forked from OSchip/llvm-project
1378 lines
54 KiB
C++
1378 lines
54 KiB
C++
//===- Utils.cpp ---- Misc utilities for analysis -------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements miscellaneous analysis routines for non-loop IR
|
|
// structures.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Analysis/Utils.h"
|
|
#include "mlir/Analysis/AffineAnalysis.h"
|
|
#include "mlir/Analysis/LoopAnalysis.h"
|
|
#include "mlir/Analysis/PresburgerSet.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
|
|
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "mlir/IR/IntegerSet.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#define DEBUG_TYPE "analysis-utils"
|
|
|
|
using namespace mlir;
|
|
|
|
using llvm::SmallDenseMap;
|
|
|
|
/// Populates 'loops' with IVs of the loops surrounding 'op' ordered from
|
|
/// the outermost 'affine.for' operation to the innermost one.
|
|
void mlir::getLoopIVs(Operation &op, SmallVectorImpl<AffineForOp> *loops) {
|
|
auto *currOp = op.getParentOp();
|
|
AffineForOp currAffineForOp;
|
|
// Traverse up the hierarchy collecting all 'affine.for' operation while
|
|
// skipping over 'affine.if' operations.
|
|
while (currOp) {
|
|
if (AffineForOp currAffineForOp = dyn_cast<AffineForOp>(currOp))
|
|
loops->push_back(currAffineForOp);
|
|
currOp = currOp->getParentOp();
|
|
}
|
|
std::reverse(loops->begin(), loops->end());
|
|
}
|
|
|
|
/// Populates 'ops' with IVs of the loops surrounding `op`, along with
|
|
/// `affine.if` operations interleaved between these loops, ordered from the
|
|
/// outermost `affine.for` operation to the innermost one.
|
|
void mlir::getEnclosingAffineForAndIfOps(Operation &op,
|
|
SmallVectorImpl<Operation *> *ops) {
|
|
ops->clear();
|
|
Operation *currOp = op.getParentOp();
|
|
|
|
// Traverse up the hierarchy collecting all `affine.for` and `affine.if`
|
|
// operations.
|
|
while (currOp) {
|
|
if (isa<AffineIfOp, AffineForOp>(currOp))
|
|
ops->push_back(currOp);
|
|
currOp = currOp->getParentOp();
|
|
}
|
|
std::reverse(ops->begin(), ops->end());
|
|
}
|
|
|
|
// Populates 'cst' with FlatAffineValueConstraints which represent original
|
|
// domain of the loop bounds that define 'ivs'.
|
|
LogicalResult
|
|
ComputationSliceState::getSourceAsConstraints(FlatAffineValueConstraints &cst) {
|
|
assert(!ivs.empty() && "Cannot have a slice without its IVs");
|
|
cst.reset(/*numDims=*/ivs.size(), /*numSymbols=*/0, /*numLocals=*/0, ivs);
|
|
for (Value iv : ivs) {
|
|
AffineForOp loop = getForInductionVarOwner(iv);
|
|
assert(loop && "Expected affine for");
|
|
if (failed(cst.addAffineForOpDomain(loop)))
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
// Populates 'cst' with FlatAffineValueConstraints which represent slice bounds.
|
|
LogicalResult
|
|
ComputationSliceState::getAsConstraints(FlatAffineValueConstraints *cst) {
|
|
assert(!lbOperands.empty());
|
|
// Adds src 'ivs' as dimension identifiers in 'cst'.
|
|
unsigned numDims = ivs.size();
|
|
// Adds operands (dst ivs and symbols) as symbols in 'cst'.
|
|
unsigned numSymbols = lbOperands[0].size();
|
|
|
|
SmallVector<Value, 4> values(ivs);
|
|
// Append 'ivs' then 'operands' to 'values'.
|
|
values.append(lbOperands[0].begin(), lbOperands[0].end());
|
|
cst->reset(numDims, numSymbols, 0, values);
|
|
|
|
// Add loop bound constraints for values which are loop IVs of the destination
|
|
// of fusion and equality constraints for symbols which are constants.
|
|
for (unsigned i = numDims, end = values.size(); i < end; ++i) {
|
|
Value value = values[i];
|
|
assert(cst->containsId(value) && "value expected to be present");
|
|
if (isValidSymbol(value)) {
|
|
// Check if the symbol is a constant.
|
|
if (auto cOp = value.getDefiningOp<arith::ConstantIndexOp>())
|
|
cst->addBound(FlatAffineConstraints::EQ, value, cOp.value());
|
|
} else if (auto loop = getForInductionVarOwner(value)) {
|
|
if (failed(cst->addAffineForOpDomain(loop)))
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
// Add slices bounds on 'ivs' using maps 'lbs'/'ubs' with 'lbOperands[0]'
|
|
LogicalResult ret = cst->addSliceBounds(ivs, lbs, ubs, lbOperands[0]);
|
|
assert(succeeded(ret) &&
|
|
"should not fail as we never have semi-affine slice maps");
|
|
(void)ret;
|
|
return success();
|
|
}
|
|
|
|
// Clears state bounds and operand state.
|
|
void ComputationSliceState::clearBounds() {
|
|
lbs.clear();
|
|
ubs.clear();
|
|
lbOperands.clear();
|
|
ubOperands.clear();
|
|
}
|
|
|
|
void ComputationSliceState::dump() const {
|
|
llvm::errs() << "\tIVs:\n";
|
|
for (Value iv : ivs)
|
|
llvm::errs() << "\t\t" << iv << "\n";
|
|
|
|
llvm::errs() << "\tLBs:\n";
|
|
for (auto &en : llvm::enumerate(lbs)) {
|
|
llvm::errs() << "\t\t" << en.value() << "\n";
|
|
llvm::errs() << "\t\tOperands:\n";
|
|
for (Value lbOp : lbOperands[en.index()])
|
|
llvm::errs() << "\t\t\t" << lbOp << "\n";
|
|
}
|
|
|
|
llvm::errs() << "\tUBs:\n";
|
|
for (auto &en : llvm::enumerate(ubs)) {
|
|
llvm::errs() << "\t\t" << en.value() << "\n";
|
|
llvm::errs() << "\t\tOperands:\n";
|
|
for (Value ubOp : ubOperands[en.index()])
|
|
llvm::errs() << "\t\t\t" << ubOp << "\n";
|
|
}
|
|
}
|
|
|
|
/// Fast check to determine if the computation slice is maximal. Returns true if
|
|
/// each slice dimension maps to an existing dst dimension and both the src
|
|
/// and the dst loops for those dimensions have the same bounds. Returns false
|
|
/// if both the src and the dst loops don't have the same bounds. Returns
|
|
/// llvm::None if none of the above can be proven.
|
|
Optional<bool> ComputationSliceState::isSliceMaximalFastCheck() const {
|
|
assert(lbs.size() == ubs.size() && lbs.size() && ivs.size() &&
|
|
"Unexpected number of lbs, ubs and ivs in slice");
|
|
|
|
for (unsigned i = 0, end = lbs.size(); i < end; ++i) {
|
|
AffineMap lbMap = lbs[i];
|
|
AffineMap ubMap = ubs[i];
|
|
|
|
// Check if this slice is just an equality along this dimension.
|
|
if (!lbMap || !ubMap || lbMap.getNumResults() != 1 ||
|
|
ubMap.getNumResults() != 1 ||
|
|
lbMap.getResult(0) + 1 != ubMap.getResult(0) ||
|
|
// The condition above will be true for maps describing a single
|
|
// iteration (e.g., lbMap.getResult(0) = 0, ubMap.getResult(0) = 1).
|
|
// Make sure we skip those cases by checking that the lb result is not
|
|
// just a constant.
|
|
lbMap.getResult(0).isa<AffineConstantExpr>())
|
|
return llvm::None;
|
|
|
|
// Limited support: we expect the lb result to be just a loop dimension for
|
|
// now.
|
|
AffineDimExpr result = lbMap.getResult(0).dyn_cast<AffineDimExpr>();
|
|
if (!result)
|
|
return llvm::None;
|
|
|
|
// Retrieve dst loop bounds.
|
|
AffineForOp dstLoop =
|
|
getForInductionVarOwner(lbOperands[i][result.getPosition()]);
|
|
if (!dstLoop)
|
|
return llvm::None;
|
|
AffineMap dstLbMap = dstLoop.getLowerBoundMap();
|
|
AffineMap dstUbMap = dstLoop.getUpperBoundMap();
|
|
|
|
// Retrieve src loop bounds.
