llvm-project/flang/unittests/Runtime/CharacterTest.cpp

427 lines
15 KiB
C++

//===-- flang/unittests/RuntimeGTest/CharacterTest.cpp ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Basic sanity tests of CHARACTER API; exhaustive testing will be done
// in Fortran.
#include "flang/Runtime/character.h"
#include "gtest/gtest.h"
#include "flang/Runtime/descriptor.h"
#include <cstring>
#include <functional>
#include <tuple>
#include <vector>
using namespace Fortran::runtime;
using CharacterTypes = ::testing::Types<char, char16_t, char32_t>;
// Helper for creating, allocating and filling up a descriptor with data from
// raw character literals, converted to the CHAR type used by the test.
template <typename CHAR>
OwningPtr<Descriptor> CreateDescriptor(const std::vector<SubscriptValue> &shape,
const std::vector<const char *> &raw_strings) {
std::size_t length{std::strlen(raw_strings[0])};
OwningPtr<Descriptor> descriptor{Descriptor::Create(sizeof(CHAR), length,
nullptr, shape.size(), nullptr, CFI_attribute_allocatable)};
int rank{static_cast<int>(shape.size())};
// Use a weird lower bound of 2 to flush out subscripting bugs
for (int j{0}; j < rank; ++j) {
descriptor->GetDimension(j).SetBounds(2, shape[j] + 1);
}
if (descriptor->Allocate() != 0) {
return nullptr;
}
std::size_t offset = 0;
for (const char *raw : raw_strings) {
std::basic_string<CHAR> converted{raw, raw + length};
std::copy(converted.begin(), converted.end(),
descriptor->OffsetElement<CHAR>(offset * length * sizeof(CHAR)));
++offset;
}
return descriptor;
}
TEST(CharacterTests, AppendAndPad) {
static constexpr int limitMax{8};
static char buffer[limitMax];
static std::size_t offset{0};
for (std::size_t limit{0}; limit < limitMax; ++limit, offset = 0) {
std::memset(buffer, 0, sizeof buffer);
// Ensure appending characters does not overrun the limit
offset = RTNAME(CharacterAppend1)(buffer, limit, offset, "abc", 3);
offset = RTNAME(CharacterAppend1)(buffer, limit, offset, "DE", 2);
ASSERT_LE(offset, limit) << "offset " << offset << ">" << limit;
// Ensure whitespace padding does not overrun limit, the string is still
// null-terminated, and string matches the expected value up to the limit.
RTNAME(CharacterPad1)(buffer, limit, offset);
EXPECT_EQ(buffer[limit], '\0')
<< "buffer[" << limit << "]='" << buffer[limit] << "'";
buffer[limit] = buffer[limit] ? '\0' : buffer[limit];
ASSERT_EQ(std::memcmp(buffer, "abcDE ", limit), 0)
<< "buffer = '" << buffer << "'";
}
}
TEST(CharacterTests, CharacterAppend1Overrun) {
static constexpr int bufferSize{4};
static constexpr std::size_t limit{2};
static char buffer[bufferSize];
static std::size_t offset{0};
std::memset(buffer, 0, sizeof buffer);
offset = RTNAME(CharacterAppend1)(buffer, limit, offset, "1234", bufferSize);
ASSERT_EQ(offset, limit) << "CharacterAppend1 did not halt at limit = "
<< limit << ", but at offset = " << offset;
}
// Test ADJUSTL() and ADJUSTR()
template <typename CHAR> struct AdjustLRTests : public ::testing::Test {};
TYPED_TEST_SUITE(AdjustLRTests, CharacterTypes, );
struct AdjustLRTestCase {
const char *input, *output;
};
template <typename CHAR>
void RunAdjustLRTest(const char *which,
const std::function<void(
Descriptor &, const Descriptor &, const char *, int)> &adjust,
const char *inputRaw, const char *outputRaw) {
OwningPtr<Descriptor> input{CreateDescriptor<CHAR>({}, {inputRaw})};
ASSERT_NE(input, nullptr);
ASSERT_TRUE(input->IsAllocated());
StaticDescriptor<1> outputStaticDescriptor;
Descriptor &output{outputStaticDescriptor.descriptor()};
adjust(output, *input, /*sourceFile=*/nullptr, /*sourceLine=*/0);
std::basic_string<CHAR> got{
output.OffsetElement<CHAR>(), std::strlen(inputRaw)};
std::basic_string<CHAR> expect{outputRaw, outputRaw + std::strlen(outputRaw)};
ASSERT_EQ(got, expect) << which << "('" << inputRaw
<< "') for CHARACTER(kind=" << sizeof(CHAR) << ")";
