create the target instance.
Clang.getTargetOpts().Features = TargetFeatures;
Clang.setTarget(TargetInfo::CreateTargetInfo(Clang.getDiagnostics(),
Clang.getTargetOpts()));
if (!Clang.hasTarget()) {
delete OverrideMainBuffer;
return true;
}
// Inform the target of the language options.
//
// FIXME: We shouldn't need to do this, the target should be immutable once
// created. This complexity should be lifted elsewhere.
Clang.getTarget().setForcedLangOptions(Clang.getLangOpts());
assert(Clang.getFrontendOpts().Inputs.size() == 1 &&
"Invocation must have exactly one source file!");
assert(Clang.getFrontendOpts().Inputs[0].first != IK_AST &&
"FIXME: AST inputs not yet supported here!");
assert(Clang.getFrontendOpts().Inputs[0].first != IK_LLVM_IR &&
"IR inputs not support here!");
// Configure the various subsystems.
// FIXME: Should we retain the previous file manager?
FileSystemOpts = Clang.getFileSystemOpts();
FileMgr.reset(new FileManager(Clang.getFileSystemOpts()));
SourceMgr.reset(new SourceManager(getDiagnostics(), *FileMgr));
TheSema.reset();
Ctx.reset();
PP.reset();
// Clear out old caches and data.
TopLevelDecls.clear();
PreprocessedEntities.clear();
CleanTemporaryFiles();
PreprocessedEntitiesByFile.clear();
if (!OverrideMainBuffer) {
StoredDiagnostics.erase(
StoredDiagnostics.begin() + NumStoredDiagnosticsFromDriver,
StoredDiagnostics.end());
TopLevelDeclsInPreamble.clear();
PreprocessedEntitiesInPreamble.clear();
}
// Create a file manager object to provide access to and cache the filesystem.
Clang.setFileManager(&getFileManager());
// Create the source manager.
Clang.setSourceManager(&getSourceManager());
// If the main file has been overridden due to the use of a preamble,
// make that override happen and introduce the preamble.
PreprocessorOptions &PreprocessorOpts = Clang.getPreprocessorOpts();
std::string PriorImplicitPCHInclude;
if (OverrideMainBuffer) {
PreprocessorOpts.addRemappedFile(OriginalSourceFile, OverrideMainBuffer);
PreprocessorOpts.PrecompiledPreambleBytes.first = Preamble.size();
PreprocessorOpts.PrecompiledPreambleBytes.second
= PreambleEndsAtStartOfLine;
PriorImplicitPCHInclude = PreprocessorOpts.ImplicitPCHInclude;
PreprocessorOpts.ImplicitPCHInclude = PreambleFile;
PreprocessorOpts.DisablePCHValidation = true;
// The stored diagnostic has the old source manager in it; update
// the locations to refer into the new source manager. Since we've
// been careful to make sure that the source manager's state
// before and after are identical, so that we can reuse the source
// location itself.
for (unsigned I = NumStoredDiagnosticsFromDriver,
N = StoredDiagnostics.size();
I < N; ++I) {
FullSourceLoc Loc(StoredDiagnostics[I].getLocation(),
getSourceManager());
StoredDiagnostics[I].setLocation(Loc);
}
// Keep track of the override buffer;
SavedMainFileBuffer = OverrideMainBuffer;
} else {
PreprocessorOpts.PrecompiledPreambleBytes.first = 0;
PreprocessorOpts.PrecompiledPreambleBytes.second = false;
}
llvm::OwningPtr<TopLevelDeclTrackerAction> Act;
Act.reset(new TopLevelDeclTrackerAction(*this));
if (!Act->BeginSourceFile(Clang, Clang.getFrontendOpts().Inputs[0].second,
Clang.getFrontendOpts().Inputs[0].first))
goto error;
Act->Execute();
// Steal the created target, context, and preprocessor, and take back the
// source and file managers.
TheSema.reset(Clang.takeSema());
Consumer.reset(Clang.takeASTConsumer());
Ctx.reset(Clang.takeASTContext());
PP.reset(Clang.takePreprocessor());
Clang.takeSourceManager();
Clang.takeFileManager();
Target.reset(Clang.takeTarget());
Act->EndSourceFile();
// Remove the overridden buffer we used for the preamble.
if (OverrideMainBuffer) {
PreprocessorOpts.eraseRemappedFile(
PreprocessorOpts.remapped_file_buffer_end() - 1);
PreprocessorOpts.ImplicitPCHInclude = PriorImplicitPCHInclude;
}
Invocation.reset(Clang.takeInvocation());
if (ShouldCacheCodeCompletionResults) {
if (CacheCodeCompletionCoolDown > 0)
--CacheCodeCompletionCoolDown;
else if (top_level_size() != NumTopLevelDeclsAtLastCompletionCache)
CacheCodeCompletionResults();
}
return false;
error:
// Remove the overridden buffer we used for the preamble.
if (OverrideMainBuffer) {
PreprocessorOpts.eraseRemappedFile(
PreprocessorOpts.remapped_file_buffer_end() - 1);
PreprocessorOpts.ImplicitPCHInclude = PriorImplicitPCHInclude;
delete OverrideMainBuffer;
SavedMainFileBuffer = 0;
}
StoredDiagnostics.clear();
Clang.takeSourceManager();
Clang.takeFileManager();
Invocation.reset(Clang.takeInvocation());
return true;
}
/// \brief Simple function to retrieve a path for a preamble precompiled header.
static std::string GetPreamblePCHPath() {
// FIXME: This is lame; sys::Path should provide this function (in particular,
// it should know how to find the temporary files dir).
// FIXME: This is really lame. I copied this code from the Driver!