|
|
AffineForOp srcLoop = getForInductionVarOwner(ivs[i]);
|
|
assert(srcLoop && "Expected affine for");
|
|
AffineMap srcLbMap = srcLoop.getLowerBoundMap();
|
|
AffineMap srcUbMap = srcLoop.getUpperBoundMap();
|
|
|
|
// Limited support: we expect simple src and dst loops with a single
|
|
// constant component per bound for now.
|
|
if (srcLbMap.getNumResults() != 1 || srcUbMap.getNumResults() != 1 ||
|
|
dstLbMap.getNumResults() != 1 || dstUbMap.getNumResults() != 1)
|
|
return llvm::None;
|
|
|
|
AffineExpr srcLbResult = srcLbMap.getResult(0);
|
|
AffineExpr dstLbResult = dstLbMap.getResult(0);
|
|
AffineExpr srcUbResult = srcUbMap.getResult(0);
|
|
AffineExpr dstUbResult = dstUbMap.getResult(0);
|
|
if (!srcLbResult.isa<AffineConstantExpr>() ||
|
|
!srcUbResult.isa<AffineConstantExpr>() ||
|
|
!dstLbResult.isa<AffineConstantExpr>() ||
|
|
!dstUbResult.isa<AffineConstantExpr>())
|
|
return llvm::None;
|
|
|
|
// Check if src and dst loop bounds are the same. If not, we can guarantee
|
|
// that the slice is not maximal.
|
|
if (srcLbResult != dstLbResult || srcUbResult != dstUbResult ||
|
|
srcLoop.getStep() != dstLoop.getStep())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if it is deterministically verified that the original iteration
|
|
/// space of the slice is contained within the new iteration space that is
|
|
/// created after fusing 'this' slice into its destination.
|
|
Optional<bool> ComputationSliceState::isSliceValid() {
|
|
// Fast check to determine if the slice is valid. If the following conditions
|
|
// are verified to be true, slice is declared valid by the fast check:
|
|
// 1. Each slice loop is a single iteration loop bound in terms of a single
|
|
// destination loop IV.
|
|
// 2. Loop bounds of the destination loop IV (from above) and those of the
|
|
// source loop IV are exactly the same.
|
|
// If the fast check is inconclusive or false, we proceed with a more
|
|
// expensive analysis.
|
|
// TODO: Store the result of the fast check, as it might be used again in
|
|
// `canRemoveSrcNodeAfterFusion`.
|
|
Optional<bool> isValidFastCheck = isSliceMaximalFastCheck();
|
|
if (isValidFastCheck.hasValue() && isValidFastCheck.getValue())
|
|
return true;
|
|
|
|
// Create constraints for the source loop nest using which slice is computed.
|
|
FlatAffineValueConstraints srcConstraints;
|
|
// TODO: Store the source's domain to avoid computation at each depth.
|
|
if (failed(getSourceAsConstraints(srcConstraints))) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Unable to compute source's domain\n");
|
|
return llvm::None;
|
|
}
|
|
// As the set difference utility currently cannot handle symbols in its
|
|
// operands, validity of the slice cannot be determined.
|
|
if (srcConstraints.getNumSymbolIds() > 0) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Cannot handle symbols in source domain\n");
|
|
return llvm::None;
|
|
}
|
|
// TODO: Handle local ids in the source domains while using the 'projectOut'
|
|
// utility below. Currently, aligning is not done assuming that there will be
|
|
// no local ids in the source domain.
|
|
if (srcConstraints.getNumLocalIds() != 0) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Cannot handle locals in source domain\n");
|
|
return llvm::None;
|
|
}
|
|
|
|
// Create constraints for the slice loop nest that would be created if the
|
|
// fusion succeeds.
|
|
FlatAffineValueConstraints sliceConstraints;
|
|
if (failed(getAsConstraints(&sliceConstraints))) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Unable to compute slice's domain\n");
|
|
return llvm::None;
|
|
}
|
|
|
|
// Projecting out every dimension other than the 'ivs' to express slice's
|
|
// domain completely in terms of source's IVs.
|
|
sliceConstraints.projectOut(ivs.size(),
|
|
sliceConstraints.getNumIds() - ivs.size());
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Domain of the source of the slice:\n");
|
|
LLVM_DEBUG(srcConstraints.dump());
|
|
LLVM_DEBUG(llvm::dbgs() << "Domain of the slice if this fusion succeeds "
|
|
"(expressed in terms of its source's IVs):\n");
|
|
LLVM_DEBUG(sliceConstraints.dump());
|
|
|
|
// TODO: Store 'srcSet' to avoid recalculating for each depth.
|
|
PresburgerSet srcSet(srcConstraints);
|
|
PresburgerSet sliceSet(sliceConstraints);
|
|
PresburgerSet diffSet = sliceSet.subtract(srcSet);
|
|
|
|
if (!diffSet.isIntegerEmpty()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Incorrect slice\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if the computation slice encloses all the iterations of the
|
|
/// sliced loop nest. Returns false if it does not. Returns llvm::None if it
|
|
/// cannot determine if the slice is maximal or not.
|
|
Optional<bool> ComputationSliceState::isMaximal() const {
|
|
// Fast check to determine if the computation slice is maximal. If the result
|
|
// is inconclusive, we proceed with a more expensive analysis.
|
|
Optional<bool> isMaximalFastCheck = isSliceMaximalFastCheck();
|
|
if (isMaximalFastCheck.hasValue())
|
|
return isMaximalFastCheck;
|
|
|
|
// Create constraints for the src loop nest being sliced.
|
|
FlatAffineValueConstraints srcConstraints;
|
|
srcConstraints.reset(/*numDims=*/ivs.size(), /*numSymbols=*/0,
|
|
/*numLocals=*/0, ivs);
|
|
for (Value iv : ivs) {
|
|
AffineForOp loop = getForInductionVarOwner(iv);
|
|
assert(loop && "Expected affine for");
|
|
if (failed(srcConstraints.addAffineForOpDomain(loop)))
|
|
return llvm::None;
|
|
}
|
|
|
|
// Create constraints for the slice using the dst loop nest information. We
|
|
// retrieve existing dst loops from the lbOperands.
|
|
SmallVector<Value, 8> consumerIVs;
|
|
for (Value lbOp : lbOperands[0])
|
|
if (getForInductionVarOwner(lbOp))
|
|
consumerIVs.push_back(lbOp);
|
|
|
|
// Add empty IV Values for those new loops that are not equalities and,
|
|
// therefore, are not yet materialized in the IR.
|
|
for (int i = consumerIVs.size(), end = ivs.size(); i < end; ++i)
|
|
consumerIVs.push_back(Value());
|
|
|
|
FlatAffineValueConstraints sliceConstraints;
|
|
sliceConstraints.reset(/*numDims=*/consumerIVs.size(), /*numSymbols=*/0,
|
|
/*numLocals=*/0, consumerIVs);
|
|
|
|
if (failed(sliceConstraints.addDomainFromSliceMaps(lbs, ubs, lbOperands[0])))
|
|
return llvm::None;
|
|
|
|
if (srcConstraints.getNumDimIds() != sliceConstraints.getNumDimIds())
|
|
// Constraint dims are different. The integer set difference can't be
|
|
// computed so we don't know if the slice is maximal.
|
|
return llvm::None;
|
|
|
|
// Compute the difference between the src loop nest and the slice integer
|
|
// sets.
|
|
PresburgerSet srcSet(srcConstraints);
|
|
PresburgerSet sliceSet(sliceConstraints);
|
|
PresburgerSet diffSet = srcSet.subtract(sliceSet);
|
|
return diffSet.isIntegerEmpty();
|
|
}
|
|
|
|
unsigned MemRefRegion::getRank() const {
|
|
return memref.getType().cast<MemRefType>().getRank();
|
|
}
|
|
|
|
Optional<int64_t> MemRefRegion::getConstantBoundingSizeAndShape(
|
|
SmallVectorImpl<int64_t> *shape, std::vector<SmallVector<int64_t, 4>> *lbs,
|
|
SmallVectorImpl<int64_t> *lbDivisors) const {
|
|
auto memRefType = memref.getType().cast<MemRefType>();
|
|
unsigned rank = memRefType.getRank();
|
|
if (shape)
|
|
shape->reserve(rank);
|
|
|
|
assert(rank == cst.getNumDimIds() && "inconsistent memref region");
|
|
|
|
// Use a copy of the region constraints that has upper/lower bounds for each
|
|
// memref dimension with static size added to guard against potential
|
|
// over-approximation from projection or union bounding box. We may not add
|
|
// this on the region itself since they might just be redundant constraints
|
|
// that will need non-trivials means to eliminate.