}
TYPED_TEST(AdjustLRTests, AdjustL) {
static std::vector<AdjustLRTestCase> testcases{
{" where should the spaces be?", "where should the spaces be? "},
{" leading and trailing whitespaces ",
"leading and trailing whitespaces "},
{"shouldn't change", "shouldn't change"},
};
for (const auto &t : testcases) {
RunAdjustLRTest<TypeParam>("Adjustl", RTNAME(Adjustl), t.input, t.output);
}
}
TYPED_TEST(AdjustLRTests, AdjustR) {
static std::vector<AdjustLRTestCase> testcases{
{"where should the spaces be? ", " where should the spaces be?"},
{" leading and trailing whitespaces ",
" leading and trailing whitespaces"},
{"shouldn't change", "shouldn't change"},
};
for (const auto &t : testcases) {
RunAdjustLRTest<TypeParam>("Adjustr", RTNAME(Adjustr), t.input, t.output);
}
}
//------------------------------------------------------------------------------
/// Tests and infrastructure for character comparison functions
//------------------------------------------------------------------------------
template <typename CHAR>
using ComparisonFuncTy =
std::function<int(const CHAR *, const CHAR *, std::size_t, std::size_t)>;
using ComparisonFuncsTy = std::tuple<ComparisonFuncTy<char>,
ComparisonFuncTy<char16_t>, ComparisonFuncTy<char32_t>>;
// These comparison functions are the systems under test in the
// CharacterComparisonTests test cases.
static ComparisonFuncsTy comparisonFuncs{
RTNAME(CharacterCompareScalar1),
RTNAME(CharacterCompareScalar2),
RTNAME(CharacterCompareScalar4),
};
// Types of _values_ over which comparison tests are parameterized
template <typename CHAR>
using ComparisonParametersTy =
std::vector<std::tuple<const CHAR *, const CHAR *, int, int, int>>;
using ComparisonTestCasesTy = std::tuple<ComparisonParametersTy<char>,
ComparisonParametersTy<char16_t>, ComparisonParametersTy<char32_t>>;
static ComparisonTestCasesTy comparisonTestCases{
{
std::make_tuple("abc", "abc", 3, 3, 0),
std::make_tuple("abc", "def", 3, 3, -1),
std::make_tuple("ab ", "abc", 3, 2, 0),
std::make_tuple("abc", "abc", 2, 3, -1),
},
{
std::make_tuple(u"abc", u"abc", 3, 3, 0),
std::make_tuple(u"abc", u"def", 3, 3, -1),
std::make_tuple(u"ab ", u"abc", 3, 2, 0),
std::make_tuple(u"abc", u"abc", 2, 3, -1),
},
{
std::make_tuple(U"abc", U"abc", 3, 3, 0),
std::make_tuple(U"abc", U"def", 3, 3, -1),
std::make_tuple(U"ab ", U"abc", 3, 2, 0),
std::make_tuple(U"abc", U"abc", 2, 3, -1),
}};
template <typename CHAR>
struct CharacterComparisonTests : public ::testing::Test {
CharacterComparisonTests()
: parameters{std::get<ComparisonParametersTy<CHAR>>(comparisonTestCases)},
characterComparisonFunc{
std::get<ComparisonFuncTy<CHAR>>(comparisonFuncs)} {}
ComparisonParametersTy<CHAR> parameters;
ComparisonFuncTy<CHAR> characterComparisonFunc;
};
TYPED_TEST_SUITE(CharacterComparisonTests, CharacterTypes, );
TYPED_TEST(CharacterComparisonTests, CompareCharacters) {
for (auto &[x, y, xBytes, yBytes, expect] : this->parameters) {
int cmp{this->characterComparisonFunc(x, y, xBytes, yBytes)};
TypeParam buf[2][8];
std::memset(buf, 0, sizeof buf);
std::memcpy(buf[0], x, xBytes);
std::memcpy(buf[1], y, yBytes);
ASSERT_EQ(cmp, expect) << "compare '" << x << "'(" << xBytes << ") to '"
<< y << "'(" << yBytes << "), got " << cmp
<< ", should be " << expect << '\n';
// Perform the same test with the parameters reversed and the difference
// negated
std::swap(x, y);
std::swap(xBytes, yBytes);
expect = -expect;
cmp = this->characterComparisonFunc(x, y, xBytes, yBytes);
std::memset(buf, 0, sizeof buf);
std::memcpy(buf[0], x, xBytes);
std::memcpy(buf[1], y, yBytes);
ASSERT_EQ(cmp, expect) << "compare '" << x << "'(" << xBytes << ") to '"
<< y << "'(" << yBytes << "'), got " << cmp
<< ", should be " << expect << '\n';
}
}
// Test MIN() and MAX()
struct ExtremumTestCase {
std::vector<SubscriptValue> shape; // Empty = scalar, non-empty = array.
