llvm-project/bolt/lib/RuntimeLibs/InstrumentationRuntimeLibra...

334 lines
14 KiB
C++

//===- bolt/RuntimeLibs/InstrumentationRuntimeLibrary.cpp -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the InstrumentationRuntimeLibrary class.
//
//===----------------------------------------------------------------------===//
#include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h"
#include "bolt/Core/BinaryFunction.h"
#include "bolt/Core/JumpTable.h"
#include "bolt/Utils/CommandLineOpts.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
using namespace bolt;
namespace opts {
cl::opt<std::string> RuntimeInstrumentationLib(
"runtime-instrumentation-lib",
cl::desc("specify file name of the runtime instrumentation library"),
cl::ZeroOrMore, cl::init("libbolt_rt_instr.a"), cl::cat(BoltOptCategory));
extern cl::opt<bool> InstrumentationFileAppendPID;
extern cl::opt<bool> ConservativeInstrumentation;
extern cl::opt<std::string> InstrumentationFilename;
extern cl::opt<std::string> InstrumentationBinpath;
extern cl::opt<uint32_t> InstrumentationSleepTime;
extern cl::opt<bool> InstrumentationNoCountersClear;
extern cl::opt<bool> InstrumentationWaitForks;
extern cl::opt<JumpTableSupportLevel> JumpTables;
} // namespace opts
void InstrumentationRuntimeLibrary::adjustCommandLineOptions(
const BinaryContext &BC) const {
if (!BC.HasRelocations) {
errs() << "BOLT-ERROR: instrumentation runtime libraries require "
"relocations\n";
exit(1);
}
if (opts::JumpTables != JTS_MOVE) {
opts::JumpTables = JTS_MOVE;
outs() << "BOLT-INFO: forcing -jump-tables=move for instrumentation\n";
}
if (!BC.StartFunctionAddress) {
errs() << "BOLT-ERROR: instrumentation runtime libraries require a known "
"entry point of "
"the input binary\n";
exit(1);
}
if (!BC.FiniFunctionAddress && !BC.IsStaticExecutable) {
errs() << "BOLT-ERROR: input binary lacks DT_FINI entry in the dynamic "
"section but instrumentation currently relies on patching "
"DT_FINI to write the profile\n";
exit(1);
}
}
void InstrumentationRuntimeLibrary::emitBinary(BinaryContext &BC,
MCStreamer &Streamer) {
MCSection *Section = BC.isELF()
? static_cast<MCSection *>(BC.Ctx->getELFSection(
".bolt.instr.counters", ELF::SHT_PROGBITS,
BinarySection::getFlags(/*IsReadOnly=*/false,
/*IsText=*/false,
/*IsAllocatable=*/true)
))
: static_cast<MCSection *>(BC.Ctx->getMachOSection(
"__BOLT", "__counters", MachO::S_REGULAR,
SectionKind::getData()));
if (BC.IsStaticExecutable && !opts::InstrumentationSleepTime) {
errs() << "BOLT-ERROR: instrumentation of static binary currently does not "
"support profile output on binary finalization, so it "
"requires -instrumentation-sleep-time=N (N>0) usage\n";
exit(1);
}
Section->setAlignment(llvm::Align(BC.RegularPageSize));
Streamer.SwitchSection(Section);
// EmitOffset is used to determine padding size for data alignment
uint64_t EmitOffset = 0;
auto emitLabel = [&Streamer](MCSymbol *Symbol, bool IsGlobal = true) {
Streamer.emitLabel(Symbol);
if (IsGlobal)
Streamer.emitSymbolAttribute(Symbol, MCSymbolAttr::MCSA_Global);
};
auto emitLabelByName = [&BC, emitLabel](StringRef Name,
bool IsGlobal = true) {
MCSymbol *Symbol = BC.Ctx->getOrCreateSymbol(Name);
emitLabel(Symbol, IsGlobal);
};
auto emitPadding = [&Streamer, &EmitOffset](unsigned Size) {
const uint64_t Padding = alignTo(EmitOffset, Size) - EmitOffset;
if (Padding) {
Streamer.emitFill(Padding, 0);
EmitOffset += Padding;
}
};
auto emitDataSize = [&EmitOffset](unsigned Size) { EmitOffset += Size; };
auto emitDataPadding = [emitPadding, emitDataSize](unsigned Size) {
emitPadding(Size);
emitDataSize(Size);
};
auto emitFill = [&Streamer, emitDataSize,
emitLabel](unsigned Size, MCSymbol *Symbol = nullptr,
uint8_t Byte = 0) {
emitDataSize(Size);
if (Symbol)
emitLabel(Symbol, /*IsGlobal*/ false);
Streamer.emitFill(Size, Byte);
};
auto emitValue = [&BC, &Streamer, emitDataPadding,
emitLabel](MCSymbol *Symbol, const MCExpr *Value) {
const unsigned Psize = BC.AsmInfo->getCodePointerSize();
emitDataPadding(Psize);
emitLabel(Symbol);
if (Value)
Streamer.emitValue(Value, Psize);
else
Streamer.emitFill(Psize, 0);
};
auto emitIntValue = [&Streamer, emitDataPadding, emitLabelByName](
StringRef Name, uint64_t Value, unsigned Size = 4) {
emitDataPadding(Size);
emitLabelByName(Name);
Streamer.emitIntValue(Value, Size);
};
auto emitString = [&Streamer, emitDataSize, emitLabelByName,
emitFill](StringRef Name, StringRef Contents) {
emitDataSize(Contents.size());
emitLabelByName(Name);
Streamer.emitBytes(Contents);
emitFill(1);
};
// All of the following symbols will be exported as globals to be used by the
// instrumentation runtime library to dump the instrumentation data to disk.