// FIXME: This is a hack so that we can override the preamble file during
// crash-recovery testing, which is the only case where the preamble files
// are not necessarily cleaned up.
const char *TmpFile = ::getenv("CINDEXTEST_PREAMBLE_FILE");
if (TmpFile)
return TmpFile;
std::string Error;
const char *TmpDir = ::getenv("TMPDIR");
if (!TmpDir)
TmpDir = ::getenv("TEMP");
if (!TmpDir)
TmpDir = ::getenv("TMP");
#ifdef LLVM_ON_WIN32
if (!TmpDir)
TmpDir = ::getenv("USERPROFILE");
#endif
if (!TmpDir)
TmpDir = "/tmp";
llvm::sys::Path P(TmpDir);
P.createDirectoryOnDisk(true);
P.appendComponent("preamble");
P.appendSuffix("pch");
if (P.createTemporaryFileOnDisk())
return std::string();
return P.str();
}
/// \brief Compute the preamble for the main file, providing the source buffer
/// that corresponds to the main file along with a pair (bytes, start-of-line)
/// that describes the preamble.
std::pair<llvm::MemoryBuffer *, std::pair<unsigned, bool> >
ASTUnit::ComputePreamble(CompilerInvocation &Invocation,
unsigned MaxLines, bool &CreatedBuffer) {
FrontendOptions &FrontendOpts = Invocation.getFrontendOpts();
PreprocessorOptions &PreprocessorOpts = Invocation.getPreprocessorOpts();
CreatedBuffer = false;
// Try to determine if the main file has been remapped, either from the
// command line (to another file) or directly through the compiler invocation
// (to a memory buffer).
llvm::MemoryBuffer *Buffer = 0;
llvm::sys::PathWithStatus MainFilePath(FrontendOpts.Inputs[0].second);
if (const llvm::sys::FileStatus *MainFileStatus = MainFilePath.getFileStatus()) {
// Check whether there is a file-file remapping of the main file
for (PreprocessorOptions::remapped_file_iterator
M = PreprocessorOpts.remapped_file_begin(),
E = PreprocessorOpts.remapped_file_end();
M != E;
++M) {
llvm::sys::PathWithStatus MPath(M->first);
if (const llvm::sys::FileStatus *MStatus = MPath.getFileStatus()) {
if (MainFileStatus->uniqueID == MStatus->uniqueID) {
// We found a remapping. Try to load the resulting, remapped source.
if (CreatedBuffer) {
delete Buffer;
CreatedBuffer = false;
}
Buffer = getBufferForFile(M->second);
if (!Buffer)
return std::make_pair((llvm::MemoryBuffer*)0,
std::make_pair(0, true));
CreatedBuffer = true;
}
}
}
// Check whether there is a file-buffer remapping. It supercedes the
// file-file remapping.
for (PreprocessorOptions::remapped_file_buffer_iterator
M = PreprocessorOpts.remapped_file_buffer_begin(),
E = PreprocessorOpts.remapped_file_buffer_end();
M != E;
++M) {
llvm::sys::PathWithStatus MPath(M->first);
if (const llvm::sys::FileStatus *MStatus = MPath.getFileStatus()) {
if (MainFileStatus->uniqueID == MStatus->uniqueID) {
// We found a remapping.
if (CreatedBuffer) {
delete Buffer;
CreatedBuffer = false;
}
Buffer = const_cast<llvm::MemoryBuffer *>(M->second);
}
}
}
}
// If the main source file was not remapped, load it now.
if (!Buffer) {
Buffer = getBufferForFile(FrontendOpts.Inputs[0].second);
if (!Buffer)
return std::make_pair((llvm::MemoryBuffer*)0, std::make_pair(0, true));
CreatedBuffer = true;
}
return std::make_pair(Buffer, Lexer::ComputePreamble(Buffer, MaxLines));
}
static llvm::MemoryBuffer *CreatePaddedMainFileBuffer(llvm::MemoryBuffer *Old,
unsigned NewSize,
llvm::StringRef NewName) {
llvm::MemoryBuffer *Result
= llvm::MemoryBuffer::getNewUninitMemBuffer(NewSize, NewName);
memcpy(const_cast<char*>(Result->getBufferStart()),
Old->getBufferStart(), Old->getBufferSize());
memset(const_cast<char*>(Result->getBufferStart()) + Old->getBufferSize(),
' ', NewSize - Old->getBufferSize() - 1);
const_cast<char*>(Result->getBufferEnd())[-1] = '\n';
return Result;
}
/// \brief Attempt to build or re-use a precompiled preamble when (re-)parsing
/// the source file.
///
/// This routine will compute the preamble of the main source file. If a
/// non-trivial preamble is found, it will precompile that preamble into a
/// precompiled header so that the precompiled preamble can be used to reduce
/// reparsing time. If a precompiled preamble has already been constructed,
/// this routine will determine if it is still valid and, if so, avoid
/// rebuilding the precompiled preamble.
///
/// \param AllowRebuild When true (the default), this routine is
/// allowed to rebuild the precompiled preamble if it is found to be
/// out-of-date.
///
/// \param MaxLines When non-zero, the maximum number of lines that
/// can occur within the preamble.
///
/// \returns If the precompiled preamble can be used, returns a newly-allocated
/// buffer that should be used in place of the main file when doing so.
/// Otherwise, returns a NULL pointer.
llvm::MemoryBuffer *ASTUnit::getMainBufferWithPrecompiledPreamble(
CompilerInvocation PreambleInvocation,
bool AllowRebuild,
unsigned MaxLines) {
FrontendOptions &FrontendOpts = PreambleInvocation.getFrontendOpts();
PreprocessorOptions &PreprocessorOpts
= PreambleInvocation.getPreprocessorOpts();
bool CreatedPreambleBuffer = false;
std::pair<llvm::MemoryBuffer *, std::pair<unsigned, bool> > NewPreamble
= ComputePreamble(PreambleInvocation, MaxLines, CreatedPreambleBuffer);
// If ComputePreamble() Take ownership of the
llvm::OwningPtr<llvm::MemoryBuffer> OwnedPreambleBuffer;
if (CreatedPreambleBuffer)
OwnedPreambleBuffer.reset(NewPreamble.first);
if (!NewPreamble.second.first) {
// We couldn't find a preamble in the main source. Clear out the current
// preamble, if we have one. It's obviously no good any more.
Preamble.clear();
if (!PreambleFile.empty()) {
llvm::sys::Path(PreambleFile).eraseFromDisk();
PreambleFile.clear();
}
// The next time we actually see a preamble, precompile it.
PreambleRebuildCounter = 1;
return 0;
}
if (!Preamble.empty()) {
// We've previously computed a preamble. Check whether we have the same
// preamble now that we did before, and that there's enough space in
// the main-file buffer within the precompiled preamble to fit the
// new main file.
if (Preamble.size() == NewPreamble.second.first &&
PreambleEndsAtStartOfLine == NewPreamble.second.second &&
NewPreamble.first->getBufferSize() < PreambleReservedSize-2 &&
memcmp(&Preamble[0], NewPreamble.first->getBufferStart(),
NewPreamble.second.first) == 0) {
// The preamble has not changed. We may be able to re-use the precompiled
// preamble.
