forked from OSchip/llvm-project
1874 lines
75 KiB
C++
1874 lines
75 KiB
C++
//===--- CGAtomic.cpp - Emit LLVM IR for atomic operations ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the code for emitting atomic operations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenFunction.h"
|
|
#include "CGCall.h"
|
|
#include "CGRecordLayout.h"
|
|
#include "CodeGenModule.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/CodeGen/CGFunctionInfo.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Operator.h"
|
|
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
namespace {
|
|
class AtomicInfo {
|
|
CodeGenFunction &CGF;
|
|
QualType AtomicTy;
|
|
QualType ValueTy;
|
|
uint64_t AtomicSizeInBits;
|
|
uint64_t ValueSizeInBits;
|
|
CharUnits AtomicAlign;
|
|
CharUnits ValueAlign;
|
|
CharUnits LValueAlign;
|
|
TypeEvaluationKind EvaluationKind;
|
|
bool UseLibcall;
|
|
LValue LVal;
|
|
CGBitFieldInfo BFI;
|
|
public:
|
|
AtomicInfo(CodeGenFunction &CGF, LValue &lvalue)
|
|
: CGF(CGF), AtomicSizeInBits(0), ValueSizeInBits(0),
|
|
EvaluationKind(TEK_Scalar), UseLibcall(true) {
|
|
assert(!lvalue.isGlobalReg());
|
|
ASTContext &C = CGF.getContext();
|
|
if (lvalue.isSimple()) {
|
|
AtomicTy = lvalue.getType();
|
|
if (auto *ATy = AtomicTy->getAs<AtomicType>())
|
|
ValueTy = ATy->getValueType();
|
|
else
|
|
ValueTy = AtomicTy;
|
|
EvaluationKind = CGF.getEvaluationKind(ValueTy);
|
|
|
|
uint64_t ValueAlignInBits;
|
|
uint64_t AtomicAlignInBits;
|
|
TypeInfo ValueTI = C.getTypeInfo(ValueTy);
|
|
ValueSizeInBits = ValueTI.Width;
|
|
ValueAlignInBits = ValueTI.Align;
|
|
|
|
TypeInfo AtomicTI = C.getTypeInfo(AtomicTy);
|
|
AtomicSizeInBits = AtomicTI.Width;
|
|
AtomicAlignInBits = AtomicTI.Align;
|
|
|
|
assert(ValueSizeInBits <= AtomicSizeInBits);
|
|
assert(ValueAlignInBits <= AtomicAlignInBits);
|
|
|
|
AtomicAlign = C.toCharUnitsFromBits(AtomicAlignInBits);
|
|
ValueAlign = C.toCharUnitsFromBits(ValueAlignInBits);
|
|
if (lvalue.getAlignment().isZero())
|
|
lvalue.setAlignment(AtomicAlign);
|
|
|
|
LVal = lvalue;
|
|
} else if (lvalue.isBitField()) {
|
|
ValueTy = lvalue.getType();
|
|
ValueSizeInBits = C.getTypeSize(ValueTy);
|
|
auto &OrigBFI = lvalue.getBitFieldInfo();
|
|
auto Offset = OrigBFI.Offset % C.toBits(lvalue.getAlignment());
|
|
AtomicSizeInBits = C.toBits(
|
|
C.toCharUnitsFromBits(Offset + OrigBFI.Size + C.getCharWidth() - 1)
|
|
.RoundUpToAlignment(lvalue.getAlignment()));
|
|
auto VoidPtrAddr = CGF.EmitCastToVoidPtr(lvalue.getBitFieldPointer());
|
|
auto OffsetInChars =
|
|
(C.toCharUnitsFromBits(OrigBFI.Offset) / lvalue.getAlignment()) *
|
|
lvalue.getAlignment();
|
|
VoidPtrAddr = CGF.Builder.CreateConstGEP1_64(
|
|
VoidPtrAddr, OffsetInChars.getQuantity());
|
|
auto Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
VoidPtrAddr,
|
|
CGF.Builder.getIntNTy(AtomicSizeInBits)->getPointerTo(),
|
|
"atomic_bitfield_base");
|
|
BFI = OrigBFI;
|
|
BFI.Offset = Offset;
|
|
BFI.StorageSize = AtomicSizeInBits;
|
|
BFI.StorageOffset += OffsetInChars;
|
|
LVal = LValue::MakeBitfield(Address(Addr, lvalue.getAlignment()),
|
|
BFI, lvalue.getType(),
|
|
lvalue.getAlignmentSource());
|
|
LVal.setTBAAInfo(lvalue.getTBAAInfo());
|
|
AtomicTy = C.getIntTypeForBitwidth(AtomicSizeInBits, OrigBFI.IsSigned);
|
|
if (AtomicTy.isNull()) {
|
|
llvm::APInt Size(
|
|
/*numBits=*/32,
|
|
C.toCharUnitsFromBits(AtomicSizeInBits).getQuantity());
|
|
AtomicTy = C.getConstantArrayType(C.CharTy, Size, ArrayType::Normal,
|
|
/*IndexTypeQuals=*/0);
|
|
}
|
|
AtomicAlign = ValueAlign = lvalue.getAlignment();
|
|
} else if (lvalue.isVectorElt()) {
|
|
ValueTy = lvalue.getType()->getAs<VectorType>()->getElementType();
|
|
ValueSizeInBits = C.getTypeSize(ValueTy);
|
|
AtomicTy = lvalue.getType();
|
|
AtomicSizeInBits = C.getTypeSize(AtomicTy);
|
|
AtomicAlign = ValueAlign = lvalue.getAlignment();
|
|
LVal = lvalue;
|
|
} else {
|
|
assert(lvalue.isExtVectorElt());
|
|
ValueTy = lvalue.getType();
|
|
ValueSizeInBits = C.getTypeSize(ValueTy);
|
|
AtomicTy = ValueTy = CGF.getContext().getExtVectorType(
|
|
lvalue.getType(), lvalue.getExtVectorAddress()
|
|
.getElementType()->getVectorNumElements());
|
|
AtomicSizeInBits = C.getTypeSize(AtomicTy);
|
|
AtomicAlign = ValueAlign = lvalue.getAlignment();
|
|
LVal = lvalue;
|
|
}
|
|
UseLibcall = !C.getTargetInfo().hasBuiltinAtomic(
|
|
AtomicSizeInBits, C.toBits(lvalue.getAlignment()));
|
|
}
|
|
|
|
QualType getAtomicType() const { return AtomicTy; }
|
|
QualType getValueType() const { return ValueTy; }
|
|
CharUnits getAtomicAlignment() const { return AtomicAlign; }
|
|
CharUnits getValueAlignment() const { return ValueAlign; }
|
|
uint64_t getAtomicSizeInBits() const { return AtomicSizeInBits; }
|
|
uint64_t getValueSizeInBits() const { return ValueSizeInBits; }
|
|
TypeEvaluationKind getEvaluationKind() const { return EvaluationKind; }
|
|
bool shouldUseLibcall() const { return UseLibcall; }
|
|
const LValue &getAtomicLValue() const { return LVal; }
|
|
llvm::Value *getAtomicPointer() const {
|
|
if (LVal.isSimple())
|
|
return LVal.getPointer();
|
|
else if (LVal.isBitField())
|
|
return LVal.getBitFieldPointer();
|
|
else if (LVal.isVectorElt())
|
|
return LVal.getVectorPointer();
|
|
assert(LVal.isExtVectorElt());
|
|
return LVal.getExtVectorPointer();
|
|
}
|
|
Address getAtomicAddress() const {
|
|
return Address(getAtomicPointer(), getAtomicAlignment());
|
|
}
|
|
|
|
Address getAtomicAddressAsAtomicIntPointer() const {
|
|
return emitCastToAtomicIntPointer(getAtomicAddress());
|
|
}
|
|
|
|
/// Is the atomic size larger than the underlying value type?
|
|
///
|
|
/// Note that the absence of padding does not mean that atomic
|
|
/// objects are completely interchangeable with non-atomic
|
|
/// objects: we might have promoted the alignment of a type
|
|
/// without making it bigger.
|
|
bool hasPadding() const {
|
|
return (ValueSizeInBits != AtomicSizeInBits);
|
|
}
|
|
|
|
bool emitMemSetZeroIfNecessary() const;
|
|
|
|
llvm::Value *getAtomicSizeValue() const {
|
|
CharUnits size = CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits);
|
|
return CGF.CGM.getSize(size);
|
|
}
|
|
|
|
/// Cast the given pointer to an integer pointer suitable for atomic
|
|
/// operations if the source.
|
|
Address emitCastToAtomicIntPointer(Address Addr) const;
|
|
|
|
/// If Addr is compatible with the iN that will be used for an atomic
|
|
/// operation, bitcast it. Otherwise, create a temporary that is suitable
|
|
/// and copy the value across.
|
|
Address convertToAtomicIntPointer(Address Addr) const;
|
|
|
|
/// Turn an atomic-layout object into an r-value.
|
|
RValue convertAtomicTempToRValue(Address addr, AggValueSlot resultSlot,
|
|
SourceLocation loc, bool AsValue) const;
|
|
|
|
/// \brief Converts a rvalue to integer value.
|
|
llvm::Value *convertRValueToInt(RValue RVal) const;
|
|
|
|
RValue ConvertIntToValueOrAtomic(llvm::Value *IntVal,
|
|
AggValueSlot ResultSlot,
|
|
SourceLocation Loc, bool AsValue) const;
|
|
|
|
/// Copy an atomic r-value into atomic-layout memory.
|
|
void emitCopyIntoMemory(RValue rvalue) const;
|
|
|
|
/// Project an l-value down to the value field.
|
|
LValue projectValue() const {
|
|
assert(LVal.isSimple());
|
|
Address addr = getAtomicAddress();
|
|
if (hasPadding())
|
|
addr = CGF.Builder.CreateStructGEP(addr, 0, CharUnits());
|
|
|
|
return LValue::MakeAddr(addr, getValueType(), CGF.getContext(),
|
|
LVal.getAlignmentSource(), LVal.getTBAAInfo());
|
|
}
|
|
|
|
/// \brief Emits atomic load.
|
|
/// \returns Loaded value.
|
|
RValue EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc,
|
|
bool AsValue, llvm::AtomicOrdering AO,
|
|
bool IsVolatile);
|
|
|
|
/// \brief Emits atomic compare-and-exchange sequence.
|
|
/// \param Expected Expected value.
|
|
/// \param Desired Desired value.
|
|
/// \param Success Atomic ordering for success operation.
|
|
/// \param Failure Atomic ordering for failed operation.
|
|
/// \param IsWeak true if atomic operation is weak, false otherwise.
|
|
/// \returns Pair of values: previous value from storage (value type) and
|
|
/// boolean flag (i1 type) with true if success and false otherwise.
|
|
std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
|
|
RValue Expected, RValue Desired,
|
|
llvm::AtomicOrdering Success = llvm::SequentiallyConsistent,
|
|
llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent,
|
|
bool IsWeak = false);
|
|
|
|
/// \brief Emits atomic update.
|
|
/// \param AO Atomic ordering.
|
|
/// \param UpdateOp Update operation for the current lvalue.
|
|
void EmitAtomicUpdate(llvm::AtomicOrdering AO,
|
|
const llvm::function_ref<RValue(RValue)> &UpdateOp,
|
|
bool IsVolatile);
|
|
/// \brief Emits atomic update.
|
|
/// \param AO Atomic ordering.
|
|
void EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal,
|
|
bool IsVolatile);
|
|
|
|
/// Materialize an atomic r-value in atomic-layout memory.