|
|
FlatAffineConstraints cstWithShapeBounds(cst);
|
|
for (unsigned r = 0; r < rank; r++) {
|
|
cstWithShapeBounds.addBound(FlatAffineConstraints::LB, r, 0);
|
|
int64_t dimSize = memRefType.getDimSize(r);
|
|
if (ShapedType::isDynamic(dimSize))
|
|
continue;
|
|
cstWithShapeBounds.addBound(FlatAffineConstraints::UB, r, dimSize - 1);
|
|
}
|
|
|
|
// Find a constant upper bound on the extent of this memref region along each
|
|
// dimension.
|
|
int64_t numElements = 1;
|
|
int64_t diffConstant;
|
|
int64_t lbDivisor;
|
|
for (unsigned d = 0; d < rank; d++) {
|
|
SmallVector<int64_t, 4> lb;
|
|
Optional<int64_t> diff =
|
|
cstWithShapeBounds.getConstantBoundOnDimSize(d, &lb, &lbDivisor);
|
|
if (diff.hasValue()) {
|
|
diffConstant = diff.getValue();
|
|
assert(diffConstant >= 0 && "Dim size bound can't be negative");
|
|
assert(lbDivisor > 0);
|
|
} else {
|
|
// If no constant bound is found, then it can always be bound by the
|
|
// memref's dim size if the latter has a constant size along this dim.
|
|
auto dimSize = memRefType.getDimSize(d);
|
|
if (dimSize == -1)
|
|
return None;
|
|
diffConstant = dimSize;
|
|
// Lower bound becomes 0.
|
|
lb.resize(cstWithShapeBounds.getNumSymbolIds() + 1, 0);
|
|
lbDivisor = 1;
|
|
}
|
|
numElements *= diffConstant;
|
|
if (lbs) {
|
|
lbs->push_back(lb);
|
|
assert(lbDivisors && "both lbs and lbDivisor or none");
|
|
lbDivisors->push_back(lbDivisor);
|
|
}
|
|
if (shape) {
|
|
shape->push_back(diffConstant);
|
|
}
|
|
}
|
|
return numElements;
|
|
}
|
|
|
|
void MemRefRegion::getLowerAndUpperBound(unsigned pos, AffineMap &lbMap,
|
|
AffineMap &ubMap) const {
|
|
assert(pos < cst.getNumDimIds() && "invalid position");
|
|
auto memRefType = memref.getType().cast<MemRefType>();
|
|
unsigned rank = memRefType.getRank();
|
|
|
|
assert(rank == cst.getNumDimIds() && "inconsistent memref region");
|
|
|
|
auto boundPairs = cst.getLowerAndUpperBound(
|
|
pos, /*offset=*/0, /*num=*/rank, cst.getNumDimAndSymbolIds(),
|
|
/*localExprs=*/{}, memRefType.getContext());
|
|
lbMap = boundPairs.first;
|
|
ubMap = boundPairs.second;
|
|
assert(lbMap && "lower bound for a region must exist");
|
|
assert(ubMap && "upper bound for a region must exist");
|
|
assert(lbMap.getNumInputs() == cst.getNumDimAndSymbolIds() - rank);
|
|
assert(ubMap.getNumInputs() == cst.getNumDimAndSymbolIds() - rank);
|
|
}
|
|
|
|
LogicalResult MemRefRegion::unionBoundingBox(const MemRefRegion &other) {
|
|
assert(memref == other.memref);
|
|
return cst.unionBoundingBox(*other.getConstraints());
|
|
}
|
|
|
|
/// Computes the memory region accessed by this memref with the region
|
|
/// represented as constraints symbolic/parametric in 'loopDepth' loops
|
|
/// surrounding opInst and any additional Function symbols.
|
|
// For example, the memref region for this load operation at loopDepth = 1 will
|
|
// be as below:
|
|
//
|
|
// affine.for %i = 0 to 32 {
|
|
// affine.for %ii = %i to (d0) -> (d0 + 8) (%i) {
|
|
// load %A[%ii]
|
|
// }
|
|
// }
|
|
//
|
|
// region: {memref = %A, write = false, {%i <= m0 <= %i + 7} }
|
|
// The last field is a 2-d FlatAffineConstraints symbolic in %i.
|
|
//
|
|
// TODO: extend this to any other memref dereferencing ops
|
|
// (dma_start, dma_wait).
|
|
LogicalResult MemRefRegion::compute(Operation *op, unsigned loopDepth,
|
|
const ComputationSliceState *sliceState,
|
|
bool addMemRefDimBounds) {
|
|
assert((isa<AffineReadOpInterface, AffineWriteOpInterface>(op)) &&
|
|
"affine read/write op expected");
|
|
|
|
MemRefAccess access(op);
|
|
memref = access.memref;
|
|
write = access.isStore();
|
|
|
|
unsigned rank = access.getRank();
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "MemRefRegion::compute: " << *op
|
|
<< "depth: " << loopDepth << "\n";);
|
|
|
|
// 0-d memrefs.
|
|
if (rank == 0) {
|
|
SmallVector<AffineForOp, 4> ivs;
|
|
getLoopIVs(*op, &ivs);
|
|
assert(loopDepth <= ivs.size() && "invalid 'loopDepth'");
|
|
// The first 'loopDepth' IVs are symbols for this region.
|
|
ivs.resize(loopDepth);
|
|
SmallVector<Value, 4> regionSymbols;
|
|
extractForInductionVars(ivs, ®ionSymbols);
|
|
// A 0-d memref has a 0-d region.
|
|
cst.reset(rank, loopDepth, /*numLocals=*/0, regionSymbols);
|
|
return success();
|
|
}
|
|
|
|
// Build the constraints for this region.
|
|
AffineValueMap accessValueMap;
|
|
access.getAccessMap(&accessValueMap);
|
|
AffineMap accessMap = accessValueMap.getAffineMap();
|
|
|
|
unsigned numDims = accessMap.getNumDims();
|
|
unsigned numSymbols = accessMap.getNumSymbols();
|
|
unsigned numOperands = accessValueMap.getNumOperands();
|
|
// Merge operands with slice operands.
|
|
SmallVector<Value, 4> operands;
|
|
operands.resize(numOperands);
|
|
for (unsigned i = 0; i < numOperands; ++i)
|
|
operands[i] = accessValueMap.getOperand(i);
|
|
|
|
if (sliceState != nullptr) {
|
|
operands.reserve(operands.size() + sliceState->lbOperands[0].size());
|
|
// Append slice operands to 'operands' as symbols.
|
|
for (auto extraOperand : sliceState->lbOperands[0]) {
|
|
if (!llvm::is_contained(operands, extraOperand)) {
|
|
operands.push_back(extraOperand);
|
|
numSymbols++;
|
|
}
|
|
}
|
|
}
|
|
// We'll first associate the dims and symbols of the access map to the dims
|
|
// and symbols resp. of cst. This will change below once cst is
|
|
// fully constructed out.
|
|
cst.reset(numDims, numSymbols, 0, operands);
|
|
|
|
// Add equality constraints.
|
|
// Add inequalities for loop lower/upper bounds.
|
|
for (unsigned i = 0; i < numDims + numSymbols; ++i) {
|
|
auto operand = operands[i];
|
|
if (auto loop = getForInductionVarOwner(operand)) {
|
|
// Note that cst can now have more dimensions than accessMap if the
|
|
// bounds expressions involve outer loops or other symbols.
|
|
// TODO: rewrite this to use getInstIndexSet; this way
|
|
// conditionals will be handled when the latter supports it.
|
|
if (failed(cst.addAffineForOpDomain(loop)))
|
|
return failure();
|
|
} else {
|
|
// Has to be a valid symbol.
|
|
auto symbol = operand;
|
|
assert(isValidSymbol(symbol));
|
|
// Check if the symbol is a constant.
|
|
if (auto *op = symbol.getDefiningOp()) {
|
|
if (auto constOp = dyn_cast<arith::ConstantIndexOp>(op)) {
|
|
cst.addBound(FlatAffineConstraints::EQ, symbol, constOp.value());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add lower/upper bounds on loop IVs using bounds from 'sliceState'.
|
|
if (sliceState != nullptr) {
|
|
// Add dim and symbol slice operands.
|
|
for (auto operand : sliceState->lbOperands[0]) {
|
|
cst.addInductionVarOrTerminalSymbol(operand);
|
|
}
|
|
// Add upper/lower bounds from 'sliceState' to 'cst'.
|
|
LogicalResult ret =
|
|
cst.addSliceBounds(sliceState->ivs, sliceState->lbs, sliceState->ubs,
|
|
sliceState->lbOperands[0]);
|
|
assert(succeeded(ret) &&
|
|
"should not fail as we never have semi-affine slice maps");
|
|
(void)ret;
|
|
}
|
|
|
|
// Add access function equalities to connect loop IVs to data dimensions.