// Check that none of the files used by the preamble have changed.
bool AnyFileChanged = false;
// First, make a record of those files that have been overridden via
// remapping or unsaved_files.
llvm::StringMap<std::pair<off_t, time_t> > OverriddenFiles;
for (PreprocessorOptions::remapped_file_iterator
R = PreprocessorOpts.remapped_file_begin(),
REnd = PreprocessorOpts.remapped_file_end();
!AnyFileChanged && R != REnd;
++R) {
struct stat StatBuf;
if (stat(R->second.c_str(), &StatBuf)) {
// If we can't stat the file we're remapping to, assume that something
// horrible happened.
AnyFileChanged = true;
break;
}
OverriddenFiles[R->first] = std::make_pair(StatBuf.st_size,
StatBuf.st_mtime);
}
for (PreprocessorOptions::remapped_file_buffer_iterator
R = PreprocessorOpts.remapped_file_buffer_begin(),
REnd = PreprocessorOpts.remapped_file_buffer_end();
!AnyFileChanged && R != REnd;
++R) {
// FIXME: Should we actually compare the contents of file->buffer
// remappings?
OverriddenFiles[R->first] = std::make_pair(R->second->getBufferSize(),
0);
}
// Check whether anything has changed.
for (llvm::StringMap<std::pair<off_t, time_t> >::iterator
F = FilesInPreamble.begin(), FEnd = FilesInPreamble.end();
!AnyFileChanged && F != FEnd;
++F) {
llvm::StringMap<std::pair<off_t, time_t> >::iterator Overridden
= OverriddenFiles.find(F->first());
if (Overridden != OverriddenFiles.end()) {
// This file was remapped; check whether the newly-mapped file
// matches up with the previous mapping.
if (Overridden->second != F->second)
AnyFileChanged = true;
continue;
}
// The file was not remapped; check whether it has changed on disk.
struct stat StatBuf;
if (stat(F->first(), &StatBuf)) {
// If we can't stat the file, assume that something horrible happened.
AnyFileChanged = true;
} else if (StatBuf.st_size != F->second.first ||
StatBuf.st_mtime != F->second.second)
AnyFileChanged = true;
}
if (!AnyFileChanged) {
// Okay! We can re-use the precompiled preamble.
// Set the state of the diagnostic object to mimic its state
// after parsing the preamble.
// FIXME: This won't catch any #pragma push warning changes that
// have occurred in the preamble.
getDiagnostics().Reset();
ProcessWarningOptions(getDiagnostics(),
PreambleInvocation.getDiagnosticOpts());
getDiagnostics().setNumWarnings(NumWarningsInPreamble);
if (StoredDiagnostics.size() > NumStoredDiagnosticsInPreamble)
StoredDiagnostics.erase(
StoredDiagnostics.begin() + NumStoredDiagnosticsInPreamble,
StoredDiagnostics.end());
// Create a version of the main file buffer that is padded to
// buffer size we reserved when creating the preamble.
return CreatePaddedMainFileBuffer(NewPreamble.first,
PreambleReservedSize,
FrontendOpts.Inputs[0].second);
}
}
// If we aren't allowed to rebuild the precompiled preamble, just
// return now.
if (!AllowRebuild)
return 0;
// We can't reuse the previously-computed preamble. Build a new one.
Preamble.clear();
llvm::sys::Path(PreambleFile).eraseFromDisk();
PreambleRebuildCounter = 1;
} else if (!AllowRebuild) {
// We aren't allowed to rebuild the precompiled preamble; just
// return now.
return 0;
}
// If the preamble rebuild counter > 1, it's because we previously
// failed to build a preamble and we're not yet ready to try
// again. Decrement the counter and return a failure.
if (PreambleRebuildCounter > 1) {
--PreambleRebuildCounter;
return 0;
}
// Create a temporary file for the precompiled preamble. In rare
// circumstances, this can fail.
std::string PreamblePCHPath = GetPreamblePCHPath();
if (PreamblePCHPath.empty()) {
// Try again next time.
PreambleRebuildCounter = 1;
return 0;
}
// We did not previously compute a preamble, or it can't be reused anyway.
SimpleTimer PreambleTimer(WantTiming);
PreambleTimer.setOutput("Precompiling preamble");
// Create a new buffer that stores the preamble. The buffer also contains
// extra space for the original contents of the file (which will be present
// when we actually parse the file) along with more room in case the file
// grows.
PreambleReservedSize = NewPreamble.first->getBufferSize();
if (PreambleReservedSize < 4096)
PreambleReservedSize = 8191;
else
PreambleReservedSize *= 2;
// Save the preamble text for later; we'll need to compare against it for
// subsequent reparses.
Preamble.assign(NewPreamble.first->getBufferStart(),
NewPreamble.first->getBufferStart()
+ NewPreamble.second.first);
PreambleEndsAtStartOfLine = NewPreamble.second.second;
delete PreambleBuffer;
PreambleBuffer
= llvm::MemoryBuffer::getNewUninitMemBuffer(PreambleReservedSize,
FrontendOpts.Inputs[0].second);
memcpy(const_cast<char*>(PreambleBuffer->getBufferStart()),
NewPreamble.first->getBufferStart(), Preamble.size());
memset(const_cast<char*>(PreambleBuffer->getBufferStart()) + Preamble.size(),
' ', PreambleReservedSize - Preamble.size() - 1);
const_cast<char*>(PreambleBuffer->getBufferEnd())[-1] = '\n';
// Remap the main source file to the preamble buffer.
llvm::sys::PathWithStatus MainFilePath(FrontendOpts.Inputs[0].second);
PreprocessorOpts.addRemappedFile(MainFilePath.str(), PreambleBuffer);
// Tell the compiler invocation to generate a temporary precompiled header.
FrontendOpts.ProgramAction = frontend::GeneratePCH;
FrontendOpts.ChainedPCH = true;
// FIXME: Generate the precompiled header into memory?
FrontendOpts.OutputFile = PreamblePCHPath;
PreprocessorOpts.PrecompiledPreambleBytes.first = 0;
PreprocessorOpts.PrecompiledPreambleBytes.second = false;
// Create the compiler instance to use for building the precompiled preamble.
CompilerInstance Clang;
Clang.setInvocation(&PreambleInvocation);
OriginalSourceFile = Clang.getFrontendOpts().Inputs[0].second;
// Set up diagnostics, capturing all of the diagnostics produced.
Clang.setDiagnostics(&getDiagnostics());
// Create the target instance.