|
|
Address materializeRValue(RValue rvalue) const;
|
|
|
|
/// \brief Translates LLVM atomic ordering to GNU atomic ordering for
|
|
/// libcalls.
|
|
static AtomicExpr::AtomicOrderingKind
|
|
translateAtomicOrdering(const llvm::AtomicOrdering AO);
|
|
|
|
/// \brief Creates temp alloca for intermediate operations on atomic value.
|
|
Address CreateTempAlloca() const;
|
|
private:
|
|
bool requiresMemSetZero(llvm::Type *type) const;
|
|
|
|
|
|
/// \brief Emits atomic load as a libcall.
|
|
void EmitAtomicLoadLibcall(llvm::Value *AddForLoaded,
|
|
llvm::AtomicOrdering AO, bool IsVolatile);
|
|
/// \brief Emits atomic load as LLVM instruction.
|
|
llvm::Value *EmitAtomicLoadOp(llvm::AtomicOrdering AO, bool IsVolatile);
|
|
/// \brief Emits atomic compare-and-exchange op as a libcall.
|
|
llvm::Value *EmitAtomicCompareExchangeLibcall(
|
|
llvm::Value *ExpectedAddr, llvm::Value *DesiredAddr,
|
|
llvm::AtomicOrdering Success = llvm::SequentiallyConsistent,
|
|
llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent);
|
|
/// \brief Emits atomic compare-and-exchange op as LLVM instruction.
|
|
std::pair<llvm::Value *, llvm::Value *> EmitAtomicCompareExchangeOp(
|
|
llvm::Value *ExpectedVal, llvm::Value *DesiredVal,
|
|
llvm::AtomicOrdering Success = llvm::SequentiallyConsistent,
|
|
llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent,
|
|
bool IsWeak = false);
|
|
/// \brief Emit atomic update as libcalls.
|
|
void
|
|
EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO,
|
|
const llvm::function_ref<RValue(RValue)> &UpdateOp,
|
|
bool IsVolatile);
|
|
/// \brief Emit atomic update as LLVM instructions.
|
|
void EmitAtomicUpdateOp(llvm::AtomicOrdering AO,
|
|
const llvm::function_ref<RValue(RValue)> &UpdateOp,
|
|
bool IsVolatile);
|
|
/// \brief Emit atomic update as libcalls.
|
|
void EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, RValue UpdateRVal,
|
|
bool IsVolatile);
|
|
/// \brief Emit atomic update as LLVM instructions.
|
|
void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRal,
|
|
bool IsVolatile);
|
|
};
|
|
}
|
|
|
|
AtomicExpr::AtomicOrderingKind
|
|
AtomicInfo::translateAtomicOrdering(const llvm::AtomicOrdering AO) {
|
|
switch (AO) {
|
|
case llvm::Unordered:
|
|
case llvm::NotAtomic:
|
|
case llvm::Monotonic:
|
|
return AtomicExpr::AO_ABI_memory_order_relaxed;
|
|
case llvm::Acquire:
|
|
return AtomicExpr::AO_ABI_memory_order_acquire;
|
|
case llvm::Release:
|
|
return AtomicExpr::AO_ABI_memory_order_release;
|
|
case llvm::AcquireRelease:
|
|
return AtomicExpr::AO_ABI_memory_order_acq_rel;
|
|
case llvm::SequentiallyConsistent:
|
|
return AtomicExpr::AO_ABI_memory_order_seq_cst;
|
|
}
|
|
llvm_unreachable("Unhandled AtomicOrdering");
|
|
}
|
|
|
|
Address AtomicInfo::CreateTempAlloca() const {
|
|
Address TempAlloca = CGF.CreateMemTemp(
|
|
(LVal.isBitField() && ValueSizeInBits > AtomicSizeInBits) ? ValueTy
|
|
: AtomicTy,
|
|
getAtomicAlignment(),
|
|
"atomic-temp");
|
|
// Cast to pointer to value type for bitfields.
|
|
if (LVal.isBitField())
|
|
return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
TempAlloca, getAtomicAddress().getType());
|
|
return TempAlloca;
|
|
}
|
|
|
|
static RValue emitAtomicLibcall(CodeGenFunction &CGF,
|
|
StringRef fnName,
|
|
QualType resultType,
|
|
CallArgList &args) {
|
|
const CGFunctionInfo &fnInfo =
|
|
CGF.CGM.getTypes().arrangeFreeFunctionCall(resultType, args,
|
|
FunctionType::ExtInfo(), RequiredArgs::All);
|
|
llvm::FunctionType *fnTy = CGF.CGM.getTypes().GetFunctionType(fnInfo);
|
|
llvm::Constant *fn = CGF.CGM.CreateRuntimeFunction(fnTy, fnName);
|
|
return CGF.EmitCall(fnInfo, fn, ReturnValueSlot(), args);
|
|
}
|
|
|
|
/// Does a store of the given IR type modify the full expected width?
|
|
static bool isFullSizeType(CodeGenModule &CGM, llvm::Type *type,
|
|
uint64_t expectedSize) {
|
|
return (CGM.getDataLayout().getTypeStoreSize(type) * 8 == expectedSize);
|
|
}
|
|
|
|
/// Does the atomic type require memsetting to zero before initialization?
|
|
///
|
|
/// The IR type is provided as a way of making certain queries faster.
|
|
bool AtomicInfo::requiresMemSetZero(llvm::Type *type) const {
|
|
// If the atomic type has size padding, we definitely need a memset.
|
|
if (hasPadding()) return true;
|
|
|
|
// Otherwise, do some simple heuristics to try to avoid it:
|
|
switch (getEvaluationKind()) {
|
|
// For scalars and complexes, check whether the store size of the
|
|
// type uses the full size.
|
|
case TEK_Scalar:
|
|
return !isFullSizeType(CGF.CGM, type, AtomicSizeInBits);
|
|
case TEK_Complex:
|
|
return !isFullSizeType(CGF.CGM, type->getStructElementType(0),
|
|
AtomicSizeInBits / 2);
|
|
|
|
// Padding in structs has an undefined bit pattern. User beware.
|
|
case TEK_Aggregate:
|
|
return false;
|
|
}
|
|
llvm_unreachable("bad evaluation kind");
|
|
}
|
|
|
|
bool AtomicInfo::emitMemSetZeroIfNecessary() const {
|
|
assert(LVal.isSimple());
|
|
llvm::Value *addr = LVal.getPointer();
|
|
if (!requiresMemSetZero(addr->getType()->getPointerElementType()))
|
|
return false;
|
|
|
|
CGF.Builder.CreateMemSet(
|
|
addr, llvm::ConstantInt::get(CGF.Int8Ty, 0),
|
|
CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits).getQuantity(),
|
|
LVal.getAlignment().getQuantity());
|
|
return true;
|
|
}
|
|
|
|
static void emitAtomicCmpXchg(CodeGenFunction &CGF, AtomicExpr *E, bool IsWeak,
|
|
Address Dest, Address Ptr,
|
|
Address Val1, Address Val2,
|
|
uint64_t Size,
|
|
llvm::AtomicOrdering SuccessOrder,
|
|
llvm::AtomicOrdering FailureOrder) {
|
|
// Note that cmpxchg doesn't support weak cmpxchg, at least at the moment.
|
|
llvm::Value *Expected = CGF.Builder.CreateLoad(Val1);
|
|
llvm::Value *Desired = CGF.Builder.CreateLoad(Val2);
|
|
|
|
llvm::AtomicCmpXchgInst *Pair = CGF.Builder.CreateAtomicCmpXchg(
|
|
Ptr.getPointer(), Expected, Desired, SuccessOrder, FailureOrder);
|
|
Pair->setVolatile(E->isVolatile());
|
|
Pair->setWeak(IsWeak);
|
|
|
|
// Cmp holds the result of the compare-exchange operation: true on success,
|
|
// false on failure.
|
|
llvm::Value *Old = CGF.Builder.CreateExtractValue(Pair, 0);
|
|
llvm::Value *Cmp = CGF.Builder.CreateExtractValue(Pair, 1);
|
|
|
|
// This basic block is used to hold the store instruction if the operation
|
|
// failed.
|
|
llvm::BasicBlock *StoreExpectedBB =
|
|
CGF.createBasicBlock("cmpxchg.store_expected", CGF.CurFn);
|
|
|
|
// This basic block is the exit point of the operation, we should end up
|
|
// here regardless of whether or not the operation succeeded.
|
|
llvm::BasicBlock *ContinueBB =
|
|
CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn);
|
|
|
|
// Update Expected if Expected isn't equal to Old, otherwise branch to the
|
|
// exit point.
|
|
CGF.Builder.CreateCondBr(Cmp, ContinueBB, StoreExpectedBB);
|
|
|
|
CGF.Builder.SetInsertPoint(StoreExpectedBB);
|
|
// Update the memory at Expected with Old's value.
|
|
CGF.Builder.CreateStore(Old, Val1);
|
|
// Finally, branch to the exit point.
|
|
CGF.Builder.CreateBr(ContinueBB);
|
|
|
|
CGF.Builder.SetInsertPoint(ContinueBB);
|
|
// Update the memory at Dest with Cmp's value.
|
|
CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
|
|
}
|
|
|
|
/// Given an ordering required on success, emit all possible cmpxchg
|
|
/// instructions to cope with the provided (but possibly only dynamically known)
|
|
/// FailureOrder.
|
|
static void emitAtomicCmpXchgFailureSet(CodeGenFunction &CGF, AtomicExpr *E,
|
|
bool IsWeak, Address Dest,
|
|
Address Ptr, Address Val1,
|
|
Address Val2,
|
|
llvm::Value *FailureOrderVal,
|
|
uint64_t Size,
|
|
llvm::AtomicOrdering SuccessOrder) {
|
|
llvm::AtomicOrdering FailureOrder;
|
|
if (llvm::ConstantInt *FO = dyn_cast<llvm::ConstantInt>(FailureOrderVal)) {
|
|
switch (FO->getSExtValue()) {
|
|
default:
|
|
FailureOrder = llvm::Monotonic;
|
|
break;
|
|
case AtomicExpr::AO_ABI_memory_order_consume:
|
|
case AtomicExpr::AO_ABI_memory_order_acquire:
|
|
FailureOrder = llvm::Acquire;
|
|
break;
|
|
case AtomicExpr::AO_ABI_memory_order_seq_cst:
|
|
FailureOrder = llvm::SequentiallyConsistent;
|
|
break;
|
|
}
|
|
if (FailureOrder >= SuccessOrder) {
|
|
// Don't assert on undefined behaviour.
|
|
FailureOrder =
|
|
llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrder);
|
|
}
|
|
emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size,
|
|
SuccessOrder, FailureOrder);
|
|
return;
|
|
}
|
|
|
|
// Create all the relevant BB's
|
|
llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr,
|
|
*SeqCstBB = nullptr;
|
|
MonotonicBB = CGF.createBasicBlock("monotonic_fail", CGF.CurFn);
|
|
if (SuccessOrder != llvm::Monotonic && SuccessOrder != llvm::Release)
|
|
AcquireBB = CGF.createBasicBlock("acquire_fail", CGF.CurFn);
|
|
if (SuccessOrder == llvm::SequentiallyConsistent)
|
|
SeqCstBB = CGF.createBasicBlock("seqcst_fail", CGF.CurFn);
|
|
|
|
llvm::BasicBlock *ContBB = CGF.createBasicBlock("atomic.continue", CGF.CurFn);
|
|
|
|
llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(FailureOrderVal, MonotonicBB);
|
|
|
|
// Emit all the different atomics
|
|
|
|
// MonotonicBB is arbitrarily chosen as the default case; in practice, this
|
|
// doesn't matter unless someone is crazy enough to use something that
|
|
// doesn't fold to a constant for the ordering.