// Label marking start of the memory region containing instrumentation
// counters, total vector size is Counters.size() 8-byte counters
emitLabelByName("__bolt_instr_locations");
for (MCSymbol *const &Label : Summary->Counters)
emitFill(sizeof(uint64_t), Label);
emitPadding(BC.RegularPageSize);
emitIntValue("__bolt_instr_sleep_time", opts::InstrumentationSleepTime);
emitIntValue("__bolt_instr_no_counters_clear",
!!opts::InstrumentationNoCountersClear, 1);
emitIntValue("__bolt_instr_conservative", !!opts::ConservativeInstrumentation,
1);
emitIntValue("__bolt_instr_wait_forks", !!opts::InstrumentationWaitForks, 1);
emitIntValue("__bolt_num_counters", Summary->Counters.size());
emitValue(Summary->IndCallCounterFuncPtr, nullptr);
emitValue(Summary->IndTailCallCounterFuncPtr, nullptr);
emitIntValue("__bolt_instr_num_ind_calls",
Summary->IndCallDescriptions.size());
emitIntValue("__bolt_instr_num_ind_targets",
Summary->IndCallTargetDescriptions.size());
emitIntValue("__bolt_instr_num_funcs", Summary->FunctionDescriptions.size());
emitString("__bolt_instr_filename", opts::InstrumentationFilename);
emitString("__bolt_instr_binpath", opts::InstrumentationBinpath);
emitIntValue("__bolt_instr_use_pid", !!opts::InstrumentationFileAppendPID, 1);
if (BC.isMachO()) {
MCSection *TablesSection = BC.Ctx->getMachOSection(
"__BOLT", "__tables", MachO::S_REGULAR, SectionKind::getData());
TablesSection->setAlignment(llvm::Align(BC.RegularPageSize));
Streamer.SwitchSection(TablesSection);
emitString("__bolt_instr_tables", buildTables(BC));
}
}
void InstrumentationRuntimeLibrary::link(
BinaryContext &BC, StringRef ToolPath, RuntimeDyld &RTDyld,
std::function<void(RuntimeDyld &)> OnLoad) {
std::string LibPath = getLibPath(ToolPath, opts::RuntimeInstrumentationLib);
loadLibrary(LibPath, RTDyld);
OnLoad(RTDyld);
RTDyld.finalizeWithMemoryManagerLocking();
if (RTDyld.hasError()) {
outs() << "BOLT-ERROR: RTDyld failed: " << RTDyld.getErrorString() << "\n";
exit(1);
}
if (BC.isMachO())
return;
RuntimeFiniAddress = RTDyld.getSymbol("__bolt_instr_fini").getAddress();
if (!RuntimeFiniAddress) {
errs() << "BOLT-ERROR: instrumentation library does not define "
"__bolt_instr_fini: "
<< LibPath << "\n";
exit(1);
}
RuntimeStartAddress = RTDyld.getSymbol("__bolt_instr_start").getAddress();
if (!RuntimeStartAddress) {
errs() << "BOLT-ERROR: instrumentation library does not define "
"__bolt_instr_start: "
<< LibPath << "\n";
exit(1);
}
outs() << "BOLT-INFO: output linked against instrumentation runtime "
"library, lib entry point is 0x"
<< Twine::utohexstr(RuntimeFiniAddress) << "\n";
outs() << "BOLT-INFO: clear procedure is 0x"
<< Twine::utohexstr(
RTDyld.getSymbol("__bolt_instr_clear_counters").getAddress())
<< "\n";
emitTablesAsELFNote(BC);
}
std::string InstrumentationRuntimeLibrary::buildTables(BinaryContext &BC) {
std::string TablesStr;
raw_string_ostream OS(TablesStr);
// This is sync'ed with runtime/instr.cpp:readDescriptions()
auto getOutputAddress = [](const BinaryFunction &Func,
uint64_t Offset) -> uint64_t {
return Offset == 0
? Func.getOutputAddress()
: Func.translateInputToOutputAddress(Func.getAddress() + Offset);
};
// Indirect targets need to be sorted for fast lookup during runtime
std::sort(Summary->IndCallTargetDescriptions.begin(),
Summary->IndCallTargetDescriptions.end(),
[&](const IndCallTargetDescription &A,
const IndCallTargetDescription &B) {
return getOutputAddress(*A.Target, A.ToLoc.Offset) <
getOutputAddress(*B.Target, B.ToLoc.Offset);
});
// Start of the vector with descriptions (one CounterDescription for each