Clang.getTargetOpts().Features = TargetFeatures;
Clang.setTarget(TargetInfo::CreateTargetInfo(Clang.getDiagnostics(),
Clang.getTargetOpts()));
if (!Clang.hasTarget()) {
llvm::sys::Path(FrontendOpts.OutputFile).eraseFromDisk();
Preamble.clear();
PreambleRebuildCounter = DefaultPreambleRebuildInterval;
PreprocessorOpts.eraseRemappedFile(
PreprocessorOpts.remapped_file_buffer_end() - 1);
return 0;
}
// Inform the target of the language options.
//
// FIXME: We shouldn't need to do this, the target should be immutable once
// created. This complexity should be lifted elsewhere.
Clang.getTarget().setForcedLangOptions(Clang.getLangOpts());
assert(Clang.getFrontendOpts().Inputs.size() == 1 &&
"Invocation must have exactly one source file!");
assert(Clang.getFrontendOpts().Inputs[0].first != IK_AST &&
"FIXME: AST inputs not yet supported here!");
assert(Clang.getFrontendOpts().Inputs[0].first != IK_LLVM_IR &&
"IR inputs not support here!");
// Clear out old caches and data.
getDiagnostics().Reset();
ProcessWarningOptions(getDiagnostics(), Clang.getDiagnosticOpts());
StoredDiagnostics.erase(
StoredDiagnostics.begin() + NumStoredDiagnosticsFromDriver,
StoredDiagnostics.end());
TopLevelDecls.clear();
TopLevelDeclsInPreamble.clear();
PreprocessedEntities.clear();
PreprocessedEntitiesInPreamble.clear();
// Create a file manager object to provide access to and cache the filesystem.
Clang.setFileManager(new FileManager(Clang.getFileSystemOpts()));
// Create the source manager.
Clang.setSourceManager(new SourceManager(getDiagnostics(),
Clang.getFileManager()));
llvm::OwningPtr<PrecompilePreambleAction> Act;
Act.reset(new PrecompilePreambleAction(*this));
if (!Act->BeginSourceFile(Clang, Clang.getFrontendOpts().Inputs[0].second,
Clang.getFrontendOpts().Inputs[0].first)) {
Clang.takeInvocation();
llvm::sys::Path(FrontendOpts.OutputFile).eraseFromDisk();
Preamble.clear();
PreambleRebuildCounter = DefaultPreambleRebuildInterval;
PreprocessorOpts.eraseRemappedFile(
PreprocessorOpts.remapped_file_buffer_end() - 1);
return 0;
}
Act->Execute();
Act->EndSourceFile();
Clang.takeInvocation();
if (Diagnostics->hasErrorOccurred()) {
// There were errors parsing the preamble, so no precompiled header was
// generated. Forget that we even tried.
// FIXME: Should we leave a note for ourselves to try again?
llvm::sys::Path(FrontendOpts.OutputFile).eraseFromDisk();
Preamble.clear();
TopLevelDeclsInPreamble.clear();
PreprocessedEntities.clear();
PreprocessedEntitiesInPreamble.clear();
PreambleRebuildCounter = DefaultPreambleRebuildInterval;
PreprocessorOpts.eraseRemappedFile(
PreprocessorOpts.remapped_file_buffer_end() - 1);
return 0;
}
// Keep track of the preamble we precompiled.
PreambleFile = FrontendOpts.OutputFile;
NumStoredDiagnosticsInPreamble = StoredDiagnostics.size();
NumWarningsInPreamble = getDiagnostics().getNumWarnings();
// Keep track of all of the files that the source manager knows about,
// so we can verify whether they have changed or not.
FilesInPreamble.clear();
SourceManager &SourceMgr = Clang.getSourceManager();
const llvm::MemoryBuffer *MainFileBuffer
= SourceMgr.getBuffer(SourceMgr.getMainFileID());
for (SourceManager::fileinfo_iterator F = SourceMgr.fileinfo_begin(),
FEnd = SourceMgr.fileinfo_end();
F != FEnd;
++F) {
const FileEntry *File = F->second->Entry;
if (!File || F->second->getRawBuffer() == MainFileBuffer)
continue;
FilesInPreamble[File->getName()]
= std::make_pair(F->second->getSize(), File->getModificationTime());
}
PreambleRebuildCounter = 1;
PreprocessorOpts.eraseRemappedFile(
PreprocessorOpts.remapped_file_buffer_end() - 1);
return CreatePaddedMainFileBuffer(NewPreamble.first,
PreambleReservedSize,
FrontendOpts.Inputs[0].second);
}
void ASTUnit::RealizeTopLevelDeclsFromPreamble() {
std::vector<Decl *> Resolved;
Resolved.reserve(TopLevelDeclsInPreamble.size());
ExternalASTSource &Source = *getASTContext().getExternalSource();
for (unsigned I = 0, N = TopLevelDeclsInPreamble.size(); I != N; ++I) {
// Resolve the declaration ID to an actual declaration, possibly
// deserializing the declaration in the process.
Decl *D = Source.GetExternalDecl(TopLevelDeclsInPreamble[I]);
if (D)
Resolved.push_back(D);
}
TopLevelDeclsInPreamble.clear();
TopLevelDecls.insert(TopLevelDecls.begin(), Resolved.begin(), Resolved.end());
}
void ASTUnit::RealizePreprocessedEntitiesFromPreamble() {
if (!PP)
return;
PreprocessingRecord *PPRec = PP->getPreprocessingRecord();
if (!PPRec)
return;
ExternalPreprocessingRecordSource *External = PPRec->getExternalSource();
if (!External)
return;
for (unsigned I = 0, N = PreprocessedEntitiesInPreamble.size(); I != N; ++I) {
if (PreprocessedEntity *PE
= External->ReadPreprocessedEntity(PreprocessedEntitiesInPreamble[I]))
PreprocessedEntities.push_back(PE);
}
if (PreprocessedEntities.empty())
return;
PreprocessedEntities.insert(PreprocessedEntities.end(),
PPRec->begin(true), PPRec->end(true));
}
ASTUnit::pp_entity_iterator ASTUnit::pp_entity_begin() {
if (!PreprocessedEntitiesInPreamble.empty() &&
PreprocessedEntities.empty())
RealizePreprocessedEntitiesFromPreamble();
if (PreprocessedEntities.empty())
if (PreprocessingRecord *PPRec = PP->getPreprocessingRecord())
return PPRec->begin(true);
return PreprocessedEntities.begin();
}
ASTUnit::pp_entity_iterator ASTUnit::pp_entity_end() {
if (!PreprocessedEntitiesInPreamble.empty() &&
PreprocessedEntities.empty())
RealizePreprocessedEntitiesFromPreamble();
if (PreprocessedEntities.empty())
if (PreprocessingRecord *PPRec = PP->getPreprocessingRecord())
return PPRec->end(true);
return PreprocessedEntities.end();
}
unsigned ASTUnit::getMaxPCHLevel() const {
if (!getOnlyLocalDecls())
return Decl::MaxPCHLevel;
return 0;
}
llvm::StringRef ASTUnit::getMainFileName() const {
return Invocation->getFrontendOpts().Inputs[0].second;
}
bool ASTUnit::LoadFromCompilerInvocation(bool PrecompilePreamble) {
if (!Invocation)
return true;
// We'll manage file buffers ourselves.