|
|
CGF.Builder.SetInsertPoint(MonotonicBB);
|
|
emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2,
|
|
Size, SuccessOrder, llvm::Monotonic);
|
|
CGF.Builder.CreateBr(ContBB);
|
|
|
|
if (AcquireBB) {
|
|
CGF.Builder.SetInsertPoint(AcquireBB);
|
|
emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2,
|
|
Size, SuccessOrder, llvm::Acquire);
|
|
CGF.Builder.CreateBr(ContBB);
|
|
SI->addCase(CGF.Builder.getInt32(AtomicExpr::AO_ABI_memory_order_consume),
|
|
AcquireBB);
|
|
SI->addCase(CGF.Builder.getInt32(AtomicExpr::AO_ABI_memory_order_acquire),
|
|
AcquireBB);
|
|
}
|
|
if (SeqCstBB) {
|
|
CGF.Builder.SetInsertPoint(SeqCstBB);
|
|
emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2,
|
|
Size, SuccessOrder, llvm::SequentiallyConsistent);
|
|
CGF.Builder.CreateBr(ContBB);
|
|
SI->addCase(CGF.Builder.getInt32(AtomicExpr::AO_ABI_memory_order_seq_cst),
|
|
SeqCstBB);
|
|
}
|
|
|
|
CGF.Builder.SetInsertPoint(ContBB);
|
|
}
|
|
|
|
static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, Address Dest,
|
|
Address Ptr, Address Val1, Address Val2,
|
|
llvm::Value *IsWeak, llvm::Value *FailureOrder,
|
|
uint64_t Size, llvm::AtomicOrdering Order) {
|
|
llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
|
|
llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0;
|
|
|
|
switch (E->getOp()) {
|
|
case AtomicExpr::AO__c11_atomic_init:
|
|
llvm_unreachable("Already handled!");
|
|
|
|
case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
|
|
emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2,
|
|
FailureOrder, Size, Order);
|
|
return;
|
|
case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
|
|
emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2,
|
|
FailureOrder, Size, Order);
|
|
return;
|
|
case AtomicExpr::AO__atomic_compare_exchange:
|
|
case AtomicExpr::AO__atomic_compare_exchange_n: {
|
|
if (llvm::ConstantInt *IsWeakC = dyn_cast<llvm::ConstantInt>(IsWeak)) {
|
|
emitAtomicCmpXchgFailureSet(CGF, E, IsWeakC->getZExtValue(), Dest, Ptr,
|
|
Val1, Val2, FailureOrder, Size, Order);
|
|
} else {
|
|
// Create all the relevant BB's
|
|
llvm::BasicBlock *StrongBB =
|
|
CGF.createBasicBlock("cmpxchg.strong", CGF.CurFn);
|
|
llvm::BasicBlock *WeakBB = CGF.createBasicBlock("cmxchg.weak", CGF.CurFn);
|
|
llvm::BasicBlock *ContBB =
|
|
CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn);
|
|
|
|
llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(IsWeak, WeakBB);
|
|
SI->addCase(CGF.Builder.getInt1(false), StrongBB);
|
|
|
|
CGF.Builder.SetInsertPoint(StrongBB);
|
|
emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2,
|
|
FailureOrder, Size, Order);
|
|
CGF.Builder.CreateBr(ContBB);
|
|
|
|
CGF.Builder.SetInsertPoint(WeakBB);
|
|
emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2,
|
|
FailureOrder, Size, Order);
|
|
CGF.Builder.CreateBr(ContBB);
|
|
|
|
CGF.Builder.SetInsertPoint(ContBB);
|
|
}
|
|
return;
|
|
}
|
|
case AtomicExpr::AO__c11_atomic_load:
|
|
case AtomicExpr::AO__atomic_load_n:
|
|
case AtomicExpr::AO__atomic_load: {
|
|
llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
|
|
Load->setAtomic(Order);
|
|
Load->setVolatile(E->isVolatile());
|
|
CGF.Builder.CreateStore(Load, Dest);
|
|
return;
|
|
}
|
|
|
|
case AtomicExpr::AO__c11_atomic_store:
|
|
case AtomicExpr::AO__atomic_store:
|
|
case AtomicExpr::AO__atomic_store_n: {
|
|
llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Val1);
|
|
llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
|
|
Store->setAtomic(Order);
|
|
Store->setVolatile(E->isVolatile());
|
|
return;
|
|
}
|
|
|
|
case AtomicExpr::AO__c11_atomic_exchange:
|
|
case AtomicExpr::AO__atomic_exchange_n:
|
|
case AtomicExpr::AO__atomic_exchange:
|
|
Op = llvm::AtomicRMWInst::Xchg;
|
|
break;
|
|
|
|
case AtomicExpr::AO__atomic_add_fetch:
|
|
PostOp = llvm::Instruction::Add;
|
|
// Fall through.
|
|
case AtomicExpr::AO__c11_atomic_fetch_add:
|
|
case AtomicExpr::AO__atomic_fetch_add:
|
|
Op = llvm::AtomicRMWInst::Add;
|
|
break;
|
|
|
|
case AtomicExpr::AO__atomic_sub_fetch:
|
|
PostOp = llvm::Instruction::Sub;
|
|
// Fall through.
|
|
case AtomicExpr::AO__c11_atomic_fetch_sub:
|
|
case AtomicExpr::AO__atomic_fetch_sub:
|
|
Op = llvm::AtomicRMWInst::Sub;
|
|
break;
|
|
|
|
case AtomicExpr::AO__atomic_and_fetch:
|
|
PostOp = llvm::Instruction::And;
|
|
// Fall through.
|
|
case AtomicExpr::AO__c11_atomic_fetch_and:
|
|
case AtomicExpr::AO__atomic_fetch_and:
|
|
Op = llvm::AtomicRMWInst::And;
|
|
break;
|
|
|
|
case AtomicExpr::AO__atomic_or_fetch:
|
|
PostOp = llvm::Instruction::Or;
|
|
// Fall through.
|
|
case AtomicExpr::AO__c11_atomic_fetch_or:
|
|
case AtomicExpr::AO__atomic_fetch_or:
|
|
Op = llvm::AtomicRMWInst::Or;
|
|
break;
|
|
|
|
case AtomicExpr::AO__atomic_xor_fetch:
|
|
PostOp = llvm::Instruction::Xor;
|
|
// Fall through.
|
|
case AtomicExpr::AO__c11_atomic_fetch_xor:
|
|
case AtomicExpr::AO__atomic_fetch_xor:
|
|
Op = llvm::AtomicRMWInst::Xor;
|
|
break;
|
|
|
|
case AtomicExpr::AO__atomic_nand_fetch:
|
|
PostOp = llvm::Instruction::And; // the NOT is special cased below
|
|
// Fall through.
|
|
case AtomicExpr::AO__atomic_fetch_nand:
|
|
Op = llvm::AtomicRMWInst::Nand;
|
|
break;
|
|
}
|
|
|
|
llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Val1);
|
|
llvm::AtomicRMWInst *RMWI =
|
|
CGF.Builder.CreateAtomicRMW(Op, Ptr.getPointer(), LoadVal1, Order);
|
|
RMWI->setVolatile(E->isVolatile());
|
|
|
|
// For __atomic_*_fetch operations, perform the operation again to
|
|
// determine the value which was written.
|
|
llvm::Value *Result = RMWI;
|
|
if (PostOp)
|
|
Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1);
|
|
if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch)
|
|
Result = CGF.Builder.CreateNot(Result);
|
|
CGF.Builder.CreateStore(Result, Dest);
|
|
}
|
|
|
|
// This function emits any expression (scalar, complex, or aggregate)
|
|
// into a temporary alloca.
|
|
static Address
|
|
EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
|
|
Address DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
|
|
CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
|
|
/*Init*/ true);
|
|
return DeclPtr;
|
|
}
|
|
|
|
static void
|
|
AddDirectArgument(CodeGenFunction &CGF, CallArgList &Args,
|
|
bool UseOptimizedLibcall, llvm::Value *Val, QualType ValTy,
|
|
SourceLocation Loc, CharUnits SizeInChars) {
|
|
if (UseOptimizedLibcall) {
|
|
// Load value and pass it to the function directly.
|
|
CharUnits Align = CGF.getContext().getTypeAlignInChars(ValTy);
|
|
int64_t SizeInBits = CGF.getContext().toBits(SizeInChars);
|
|
ValTy =
|
|
CGF.getContext().getIntTypeForBitwidth(SizeInBits, /*Signed=*/false);
|
|
llvm::Type *IPtrTy = llvm::IntegerType::get(CGF.getLLVMContext(),
|
|
SizeInBits)->getPointerTo();
|
|
Address Ptr = Address(CGF.Builder.CreateBitCast(Val, IPtrTy), Align);
|
|
Val = CGF.EmitLoadOfScalar(Ptr, false,
|
|
CGF.getContext().getPointerType(ValTy),
|
|
Loc);
|
|
// Coerce the value into an appropriately sized integer type.
|
|
Args.add(RValue::get(Val), ValTy);
|
|
} else {
|
|
// Non-optimized functions always take a reference.
|
|
Args.add(RValue::get(CGF.EmitCastToVoidPtr(Val)),
|
|
CGF.getContext().VoidPtrTy);
|
|
}
|
|
}
|
|
|
|
RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E) {
|
|
QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
|
|
QualType MemTy = AtomicTy;
|
|
if (const AtomicType *AT = AtomicTy->getAs<AtomicType>())
|
|
MemTy = AT->getValueType();
|
|
CharUnits sizeChars, alignChars;
|
|
std::tie(sizeChars, alignChars) = getContext().getTypeInfoInChars(AtomicTy);
|
|
uint64_t Size = sizeChars.getQuantity();
|
|
unsigned MaxInlineWidthInBits = getTarget().getMaxAtomicInlineWidth();
|
|
bool UseLibcall = (sizeChars != alignChars ||
|
|
getContext().toBits(sizeChars) > MaxInlineWidthInBits);
|
|
|
|
llvm::Value *IsWeak = nullptr, *OrderFail = nullptr;
|
|
|
|
Address Val1 = Address::invalid();
|
|
Address Val2 = Address::invalid();
|
|
Address Dest = Address::invalid();
|
|
Address Ptr(EmitScalarExpr(E->getPtr()), alignChars);
|
|
|
|
if (E->getOp() == AtomicExpr::AO__c11_atomic_init) {
|
|
LValue lvalue = MakeAddrLValue(Ptr, AtomicTy);
|
|
EmitAtomicInit(E->getVal1(), lvalue);
|
|
return RValue::get(nullptr);
|
|
}
|
|
|
|
llvm::Value *Order = EmitScalarExpr(E->getOrder());
|
|
|
|
switch (E->getOp()) {
|
|
case AtomicExpr::AO__c11_atomic_init:
|
|
llvm_unreachable("Already handled above with EmitAtomicInit!");
|
|
|
|
case AtomicExpr::AO__c11_atomic_load:
|
|
case AtomicExpr::AO__atomic_load_n:
|
|
break;
|
|
|
|
case AtomicExpr::AO__atomic_load:
|
|
Dest = EmitPointerWithAlignment(E->getVal1());
|
|
break;
|
|
|
|
case AtomicExpr::AO__atomic_store:
|
|
Val1 = EmitPointerWithAlignment(E->getVal1());
|
|
break;
|
|
|
|
case AtomicExpr::AO__atomic_exchange:
|
|
Val1 = EmitPointerWithAlignment(E->getVal1());
|
|
Dest = EmitPointerWithAlignment(E->getVal2());
|
|
break;
|
|
|
|
case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
|
|
case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
|
|
case AtomicExpr::AO__atomic_compare_exchange_n:
|
|
case AtomicExpr::AO__atomic_compare_exchange:
|
|
Val1 = EmitPointerWithAlignment(E->getVal1());
|
|
if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange)
|
|
Val2 = EmitPointerWithAlignment(E->getVal2());
|
|
else
|
|
Val2 = EmitValToTemp(*this, E->getVal2());
|
|
OrderFail = EmitScalarExpr(E->getOrderFail());
|
|
if (E->getNumSubExprs() == 6)
|
|
IsWeak = EmitScalarExpr(E->getWeak());
|
|
break;
|
|
|
|
case AtomicExpr::AO__c11_atomic_fetch_add:
|
|
case AtomicExpr::AO__c11_atomic_fetch_sub:
|
|
if (MemTy->isPointerType()) {
|
|
// For pointer arithmetic, we're required to do a bit of math:
|
|
// adding 1 to an int* is not the same as adding 1 to a uintptr_t.