std::vector<const char *> x, y, expect;
};
template <typename CHAR>
void RunExtremumTests(const char *which,
std::function<void(Descriptor &, const Descriptor &, const char *, int)>
function,
const std::vector<ExtremumTestCase> &testCases) {
std::stringstream traceMessage;
traceMessage << which << " for CHARACTER(kind=" << sizeof(CHAR) << ")";
SCOPED_TRACE(traceMessage.str());
for (const auto &t : testCases) {
OwningPtr<Descriptor> x = CreateDescriptor<CHAR>(t.shape, t.x);
OwningPtr<Descriptor> y = CreateDescriptor<CHAR>(t.shape, t.y);
ASSERT_NE(x, nullptr);
ASSERT_TRUE(x->IsAllocated());
ASSERT_NE(y, nullptr);
ASSERT_TRUE(y->IsAllocated());
function(*x, *y, __FILE__, __LINE__);
std::size_t length = x->ElementBytes() / sizeof(CHAR);
for (std::size_t i = 0; i < t.x.size(); ++i) {
std::basic_string<CHAR> got{
x->OffsetElement<CHAR>(i * x->ElementBytes()), length};
std::basic_string<CHAR> expect{
t.expect[i], t.expect[i] + std::strlen(t.expect[i])};
EXPECT_EQ(expect, got) << "inputs: '" << t.x[i] << "','" << t.y[i] << "'";
}
}
}
template <typename CHAR> struct ExtremumTests : public ::testing::Test {};
TYPED_TEST_SUITE(ExtremumTests, CharacterTypes, );
TYPED_TEST(ExtremumTests, MinTests) {
static std::vector<ExtremumTestCase> tests{{{}, {"a"}, {"z"}, {"a"}},
{{1}, {"zaaa"}, {"aa"}, {"aa "}},
{{1, 1}, {"aaz"}, {"aaaaa"}, {"aaaaa"}},
{{2, 3}, {"a", "b", "c", "d", "E", "f"},
{"xa", "ya", "az", "dd", "Sz", "cc"},
{"a ", "b ", "az", "d ", "E ", "cc"}}};
RunExtremumTests<TypeParam>("MIN", RTNAME(CharacterMin), tests);
}
TYPED_TEST(ExtremumTests, MaxTests) {
static std::vector<ExtremumTestCase> tests{
{{}, {"a"}, {"z"}, {"z"}},
{{1}, {"zaa"}, {"aaaaa"}, {"zaa "}},
{{1, 1, 1}, {"aaaaa"}, {"aazaa"}, {"aazaa"}},
};
RunExtremumTests<TypeParam>("MAX", RTNAME(CharacterMax), tests);
}
template <typename CHAR>
void RunAllocationTest(const char *xRaw, const char *yRaw) {
OwningPtr<Descriptor> x = CreateDescriptor<CHAR>({}, {xRaw});
OwningPtr<Descriptor> y = CreateDescriptor<CHAR>({}, {yRaw});
ASSERT_NE(x, nullptr);
ASSERT_TRUE(x->IsAllocated());
ASSERT_NE(y, nullptr);
ASSERT_TRUE(y->IsAllocated());
void *old = x->raw().base_addr;
RTNAME(CharacterMin)(*x, *y, __FILE__, __LINE__);
EXPECT_EQ(old, x->raw().base_addr);
}
TYPED_TEST(ExtremumTests, NoReallocate) {
// Test that we don't reallocate if the accumulator is already large enough.