Invocation->getPreprocessorOpts().RetainRemappedFileBuffers = true;
Invocation->getFrontendOpts().DisableFree = false;
ProcessWarningOptions(getDiagnostics(), Invocation->getDiagnosticOpts());
// Save the target features.
TargetFeatures = Invocation->getTargetOpts().Features;
llvm::MemoryBuffer *OverrideMainBuffer = 0;
if (PrecompilePreamble) {
PreambleRebuildCounter = 2;
OverrideMainBuffer
= getMainBufferWithPrecompiledPreamble(*Invocation);
}
SimpleTimer ParsingTimer(WantTiming);
ParsingTimer.setOutput("Parsing " + getMainFileName());
return Parse(OverrideMainBuffer);
}
ASTUnit *ASTUnit::LoadFromCompilerInvocation(CompilerInvocation *CI,
llvm::IntrusiveRefCntPtr<Diagnostic> Diags,
bool OnlyLocalDecls,
bool CaptureDiagnostics,
bool PrecompilePreamble,
bool CompleteTranslationUnit,
bool CacheCodeCompletionResults) {
// Create the AST unit.
llvm::OwningPtr<ASTUnit> AST;
AST.reset(new ASTUnit(false));
ConfigureDiags(Diags, 0, 0, *AST, CaptureDiagnostics);
AST->Diagnostics = Diags;
AST->OnlyLocalDecls = OnlyLocalDecls;
AST->CaptureDiagnostics = CaptureDiagnostics;
AST->CompleteTranslationUnit = CompleteTranslationUnit;
AST->ShouldCacheCodeCompletionResults = CacheCodeCompletionResults;
AST->CacheCodeCompletionCoolDown = 1;
AST->Invocation.reset(CI);
return AST->LoadFromCompilerInvocation(PrecompilePreamble)? 0 : AST.take();
}
ASTUnit *ASTUnit::LoadFromCommandLine(const char **ArgBegin,
const char **ArgEnd,
llvm::IntrusiveRefCntPtr<Diagnostic> Diags,
llvm::StringRef ResourceFilesPath,
bool OnlyLocalDecls,
bool CaptureDiagnostics,
RemappedFile *RemappedFiles,
unsigned NumRemappedFiles,
bool PrecompilePreamble,
bool CompleteTranslationUnit,
bool CacheCodeCompletionResults,
bool CXXPrecompilePreamble,
bool CXXChainedPCH) {
if (!Diags.getPtr()) {
// No diagnostics engine was provided, so create our own diagnostics object
// with the default options.
DiagnosticOptions DiagOpts;
Diags = CompilerInstance::createDiagnostics(DiagOpts, ArgEnd - ArgBegin,
ArgBegin);
}
llvm::SmallVector<const char *, 16> Args;
Args.push_back("<clang>"); // FIXME: Remove dummy argument.
Args.insert(Args.end(), ArgBegin, ArgEnd);
// FIXME: Find a cleaner way to force the driver into restricted modes. We
// also want to force it to use clang.
Args.push_back("-fsyntax-only");
llvm::SmallVector<StoredDiagnostic, 4> StoredDiagnostics;
llvm::OwningPtr<CompilerInvocation> CI;
{
CaptureDroppedDiagnostics Capture(CaptureDiagnostics, *Diags,
StoredDiagnostics);
// FIXME: We shouldn't have to pass in the path info.
driver::Driver TheDriver("clang", llvm::sys::getHostTriple(),
"a.out", false, false, *Diags);
// Don't check that inputs exist, they have been remapped.
TheDriver.setCheckInputsExist(false);
llvm::OwningPtr<driver::Compilation> C(
TheDriver.BuildCompilation(Args.size(), Args.data()));
// We expect to get back exactly one command job, if we didn't something
// failed.
const driver::JobList &Jobs = C->getJobs();
if (Jobs.size() != 1 || !isa<driver::Command>(Jobs.begin())) {
llvm::SmallString<256> Msg;
llvm::raw_svector_ostream OS(Msg);
C->PrintJob(OS, C->getJobs(), "; ", true);
Diags->Report(diag::err_fe_expected_compiler_job) << OS.str();
return 0;
}
const driver::Command *Cmd = cast<driver::Command>(*Jobs.begin());
if (llvm::StringRef(Cmd->getCreator().getName()) != "clang") {
Diags->Report(diag::err_fe_expected_clang_command);
return 0;
}
const driver::ArgStringList &CCArgs = Cmd->getArguments();
CI.reset(new CompilerInvocation);
CompilerInvocation::CreateFromArgs(*CI,
const_cast<const char **>(CCArgs.data()),
const_cast<const char **>(CCArgs.data()) +
CCArgs.size(),
*Diags);
}
// Override any files that need remapping
for (unsigned I = 0; I != NumRemappedFiles; ++I)
CI->getPreprocessorOpts().addRemappedFile(RemappedFiles[I].first,
RemappedFiles[I].second);
// Override the resources path.
CI->getHeaderSearchOpts().ResourceDir = ResourceFilesPath;
// Check whether we should precompile the preamble and/or use chained PCH.