|
|
// ... but only for the C11 builtins. The GNU builtins expect the
|
|
// user to multiply by sizeof(T).
|
|
QualType Val1Ty = E->getVal1()->getType();
|
|
llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
|
|
CharUnits PointeeIncAmt =
|
|
getContext().getTypeSizeInChars(MemTy->getPointeeType());
|
|
Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
|
|
auto Temp = CreateMemTemp(Val1Ty, ".atomictmp");
|
|
Val1 = Temp;
|
|
EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Temp, Val1Ty));
|
|
break;
|
|
}
|
|
// Fall through.
|
|
case AtomicExpr::AO__atomic_fetch_add:
|
|
case AtomicExpr::AO__atomic_fetch_sub:
|
|
case AtomicExpr::AO__atomic_add_fetch:
|
|
case AtomicExpr::AO__atomic_sub_fetch:
|
|
case AtomicExpr::AO__c11_atomic_store:
|
|
case AtomicExpr::AO__c11_atomic_exchange:
|
|
case AtomicExpr::AO__atomic_store_n:
|
|
case AtomicExpr::AO__atomic_exchange_n:
|
|
case AtomicExpr::AO__c11_atomic_fetch_and:
|
|
case AtomicExpr::AO__c11_atomic_fetch_or:
|
|
case AtomicExpr::AO__c11_atomic_fetch_xor:
|
|
case AtomicExpr::AO__atomic_fetch_and:
|
|
case AtomicExpr::AO__atomic_fetch_or:
|
|
case AtomicExpr::AO__atomic_fetch_xor:
|
|
case AtomicExpr::AO__atomic_fetch_nand:
|
|
case AtomicExpr::AO__atomic_and_fetch:
|
|
case AtomicExpr::AO__atomic_or_fetch:
|
|
case AtomicExpr::AO__atomic_xor_fetch:
|
|
case AtomicExpr::AO__atomic_nand_fetch:
|
|
Val1 = EmitValToTemp(*this, E->getVal1());
|
|
break;
|
|
}
|
|
|
|
QualType RValTy = E->getType().getUnqualifiedType();
|
|
|
|
// The inlined atomics only function on iN types, where N is a power of 2. We
|
|
// need to make sure (via temporaries if necessary) that all incoming values
|
|
// are compatible.
|
|
LValue AtomicVal = MakeAddrLValue(Ptr, AtomicTy);
|
|
AtomicInfo Atomics(*this, AtomicVal);
|
|
|
|
Ptr = Atomics.emitCastToAtomicIntPointer(Ptr);
|
|
if (Val1.isValid()) Val1 = Atomics.convertToAtomicIntPointer(Val1);
|
|
if (Val2.isValid()) Val2 = Atomics.convertToAtomicIntPointer(Val2);
|
|
if (Dest.isValid())
|
|
Dest = Atomics.emitCastToAtomicIntPointer(Dest);
|
|
else if (E->isCmpXChg())
|
|
Dest = CreateMemTemp(RValTy, "cmpxchg.bool");
|
|
else if (!RValTy->isVoidType())
|
|
Dest = Atomics.emitCastToAtomicIntPointer(Atomics.CreateTempAlloca());
|
|
|
|
// Use a library call. See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
|
|
if (UseLibcall) {
|
|
bool UseOptimizedLibcall = false;
|
|
switch (E->getOp()) {
|
|
case AtomicExpr::AO__c11_atomic_init:
|
|
llvm_unreachable("Already handled above with EmitAtomicInit!");
|
|
|
|
case AtomicExpr::AO__c11_atomic_fetch_add:
|
|
case AtomicExpr::AO__atomic_fetch_add:
|
|
case AtomicExpr::AO__c11_atomic_fetch_and:
|
|
case AtomicExpr::AO__atomic_fetch_and:
|
|
case AtomicExpr::AO__c11_atomic_fetch_or:
|
|
case AtomicExpr::AO__atomic_fetch_or:
|
|
case AtomicExpr::AO__atomic_fetch_nand:
|
|
case AtomicExpr::AO__c11_atomic_fetch_sub:
|
|
case AtomicExpr::AO__atomic_fetch_sub:
|
|
case AtomicExpr::AO__c11_atomic_fetch_xor:
|
|
case AtomicExpr::AO__atomic_fetch_xor:
|
|
case AtomicExpr::AO__atomic_add_fetch:
|
|
case AtomicExpr::AO__atomic_and_fetch:
|
|
case AtomicExpr::AO__atomic_nand_fetch:
|
|
case AtomicExpr::AO__atomic_or_fetch:
|
|
case AtomicExpr::AO__atomic_sub_fetch:
|
|
case AtomicExpr::AO__atomic_xor_fetch:
|
|
// For these, only library calls for certain sizes exist.
|
|
UseOptimizedLibcall = true;
|
|
break;
|
|
|
|
case AtomicExpr::AO__c11_atomic_load:
|
|
case AtomicExpr::AO__c11_atomic_store:
|
|
case AtomicExpr::AO__c11_atomic_exchange:
|
|
case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
|
|
case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
|
|
case AtomicExpr::AO__atomic_load_n:
|
|
case AtomicExpr::AO__atomic_load:
|
|
case AtomicExpr::AO__atomic_store_n:
|
|
case AtomicExpr::AO__atomic_store:
|
|
case AtomicExpr::AO__atomic_exchange_n:
|
|
case AtomicExpr::AO__atomic_exchange:
|
|
case AtomicExpr::AO__atomic_compare_exchange_n:
|
|
case AtomicExpr::AO__atomic_compare_exchange:
|
|
// Only use optimized library calls for sizes for which they exist.
|
|
if (Size == 1 || Size == 2 || Size == 4 || Size == 8)
|
|
UseOptimizedLibcall = true;
|
|
break;
|
|
}
|
|
|
|
CallArgList Args;
|
|
if (!UseOptimizedLibcall) {
|
|
// For non-optimized library calls, the size is the first parameter
|
|
Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
|
|
getContext().getSizeType());
|
|
}
|
|
// Atomic address is the first or second parameter
|
|
Args.add(RValue::get(EmitCastToVoidPtr(Ptr.getPointer())),
|
|
getContext().VoidPtrTy);
|
|
|
|
std::string LibCallName;
|
|
QualType LoweredMemTy =
|
|
MemTy->isPointerType() ? getContext().getIntPtrType() : MemTy;
|
|
QualType RetTy;
|
|
bool HaveRetTy = false;
|
|
llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0;
|
|
switch (E->getOp()) {
|
|
case AtomicExpr::AO__c11_atomic_init:
|
|
llvm_unreachable("Already handled!");
|
|
|
|
// There is only one libcall for compare an exchange, because there is no
|
|
// optimisation benefit possible from a libcall version of a weak compare
|
|
// and exchange.
|
|
// bool __atomic_compare_exchange(size_t size, void *mem, void *expected,
|
|
// void *desired, int success, int failure)
|
|
// bool __atomic_compare_exchange_N(T *mem, T *expected, T desired,
|
|
// int success, int failure)
|
|
case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
|
|
case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
|
|
case AtomicExpr::AO__atomic_compare_exchange:
|
|
case AtomicExpr::AO__atomic_compare_exchange_n:
|
|
LibCallName = "__atomic_compare_exchange";
|
|
RetTy = getContext().BoolTy;
|
|
HaveRetTy = true;
|
|
Args.add(RValue::get(EmitCastToVoidPtr(Val1.getPointer())),
|
|
getContext().VoidPtrTy);
|
|
AddDirectArgument(*this, Args, UseOptimizedLibcall, Val2.getPointer(),
|
|
MemTy, E->getExprLoc(), sizeChars);
|
|
Args.add(RValue::get(Order), getContext().IntTy);
|
|
Order = OrderFail;
|
|
break;
|
|
// void __atomic_exchange(size_t size, void *mem, void *val, void *return,
|
|
// int order)
|
|
// T __atomic_exchange_N(T *mem, T val, int order)
|
|
case AtomicExpr::AO__c11_atomic_exchange:
|
|
case AtomicExpr::AO__atomic_exchange_n:
|
|
case AtomicExpr::AO__atomic_exchange:
|
|
LibCallName = "__atomic_exchange";
|
|
AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
|
|
MemTy, E->getExprLoc(), sizeChars);
|
|
break;
|
|
// void __atomic_store(size_t size, void *mem, void *val, int order)
|
|
// void __atomic_store_N(T *mem, T val, int order)
|
|
case AtomicExpr::AO__c11_atomic_store:
|
|
case AtomicExpr::AO__atomic_store:
|
|
case AtomicExpr::AO__atomic_store_n:
|
|
LibCallName = "__atomic_store";
|
|
RetTy = getContext().VoidTy;
|
|
HaveRetTy = true;
|
|
AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
|
|
MemTy, E->getExprLoc(), sizeChars);
|
|
break;
|
|
// void __atomic_load(size_t size, void *mem, void *return, int order)
|
|
// T __atomic_load_N(T *mem, int order)
|
|
case AtomicExpr::AO__c11_atomic_load:
|
|
case AtomicExpr::AO__atomic_load:
|
|
case AtomicExpr::AO__atomic_load_n:
|
|
LibCallName = "__atomic_load";
|
|
break;
|
|
// T __atomic_add_fetch_N(T *mem, T val, int order)
|
|
// T __atomic_fetch_add_N(T *mem, T val, int order)
|
|
case AtomicExpr::AO__atomic_add_fetch:
|
|
PostOp = llvm::Instruction::Add;
|
|
// Fall through.
|
|
case AtomicExpr::AO__c11_atomic_fetch_add:
|
|
case AtomicExpr::AO__atomic_fetch_add:
|
|
LibCallName = "__atomic_fetch_add";
|
|
AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
|
|
LoweredMemTy, E->getExprLoc(), sizeChars);
|
|
break;
|
|
// T __atomic_and_fetch_N(T *mem, T val, int order)
|
|
// T __atomic_fetch_and_N(T *mem, T val, int order)
|
|
case AtomicExpr::AO__atomic_and_fetch:
|
|
PostOp = llvm::Instruction::And;
|
|
// Fall through.