// counter), vector size is Counters.size() CounterDescription-sized elmts
const size_t IDSize =
Summary->IndCallDescriptions.size() * sizeof(IndCallDescription);
OS.write(reinterpret_cast<const char *>(&IDSize), 4);
for (const IndCallDescription &Desc : Summary->IndCallDescriptions) {
OS.write(reinterpret_cast<const char *>(&Desc.FromLoc.FuncString), 4);
OS.write(reinterpret_cast<const char *>(&Desc.FromLoc.Offset), 4);
}
const size_t ITDSize = Summary->IndCallTargetDescriptions.size() *
sizeof(IndCallTargetDescription);
OS.write(reinterpret_cast<const char *>(&ITDSize), 4);
for (const IndCallTargetDescription &Desc :
Summary->IndCallTargetDescriptions) {
OS.write(reinterpret_cast<const char *>(&Desc.ToLoc.FuncString), 4);
OS.write(reinterpret_cast<const char *>(&Desc.ToLoc.Offset), 4);
uint64_t TargetFuncAddress =
getOutputAddress(*Desc.Target, Desc.ToLoc.Offset);
OS.write(reinterpret_cast<const char *>(&TargetFuncAddress), 8);
}
uint32_t FuncDescSize = Summary->getFDSize();
OS.write(reinterpret_cast<const char *>(&FuncDescSize), 4);
for (const FunctionDescription &Desc : Summary->FunctionDescriptions) {
const size_t LeafNum = Desc.LeafNodes.size();
OS.write(reinterpret_cast<const char *>(&LeafNum), 4);
for (const InstrumentedNode &LeafNode : Desc.LeafNodes) {
OS.write(reinterpret_cast<const char *>(&LeafNode.Node), 4);
OS.write(reinterpret_cast<const char *>(&LeafNode.Counter), 4);
}
const size_t EdgesNum = Desc.Edges.size();
OS.write(reinterpret_cast<const char *>(&EdgesNum), 4);
for (const EdgeDescription &Edge : Desc.Edges) {
OS.write(reinterpret_cast<const char *>(&Edge.FromLoc.FuncString), 4);
OS.write(reinterpret_cast<const char *>(&Edge.FromLoc.Offset), 4);
OS.write(reinterpret_cast<const char *>(&Edge.FromNode), 4);
OS.write(reinterpret_cast<const char *>(&Edge.ToLoc.FuncString), 4);
OS.write(reinterpret_cast<const char *>(&Edge.ToLoc.Offset), 4);
OS.write(reinterpret_cast<const char *>(&Edge.ToNode), 4);
OS.write(reinterpret_cast<const char *>(&Edge.Counter), 4);
}
const size_t CallsNum = Desc.Calls.size();
OS.write(reinterpret_cast<const char *>(&CallsNum), 4);
for (const CallDescription &Call : Desc.Calls) {
OS.write(reinterpret_cast<const char *>(&Call.FromLoc.FuncString), 4);
OS.write(reinterpret_cast<const char *>(&Call.FromLoc.Offset), 4);
OS.write(reinterpret_cast<const char *>(&Call.FromNode), 4);
OS.write(reinterpret_cast<const char *>(&Call.ToLoc.FuncString), 4);
OS.write(reinterpret_cast<const char *>(&Call.ToLoc.Offset), 4);
OS.write(reinterpret_cast<const char *>(&Call.Counter), 4);
uint64_t TargetFuncAddress =
getOutputAddress(*Call.Target, Call.ToLoc.Offset);
OS.write(reinterpret_cast<const char *>(&TargetFuncAddress), 8);
}
const size_t EntryNum = Desc.EntryNodes.size();
OS.write(reinterpret_cast<const char *>(&EntryNum), 4);
for (const EntryNode &EntryNode : Desc.EntryNodes) {
OS.write(reinterpret_cast<const char *>(&EntryNode.Node), 8);
uint64_t TargetFuncAddress =
getOutputAddress(*Desc.Function, EntryNode.Address);
OS.write(reinterpret_cast<const char *>(&TargetFuncAddress), 8);
}
}
// Our string table lives immediately after descriptions vector
OS << Summary->StringTable;
OS.flush();
return TablesStr;
}
void InstrumentationRuntimeLibrary::emitTablesAsELFNote(BinaryContext &BC) {
std::string TablesStr = buildTables(BC);
const std::string BoltInfo = BinarySection::encodeELFNote(
"BOLT", TablesStr, BinarySection::NT_BOLT_INSTRUMENTATION_TABLES);
BC.registerOrUpdateNoteSection(".bolt.instr.tables", copyByteArray(BoltInfo),
BoltInfo.size(),
/*Alignment=*/1,
/*IsReadOnly=*/true, ELF::SHT_NOTE);
}