// FIXME: This is a temporary hack while we debug C++ chained PCH.
if (CI->getLangOpts().CPlusPlus) {
PrecompilePreamble = PrecompilePreamble && CXXPrecompilePreamble;
if (PrecompilePreamble && !CXXChainedPCH &&
!CI->getPreprocessorOpts().ImplicitPCHInclude.empty())
PrecompilePreamble = false;
}
// Create the AST unit.
llvm::OwningPtr<ASTUnit> AST;
AST.reset(new ASTUnit(false));
ConfigureDiags(Diags, ArgBegin, ArgEnd, *AST, CaptureDiagnostics);
AST->Diagnostics = Diags;
AST->FileMgr.reset(new FileManager(FileSystemOptions()));
AST->OnlyLocalDecls = OnlyLocalDecls;
AST->CaptureDiagnostics = CaptureDiagnostics;
AST->CompleteTranslationUnit = CompleteTranslationUnit;
AST->ShouldCacheCodeCompletionResults = CacheCodeCompletionResults;
AST->CacheCodeCompletionCoolDown = 1;
AST->NumStoredDiagnosticsFromDriver = StoredDiagnostics.size();
AST->NumStoredDiagnosticsInPreamble = StoredDiagnostics.size();
AST->StoredDiagnostics.swap(StoredDiagnostics);
AST->Invocation.reset(CI.take());
return AST->LoadFromCompilerInvocation(PrecompilePreamble) ? 0 : AST.take();
}
bool ASTUnit::Reparse(RemappedFile *RemappedFiles, unsigned NumRemappedFiles) {
if (!Invocation.get())
return true;
SimpleTimer ParsingTimer(WantTiming);
ParsingTimer.setOutput("Reparsing " + getMainFileName());
// Remap files.
PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts();
PPOpts.DisableStatCache = true;
for (PreprocessorOptions::remapped_file_buffer_iterator
R = PPOpts.remapped_file_buffer_begin(),
REnd = PPOpts.remapped_file_buffer_end();
R != REnd;
++R) {
delete R->second;
}
Invocation->getPreprocessorOpts().clearRemappedFiles();
for (unsigned I = 0; I != NumRemappedFiles; ++I)
Invocation->getPreprocessorOpts().addRemappedFile(RemappedFiles[I].first,
RemappedFiles[I].second);
// If we have a preamble file lying around, or if we might try to
// build a precompiled preamble, do so now.
llvm::MemoryBuffer *OverrideMainBuffer = 0;
if (!PreambleFile.empty() || PreambleRebuildCounter > 0)
OverrideMainBuffer = getMainBufferWithPrecompiledPreamble(*Invocation);
// Clear out the diagnostics state.
if (!OverrideMainBuffer) {
getDiagnostics().Reset();
ProcessWarningOptions(getDiagnostics(), Invocation->getDiagnosticOpts());
}
// Parse the sources
bool Result = Parse(OverrideMainBuffer);
return Result;
}
//----------------------------------------------------------------------------//
// Code completion
//----------------------------------------------------------------------------//
namespace {
/// \brief Code completion consumer that combines the cached code-completion
/// results from an ASTUnit with the code-completion results provided to it,
/// then passes the result on to
class AugmentedCodeCompleteConsumer : public CodeCompleteConsumer {
unsigned NormalContexts;
ASTUnit &AST;
CodeCompleteConsumer &Next;
public:
AugmentedCodeCompleteConsumer(ASTUnit &AST, CodeCompleteConsumer &Next,
bool IncludeMacros, bool IncludeCodePatterns,
bool IncludeGlobals)
: CodeCompleteConsumer(IncludeMacros, IncludeCodePatterns, IncludeGlobals,
Next.isOutputBinary()), AST(AST), Next(Next)
{
// Compute the set of contexts in which we will look when we don't have
// any information about the specific context.
NormalContexts
= (1 << (CodeCompletionContext::CCC_TopLevel - 1))
| (1 << (CodeCompletionContext::CCC_ObjCInterface - 1))
| (1 << (CodeCompletionContext::CCC_ObjCImplementation - 1))
| (1 << (CodeCompletionContext::CCC_ObjCIvarList - 1))
| (1 << (CodeCompletionContext::CCC_Statement - 1))
| (1 << (CodeCompletionContext::CCC_Expression - 1))
| (1 << (CodeCompletionContext::CCC_ObjCMessageReceiver - 1))
| (1 << (CodeCompletionContext::CCC_MemberAccess - 1))
| (1 << (CodeCompletionContext::CCC_ObjCProtocolName - 1))
| (1 << (CodeCompletionContext::CCC_ParenthesizedExpression - 1))
| (1 << (CodeCompletionContext::CCC_Recovery - 1));
if (AST.getASTContext().getLangOptions().CPlusPlus)
NormalContexts |= (1 << (CodeCompletionContext::CCC_EnumTag - 1))
| (1 << (CodeCompletionContext::CCC_UnionTag - 1))
| (1 << (CodeCompletionContext::CCC_ClassOrStructTag - 1));
}
virtual void ProcessCodeCompleteResults(Sema &S,
CodeCompletionContext Context,
CodeCompletionResult *Results,
unsigned NumResults);
virtual void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg,
OverloadCandidate *Candidates,
unsigned NumCandidates) {
Next.ProcessOverloadCandidates(S, CurrentArg, Candidates, NumCandidates);
}
virtual CodeCompletionAllocator &getAllocator() {
return Next.getAllocator();
}
};
}
/// \brief Helper function that computes which global names are hidden by the
/// local code-completion results.
static void CalculateHiddenNames(const CodeCompletionContext &Context,
CodeCompletionResult *Results,
unsigned NumResults,
ASTContext &Ctx,
llvm::StringSet<llvm::BumpPtrAllocator> &HiddenNames){
bool OnlyTagNames = false;
switch (Context.getKind()) {
case CodeCompletionContext::CCC_Recovery:
case CodeCompletionContext::CCC_TopLevel:
case CodeCompletionContext::CCC_ObjCInterface:
case CodeCompletionContext::CCC_ObjCImplementation:
case CodeCompletionContext::CCC_ObjCIvarList:
case CodeCompletionContext::CCC_ClassStructUnion:
case CodeCompletionContext::CCC_Statement:
case CodeCompletionContext::CCC_Expression:
case CodeCompletionContext::CCC_ObjCMessageReceiver:
case CodeCompletionContext::CCC_MemberAccess:
case CodeCompletionContext::CCC_Namespace:
case CodeCompletionContext::CCC_Type:
case CodeCompletionContext::CCC_Name:
case CodeCompletionContext::CCC_PotentiallyQualifiedName:
case CodeCompletionContext::CCC_ParenthesizedExpression:
break;
case CodeCompletionContext::CCC_EnumTag:
case CodeCompletionContext::CCC_UnionTag:
case CodeCompletionContext::CCC_ClassOrStructTag:
OnlyTagNames = true;
break;
case CodeCompletionContext::CCC_ObjCProtocolName:
case CodeCompletionContext::CCC_MacroName:
case CodeCompletionContext::CCC_MacroNameUse:
case CodeCompletionContext::CCC_PreprocessorExpression:
case CodeCompletionContext::CCC_PreprocessorDirective:
case CodeCompletionContext::CCC_NaturalLanguage:
case CodeCompletionContext::CCC_SelectorName:
case CodeCompletionContext::CCC_TypeQualifiers:
case CodeCompletionContext::CCC_Other:
// We're looking for nothing, or we're looking for names that cannot
// be hidden.