|
|
case AtomicExpr::AO__c11_atomic_fetch_and:
|
|
case AtomicExpr::AO__atomic_fetch_and:
|
|
LibCallName = "__atomic_fetch_and";
|
|
AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
|
|
MemTy, E->getExprLoc(), sizeChars);
|
|
break;
|
|
// T __atomic_or_fetch_N(T *mem, T val, int order)
|
|
// T __atomic_fetch_or_N(T *mem, T val, int order)
|
|
case AtomicExpr::AO__atomic_or_fetch:
|
|
PostOp = llvm::Instruction::Or;
|
|
// Fall through.
|
|
case AtomicExpr::AO__c11_atomic_fetch_or:
|
|
case AtomicExpr::AO__atomic_fetch_or:
|
|
LibCallName = "__atomic_fetch_or";
|
|
AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
|
|
MemTy, E->getExprLoc(), sizeChars);
|
|
break;
|
|
// T __atomic_sub_fetch_N(T *mem, T val, int order)
|
|
// T __atomic_fetch_sub_N(T *mem, T val, int order)
|
|
case AtomicExpr::AO__atomic_sub_fetch:
|
|
PostOp = llvm::Instruction::Sub;
|
|
// Fall through.
|
|
case AtomicExpr::AO__c11_atomic_fetch_sub:
|
|
case AtomicExpr::AO__atomic_fetch_sub:
|
|
LibCallName = "__atomic_fetch_sub";
|
|
AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
|
|
LoweredMemTy, E->getExprLoc(), sizeChars);
|
|
break;
|
|
// T __atomic_xor_fetch_N(T *mem, T val, int order)
|
|
// T __atomic_fetch_xor_N(T *mem, T val, int order)
|
|
case AtomicExpr::AO__atomic_xor_fetch:
|
|
PostOp = llvm::Instruction::Xor;
|
|
// Fall through.
|
|
case AtomicExpr::AO__c11_atomic_fetch_xor:
|
|
case AtomicExpr::AO__atomic_fetch_xor:
|
|
LibCallName = "__atomic_fetch_xor";
|
|
AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
|
|
MemTy, E->getExprLoc(), sizeChars);
|
|
break;
|
|
// T __atomic_nand_fetch_N(T *mem, T val, int order)
|
|
// T __atomic_fetch_nand_N(T *mem, T val, int order)
|
|
case AtomicExpr::AO__atomic_nand_fetch:
|
|
PostOp = llvm::Instruction::And; // the NOT is special cased below
|
|
// Fall through.
|
|
case AtomicExpr::AO__atomic_fetch_nand:
|
|
LibCallName = "__atomic_fetch_nand";
|
|
AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
|
|
MemTy, E->getExprLoc(), sizeChars);
|
|
break;
|
|
}
|
|
|
|
// Optimized functions have the size in their name.
|
|
if (UseOptimizedLibcall)
|
|
LibCallName += "_" + llvm::utostr(Size);
|
|
// By default, assume we return a value of the atomic type.
|
|
if (!HaveRetTy) {
|
|
if (UseOptimizedLibcall) {
|
|
// Value is returned directly.
|
|
// The function returns an appropriately sized integer type.
|
|
RetTy = getContext().getIntTypeForBitwidth(
|
|
getContext().toBits(sizeChars), /*Signed=*/false);
|
|
} else {
|
|
// Value is returned through parameter before the order.
|
|
RetTy = getContext().VoidTy;
|
|
Args.add(RValue::get(EmitCastToVoidPtr(Dest.getPointer())),
|
|
getContext().VoidPtrTy);
|
|
}
|
|
}
|
|
// order is always the last parameter
|
|
Args.add(RValue::get(Order),
|
|
getContext().IntTy);
|
|
|
|
// PostOp is only needed for the atomic_*_fetch operations, and
|
|
// thus is only needed for and implemented in the
|
|
// UseOptimizedLibcall codepath.
|
|
assert(UseOptimizedLibcall || !PostOp);
|
|
|
|
RValue Res = emitAtomicLibcall(*this, LibCallName, RetTy, Args);
|
|
// The value is returned directly from the libcall.
|
|
if (E->isCmpXChg())
|
|
return Res;
|
|
|
|
// The value is returned directly for optimized libcalls but the expr
|
|
// provided an out-param.
|
|
if (UseOptimizedLibcall && Res.getScalarVal()) {
|
|
llvm::Value *ResVal = Res.getScalarVal();
|
|
if (PostOp) {
|
|
llvm::Value *LoadVal1 = Args[1].RV.getScalarVal();
|
|
ResVal = Builder.CreateBinOp(PostOp, ResVal, LoadVal1);
|
|
}
|
|
if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch)
|
|
ResVal = Builder.CreateNot(ResVal);
|
|
|
|
Builder.CreateStore(
|
|
ResVal,
|
|
Builder.CreateBitCast(Dest, ResVal->getType()->getPointerTo()));
|
|
}
|
|
|
|
if (RValTy->isVoidType())
|
|
return RValue::get(nullptr);
|
|
|
|
return convertTempToRValue(
|
|
Builder.CreateBitCast(Dest, ConvertTypeForMem(RValTy)->getPointerTo()),
|
|
RValTy, E->getExprLoc());
|
|
}
|
|
|
|
bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store ||
|
|
E->getOp() == AtomicExpr::AO__atomic_store ||
|
|
E->getOp() == AtomicExpr::AO__atomic_store_n;
|
|
bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load ||
|
|
E->getOp() == AtomicExpr::AO__atomic_load ||
|
|
E->getOp() == AtomicExpr::AO__atomic_load_n;
|
|
|
|
if (isa<llvm::ConstantInt>(Order)) {
|
|
int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
|
|
switch (ord) {
|
|
case AtomicExpr::AO_ABI_memory_order_relaxed:
|
|
EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
|
|
Size, llvm::Monotonic);
|
|
break;
|
|
case AtomicExpr::AO_ABI_memory_order_consume:
|
|
case AtomicExpr::AO_ABI_memory_order_acquire:
|
|
if (IsStore)
|
|
break; // Avoid crashing on code with undefined behavior
|
|
EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
|
|
Size, llvm::Acquire);
|
|
break;
|
|
case AtomicExpr::AO_ABI_memory_order_release:
|
|
if (IsLoad)
|
|
break; // Avoid crashing on code with undefined behavior
|
|
EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
|
|
Size, llvm::Release);
|
|
break;
|
|
case AtomicExpr::AO_ABI_memory_order_acq_rel:
|
|
if (IsLoad || IsStore)
|
|
break; // Avoid crashing on code with undefined behavior
|
|
EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
|
|
Size, llvm::AcquireRelease);
|
|
break;
|
|
case AtomicExpr::AO_ABI_memory_order_seq_cst:
|
|
EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
|
|
Size, llvm::SequentiallyConsistent);
|
|
break;
|
|
default: // invalid order
|
|
// We should not ever get here normally, but it's hard to
|
|
// enforce that in general.
|
|
break;
|
|
}
|
|
if (RValTy->isVoidType())
|
|
return RValue::get(nullptr);
|
|
|
|
return convertTempToRValue(
|
|
Builder.CreateBitCast(Dest, ConvertTypeForMem(RValTy)->getPointerTo()),
|
|
RValTy, E->getExprLoc());
|
|
}
|
|
|
|
// Long case, when Order isn't obviously constant.
|
|
|
|
// Create all the relevant BB's
|
|
llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr,
|
|
*ReleaseBB = nullptr, *AcqRelBB = nullptr,
|
|
*SeqCstBB = nullptr;
|
|
MonotonicBB = createBasicBlock("monotonic", CurFn);
|
|
if (!IsStore)
|
|
AcquireBB = createBasicBlock("acquire", CurFn);
|
|
if (!IsLoad)
|
|
ReleaseBB = createBasicBlock("release", CurFn);
|
|
if (!IsLoad && !IsStore)
|
|
AcqRelBB = createBasicBlock("acqrel", CurFn);
|
|
SeqCstBB = createBasicBlock("seqcst", CurFn);
|
|
llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
|
|
|
|
// Create the switch for the split
|
|
// MonotonicBB is arbitrarily chosen as the default case; in practice, this
|
|
// doesn't matter unless someone is crazy enough to use something that
|
|
// doesn't fold to a constant for the ordering.
|
|
Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
|
|
llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
|
|
|
|
// Emit all the different atomics
|
|
Builder.SetInsertPoint(MonotonicBB);
|
|
EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
|
|
Size, llvm::Monotonic);
|
|
Builder.CreateBr(ContBB);
|
|
if (!IsStore) {
|
|
Builder.SetInsertPoint(AcquireBB);
|
|
EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
|
|
Size, llvm::Acquire);
|
|
Builder.CreateBr(ContBB);
|
|
SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_consume),
|
|
AcquireBB);
|
|
SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_acquire),
|
|
AcquireBB);
|
|
}
|
|
if (!IsLoad) {
|
|
Builder.SetInsertPoint(ReleaseBB);
|
|
EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
|
|
Size, llvm::Release);
|
|
Builder.CreateBr(ContBB);
|
|
SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_release),
|
|
ReleaseBB);
|
|
}
|
|
if (!IsLoad && !IsStore) {
|
|
Builder.SetInsertPoint(AcqRelBB);
|
|
EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
|
|
Size, llvm::AcquireRelease);
|
|
Builder.CreateBr(ContBB);
|
|
SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_acq_rel),
|
|
AcqRelBB);
|
|
}
|
|
Builder.SetInsertPoint(SeqCstBB);
|
|
EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
|
|
Size, llvm::SequentiallyConsistent);
|
|
Builder.CreateBr(ContBB);
|
|
SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_seq_cst),
|
|
SeqCstBB);
|
|
|
|
// Cleanup and return
|
|
Builder.SetInsertPoint(ContBB);
|
|
if (RValTy->isVoidType())
|
|
return RValue::get(nullptr);
|
|
|
|
assert(Atomics.getValueSizeInBits() <= Atomics.getAtomicSizeInBits());
|
|
return convertTempToRValue(
|
|
Builder.CreateBitCast(Dest, ConvertTypeForMem(RValTy)->getPointerTo()),
|
|
RValTy, E->getExprLoc());
|
|
}
|
|
|
|
Address AtomicInfo::emitCastToAtomicIntPointer(Address addr) const {
|
|
unsigned addrspace =
|
|
cast<llvm::PointerType>(addr.getPointer()->getType())->getAddressSpace();
|
|
llvm::IntegerType *ty =
|
|
llvm::IntegerType::get(CGF.getLLVMContext(), AtomicSizeInBits);
|
|
return CGF.Builder.CreateBitCast(addr, ty->getPointerTo(addrspace));
|
|
}
|
|
|
|
Address AtomicInfo::convertToAtomicIntPointer(Address Addr) const {
|
|
llvm::Type *Ty = Addr.getElementType();
|
|
uint64_t SourceSizeInBits = CGF.CGM.getDataLayout().getTypeSizeInBits(Ty);
|
|
if (SourceSizeInBits != AtomicSizeInBits) {
|
|
Address Tmp = CreateTempAlloca();
|
|
CGF.Builder.CreateMemCpy(Tmp, Addr,
|
|
std::min(AtomicSizeInBits, SourceSizeInBits) / 8);
|
|
Addr = Tmp;
|
|
}
|
|
|
|
return emitCastToAtomicIntPointer(Addr);
|
|
}
|
|
|
|
RValue AtomicInfo::convertAtomicTempToRValue(Address addr,
|
|
AggValueSlot resultSlot,
|
|
SourceLocation loc,
|
|
bool asValue) const {
|
|
if (LVal.isSimple()) {
|
|
if (EvaluationKind == TEK_Aggregate)
|
|
return resultSlot.asRValue();
|
|
|
|
// Drill into the padding structure if we have one.