RunAllocationTest<TypeParam>("loooooong", "short");
}
// Test search functions INDEX(), SCAN(), and VERIFY()
template <typename CHAR>
using SearchFunction = std::function<std::size_t(
const CHAR *, std::size_t, const CHAR *, std::size_t, bool)>;
template <template <typename> class FUNC>
using CharTypedFunctions =
std::tuple<FUNC<char>, FUNC<char16_t>, FUNC<char32_t>>;
using SearchFunctions = CharTypedFunctions<SearchFunction>;
struct SearchTestCase {
const char *x, *y;
bool back;
std::size_t expect;
};
template <typename CHAR>
void RunSearchTests(const char *which,
const std::vector<SearchTestCase> &testCases,
const SearchFunction<CHAR> &function) {
for (const auto &t : testCases) {
// Convert default character to desired kind
std::size_t xLen{std::strlen(t.x)}, yLen{std::strlen(t.y)};
std::basic_string<CHAR> x{t.x, t.x + xLen};
std::basic_string<CHAR> y{t.y, t.y + yLen};
auto got{function(x.data(), xLen, y.data(), yLen, t.back)};
ASSERT_EQ(got, t.expect)
<< which << "('" << t.x << "','" << t.y << "',back=" << t.back
<< ") for CHARACTER(kind=" << sizeof(CHAR) << "): got " << got
<< ", expected " << t.expect;
}
}
template <typename CHAR> struct SearchTests : public ::testing::Test {};
TYPED_TEST_SUITE(SearchTests, CharacterTypes, );
TYPED_TEST(SearchTests, IndexTests) {
static SearchFunctions functions{
RTNAME(Index1), RTNAME(Index2), RTNAME(Index4)};
static std::vector<SearchTestCase> tests{
{"", "", false, 1},
{"", "", true, 1},
{"a", "", false, 1},
{"a", "", true, 2},
{"", "a", false, 0},
{"", "a", true, 0},
{"aa", "a", false, 1},
{"aa", "a", true, 2},
{"Fortran that I ran", "that I ran", false, 9},
{"Fortran that I ran", "that I ran", true, 9},
{"Fortran that you ran", "that I ran", false, 0},
{"Fortran that you ran", "that I ran", true, 0},
};
RunSearchTests(
"INDEX", tests, std::get<SearchFunction<TypeParam>>(functions));
}
TYPED_TEST(SearchTests, ScanTests) {
static SearchFunctions functions{RTNAME(Scan1), RTNAME(Scan2), RTNAME(Scan4)};
static std::vector<SearchTestCase> tests{
{"abc", "abc", false, 1},
{"abc", "abc", true, 3},
{"abc", "cde", false, 3},
{"abc", "cde", true, 3},
{"abc", "x", false, 0},
{"", "x", false, 0},
};
RunSearchTests("SCAN", tests, std::get<SearchFunction<TypeParam>>(functions));
}
TYPED_TEST(SearchTests, VerifyTests) {
static SearchFunctions functions{
RTNAME(Verify1), RTNAME(Verify2), RTNAME(Verify4)};
static std::vector<SearchTestCase> tests{
{"abc", "abc", false, 0},
{"abc", "abc", true, 0},
{"abc", "cde", false, 1},
{"abc", "cde", true, 2},
{"abc", "x", false, 1},
{"", "x", false, 0},
};
RunSearchTests(
"VERIFY", tests, std::get<SearchFunction<TypeParam>>(functions));
}
// Test REPEAT()
template <typename CHAR> struct RepeatTests : public ::testing::Test {};
TYPED_TEST_SUITE(RepeatTests, CharacterTypes, );
struct RepeatTestCase {
std::size_t ncopies;
const char *input, *output;
};
template <typename CHAR>
void RunRepeatTest(
std::size_t ncopies, const char *inputRaw, const char *outputRaw) {
OwningPtr<Descriptor> input{CreateDescriptor<CHAR>({}, {inputRaw})};
ASSERT_NE(input, nullptr);
ASSERT_TRUE(input->IsAllocated());
StaticDescriptor<1> outputStaticDescriptor;
Descriptor &output{outputStaticDescriptor.descriptor()};
RTNAME(Repeat)(output, *input, ncopies);
std::basic_string<CHAR> got{
output.OffsetElement<CHAR>(), output.ElementBytes() / sizeof(CHAR)};
std::basic_string<CHAR> expect{outputRaw, outputRaw + std::strlen(outputRaw)};
ASSERT_EQ(got, expect) << "'" << inputRaw << "' * " << ncopies
<< "' for CHARACTER(kind=" << sizeof(CHAR) << ")";
}
TYPED_TEST(RepeatTests, Repeat) {
static std::vector<RepeatTestCase> testcases{
{1, "just one copy", "just one copy"},
{5, "copy.", "copy.copy.copy.copy.copy."},
{0, "no copies", ""},
};
for (const auto &t : testcases) {
RunRepeatTest<TypeParam>(t.ncopies, t.input, t.output);
}
}