|
|
if (failed(cst.composeMap(&accessValueMap))) {
|
|
op->emitError("getMemRefRegion: compose affine map failed");
|
|
LLVM_DEBUG(accessValueMap.getAffineMap().dump());
|
|
return failure();
|
|
}
|
|
|
|
// Set all identifiers appearing after the first 'rank' identifiers as
|
|
// symbolic identifiers - so that the ones corresponding to the memref
|
|
// dimensions are the dimensional identifiers for the memref region.
|
|
cst.setDimSymbolSeparation(cst.getNumDimAndSymbolIds() - rank);
|
|
|
|
// Eliminate any loop IVs other than the outermost 'loopDepth' IVs, on which
|
|
// this memref region is symbolic.
|
|
SmallVector<AffineForOp, 4> enclosingIVs;
|
|
getLoopIVs(*op, &enclosingIVs);
|
|
assert(loopDepth <= enclosingIVs.size() && "invalid loop depth");
|
|
enclosingIVs.resize(loopDepth);
|
|
SmallVector<Value, 4> ids;
|
|
cst.getValues(cst.getNumDimIds(), cst.getNumDimAndSymbolIds(), &ids);
|
|
for (auto id : ids) {
|
|
AffineForOp iv;
|
|
if ((iv = getForInductionVarOwner(id)) &&
|
|
llvm::is_contained(enclosingIVs, iv) == false) {
|
|
cst.projectOut(id);
|
|
}
|
|
}
|
|
|
|
// Project out any local variables (these would have been added for any
|
|
// mod/divs).
|
|
cst.projectOut(cst.getNumDimAndSymbolIds(), cst.getNumLocalIds());
|
|
|
|
// Constant fold any symbolic identifiers.
|
|
cst.constantFoldIdRange(/*pos=*/cst.getNumDimIds(),
|
|
/*num=*/cst.getNumSymbolIds());
|
|
|
|
assert(cst.getNumDimIds() == rank && "unexpected MemRefRegion format");
|
|
|
|
// Add upper/lower bounds for each memref dimension with static size
|
|
// to guard against potential over-approximation from projection.
|
|
// TODO: Support dynamic memref dimensions.
|
|
if (addMemRefDimBounds) {
|
|
auto memRefType = memref.getType().cast<MemRefType>();
|
|
for (unsigned r = 0; r < rank; r++) {
|
|
cst.addBound(FlatAffineConstraints::LB, /*pos=*/r, /*value=*/0);
|
|
if (memRefType.isDynamicDim(r))
|
|
continue;
|
|
cst.addBound(FlatAffineConstraints::UB, /*pos=*/r,
|
|
memRefType.getDimSize(r) - 1);
|
|
}
|
|
}
|
|
cst.removeTrivialRedundancy();
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Memory region:\n");
|
|
LLVM_DEBUG(cst.dump());
|
|
return success();
|
|
}
|
|
|
|
static unsigned getMemRefEltSizeInBytes(MemRefType memRefType) {
|
|
auto elementType = memRefType.getElementType();
|
|
|
|
unsigned sizeInBits;
|
|
if (elementType.isIntOrFloat()) {
|
|
sizeInBits = elementType.getIntOrFloatBitWidth();
|
|
} else {
|
|
auto vectorType = elementType.cast<VectorType>();
|
|
sizeInBits =
|
|
vectorType.getElementTypeBitWidth() * vectorType.getNumElements();
|
|
}
|
|
return llvm::divideCeil(sizeInBits, 8);
|
|
}
|
|
|
|
// Returns the size of the region.
|
|
Optional<int64_t> MemRefRegion::getRegionSize() {
|
|
auto memRefType = memref.getType().cast<MemRefType>();
|
|
|
|
if (!memRefType.getLayout().isIdentity()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Non-identity layout map not yet supported\n");
|
|
return false;
|
|
}
|
|
|
|
// Indices to use for the DmaStart op.
|
|
// Indices for the original memref being DMAed from/to.
|
|
SmallVector<Value, 4> memIndices;
|
|
// Indices for the faster buffer being DMAed into/from.
|
|
SmallVector<Value, 4> bufIndices;
|
|
|
|
// Compute the extents of the buffer.
|
|
Optional<int64_t> numElements = getConstantBoundingSizeAndShape();
|
|
if (!numElements.hasValue()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Dynamic shapes not yet supported\n");
|
|
return None;
|
|
}
|
|
return getMemRefEltSizeInBytes(memRefType) * numElements.getValue();
|
|
}
|
|
|
|
/// Returns the size of memref data in bytes if it's statically shaped, None
|
|
/// otherwise. If the element of the memref has vector type, takes into account
|
|
/// size of the vector as well.
|
|
// TODO: improve/complete this when we have target data.
|
|
Optional<uint64_t> mlir::getMemRefSizeInBytes(MemRefType memRefType) {
|
|
if (!memRefType.hasStaticShape())
|
|
return None;
|
|
auto elementType = memRefType.getElementType();
|
|
if (!elementType.isIntOrFloat() && !elementType.isa<VectorType>())
|
|
return None;
|
|
|
|
uint64_t sizeInBytes = getMemRefEltSizeInBytes(memRefType);
|
|
for (unsigned i = 0, e = memRefType.getRank(); i < e; i++) {
|
|
sizeInBytes = sizeInBytes * memRefType.getDimSize(i);
|
|
}
|
|
return sizeInBytes;
|
|
}
|
|
|
|
template <typename LoadOrStoreOp>
|
|
LogicalResult mlir::boundCheckLoadOrStoreOp(LoadOrStoreOp loadOrStoreOp,
|
|
bool emitError) {
|
|
static_assert(llvm::is_one_of<LoadOrStoreOp, AffineReadOpInterface,
|
|
AffineWriteOpInterface>::value,
|
|
"argument should be either a AffineReadOpInterface or a "
|
|
"AffineWriteOpInterface");
|
|
|
|
Operation *op = loadOrStoreOp.getOperation();
|
|
MemRefRegion region(op->getLoc());
|
|
if (failed(region.compute(op, /*loopDepth=*/0, /*sliceState=*/nullptr,
|
|
/*addMemRefDimBounds=*/false)))
|
|
return success();
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Memory region");
|
|
LLVM_DEBUG(region.getConstraints()->dump());
|
|
|
|
bool outOfBounds = false;
|
|
unsigned rank = loadOrStoreOp.getMemRefType().getRank();
|
|
|
|
// For each dimension, check for out of bounds.
|
|
for (unsigned r = 0; r < rank; r++) {
|
|
FlatAffineConstraints ucst(*region.getConstraints());
|
|
|
|
// Intersect memory region with constraint capturing out of bounds (both out
|
|
// of upper and out of lower), and check if the constraint system is
|
|
// feasible. If it is, there is at least one point out of bounds.
|
|
SmallVector<int64_t, 4> ineq(rank + 1, 0);
|
|
int64_t dimSize = loadOrStoreOp.getMemRefType().getDimSize(r);
|
|
// TODO: handle dynamic dim sizes.
|
|
if (dimSize == -1)
|
|
continue;
|
|
|
|
// Check for overflow: d_i >= memref dim size.
|
|
ucst.addBound(FlatAffineConstraints::LB, r, dimSize);
|
|
outOfBounds = !ucst.isEmpty();
|
|
if (outOfBounds && emitError) {
|
|
loadOrStoreOp.emitOpError()
|
|
<< "memref out of upper bound access along dimension #" << (r + 1);
|
|
}
|
|
|
|
// Check for a negative index.
|
|
FlatAffineConstraints lcst(*region.getConstraints());
|
|
std::fill(ineq.begin(), ineq.end(), 0);
|
|
// d_i <= -1;
|
|
lcst.addBound(FlatAffineConstraints::UB, r, -1);
|
|
outOfBounds = !lcst.isEmpty();
|
|
if (outOfBounds && emitError) {
|
|
loadOrStoreOp.emitOpError()
|
|
<< "memref out of lower bound access along dimension #" << (r + 1);
|
|
}
|
|
}
|
|
return failure(outOfBounds);
|
|
}
|
|
|
|
// Explicitly instantiate the template so that the compiler knows we need them!
|
|
template LogicalResult
|
|
mlir::boundCheckLoadOrStoreOp(AffineReadOpInterface loadOp, bool emitError);
|
|
template LogicalResult
|
|
mlir::boundCheckLoadOrStoreOp(AffineWriteOpInterface storeOp, bool emitError);
|
|
|
|
// Returns in 'positions' the Block positions of 'op' in each ancestor
|
|
// Block from the Block containing operation, stopping at 'limitBlock'.
|
|
static void findInstPosition(Operation *op, Block *limitBlock,
|
|
SmallVectorImpl<unsigned> *positions) {
|
|
Block *block = op->getBlock();
|
|
while (block != limitBlock) {
|
|
// FIXME: This algorithm is unnecessarily O(n) and should be improved to not
|
|
// rely on linear scans.