|
|
if (hasPadding())
|
|
addr = CGF.Builder.CreateStructGEP(addr, 0, CharUnits());
|
|
|
|
// Otherwise, just convert the temporary to an r-value using the
|
|
// normal conversion routine.
|
|
return CGF.convertTempToRValue(addr, getValueType(), loc);
|
|
}
|
|
if (!asValue)
|
|
// Get RValue from temp memory as atomic for non-simple lvalues
|
|
return RValue::get(CGF.Builder.CreateLoad(addr));
|
|
if (LVal.isBitField())
|
|
return CGF.EmitLoadOfBitfieldLValue(
|
|
LValue::MakeBitfield(addr, LVal.getBitFieldInfo(), LVal.getType(),
|
|
LVal.getAlignmentSource()));
|
|
if (LVal.isVectorElt())
|
|
return CGF.EmitLoadOfLValue(
|
|
LValue::MakeVectorElt(addr, LVal.getVectorIdx(), LVal.getType(),
|
|
LVal.getAlignmentSource()), loc);
|
|
assert(LVal.isExtVectorElt());
|
|
return CGF.EmitLoadOfExtVectorElementLValue(LValue::MakeExtVectorElt(
|
|
addr, LVal.getExtVectorElts(), LVal.getType(),
|
|
LVal.getAlignmentSource()));
|
|
}
|
|
|
|
RValue AtomicInfo::ConvertIntToValueOrAtomic(llvm::Value *IntVal,
|
|
AggValueSlot ResultSlot,
|
|
SourceLocation Loc,
|
|
bool AsValue) const {
|
|
// Try not to in some easy cases.
|
|
assert(IntVal->getType()->isIntegerTy() && "Expected integer value");
|
|
if (getEvaluationKind() == TEK_Scalar &&
|
|
(((!LVal.isBitField() ||
|
|
LVal.getBitFieldInfo().Size == ValueSizeInBits) &&
|
|
!hasPadding()) ||
|
|
!AsValue)) {
|
|
auto *ValTy = AsValue
|
|
? CGF.ConvertTypeForMem(ValueTy)
|
|
: getAtomicAddress().getType()->getPointerElementType();
|
|
if (ValTy->isIntegerTy()) {
|
|
assert(IntVal->getType() == ValTy && "Different integer types.");
|
|
return RValue::get(CGF.EmitFromMemory(IntVal, ValueTy));
|
|
} else if (ValTy->isPointerTy())
|
|
return RValue::get(CGF.Builder.CreateIntToPtr(IntVal, ValTy));
|
|
else if (llvm::CastInst::isBitCastable(IntVal->getType(), ValTy))
|
|
return RValue::get(CGF.Builder.CreateBitCast(IntVal, ValTy));
|
|
}
|
|
|
|
// Create a temporary. This needs to be big enough to hold the
|
|
// atomic integer.
|
|
Address Temp = Address::invalid();
|
|
bool TempIsVolatile = false;
|
|
if (AsValue && getEvaluationKind() == TEK_Aggregate) {
|
|
assert(!ResultSlot.isIgnored());
|
|
Temp = ResultSlot.getAddress();
|
|
TempIsVolatile = ResultSlot.isVolatile();
|
|
} else {
|
|
Temp = CreateTempAlloca();
|
|
}
|
|
|
|
// Slam the integer into the temporary.
|
|
Address CastTemp = emitCastToAtomicIntPointer(Temp);
|
|
CGF.Builder.CreateStore(IntVal, CastTemp)
|
|
->setVolatile(TempIsVolatile);
|
|
|
|
return convertAtomicTempToRValue(Temp, ResultSlot, Loc, AsValue);
|
|
}
|
|
|
|
void AtomicInfo::EmitAtomicLoadLibcall(llvm::Value *AddForLoaded,
|
|
llvm::AtomicOrdering AO, bool) {
|
|
// void __atomic_load(size_t size, void *mem, void *return, int order);
|
|
CallArgList Args;
|
|
Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType());
|
|
Args.add(RValue::get(CGF.EmitCastToVoidPtr(getAtomicPointer())),
|
|
CGF.getContext().VoidPtrTy);
|
|
Args.add(RValue::get(CGF.EmitCastToVoidPtr(AddForLoaded)),
|
|
CGF.getContext().VoidPtrTy);
|
|
Args.add(RValue::get(
|
|
llvm::ConstantInt::get(CGF.IntTy, translateAtomicOrdering(AO))),
|
|
CGF.getContext().IntTy);
|
|
emitAtomicLibcall(CGF, "__atomic_load", CGF.getContext().VoidTy, Args);
|
|
}
|
|
|
|
llvm::Value *AtomicInfo::EmitAtomicLoadOp(llvm::AtomicOrdering AO,
|
|
bool IsVolatile) {
|
|
// Okay, we're doing this natively.
|
|
Address Addr = getAtomicAddressAsAtomicIntPointer();
|
|
llvm::LoadInst *Load = CGF.Builder.CreateLoad(Addr, "atomic-load");
|
|
Load->setAtomic(AO);
|
|
|
|
// Other decoration.
|
|
if (IsVolatile)
|
|
Load->setVolatile(true);
|
|
if (LVal.getTBAAInfo())
|
|
CGF.CGM.DecorateInstructionWithTBAA(Load, LVal.getTBAAInfo());
|
|
return Load;
|
|
}
|
|
|
|
/// An LValue is a candidate for having its loads and stores be made atomic if
|
|
/// we are operating under /volatile:ms *and* the LValue itself is volatile and
|
|
/// performing such an operation can be performed without a libcall.
|
|
bool CodeGenFunction::LValueIsSuitableForInlineAtomic(LValue LV) {
|
|
if (!CGM.getCodeGenOpts().MSVolatile) return false;
|
|
AtomicInfo AI(*this, LV);
|
|
bool IsVolatile = LV.isVolatile() || hasVolatileMember(LV.getType());
|
|
// An atomic is inline if we don't need to use a libcall.
|
|
bool AtomicIsInline = !AI.shouldUseLibcall();
|
|
return IsVolatile && AtomicIsInline;
|
|
}
|
|
|
|
/// An type is a candidate for having its loads and stores be made atomic if
|
|
/// we are operating under /volatile:ms *and* we know the access is volatile and
|
|
/// performing such an operation can be performed without a libcall.
|
|
bool CodeGenFunction::typeIsSuitableForInlineAtomic(QualType Ty,
|
|
bool IsVolatile) const {
|
|
// An atomic is inline if we don't need to use a libcall (e.g. it is builtin).
|
|
bool AtomicIsInline = getContext().getTargetInfo().hasBuiltinAtomic(
|
|
getContext().getTypeSize(Ty), getContext().getTypeAlign(Ty));
|
|
return CGM.getCodeGenOpts().MSVolatile && IsVolatile && AtomicIsInline;
|
|
}
|
|
|
|
RValue CodeGenFunction::EmitAtomicLoad(LValue LV, SourceLocation SL,
|
|
AggValueSlot Slot) {
|
|
llvm::AtomicOrdering AO;
|
|
bool IsVolatile = LV.isVolatileQualified();
|
|
if (LV.getType()->isAtomicType()) {
|
|
AO = llvm::SequentiallyConsistent;
|
|
} else {
|
|
AO = llvm::Acquire;
|
|
IsVolatile = true;
|
|
}
|
|
return EmitAtomicLoad(LV, SL, AO, IsVolatile, Slot);
|
|
}
|
|
|
|
RValue AtomicInfo::EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc,
|
|
bool AsValue, llvm::AtomicOrdering AO,
|
|
bool IsVolatile) {
|
|
// Check whether we should use a library call.
|
|
if (shouldUseLibcall()) {
|
|
Address TempAddr = Address::invalid();
|
|
if (LVal.isSimple() && !ResultSlot.isIgnored()) {
|
|
assert(getEvaluationKind() == TEK_Aggregate);
|
|
TempAddr = ResultSlot.getAddress();
|
|
} else
|
|
TempAddr = CreateTempAlloca();
|
|
|
|
EmitAtomicLoadLibcall(TempAddr.getPointer(), AO, IsVolatile);
|
|
|
|
// Okay, turn that back into the original value or whole atomic (for
|
|
// non-simple lvalues) type.
|
|
return convertAtomicTempToRValue(TempAddr, ResultSlot, Loc, AsValue);
|
|
}
|
|
|
|
// Okay, we're doing this natively.
|
|
auto *Load = EmitAtomicLoadOp(AO, IsVolatile);
|
|
|
|
// If we're ignoring an aggregate return, don't do anything.
|
|
if (getEvaluationKind() == TEK_Aggregate && ResultSlot.isIgnored())
|
|
return RValue::getAggregate(Address::invalid(), false);
|
|
|
|
// Okay, turn that back into the original value or atomic (for non-simple
|
|
// lvalues) type.
|
|
return ConvertIntToValueOrAtomic(Load, ResultSlot, Loc, AsValue);
|
|
}
|
|
|
|
/// Emit a load from an l-value of atomic type. Note that the r-value
|
|
/// we produce is an r-value of the atomic *value* type.
|
|
RValue CodeGenFunction::EmitAtomicLoad(LValue src, SourceLocation loc,
|
|
llvm::AtomicOrdering AO, bool IsVolatile,
|
|
AggValueSlot resultSlot) {
|
|
AtomicInfo Atomics(*this, src);
|
|
return Atomics.EmitAtomicLoad(resultSlot, loc, /*AsValue=*/true, AO,
|
|
IsVolatile);
|
|
}
|
|
|
|
/// Copy an r-value into memory as part of storing to an atomic type.
|
|
/// This needs to create a bit-pattern suitable for atomic operations.
|
|
void AtomicInfo::emitCopyIntoMemory(RValue rvalue) const {
|
|
assert(LVal.isSimple());
|
|
// If we have an r-value, the rvalue should be of the atomic type,
|
|
// which means that the caller is responsible for having zeroed
|
|
// any padding. Just do an aggregate copy of that type.
|
|
if (rvalue.isAggregate()) {
|
|
CGF.EmitAggregateCopy(getAtomicAddress(),
|
|
rvalue.getAggregateAddress(),
|
|
getAtomicType(),
|
|
(rvalue.isVolatileQualified()
|
|
|| LVal.isVolatileQualified()));
|
|
return;
|
|
}
|
|
|
|
// Okay, otherwise we're copying stuff.
|
|
|
|
// Zero out the buffer if necessary.
|
|
emitMemSetZeroIfNecessary();
|
|
|
|
// Drill past the padding if present.
|
|
LValue TempLVal = projectValue();
|
|
|
|
// Okay, store the rvalue in.
|
|
if (rvalue.isScalar()) {
|
|
CGF.EmitStoreOfScalar(rvalue.getScalarVal(), TempLVal, /*init*/ true);
|
|
} else {
|
|
CGF.EmitStoreOfComplex(rvalue.getComplexVal(), TempLVal, /*init*/ true);
|
|
}
|
|
}
|
|
|
|
|
|
/// Materialize an r-value into memory for the purposes of storing it
|
|
/// to an atomic type.
|
|
Address AtomicInfo::materializeRValue(RValue rvalue) const {
|
|
// Aggregate r-values are already in memory, and EmitAtomicStore
|
|
// requires them to be values of the atomic type.
|
|
if (rvalue.isAggregate())
|
|
return rvalue.getAggregateAddress();
|
|
|
|
// Otherwise, make a temporary and materialize into it.