return;
}
typedef CodeCompletionResult Result;
for (unsigned I = 0; I != NumResults; ++I) {
if (Results[I].Kind != Result::RK_Declaration)
continue;
unsigned IDNS
= Results[I].Declaration->getUnderlyingDecl()->getIdentifierNamespace();
bool Hiding = false;
if (OnlyTagNames)
Hiding = (IDNS & Decl::IDNS_Tag);
else {
unsigned HiddenIDNS = (Decl::IDNS_Type | Decl::IDNS_Member |
Decl::IDNS_Namespace | Decl::IDNS_Ordinary |
Decl::IDNS_NonMemberOperator);
if (Ctx.getLangOptions().CPlusPlus)
HiddenIDNS |= Decl::IDNS_Tag;
Hiding = (IDNS & HiddenIDNS);
}
if (!Hiding)
continue;
DeclarationName Name = Results[I].Declaration->getDeclName();
if (IdentifierInfo *Identifier = Name.getAsIdentifierInfo())
HiddenNames.insert(Identifier->getName());
else
HiddenNames.insert(Name.getAsString());
}
}
void AugmentedCodeCompleteConsumer::ProcessCodeCompleteResults(Sema &S,
CodeCompletionContext Context,
CodeCompletionResult *Results,
unsigned NumResults) {
// Merge the results we were given with the results we cached.
bool AddedResult = false;
unsigned InContexts
= (Context.getKind() == CodeCompletionContext::CCC_Recovery? NormalContexts
: (1 << (Context.getKind() - 1)));
// Contains the set of names that are hidden by "local" completion results.
llvm::StringSet<llvm::BumpPtrAllocator> HiddenNames;
typedef CodeCompletionResult Result;
llvm::SmallVector<Result, 8> AllResults;
for (ASTUnit::cached_completion_iterator
C = AST.cached_completion_begin(),
CEnd = AST.cached_completion_end();
C != CEnd; ++C) {
// If the context we are in matches any of the contexts we are
// interested in, we'll add this result.
if ((C->ShowInContexts & InContexts) == 0)
continue;
// If we haven't added any results previously, do so now.
if (!AddedResult) {
CalculateHiddenNames(Context, Results, NumResults, S.Context,
HiddenNames);
AllResults.insert(AllResults.end(), Results, Results + NumResults);
AddedResult = true;
}
// Determine whether this global completion result is hidden by a local
// completion result. If so, skip it.
if (C->Kind != CXCursor_MacroDefinition &&
HiddenNames.count(C->Completion->getTypedText()))
continue;
// Adjust priority based on similar type classes.
unsigned Priority = C->Priority;
CXCursorKind CursorKind = C->Kind;
CodeCompletionString *Completion = C->Completion;
if (!Context.getPreferredType().isNull()) {
if (C->Kind == CXCursor_MacroDefinition) {
Priority = getMacroUsagePriority(C->Completion->getTypedText(),
S.getLangOptions(),
Context.getPreferredType()->isAnyPointerType());
} else if (C->Type) {
CanQualType Expected
= S.Context.getCanonicalType(
Context.getPreferredType().getUnqualifiedType());
SimplifiedTypeClass ExpectedSTC = getSimplifiedTypeClass(Expected);
if (ExpectedSTC == C->TypeClass) {
// We know this type is similar; check for an exact match.
llvm::StringMap<unsigned> &CachedCompletionTypes
= AST.getCachedCompletionTypes();
llvm::StringMap<unsigned>::iterator Pos
= CachedCompletionTypes.find(QualType(Expected).getAsString());
if (Pos != CachedCompletionTypes.end() && Pos->second == C->Type)
Priority /= CCF_ExactTypeMatch;
else
Priority /= CCF_SimilarTypeMatch;
}
}
}
// Adjust the completion string, if required.
if (C->Kind == CXCursor_MacroDefinition &&
Context.getKind() == CodeCompletionContext::CCC_MacroNameUse) {
// Create a new code-completion string that just contains the
// macro name, without its arguments.
CodeCompletionBuilder Builder(getAllocator(), CCP_CodePattern,
C->Availability);
Builder.AddTypedTextChunk(C->Completion->getTypedText());
CursorKind = CXCursor_NotImplemented;
Priority = CCP_CodePattern;
Completion = Builder.TakeString();
}
AllResults.push_back(Result(Completion, Priority, CursorKind,
C->Availability));
}
// If we did not add any cached completion results, just forward the
// results we were given to the next consumer.
if (!AddedResult) {
Next.ProcessCodeCompleteResults(S, Context, Results, NumResults);
return;
}
Next.ProcessCodeCompleteResults(S, Context, AllResults.data(),
AllResults.size());
}
void ASTUnit::CodeComplete(llvm::StringRef File, unsigned Line, unsigned Column,
RemappedFile *RemappedFiles,
unsigned NumRemappedFiles,
bool IncludeMacros,
bool IncludeCodePatterns,
CodeCompleteConsumer &Consumer,
Diagnostic &Diag, LangOptions &LangOpts,
SourceManager &SourceMgr, FileManager &FileMgr,
llvm::SmallVectorImpl<StoredDiagnostic> &StoredDiagnostics,
llvm::SmallVectorImpl<const llvm::MemoryBuffer *> &OwnedBuffers) {
if (!Invocation.get())
return;
SimpleTimer CompletionTimer(WantTiming);
CompletionTimer.setOutput("Code completion @ " + File + ":" +
llvm::Twine(Line) + ":" + llvm::Twine(Column));
CompilerInvocation CCInvocation(*Invocation);
FrontendOptions &FrontendOpts = CCInvocation.getFrontendOpts();
PreprocessorOptions &PreprocessorOpts = CCInvocation.getPreprocessorOpts();
FrontendOpts.ShowMacrosInCodeCompletion
= IncludeMacros && CachedCompletionResults.empty();
FrontendOpts.ShowCodePatternsInCodeCompletion = IncludeCodePatterns;
FrontendOpts.ShowGlobalSymbolsInCodeCompletion
= CachedCompletionResults.empty();
FrontendOpts.CodeCompletionAt.FileName = File;
FrontendOpts.CodeCompletionAt.Line = Line;
FrontendOpts.CodeCompletionAt.Column = Column;
// Set the language options appropriately.
