07f93a1e39
The benchmark framework synthesizes fake "aggregate" Samples representing mean, median and cv. We're only interested in "iteration" samples. Differential Revision: https://reviews.llvm.org/D120062 |
||
---|---|---|
.. | ||
automemcpy | ||
distributions | ||
CMakeLists.txt | ||
JSON.cpp | ||
JSON.h | ||
JSONTest.cpp | ||
LibcBenchmark.cpp | ||
LibcBenchmark.h | ||
LibcBenchmarkTest.cpp | ||
LibcDefaultImplementations.cpp | ||
LibcFunctionPrototypes.h | ||
LibcMemoryBenchmark.cpp | ||
LibcMemoryBenchmark.h | ||
LibcMemoryBenchmarkMain.cpp | ||
LibcMemoryBenchmarkTest.cpp | ||
LibcMemoryGoogleBenchmarkMain.cpp | ||
MemorySizeDistributions.cpp | ||
MemorySizeDistributions.h | ||
RATIONALE.md | ||
README.md | ||
libc-benchmark-analysis.py3 |
README.md
Libc mem* benchmarks
This framework has been designed to evaluate and compare relative performance of memory function implementations on a particular machine.
It relies on two tools:
libc-benchmark-main
a C++ benchmarking utility producing raw measurements,libc-benchmark-analysis.py3
a tool to process the measurements into reports.
Benchmarking tool
Setup
cd llvm-project
cmake -B/tmp/build -Sllvm -DLLVM_ENABLE_PROJECTS='clang;clang-tools-extra;libc' -DCMAKE_BUILD_TYPE=Release -G Ninja
ninja -C /tmp/build libc-benchmark-main
Note: The machine should run in
performance
mode. This is achieved by running:
cpupower frequency-set --governor performance
Usage
libc-benchmark-main
can run in two modes:
- stochastic mode returns the average time per call for a particular size distribution,
- sweep mode returns the average time per size over a range of sizes.
The tool requires the following flags to be set:
--study-name
: a name to identify a run and provide label during analysis,--function
: the name of the function under test.
It also provides optional flags:
--num-trials
: repeats the benchmark more times, the analysis tool can take this into account and give confidence intervals.--output
: specifies a file to write the report - or standard output if not set.--aligned-access
: The alignment to use when accessing the buffers, default is unaligned, 0 disables address randomization.
Note:
--function
takes a generic function name likememcpy
ormemset
but the actual function being tested is the llvm-libc implementation (e.g.__llvm_libc::memcpy
).
Stochastic mode
This is the preferred mode to use. The function parameters are randomized and the branch predictor is less likely to kick in.
/tmp/build/bin/libc-benchmark-main \
--study-name="new memcpy" \
--function=memcpy \
--size-distribution-name="memcpy Google A" \
--num-trials=30 \
--output=/tmp/benchmark_result.json
The --size-distribution-name
flag is mandatory and points to one of the predefined distribution.
Note: These distributions are gathered from several important binaries at Google (servers, databases, realtime and batch jobs) and reflect the importance of focusing on small sizes.
Using a profiler to observe size distributions for calls into libc functions, it was found most operations act on a small number of bytes.
Function | % of calls with size ≤ 128 | % of calls with size ≤ 1024 |
---|---|---|
memcpy | 96% | 99% |
memset | 91% | 99.9% |
memcmp1 | 99.5% | ~100% |
1 - The size refers to the size of the buffers to compare and not the number of bytes until the first difference.
Sweep mode
This mode is used to measure call latency per size for a certain range of sizes. Because it exercises the same size over and over again the branch predictor can kick in. It can still be useful to compare strength and weaknesses of particular implementations.
/tmp/build/bin/libc-benchmark-main \
--study-name="new memcpy" \
--function=memcpy \
--sweep-mode \
--sweep-max-size=128 \
--output=/tmp/benchmark_result.json
Analysis tool
Setup
Make sure to have matplotlib
, pandas
and seaborn
setup correctly:
apt-get install python3-pip
pip3 install matplotlib pandas seaborn
You may need python3-gtk
or similar package to display the graphs.
Usage
python3 libc/benchmarks/libc-benchmark-analysis.py3 /tmp/benchmark_result.json ...
When used with multiple trials Sweep Mode data the tool displays the 95% confidence interval.
When providing with multiple reports at the same time, all the graphs from the same machine are displayed side by side to allow for comparison.
The Y-axis unit can be changed via the --mode
flag:
time
displays the measured time (this is the default),cycles
displays the number of cycles computed from the cpu frequency,bytespercycle
displays the number of bytes per cycle (forSweep Mode
reports only).
Under the hood
To learn more about the design decisions behind the benchmarking framework, have a look at the RATIONALE.md file.