|
|
LValue TempLV = CGF.MakeAddrLValue(CreateTempAlloca(), getAtomicType());
|
|
AtomicInfo Atomics(CGF, TempLV);
|
|
Atomics.emitCopyIntoMemory(rvalue);
|
|
return TempLV.getAddress();
|
|
}
|
|
|
|
llvm::Value *AtomicInfo::convertRValueToInt(RValue RVal) const {
|
|
// If we've got a scalar value of the right size, try to avoid going
|
|
// through memory.
|
|
if (RVal.isScalar() && (!hasPadding() || !LVal.isSimple())) {
|
|
llvm::Value *Value = RVal.getScalarVal();
|
|
if (isa<llvm::IntegerType>(Value->getType()))
|
|
return CGF.EmitToMemory(Value, ValueTy);
|
|
else {
|
|
llvm::IntegerType *InputIntTy = llvm::IntegerType::get(
|
|
CGF.getLLVMContext(),
|
|
LVal.isSimple() ? getValueSizeInBits() : getAtomicSizeInBits());
|
|
if (isa<llvm::PointerType>(Value->getType()))
|
|
return CGF.Builder.CreatePtrToInt(Value, InputIntTy);
|
|
else if (llvm::BitCastInst::isBitCastable(Value->getType(), InputIntTy))
|
|
return CGF.Builder.CreateBitCast(Value, InputIntTy);
|
|
}
|
|
}
|
|
// Otherwise, we need to go through memory.
|
|
// Put the r-value in memory.
|
|
Address Addr = materializeRValue(RVal);
|
|
|
|
// Cast the temporary to the atomic int type and pull a value out.
|
|
Addr = emitCastToAtomicIntPointer(Addr);
|
|
return CGF.Builder.CreateLoad(Addr);
|
|
}
|
|
|
|
std::pair<llvm::Value *, llvm::Value *> AtomicInfo::EmitAtomicCompareExchangeOp(
|
|
llvm::Value *ExpectedVal, llvm::Value *DesiredVal,
|
|
llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak) {
|
|
// Do the atomic store.
|
|
Address Addr = getAtomicAddressAsAtomicIntPointer();
|
|
auto *Inst = CGF.Builder.CreateAtomicCmpXchg(Addr.getPointer(),
|
|
ExpectedVal, DesiredVal,
|
|
Success, Failure);
|
|
// Other decoration.
|
|
Inst->setVolatile(LVal.isVolatileQualified());
|
|
Inst->setWeak(IsWeak);
|
|
|
|
// Okay, turn that back into the original value type.
|
|
auto *PreviousVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/0);
|
|
auto *SuccessFailureVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/1);
|
|
return std::make_pair(PreviousVal, SuccessFailureVal);
|
|
}
|
|
|
|
llvm::Value *
|
|
AtomicInfo::EmitAtomicCompareExchangeLibcall(llvm::Value *ExpectedAddr,
|
|
llvm::Value *DesiredAddr,
|
|
llvm::AtomicOrdering Success,
|
|
llvm::AtomicOrdering Failure) {
|
|
// bool __atomic_compare_exchange(size_t size, void *obj, void *expected,
|
|
// void *desired, int success, int failure);
|
|
CallArgList Args;
|
|
Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType());
|
|
Args.add(RValue::get(CGF.EmitCastToVoidPtr(getAtomicPointer())),
|
|
CGF.getContext().VoidPtrTy);
|
|
Args.add(RValue::get(CGF.EmitCastToVoidPtr(ExpectedAddr)),
|
|
CGF.getContext().VoidPtrTy);
|
|
Args.add(RValue::get(CGF.EmitCastToVoidPtr(DesiredAddr)),
|
|
CGF.getContext().VoidPtrTy);
|
|
Args.add(RValue::get(llvm::ConstantInt::get(
|
|
CGF.IntTy, translateAtomicOrdering(Success))),
|
|
CGF.getContext().IntTy);
|
|
Args.add(RValue::get(llvm::ConstantInt::get(
|
|
CGF.IntTy, translateAtomicOrdering(Failure))),
|
|
CGF.getContext().IntTy);
|
|
auto SuccessFailureRVal = emitAtomicLibcall(CGF, "__atomic_compare_exchange",
|
|
CGF.getContext().BoolTy, Args);
|
|
|
|
return SuccessFailureRVal.getScalarVal();
|
|
}
|
|
|
|
std::pair<RValue, llvm::Value *> AtomicInfo::EmitAtomicCompareExchange(
|
|
RValue Expected, RValue Desired, llvm::AtomicOrdering Success,
|
|
llvm::AtomicOrdering Failure, bool IsWeak) {
|
|
if (Failure >= Success)
|
|
// Don't assert on undefined behavior.
|
|
Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(Success);
|
|
|
|
// Check whether we should use a library call.
|
|
if (shouldUseLibcall()) {
|
|
// Produce a source address.
|
|
Address ExpectedAddr = materializeRValue(Expected);
|
|
Address DesiredAddr = materializeRValue(Desired);
|
|
auto *Res = EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(),
|
|
DesiredAddr.getPointer(),
|
|
Success, Failure);
|
|
return std::make_pair(
|
|
convertAtomicTempToRValue(ExpectedAddr, AggValueSlot::ignored(),
|
|
SourceLocation(), /*AsValue=*/false),
|
|
Res);
|
|
}
|
|
|
|
// If we've got a scalar value of the right size, try to avoid going
|
|
// through memory.
|
|
auto *ExpectedVal = convertRValueToInt(Expected);
|
|
auto *DesiredVal = convertRValueToInt(Desired);
|
|
auto Res = EmitAtomicCompareExchangeOp(ExpectedVal, DesiredVal, Success,
|
|
Failure, IsWeak);
|
|
return std::make_pair(
|
|
ConvertIntToValueOrAtomic(Res.first, AggValueSlot::ignored(),
|
|
SourceLocation(), /*AsValue=*/false),
|
|
Res.second);
|
|
}
|
|
|
|
static void
|
|
EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, RValue OldRVal,
|
|
const llvm::function_ref<RValue(RValue)> &UpdateOp,
|
|
Address DesiredAddr) {
|
|
RValue UpRVal;
|
|
LValue AtomicLVal = Atomics.getAtomicLValue();
|
|
LValue DesiredLVal;
|
|
if (AtomicLVal.isSimple()) {
|
|
UpRVal = OldRVal;
|
|
DesiredLVal = CGF.MakeAddrLValue(DesiredAddr, AtomicLVal.getType());
|
|
} else {
|
|
// Build new lvalue for temp address
|
|
Address Ptr = Atomics.materializeRValue(OldRVal);
|
|
LValue UpdateLVal;
|
|
if (AtomicLVal.isBitField()) {
|
|
UpdateLVal =
|
|
LValue::MakeBitfield(Ptr, AtomicLVal.getBitFieldInfo(),
|
|
AtomicLVal.getType(),
|
|
AtomicLVal.getAlignmentSource());
|
|
DesiredLVal =
|
|
LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(),
|
|
AtomicLVal.getType(),
|
|
AtomicLVal.getAlignmentSource());
|
|
} else if (AtomicLVal.isVectorElt()) {
|
|
UpdateLVal = LValue::MakeVectorElt(Ptr, AtomicLVal.getVectorIdx(),
|
|
AtomicLVal.getType(),
|
|
AtomicLVal.getAlignmentSource());
|
|
DesiredLVal = LValue::MakeVectorElt(
|
|
DesiredAddr, AtomicLVal.getVectorIdx(), AtomicLVal.getType(),
|
|
AtomicLVal.getAlignmentSource());
|
|
} else {
|
|
assert(AtomicLVal.isExtVectorElt());
|
|
UpdateLVal = LValue::MakeExtVectorElt(Ptr, AtomicLVal.getExtVectorElts(),
|
|
AtomicLVal.getType(),
|
|
AtomicLVal.getAlignmentSource());
|
|
DesiredLVal = LValue::MakeExtVectorElt(
|
|
DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(),
|
|
AtomicLVal.getAlignmentSource());
|
|
}
|
|
UpdateLVal.setTBAAInfo(AtomicLVal.getTBAAInfo());
|
|
DesiredLVal.setTBAAInfo(AtomicLVal.getTBAAInfo());
|
|
UpRVal = CGF.EmitLoadOfLValue(UpdateLVal, SourceLocation());
|
|
}
|
|
// Store new value in the corresponding memory area
|
|
RValue NewRVal = UpdateOp(UpRVal);
|
|
if (NewRVal.isScalar()) {
|
|
CGF.EmitStoreThroughLValue(NewRVal, DesiredLVal);
|
|
} else {
|
|
assert(NewRVal.isComplex());
|
|
CGF.EmitStoreOfComplex(NewRVal.getComplexVal(), DesiredLVal,
|
|
/*isInit=*/false);
|
|
}
|
|
}
|
|
|
|
void AtomicInfo::EmitAtomicUpdateLibcall(
|
|
llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp,
|
|
bool IsVolatile) {
|
|
auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
|
|
|
|
Address ExpectedAddr = CreateTempAlloca();
|
|
|
|
EmitAtomicLoadLibcall(ExpectedAddr.getPointer(), AO, IsVolatile);
|
|
auto *ContBB = CGF.createBasicBlock("atomic_cont");
|
|
auto *ExitBB = CGF.createBasicBlock("atomic_exit");
|
|
CGF.EmitBlock(ContBB);
|
|
Address DesiredAddr = CreateTempAlloca();
|
|
if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
|
|
requiresMemSetZero(getAtomicAddress().getElementType())) {
|
|
auto *OldVal = CGF.Builder.CreateLoad(ExpectedAddr);
|
|
CGF.Builder.CreateStore(OldVal, DesiredAddr);
|
|
}
|
|
auto OldRVal = convertAtomicTempToRValue(ExpectedAddr,
|
|
AggValueSlot::ignored(),
|
|
SourceLocation(), /*AsValue=*/false);
|
|
EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, DesiredAddr);
|
|
auto *Res =
|
|
EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(),
|
|
DesiredAddr.getPointer(),
|
|
AO, Failure);
|
|
CGF.Builder.CreateCondBr(Res, ExitBB, ContBB);
|
|
CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
|
|
}
|
|
|
|
void AtomicInfo::EmitAtomicUpdateOp(
|
|
llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp,
|
|
bool IsVolatile) {
|
|
auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
|
|
|
|
// Do the atomic load.
|
|
auto *OldVal = EmitAtomicLoadOp(AO, IsVolatile);
|
|
// For non-simple lvalues perform compare-and-swap procedure.