|
|
int instPosInBlock = std::distance(block->begin(), op->getIterator());
|
|
positions->push_back(instPosInBlock);
|
|
op = block->getParentOp();
|
|
block = op->getBlock();
|
|
}
|
|
std::reverse(positions->begin(), positions->end());
|
|
}
|
|
|
|
// Returns the Operation in a possibly nested set of Blocks, where the
|
|
// position of the operation is represented by 'positions', which has a
|
|
// Block position for each level of nesting.
|
|
static Operation *getInstAtPosition(ArrayRef<unsigned> positions,
|
|
unsigned level, Block *block) {
|
|
unsigned i = 0;
|
|
for (auto &op : *block) {
|
|
if (i != positions[level]) {
|
|
++i;
|
|
continue;
|
|
}
|
|
if (level == positions.size() - 1)
|
|
return &op;
|
|
if (auto childAffineForOp = dyn_cast<AffineForOp>(op))
|
|
return getInstAtPosition(positions, level + 1,
|
|
childAffineForOp.getBody());
|
|
|
|
for (auto ®ion : op.getRegions()) {
|
|
for (auto &b : region)
|
|
if (auto *ret = getInstAtPosition(positions, level + 1, &b))
|
|
return ret;
|
|
}
|
|
return nullptr;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Adds loop IV bounds to 'cst' for loop IVs not found in 'ivs'.
|
|
static LogicalResult addMissingLoopIVBounds(SmallPtrSet<Value, 8> &ivs,
|
|
FlatAffineValueConstraints *cst) {
|
|
for (unsigned i = 0, e = cst->getNumDimIds(); i < e; ++i) {
|
|
auto value = cst->getValue(i);
|
|
if (ivs.count(value) == 0) {
|
|
assert(isForInductionVar(value));
|
|
auto loop = getForInductionVarOwner(value);
|
|
if (failed(cst->addAffineForOpDomain(loop)))
|
|
return failure();
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
/// Returns the innermost common loop depth for the set of operations in 'ops'.
|
|
// TODO: Move this to LoopUtils.
|
|
unsigned mlir::getInnermostCommonLoopDepth(
|
|
ArrayRef<Operation *> ops, SmallVectorImpl<AffineForOp> *surroundingLoops) {
|
|
unsigned numOps = ops.size();
|
|
assert(numOps > 0 && "Expected at least one operation");
|
|
|
|
std::vector<SmallVector<AffineForOp, 4>> loops(numOps);
|
|
unsigned loopDepthLimit = std::numeric_limits<unsigned>::max();
|
|
for (unsigned i = 0; i < numOps; ++i) {
|
|
getLoopIVs(*ops[i], &loops[i]);
|
|
loopDepthLimit =
|
|
std::min(loopDepthLimit, static_cast<unsigned>(loops[i].size()));
|
|
}
|
|
|
|
unsigned loopDepth = 0;
|
|
for (unsigned d = 0; d < loopDepthLimit; ++d) {
|
|
unsigned i;
|
|
for (i = 1; i < numOps; ++i) {
|
|
if (loops[i - 1][d] != loops[i][d])
|
|
return loopDepth;
|
|
}
|
|
if (surroundingLoops)
|
|
surroundingLoops->push_back(loops[i - 1][d]);
|
|
++loopDepth;
|
|
}
|
|
return loopDepth;
|
|
}
|
|
|
|
/// Computes in 'sliceUnion' the union of all slice bounds computed at
|
|
/// 'loopDepth' between all dependent pairs of ops in 'opsA' and 'opsB', and
|
|
/// then verifies if it is valid. Returns 'SliceComputationResult::Success' if
|
|
/// union was computed correctly, an appropriate failure otherwise.
|
|
SliceComputationResult
|
|
mlir::computeSliceUnion(ArrayRef<Operation *> opsA, ArrayRef<Operation *> opsB,
|
|
unsigned loopDepth, unsigned numCommonLoops,
|
|
bool isBackwardSlice,
|
|
ComputationSliceState *sliceUnion) {
|
|
// Compute the union of slice bounds between all pairs in 'opsA' and
|
|
// 'opsB' in 'sliceUnionCst'.
|
|
FlatAffineValueConstraints sliceUnionCst;
|
|
assert(sliceUnionCst.getNumDimAndSymbolIds() == 0);
|
|
std::vector<std::pair<Operation *, Operation *>> dependentOpPairs;
|
|
for (unsigned i = 0, numOpsA = opsA.size(); i < numOpsA; ++i) {
|
|
MemRefAccess srcAccess(opsA[i]);
|
|
for (unsigned j = 0, numOpsB = opsB.size(); j < numOpsB; ++j) {
|
|
MemRefAccess dstAccess(opsB[j]);
|
|
if (srcAccess.memref != dstAccess.memref)
|
|
continue;
|
|
// Check if 'loopDepth' exceeds nesting depth of src/dst ops.
|
|
if ((!isBackwardSlice && loopDepth > getNestingDepth(opsA[i])) ||
|
|
(isBackwardSlice && loopDepth > getNestingDepth(opsB[j]))) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Invalid loop depth\n");
|
|
return SliceComputationResult::GenericFailure;
|
|
}
|
|
|
|
bool readReadAccesses = isa<AffineReadOpInterface>(srcAccess.opInst) &&
|
|
isa<AffineReadOpInterface>(dstAccess.opInst);
|
|
FlatAffineValueConstraints dependenceConstraints;
|
|
// Check dependence between 'srcAccess' and 'dstAccess'.
|
|
DependenceResult result = checkMemrefAccessDependence(
|
|
srcAccess, dstAccess, /*loopDepth=*/numCommonLoops + 1,
|
|
&dependenceConstraints, /*dependenceComponents=*/nullptr,
|
|
/*allowRAR=*/readReadAccesses);
|
|
if (result.value == DependenceResult::Failure) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Dependence check failed\n");
|
|
return SliceComputationResult::GenericFailure;
|
|
}
|
|
if (result.value == DependenceResult::NoDependence)
|
|
continue;
|
|
dependentOpPairs.push_back({opsA[i], opsB[j]});
|
|
|
|
// Compute slice bounds for 'srcAccess' and 'dstAccess'.
|
|
ComputationSliceState tmpSliceState;
|
|
mlir::getComputationSliceState(opsA[i], opsB[j], &dependenceConstraints,
|
|
loopDepth, isBackwardSlice,
|
|
&tmpSliceState);
|
|
|
|
if (sliceUnionCst.getNumDimAndSymbolIds() == 0) {
|
|
// Initialize 'sliceUnionCst' with the bounds computed in previous step.
|
|
if (failed(tmpSliceState.getAsConstraints(&sliceUnionCst))) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Unable to compute slice bound constraints\n");
|
|
return SliceComputationResult::GenericFailure;
|
|
}
|
|
assert(sliceUnionCst.getNumDimAndSymbolIds() > 0);
|
|
continue;
|
|
}
|
|
|
|
// Compute constraints for 'tmpSliceState' in 'tmpSliceCst'.
|
|
FlatAffineValueConstraints tmpSliceCst;
|
|
if (failed(tmpSliceState.getAsConstraints(&tmpSliceCst))) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Unable to compute slice bound constraints\n");
|
|
return SliceComputationResult::GenericFailure;
|
|
}
|
|
|
|
// Align coordinate spaces of 'sliceUnionCst' and 'tmpSliceCst' if needed.
|
|
if (!sliceUnionCst.areIdsAlignedWithOther(tmpSliceCst)) {
|
|
|
|
// Pre-constraint id alignment: record loop IVs used in each constraint
|
|
// system.
|
|
SmallPtrSet<Value, 8> sliceUnionIVs;
|
|
for (unsigned k = 0, l = sliceUnionCst.getNumDimIds(); k < l; ++k)
|
|
sliceUnionIVs.insert(sliceUnionCst.getValue(k));
|
|
SmallPtrSet<Value, 8> tmpSliceIVs;
|
|
for (unsigned k = 0, l = tmpSliceCst.getNumDimIds(); k < l; ++k)
|
|
tmpSliceIVs.insert(tmpSliceCst.getValue(k));
|
|
|
|
sliceUnionCst.mergeAndAlignIdsWithOther(/*offset=*/0, &tmpSliceCst);
|
|
|
|
// Post-constraint id alignment: add loop IV bounds missing after
|
|
// id alignment to constraint systems. This can occur if one constraint
|
|
// system uses an loop IV that is not used by the other. The call
|
|
// to unionBoundingBox below expects constraints for each Loop IV, even
|
|
// if they are the unsliced full loop bounds added here.