LangOpts = CCInvocation.getLangOpts();
CompilerInstance Clang;
Clang.setInvocation(&CCInvocation);
OriginalSourceFile = Clang.getFrontendOpts().Inputs[0].second;
// Set up diagnostics, capturing any diagnostics produced.
Clang.setDiagnostics(&Diag);
ProcessWarningOptions(Diag, CCInvocation.getDiagnosticOpts());
CaptureDroppedDiagnostics Capture(true,
Clang.getDiagnostics(),
StoredDiagnostics);
// Create the target instance.
Clang.getTargetOpts().Features = TargetFeatures;
Clang.setTarget(TargetInfo::CreateTargetInfo(Clang.getDiagnostics(),
Clang.getTargetOpts()));
if (!Clang.hasTarget()) {
Clang.takeInvocation();
return;
}
// Inform the target of the language options.
//
// FIXME: We shouldn't need to do this, the target should be immutable once
// created. This complexity should be lifted elsewhere.
Clang.getTarget().setForcedLangOptions(Clang.getLangOpts());
assert(Clang.getFrontendOpts().Inputs.size() == 1 &&
"Invocation must have exactly one source file!");
assert(Clang.getFrontendOpts().Inputs[0].first != IK_AST &&
"FIXME: AST inputs not yet supported here!");
assert(Clang.getFrontendOpts().Inputs[0].first != IK_LLVM_IR &&
"IR inputs not support here!");
// Use the source and file managers that we were given.
Clang.setFileManager(&FileMgr);
Clang.setSourceManager(&SourceMgr);
// Remap files.
PreprocessorOpts.clearRemappedFiles();
PreprocessorOpts.RetainRemappedFileBuffers = true;
for (unsigned I = 0; I != NumRemappedFiles; ++I) {
PreprocessorOpts.addRemappedFile(RemappedFiles[I].first,
RemappedFiles[I].second);
OwnedBuffers.push_back(RemappedFiles[I].second);
}
// Use the code completion consumer we were given, but adding any cached
// code-completion results.
AugmentedCodeCompleteConsumer *AugmentedConsumer
= new AugmentedCodeCompleteConsumer(*this, Consumer,
FrontendOpts.ShowMacrosInCodeCompletion,
FrontendOpts.ShowCodePatternsInCodeCompletion,
FrontendOpts.ShowGlobalSymbolsInCodeCompletion);
Clang.setCodeCompletionConsumer(AugmentedConsumer);
// If we have a precompiled preamble, try to use it. We only allow
// the use of the precompiled preamble if we're if the completion
// point is within the main file, after the end of the precompiled
// preamble.
llvm::MemoryBuffer *OverrideMainBuffer = 0;
if (!PreambleFile.empty()) {
using llvm::sys::FileStatus;
llvm::sys::PathWithStatus CompleteFilePath(File);
llvm::sys::PathWithStatus MainPath(OriginalSourceFile);
if (const FileStatus *CompleteFileStatus = CompleteFilePath.getFileStatus())
if (const FileStatus *MainStatus = MainPath.getFileStatus())
if (CompleteFileStatus->getUniqueID() == MainStatus->getUniqueID())
OverrideMainBuffer
= getMainBufferWithPrecompiledPreamble(CCInvocation, false,
Line - 1);
}
// If the main file has been overridden due to the use of a preamble,
// make that override happen and introduce the preamble.
PreprocessorOpts.DisableStatCache = true;
StoredDiagnostics.insert(StoredDiagnostics.end(),
this->StoredDiagnostics.begin(),
this->StoredDiagnostics.begin() + NumStoredDiagnosticsFromDriver);
if (OverrideMainBuffer) {
PreprocessorOpts.addRemappedFile(OriginalSourceFile, OverrideMainBuffer);
PreprocessorOpts.PrecompiledPreambleBytes.first = Preamble.size();
PreprocessorOpts.PrecompiledPreambleBytes.second
= PreambleEndsAtStartOfLine;
PreprocessorOpts.ImplicitPCHInclude = PreambleFile;
PreprocessorOpts.DisablePCHValidation = true;
// The stored diagnostics have the old source manager. Copy them
// to our output set of stored diagnostics, updating the source
// manager to the one we were given.
for (unsigned I = NumStoredDiagnosticsFromDriver,
N = this->StoredDiagnostics.size();
I < N; ++I) {
StoredDiagnostics.push_back(this->StoredDiagnostics[I]);
FullSourceLoc Loc(StoredDiagnostics[I].getLocation(), SourceMgr);
StoredDiagnostics[I].setLocation(Loc);
}
OwnedBuffers.push_back(OverrideMainBuffer);
} else {
PreprocessorOpts.PrecompiledPreambleBytes.first = 0;
PreprocessorOpts.PrecompiledPreambleBytes.second = false;
}
llvm::OwningPtr<SyntaxOnlyAction> Act;
Act.reset(new SyntaxOnlyAction);
if (Act->BeginSourceFile(Clang, Clang.getFrontendOpts().Inputs[0].second,
Clang.getFrontendOpts().Inputs[0].first)) {
Act->Execute();
Act->EndSourceFile();
}
// Steal back our resources.
Clang.takeFileManager();
Clang.takeSourceManager();
Clang.takeInvocation();
}
bool ASTUnit::Save(llvm::StringRef File) {
if (getDiagnostics().hasErrorOccurred())
return true;
// FIXME: Can we somehow regenerate the stat cache here, or do we need to
// unconditionally create a stat cache when we parse the file?
std::string ErrorInfo;
llvm::raw_fd_ostream Out(File.str().c_str(), ErrorInfo,
llvm::raw_fd_ostream::F_Binary);
if (!ErrorInfo.empty() || Out.has_error())
return true;
std::vector<unsigned char> Buffer;
llvm::BitstreamWriter Stream(Buffer);
ASTWriter Writer(Stream);
Writer.WriteAST(getSema(), 0, 0);
// Write the generated bitstream to "Out".
if (!Buffer.empty())
Out.write((char *)&Buffer.front(), Buffer.size());
Out.close();
return Out.has_error();
}