|
|
auto *ContBB = CGF.createBasicBlock("atomic_cont");
|
|
auto *ExitBB = CGF.createBasicBlock("atomic_exit");
|
|
auto *CurBB = CGF.Builder.GetInsertBlock();
|
|
CGF.EmitBlock(ContBB);
|
|
llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(),
|
|
/*NumReservedValues=*/2);
|
|
PHI->addIncoming(OldVal, CurBB);
|
|
Address NewAtomicAddr = CreateTempAlloca();
|
|
Address NewAtomicIntAddr = emitCastToAtomicIntPointer(NewAtomicAddr);
|
|
if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
|
|
requiresMemSetZero(getAtomicAddress().getElementType())) {
|
|
CGF.Builder.CreateStore(PHI, NewAtomicIntAddr);
|
|
}
|
|
auto OldRVal = ConvertIntToValueOrAtomic(PHI, AggValueSlot::ignored(),
|
|
SourceLocation(), /*AsValue=*/false);
|
|
EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, NewAtomicAddr);
|
|
auto *DesiredVal = CGF.Builder.CreateLoad(NewAtomicIntAddr);
|
|
// Try to write new value using cmpxchg operation
|
|
auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure);
|
|
PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock());
|
|
CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB);
|
|
CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
|
|
}
|
|
|
|
static void EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics,
|
|
RValue UpdateRVal, Address DesiredAddr) {
|
|
LValue AtomicLVal = Atomics.getAtomicLValue();
|
|
LValue DesiredLVal;
|
|
// Build new lvalue for temp address
|
|
if (AtomicLVal.isBitField()) {
|
|
DesiredLVal =
|
|
LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(),
|
|
AtomicLVal.getType(),
|
|
AtomicLVal.getAlignmentSource());
|
|
} else if (AtomicLVal.isVectorElt()) {
|
|
DesiredLVal =
|
|
LValue::MakeVectorElt(DesiredAddr, AtomicLVal.getVectorIdx(),
|
|
AtomicLVal.getType(),
|
|
AtomicLVal.getAlignmentSource());
|
|
} else {
|
|
assert(AtomicLVal.isExtVectorElt());
|
|
DesiredLVal = LValue::MakeExtVectorElt(
|
|
DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(),
|
|
AtomicLVal.getAlignmentSource());
|
|
}
|
|
DesiredLVal.setTBAAInfo(AtomicLVal.getTBAAInfo());
|
|
// Store new value in the corresponding memory area
|
|
assert(UpdateRVal.isScalar());
|
|
CGF.EmitStoreThroughLValue(UpdateRVal, DesiredLVal);
|
|
}
|
|
|
|
void AtomicInfo::EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO,
|
|
RValue UpdateRVal, bool IsVolatile) {
|
|
auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
|
|
|
|
Address ExpectedAddr = CreateTempAlloca();
|
|
|
|
EmitAtomicLoadLibcall(ExpectedAddr.getPointer(), AO, IsVolatile);
|
|
auto *ContBB = CGF.createBasicBlock("atomic_cont");
|
|
auto *ExitBB = CGF.createBasicBlock("atomic_exit");
|
|
CGF.EmitBlock(ContBB);
|
|
Address DesiredAddr = CreateTempAlloca();
|
|
if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
|
|
requiresMemSetZero(getAtomicAddress().getElementType())) {
|
|
auto *OldVal = CGF.Builder.CreateLoad(ExpectedAddr);
|
|
CGF.Builder.CreateStore(OldVal, DesiredAddr);
|
|
}
|
|
EmitAtomicUpdateValue(CGF, *this, UpdateRVal, DesiredAddr);
|
|
auto *Res =
|
|
EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(),
|
|
DesiredAddr.getPointer(),
|
|
AO, Failure);
|
|
CGF.Builder.CreateCondBr(Res, ExitBB, ContBB);
|
|
CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
|
|
}
|
|
|
|
void AtomicInfo::EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRVal,
|
|
bool IsVolatile) {
|
|
auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
|
|
|
|
// Do the atomic load.
|
|
auto *OldVal = EmitAtomicLoadOp(AO, IsVolatile);
|
|
// For non-simple lvalues perform compare-and-swap procedure.
|
|
auto *ContBB = CGF.createBasicBlock("atomic_cont");
|
|
auto *ExitBB = CGF.createBasicBlock("atomic_exit");
|
|
auto *CurBB = CGF.Builder.GetInsertBlock();
|
|
CGF.EmitBlock(ContBB);
|
|
llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(),
|
|
/*NumReservedValues=*/2);
|
|
PHI->addIncoming(OldVal, CurBB);
|
|
Address NewAtomicAddr = CreateTempAlloca();
|
|
Address NewAtomicIntAddr = emitCastToAtomicIntPointer(NewAtomicAddr);
|
|
if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
|
|
requiresMemSetZero(getAtomicAddress().getElementType())) {
|
|
CGF.Builder.CreateStore(PHI, NewAtomicIntAddr);
|
|
}
|
|
EmitAtomicUpdateValue(CGF, *this, UpdateRVal, NewAtomicAddr);
|
|
auto *DesiredVal = CGF.Builder.CreateLoad(NewAtomicIntAddr);
|
|
// Try to write new value using cmpxchg operation
|
|
auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure);
|
|
PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock());
|
|
CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB);
|
|
CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
|
|
}
|
|
|
|
void AtomicInfo::EmitAtomicUpdate(
|
|
llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp,
|
|
bool IsVolatile) {
|
|
if (shouldUseLibcall()) {
|
|
EmitAtomicUpdateLibcall(AO, UpdateOp, IsVolatile);
|
|
} else {
|
|
EmitAtomicUpdateOp(AO, UpdateOp, IsVolatile);
|
|
}
|
|
}
|
|
|
|
void AtomicInfo::EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal,
|
|
bool IsVolatile) {
|
|
if (shouldUseLibcall()) {
|
|
EmitAtomicUpdateLibcall(AO, UpdateRVal, IsVolatile);
|
|
} else {
|
|
EmitAtomicUpdateOp(AO, UpdateRVal, IsVolatile);
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue lvalue,
|
|
bool isInit) {
|
|
bool IsVolatile = lvalue.isVolatileQualified();
|
|
llvm::AtomicOrdering AO;
|
|
if (lvalue.getType()->isAtomicType()) {
|
|
AO = llvm::SequentiallyConsistent;
|
|
} else {
|
|
AO = llvm::Release;
|
|
IsVolatile = true;
|
|
}
|
|
return EmitAtomicStore(rvalue, lvalue, AO, IsVolatile, isInit);
|
|
}
|
|
|
|
/// Emit a store to an l-value of atomic type.
|
|
///
|
|
/// Note that the r-value is expected to be an r-value *of the atomic
|
|
/// type*; this means that for aggregate r-values, it should include
|
|
/// storage for any padding that was necessary.
|
|
void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue dest,
|
|
llvm::AtomicOrdering AO, bool IsVolatile,
|
|
bool isInit) {
|
|
// If this is an aggregate r-value, it should agree in type except
|
|
// maybe for address-space qualification.
|
|
assert(!rvalue.isAggregate() ||
|
|
rvalue.getAggregateAddress().getElementType()
|
|
== dest.getAddress().getElementType());
|
|
|
|
AtomicInfo atomics(*this, dest);
|
|
LValue LVal = atomics.getAtomicLValue();
|
|
|
|
// If this is an initialization, just put the value there normally.
|
|
if (LVal.isSimple()) {
|
|
if (isInit) {
|
|
atomics.emitCopyIntoMemory(rvalue);
|
|
return;
|
|
}
|
|
|
|
// Check whether we should use a library call.
|
|
if (atomics.shouldUseLibcall()) {
|
|
// Produce a source address.
|
|
Address srcAddr = atomics.materializeRValue(rvalue);
|
|
|
|
// void __atomic_store(size_t size, void *mem, void *val, int order)
|
|
CallArgList args;
|
|
args.add(RValue::get(atomics.getAtomicSizeValue()),
|
|
getContext().getSizeType());
|
|
args.add(RValue::get(EmitCastToVoidPtr(atomics.getAtomicPointer())),
|
|
getContext().VoidPtrTy);
|
|
args.add(RValue::get(EmitCastToVoidPtr(srcAddr.getPointer())),
|
|
getContext().VoidPtrTy);
|
|
args.add(RValue::get(llvm::ConstantInt::get(
|
|
IntTy, AtomicInfo::translateAtomicOrdering(AO))),
|
|
getContext().IntTy);
|
|
emitAtomicLibcall(*this, "__atomic_store", getContext().VoidTy, args);
|
|
return;
|
|
}
|
|
|
|
// Okay, we're doing this natively.
|
|
llvm::Value *intValue = atomics.convertRValueToInt(rvalue);
|
|
|
|
// Do the atomic store.
|
|
Address addr =
|
|
atomics.emitCastToAtomicIntPointer(atomics.getAtomicAddress());
|
|
intValue = Builder.CreateIntCast(
|
|
intValue, addr.getElementType(), /*isSigned=*/false);
|
|
llvm::StoreInst *store = Builder.CreateStore(intValue, addr);
|
|
|
|
// Initializations don't need to be atomic.
|
|
if (!isInit)
|
|
store->setAtomic(AO);
|
|
|
|
// Other decoration.
|
|
if (IsVolatile)
|
|
store->setVolatile(true);
|
|
if (dest.getTBAAInfo())
|
|
CGM.DecorateInstructionWithTBAA(store, dest.getTBAAInfo());
|
|
return;
|
|
}
|
|
|
|
// Emit simple atomic update operation.
|
|
atomics.EmitAtomicUpdate(AO, rvalue, IsVolatile);
|
|
}
|
|
|
|
/// Emit a compare-and-exchange op for atomic type.
|
|
///
|
|
std::pair<RValue, llvm::Value *> CodeGenFunction::EmitAtomicCompareExchange(
|
|
LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
|
|
llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak,
|
|
AggValueSlot Slot) {
|
|
// If this is an aggregate r-value, it should agree in type except
|
|
// maybe for address-space qualification.
|
|
assert(!Expected.isAggregate() ||
|
|
Expected.getAggregateAddress().getElementType() ==
|
|
Obj.getAddress().getElementType());
|
|
assert(!Desired.isAggregate() ||
|
|
Desired.getAggregateAddress().getElementType() ==
|
|
Obj.getAddress().getElementType());
|
|
AtomicInfo Atomics(*this, Obj);
|
|
|
|
return Atomics.EmitAtomicCompareExchange(Expected, Desired, Success, Failure,
|
|
IsWeak);
|
|
}
|
|
|
|
void CodeGenFunction::EmitAtomicUpdate(
|
|
LValue LVal, llvm::AtomicOrdering AO,
|
|
const llvm::function_ref<RValue(RValue)> &UpdateOp, bool IsVolatile) {
|
|
AtomicInfo Atomics(*this, LVal);
|
|
Atomics.EmitAtomicUpdate(AO, UpdateOp, IsVolatile);
|
|
}
|
|
|
|
void CodeGenFunction::EmitAtomicInit(Expr *init, LValue dest) {
|
|
AtomicInfo atomics(*this, dest);
|
|
|
|
switch (atomics.getEvaluationKind()) {
|
|
case TEK_Scalar: {
|
|
llvm::Value *value = EmitScalarExpr(init);
|
|
atomics.emitCopyIntoMemory(RValue::get(value));
|
|
return;
|
|
}
|
|
|
|
case TEK_Complex: {
|
|
ComplexPairTy value = EmitComplexExpr(init);
|
|
atomics.emitCopyIntoMemory(RValue::getComplex(value));
|
|
return;
|
|
}
|
|
|
|
case TEK_Aggregate: {
|
|
// Fix up the destination if the initializer isn't an expression
|
|
// of atomic type.
|
|
bool Zeroed = false;
|
|
if (!init->getType()->isAtomicType()) {
|
|
Zeroed = atomics.emitMemSetZeroIfNecessary();
|
|
dest = atomics.projectValue();
|
|
}
|
|
|
|
// Evaluate the expression directly into the destination.
|
|
AggValueSlot slot = AggValueSlot::forLValue(dest,
|
|
AggValueSlot::IsNotDestructed,
|
|
AggValueSlot::DoesNotNeedGCBarriers,
|
|
AggValueSlot::IsNotAliased,
|
|
Zeroed ? AggValueSlot::IsZeroed :
|
|
AggValueSlot::IsNotZeroed);
|
|
|
|
EmitAggExpr(init, slot);
|
|
return;
|
|
}
|
|
}
|
|
llvm_unreachable("bad evaluation kind");
|
|
}
|