|
|
if (failed(addMissingLoopIVBounds(sliceUnionIVs, &sliceUnionCst)))
|
|
return SliceComputationResult::GenericFailure;
|
|
if (failed(addMissingLoopIVBounds(tmpSliceIVs, &tmpSliceCst)))
|
|
return SliceComputationResult::GenericFailure;
|
|
}
|
|
// Compute union bounding box of 'sliceUnionCst' and 'tmpSliceCst'.
|
|
if (sliceUnionCst.getNumLocalIds() > 0 ||
|
|
tmpSliceCst.getNumLocalIds() > 0 ||
|
|
failed(sliceUnionCst.unionBoundingBox(tmpSliceCst))) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Unable to compute union bounding box of slice bounds\n");
|
|
return SliceComputationResult::GenericFailure;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Empty union.
|
|
if (sliceUnionCst.getNumDimAndSymbolIds() == 0)
|
|
return SliceComputationResult::GenericFailure;
|
|
|
|
// Gather loops surrounding ops from loop nest where slice will be inserted.
|
|
SmallVector<Operation *, 4> ops;
|
|
for (auto &dep : dependentOpPairs) {
|
|
ops.push_back(isBackwardSlice ? dep.second : dep.first);
|
|
}
|
|
SmallVector<AffineForOp, 4> surroundingLoops;
|
|
unsigned innermostCommonLoopDepth =
|
|
getInnermostCommonLoopDepth(ops, &surroundingLoops);
|
|
if (loopDepth > innermostCommonLoopDepth) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Exceeds max loop depth\n");
|
|
return SliceComputationResult::GenericFailure;
|
|
}
|
|
|
|
// Store 'numSliceLoopIVs' before converting dst loop IVs to dims.
|
|
unsigned numSliceLoopIVs = sliceUnionCst.getNumDimIds();
|
|
|
|
// Convert any dst loop IVs which are symbol identifiers to dim identifiers.
|
|
sliceUnionCst.convertLoopIVSymbolsToDims();
|
|
sliceUnion->clearBounds();
|
|
sliceUnion->lbs.resize(numSliceLoopIVs, AffineMap());
|
|
sliceUnion->ubs.resize(numSliceLoopIVs, AffineMap());
|
|
|
|
// Get slice bounds from slice union constraints 'sliceUnionCst'.
|
|
sliceUnionCst.getSliceBounds(/*offset=*/0, numSliceLoopIVs,
|
|
opsA[0]->getContext(), &sliceUnion->lbs,
|
|
&sliceUnion->ubs);
|
|
|
|
// Add slice bound operands of union.
|
|
SmallVector<Value, 4> sliceBoundOperands;
|
|
sliceUnionCst.getValues(numSliceLoopIVs,
|
|
sliceUnionCst.getNumDimAndSymbolIds(),
|
|
&sliceBoundOperands);
|
|
|
|
// Copy src loop IVs from 'sliceUnionCst' to 'sliceUnion'.
|
|
sliceUnion->ivs.clear();
|
|
sliceUnionCst.getValues(0, numSliceLoopIVs, &sliceUnion->ivs);
|
|
|
|
// Set loop nest insertion point to block start at 'loopDepth'.
|
|
sliceUnion->insertPoint =
|
|
isBackwardSlice
|
|
? surroundingLoops[loopDepth - 1].getBody()->begin()
|
|
: std::prev(surroundingLoops[loopDepth - 1].getBody()->end());
|
|
|
|
// Give each bound its own copy of 'sliceBoundOperands' for subsequent
|
|
// canonicalization.
|
|
sliceUnion->lbOperands.resize(numSliceLoopIVs, sliceBoundOperands);
|
|
sliceUnion->ubOperands.resize(numSliceLoopIVs, sliceBoundOperands);
|
|
|
|
// Check if the slice computed is valid. Return success only if it is verified
|
|
// that the slice is valid, otherwise return appropriate failure status.
|
|
Optional<bool> isSliceValid = sliceUnion->isSliceValid();
|
|
if (!isSliceValid.hasValue()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Cannot determine if the slice is valid\n");
|
|
return SliceComputationResult::GenericFailure;
|
|
}
|
|
if (!isSliceValid.getValue())
|
|
return SliceComputationResult::IncorrectSliceFailure;
|
|
|
|
return SliceComputationResult::Success;
|
|
}
|
|
|
|
// TODO: extend this to handle multiple result maps.
|
|
static Optional<uint64_t> getConstDifference(AffineMap lbMap, AffineMap ubMap) {
|
|
assert(lbMap.getNumResults() == 1 && "expected single result bound map");
|
|
assert(ubMap.getNumResults() == 1 && "expected single result bound map");
|
|
assert(lbMap.getNumDims() == ubMap.getNumDims());
|
|
assert(lbMap.getNumSymbols() == ubMap.getNumSymbols());
|
|
AffineExpr lbExpr(lbMap.getResult(0));
|
|
AffineExpr ubExpr(ubMap.getResult(0));
|
|
auto loopSpanExpr = simplifyAffineExpr(ubExpr - lbExpr, lbMap.getNumDims(),
|
|
lbMap.getNumSymbols());
|
|
auto cExpr = loopSpanExpr.dyn_cast<AffineConstantExpr>();
|
|
if (!cExpr)
|
|
return None;
|
|
return cExpr.getValue();
|
|
}
|
|
|
|
// Builds a map 'tripCountMap' from AffineForOp to constant trip count for loop
|
|
// nest surrounding represented by slice loop bounds in 'slice'. Returns true
|
|
// on success, false otherwise (if a non-constant trip count was encountered).
|
|
// TODO: Make this work with non-unit step loops.
|
|
bool mlir::buildSliceTripCountMap(
|
|
const ComputationSliceState &slice,
|
|
llvm::SmallDenseMap<Operation *, uint64_t, 8> *tripCountMap) {
|
|
unsigned numSrcLoopIVs = slice.ivs.size();
|
|
// Populate map from AffineForOp -> trip count
|
|
for (unsigned i = 0; i < numSrcLoopIVs; ++i) {
|
|
AffineForOp forOp = getForInductionVarOwner(slice.ivs[i]);
|
|
auto *op = forOp.getOperation();
|
|
AffineMap lbMap = slice.lbs[i];
|
|
AffineMap ubMap = slice.ubs[i];
|
|
// If lower or upper bound maps are null or provide no results, it implies
|
|
// that source loop was not at all sliced, and the entire loop will be a
|
|
// part of the slice.
|
|
if (!lbMap || lbMap.getNumResults() == 0 || !ubMap ||
|
|
ubMap.getNumResults() == 0) {
|
|
// The iteration of src loop IV 'i' was not sliced. Use full loop bounds.
|
|
if (forOp.hasConstantLowerBound() && forOp.hasConstantUpperBound()) {
|
|
(*tripCountMap)[op] =
|
|
forOp.getConstantUpperBound() - forOp.getConstantLowerBound();
|
|
continue;
|
|
}
|
|
Optional<uint64_t> maybeConstTripCount = getConstantTripCount(forOp);
|
|
if (maybeConstTripCount.hasValue()) {
|
|
(*tripCountMap)[op] = maybeConstTripCount.getValue();
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
Optional<uint64_t> tripCount = getConstDifference(lbMap, ubMap);
|
|
// Slice bounds are created with a constant ub - lb difference.
|
|
if (!tripCount.hasValue())
|
|
return false;
|
|
(*tripCountMap)[op] = tripCount.getValue();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Return the number of iterations in the given slice.
|
|
uint64_t mlir::getSliceIterationCount(
|
|
const llvm::SmallDenseMap<Operation *, uint64_t, 8> &sliceTripCountMap) {
|
|
uint64_t iterCount = 1;
|
|
for (const auto &count : sliceTripCountMap) {
|
|
iterCount *= count.second;
|
|
}
|
|
return iterCount;
|
|
}
|
|
|
|
const char *const kSliceFusionBarrierAttrName = "slice_fusion_barrier";
|
|
// Computes slice bounds by projecting out any loop IVs from
|
|
// 'dependenceConstraints' at depth greater than 'loopDepth', and computes slice
|
|
// bounds in 'sliceState' which represent the one loop nest's IVs in terms of
|
|
// the other loop nest's IVs, symbols and constants (using 'isBackwardsSlice').
|
|
void mlir::getComputationSliceState(
|
|
Operation *depSourceOp, Operation *depSinkOp,
|
|
FlatAffineValueConstraints *dependenceConstraints, unsigned loopDepth,
|
|
bool isBackwardSlice, ComputationSliceState *sliceState) {
|
|
// Get loop nest surrounding src operation.
|
|
SmallVector<AffineForOp, 4> srcLoopIVs;
|
|
getLoopIVs(*depSourceOp, &srcLoopIVs);
|
|
unsigned numSrcLoopIVs = srcLoopIVs.size();
|
|
|
|
// Get loop nest surrounding dst operation.
|
|
SmallVector<AffineForOp, 4> dstLoopIVs;
|
|
getLoopIVs(*depSinkOp, &dstLoopIVs);
|
|
unsigned numDstLoopIVs = dstLoopIVs.size();
|
|
|
|
assert((!isBackwardSlice && loopDepth <= numSrcLoopIVs) ||
|
|
(isBackwardSlice && loopDepth <= numDstLoopIVs));
|
|
|
|
// Project out dimensions other than those up to 'loopDepth'.
|
|
unsigned pos = isBackwardSlice ? numSrcLoopIVs + loopDepth : loopDepth;
|
|
unsigned num =
|
|
isBackwardSlice ? numDstLoopIVs - loopDepth : numSrcLoopIVs - loopDepth;
|
|
dependenceConstraints->projectOut(pos, num);
|
|
|
|
// Add slice loop IV values to 'sliceState'.
|
|
unsigned offset = isBackwardSlice ? 0 : loopDepth;
|
|
unsigned numSliceLoopIVs = isBackwardSlice ? numSrcLoopIVs : numDstLoopIVs;
|
|
dependenceConstraints->getValues(offset, offset + numSliceLoopIVs,
|
|
&sliceState->ivs);
|
|
|
|
// Set up lower/upper bound affine maps for the slice.
|
|
sliceState->lbs.resize(numSliceLoopIVs, AffineMap());
|
|
sliceState->ubs.resize(numSliceLoopIVs, AffineMap());
|
|
|
|
// Get bounds for slice IVs in terms of other IVs, symbols, and constants.
|
|
dependenceConstraints->getSliceBounds(offset, numSliceLoopIVs,
|
|
depSourceOp->getContext(),
|
|
&sliceState->lbs, &sliceState->ubs);
|
|
|
|
// Set up bound operands for the slice's lower and upper bounds.
|
|
SmallVector<Value, 4> sliceBoundOperands;
|
|
unsigned numDimsAndSymbols = dependenceConstraints->getNumDimAndSymbolIds();
|
|
for (unsigned i = 0; i < numDimsAndSymbols; ++i) {
|
|
if (i < offset || i >= offset + numSliceLoopIVs) {
|
|
sliceBoundOperands.push_back(dependenceConstraints->getValue(i));
|
|
}
|
|
}
|
|
|
|
// Give each bound its own copy of 'sliceBoundOperands' for subsequent
|
|
// canonicalization.
|
|
sliceState->lbOperands.resize(numSliceLoopIVs, sliceBoundOperands);
|
|
sliceState->ubOperands.resize(numSliceLoopIVs, sliceBoundOperands);
|
|
|
|
// Set destination loop nest insertion point to block start at 'dstLoopDepth'.
|
|
sliceState->insertPoint =
|
|
isBackwardSlice ? dstLoopIVs[loopDepth - 1].getBody()->begin()
|
|
: std::prev(srcLoopIVs[loopDepth - 1].getBody()->end());
|
|
|
|
llvm::SmallDenseSet<Value, 8> sequentialLoops;
|
|
if (isa<AffineReadOpInterface>(depSourceOp) &&
|
|
isa<AffineReadOpInterface>(depSinkOp)) {
|
|
// For read-read access pairs, clear any slice bounds on sequential loops.
|
|
// Get sequential loops in loop nest rooted at 'srcLoopIVs[0]'.
|
|
getSequentialLoops(isBackwardSlice ? srcLoopIVs[0] : dstLoopIVs[0],
|
|
&sequentialLoops);
|
|
}
|
|
auto getSliceLoop = [&](unsigned i) {
|
|
return isBackwardSlice ? srcLoopIVs[i] : dstLoopIVs[i];
|
|
};
|
|
auto isInnermostInsertion = [&]() {
|
|
return (isBackwardSlice ? loopDepth >= srcLoopIVs.size()
|
|
: loopDepth >= dstLoopIVs.size());
|
|
};
|
|
llvm::SmallDenseMap<Operation *, uint64_t, 8> sliceTripCountMap;
|
|
auto srcIsUnitSlice = [&]() {
|
|
return (buildSliceTripCountMap(*sliceState, &sliceTripCountMap) &&
|
|
(getSliceIterationCount(sliceTripCountMap) == 1));
|
|
};
|
|
// Clear all sliced loop bounds beginning at the first sequential loop, or
|
|
// first loop with a slice fusion barrier attribute..
|
|
|
|
for (unsigned i = 0; i < numSliceLoopIVs; ++i) {
|
|
Value iv = getSliceLoop(i).getInductionVar();
|
|
if (sequentialLoops.count(iv) == 0 &&
|
|
getSliceLoop(i)->getAttr(kSliceFusionBarrierAttrName) == nullptr)
|
|
continue;
|
|
// Skip reset of bounds of reduction loop inserted in the destination loop
|
|
// that meets the following conditions:
|
|
// 1. Slice is single trip count.
|
|
// 2. Loop bounds of the source and destination match.
|
|
// 3. Is being inserted at the innermost insertion point.
|
|
Optional<bool> isMaximal = sliceState->isMaximal();
|
|
if (isLoopParallelAndContainsReduction(getSliceLoop(i)) &&
|
|
isInnermostInsertion() && srcIsUnitSlice() && isMaximal.hasValue() &&
|
|
isMaximal.getValue())
|
|
continue;
|
|
for (unsigned j = i; j < numSliceLoopIVs; ++j) {
|
|
sliceState->lbs[j] = AffineMap();
|
|
sliceState->ubs[j] = AffineMap();
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Creates a computation slice of the loop nest surrounding 'srcOpInst',
|
|
/// updates the slice loop bounds with any non-null bound maps specified in
|
|
/// 'sliceState', and inserts this slice into the loop nest surrounding
|
|
/// 'dstOpInst' at loop depth 'dstLoopDepth'.
|
|
// TODO: extend the slicing utility to compute slices that
|
|
// aren't necessarily a one-to-one relation b/w the source and destination. The
|
|
// relation between the source and destination could be many-to-many in general.
|
|
// TODO: the slice computation is incorrect in the cases
|
|
// where the dependence from the source to the destination does not cover the
|
|
// entire destination index set. Subtract out the dependent destination
|
|
// iterations from destination index set and check for emptiness --- this is one
|
|
// solution.
|
|
AffineForOp
|
|
mlir::insertBackwardComputationSlice(Operation *srcOpInst, Operation *dstOpInst,
|
|
unsigned dstLoopDepth,
|
|
ComputationSliceState *sliceState) {
|
|
// Get loop nest surrounding src operation.
|
|
SmallVector<AffineForOp, 4> srcLoopIVs;
|
|
getLoopIVs(*srcOpInst, &srcLoopIVs);
|
|
unsigned numSrcLoopIVs = srcLoopIVs.size();
|
|
|
|
// Get loop nest surrounding dst operation.
|
|
SmallVector<AffineForOp, 4> dstLoopIVs;
|
|
getLoopIVs(*dstOpInst, &dstLoopIVs);
|
|
unsigned dstLoopIVsSize = dstLoopIVs.size();
|
|
if (dstLoopDepth > dstLoopIVsSize) {
|
|
dstOpInst->emitError("invalid destination loop depth");
|
|
return AffineForOp();
|
|
}
|
|
|
|
// Find the op block positions of 'srcOpInst' within 'srcLoopIVs'.
|
|
SmallVector<unsigned, 4> positions;
|
|
// TODO: This code is incorrect since srcLoopIVs can be 0-d.
|
|
findInstPosition(srcOpInst, srcLoopIVs[0]->getBlock(), &positions);
|
|
|
|
// Clone src loop nest and insert it a the beginning of the operation block
|
|
// of the loop at 'dstLoopDepth' in 'dstLoopIVs'.
|
|
auto dstAffineForOp = dstLoopIVs[dstLoopDepth - 1];
|
|
OpBuilder b(dstAffineForOp.getBody(), dstAffineForOp.getBody()->begin());
|
|
auto sliceLoopNest =
|
|
cast<AffineForOp>(b.clone(*srcLoopIVs[0].getOperation()));
|
|
|
|
Operation *sliceInst =
|
|
getInstAtPosition(positions, /*level=*/0, sliceLoopNest.getBody());
|
|
// Get loop nest surrounding 'sliceInst'.
|
|
SmallVector<AffineForOp, 4> sliceSurroundingLoops;
|
|
getLoopIVs(*sliceInst, &sliceSurroundingLoops);
|
|
|
|
// Sanity check.
|
|
unsigned sliceSurroundingLoopsSize = sliceSurroundingLoops.size();
|
|
(void)sliceSurroundingLoopsSize;
|
|
assert(dstLoopDepth + numSrcLoopIVs >= sliceSurroundingLoopsSize);
|
|
unsigned sliceLoopLimit = dstLoopDepth + numSrcLoopIVs;
|
|
(void)sliceLoopLimit;
|
|
assert(sliceLoopLimit >= sliceSurroundingLoopsSize);
|
|
|
|
// Update loop bounds for loops in 'sliceLoopNest'.
|
|
for (unsigned i = 0; i < numSrcLoopIVs; ++i) {
|
|
auto forOp = sliceSurroundingLoops[dstLoopDepth + i];
|
|
if (AffineMap lbMap = sliceState->lbs[i])
|
|
forOp.setLowerBound(sliceState->lbOperands[i], lbMap);
|
|
if (AffineMap ubMap = sliceState->ubs[i])
|
|
forOp.setUpperBound(sliceState->ubOperands[i], ubMap);
|
|
}
|
|
return sliceLoopNest;
|
|
}
|
|
|
|
// Constructs MemRefAccess populating it with the memref, its indices and
|
|
// opinst from 'loadOrStoreOpInst'.
|
|
MemRefAccess::MemRefAccess(Operation *loadOrStoreOpInst) {
|
|
if (auto loadOp = dyn_cast<AffineReadOpInterface>(loadOrStoreOpInst)) {
|
|
memref = loadOp.getMemRef();
|
|
opInst = loadOrStoreOpInst;
|
|
auto loadMemrefType = loadOp.getMemRefType();
|
|
indices.reserve(loadMemrefType.getRank());
|
|
for (auto index : loadOp.getMapOperands()) {
|
|
indices.push_back(index);
|
|
}
|
|
} else {
|
|
assert(isa<AffineWriteOpInterface>(loadOrStoreOpInst) &&
|
|
"Affine read/write op expected");
|
|
auto storeOp = cast<AffineWriteOpInterface>(loadOrStoreOpInst);
|
|
opInst = loadOrStoreOpInst;
|
|
memref = storeOp.getMemRef();
|
|
auto storeMemrefType = storeOp.getMemRefType();
|
|
indices.reserve(storeMemrefType.getRank());
|
|
for (auto index : storeOp.getMapOperands()) {
|
|
indices.push_back(index);
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned MemRefAccess::getRank() const {
|
|
return memref.getType().cast<MemRefType>().getRank();
|
|
}
|
|
|
|
bool MemRefAccess::isStore() const {
|
|
return isa<AffineWriteOpInterface>(opInst);
|
|
}
|
|
|
|
/// Returns the nesting depth of this statement, i.e., the number of loops
|
|
/// surrounding this statement.
|
|
unsigned mlir::getNestingDepth(Operation *op) {
|
|
Operation *currOp = op;
|
|
unsigned depth = 0;
|
|
while ((currOp = currOp->getParentOp())) {
|
|
if (isa<AffineForOp>(currOp))
|
|
depth++;
|
|
}
|
|
return depth;
|
|
}
|
|
|
|
/// Equal if both affine accesses are provably equivalent (at compile
|
|
/// time) when considering the memref, the affine maps and their respective
|
|
/// operands. The equality of access functions + operands is checked by
|
|
/// subtracting fully composed value maps, and then simplifying the difference
|
|
/// using the expression flattener.
|
|
/// TODO: this does not account for aliasing of memrefs.
|
|
bool MemRefAccess::operator==(const MemRefAccess &rhs) const {
|
|
if (memref != rhs.memref)
|
|
return false;
|
|
|
|
AffineValueMap diff, thisMap, rhsMap;
|
|
getAccessMap(&thisMap);
|
|
rhs.getAccessMap(&rhsMap);
|
|
AffineValueMap::difference(thisMap, rhsMap, &diff);
|
|
return llvm::all_of(diff.getAffineMap().getResults(),
|
|
[](AffineExpr e) { return e == 0; });
|
|
}
|
|
|
|
/// Returns the number of surrounding loops common to 'loopsA' and 'loopsB',
|
|
/// where each lists loops from outer-most to inner-most in loop nest.
|
|
unsigned mlir::getNumCommonSurroundingLoops(Operation &A, Operation &B) {
|
|
SmallVector<AffineForOp, 4> loopsA, loopsB;
|
|
getLoopIVs(A, &loopsA);
|
|
getLoopIVs(B, &loopsB);
|
|
|
|
unsigned minNumLoops = std::min(loopsA.size(), loopsB.size());
|
|
unsigned numCommonLoops = 0;
|
|
for (unsigned i = 0; i < minNumLoops; ++i) {
|
|
if (loopsA[i].getOperation() != loopsB[i].getOperation())
|
|
break;
|
|
++numCommonLoops;
|
|
}
|
|
return numCommonLoops;
|
|
}
|
|
|
|
static Optional<int64_t> getMemoryFootprintBytes(Block &block,
|
|
Block::iterator start,
|
|
Block::iterator end,
|
|
int memorySpace) {
|
|
SmallDenseMap<Value, std::unique_ptr<MemRefRegion>, 4> regions;
|
|
|
|
// Walk this 'affine.for' operation to gather all memory regions.
|
|
auto result = block.walk(start, end, [&](Operation *opInst) -> WalkResult {
|
|
if (!isa<AffineReadOpInterface, AffineWriteOpInterface>(opInst)) {
|
|
// Neither load nor a store op.
|
|
return WalkResult::advance();
|
|
}
|
|
|
|
// Compute the memref region symbolic in any IVs enclosing this block.
|
|
auto region = std::make_unique<MemRefRegion>(opInst->getLoc());
|
|
if (failed(
|
|
region->compute(opInst,
|
|
/*loopDepth=*/getNestingDepth(&*block.begin())))) {
|
|
return opInst->emitError("error obtaining memory region\n");
|
|
}
|
|
|
|
auto it = regions.find(region->memref);
|
|
if (it == regions.end()) {
|
|
regions[region->memref] = std::move(region);
|
|
} else if (failed(it->second->unionBoundingBox(*region))) {
|
|
return opInst->emitWarning(
|
|
"getMemoryFootprintBytes: unable to perform a union on a memory "
|
|
"region");
|
|
}
|
|
return WalkResult::advance();
|
|
});
|
|
if (result.wasInterrupted())
|
|
return None;
|
|
|
|
int64_t totalSizeInBytes = 0;
|
|
for (const auto ®ion : regions) {
|
|
Optional<int64_t> size = region.second->getRegionSize();
|
|
if (!size.hasValue())
|
|
return None;
|
|
totalSizeInBytes += size.getValue();
|
|
}
|
|
return totalSizeInBytes;
|
|
}
|
|
|
|
Optional<int64_t> mlir::getMemoryFootprintBytes(AffineForOp forOp,
|
|
int memorySpace) {
|
|
auto *forInst = forOp.getOperation();
|
|
return ::getMemoryFootprintBytes(
|
|
*forInst->getBlock(), Block::iterator(forInst),
|
|
std::next(Block::iterator(forInst)), memorySpace);
|
|
}
|
|
|
|
/// Returns whether a loop is parallel and contains a reduction loop.
|
|
bool mlir::isLoopParallelAndContainsReduction(AffineForOp forOp) {
|
|
SmallVector<LoopReduction> reductions;
|
|
if (!isLoopParallel(forOp, &reductions))
|
|
return false;
|
|
return !reductions.empty();
|
|
}
|
|
|
|
/// Returns in 'sequentialLoops' all sequential loops in loop nest rooted
|
|
/// at 'forOp'.
|
|
void mlir::getSequentialLoops(AffineForOp forOp,
|
|
llvm::SmallDenseSet<Value, 8> *sequentialLoops) {
|
|
forOp->walk([&](Operation *op) {
|
|
if (auto innerFor = dyn_cast<AffineForOp>(op))
|
|
if (!isLoopParallel(innerFor))
|
|
sequentialLoops->insert(innerFor.getInductionVar());
|
|
});
|
|
}
|
|
|
|
IntegerSet mlir::simplifyIntegerSet(IntegerSet set) {
|
|
FlatAffineConstraints fac(set);
|
|
if (fac.isEmpty())
|
|
return IntegerSet::getEmptySet(set.getNumDims(), set.getNumSymbols(),
|
|
set.getContext());
|
|
fac.removeTrivialRedundancy();
|
|
|
|
auto simplifiedSet = fac.getAsIntegerSet(set.getContext());
|
|
assert(simplifiedSet && "guaranteed to succeed while roundtripping");
|
|
return simplifiedSet;
|
|
}
|