forked from OSchip/llvm-project
301 lines
11 KiB
C++
301 lines
11 KiB
C++
//===-- xray_fdr_logging.cc ------------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of XRay, a dynamic runtime instrumentation system.
|
|
//
|
|
// Here we implement the Flight Data Recorder mode for XRay, where we use
|
|
// compact structures to store records in memory as well as when writing out the
|
|
// data to files.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "xray_fdr_logging.h"
|
|
#include <algorithm>
|
|
#include <bitset>
|
|
#include <cerrno>
|
|
#include <cstring>
|
|
#include <sys/syscall.h>
|
|
#include <sys/time.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
#include <unordered_map>
|
|
|
|
#include "sanitizer_common/sanitizer_atomic.h"
|
|
#include "sanitizer_common/sanitizer_common.h"
|
|
#include "xray/xray_interface.h"
|
|
#include "xray/xray_records.h"
|
|
#include "xray_buffer_queue.h"
|
|
#include "xray_defs.h"
|
|
#include "xray_fdr_logging_impl.h"
|
|
#include "xray_flags.h"
|
|
#include "xray_tsc.h"
|
|
#include "xray_utils.h"
|
|
|
|
namespace __xray {
|
|
|
|
// Global BufferQueue.
|
|
std::shared_ptr<BufferQueue> BQ;
|
|
|
|
__sanitizer::atomic_sint32_t LogFlushStatus = {
|
|
XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING};
|
|
|
|
FDRLoggingOptions FDROptions;
|
|
|
|
__sanitizer::SpinMutex FDROptionsMutex;
|
|
|
|
// Must finalize before flushing.
|
|
XRayLogFlushStatus fdrLoggingFlush() XRAY_NEVER_INSTRUMENT {
|
|
if (__sanitizer::atomic_load(&LoggingStatus,
|
|
__sanitizer::memory_order_acquire) !=
|
|
XRayLogInitStatus::XRAY_LOG_FINALIZED)
|
|
return XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
|
|
|
|
s32 Result = XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
|
|
if (!__sanitizer::atomic_compare_exchange_strong(
|
|
&LogFlushStatus, &Result, XRayLogFlushStatus::XRAY_LOG_FLUSHING,
|
|
__sanitizer::memory_order_release))
|
|
return static_cast<XRayLogFlushStatus>(Result);
|
|
|
|
// Make a copy of the BufferQueue pointer to prevent other threads that may be
|
|
// resetting it from blowing away the queue prematurely while we're dealing
|
|
// with it.
|
|
auto LocalBQ = BQ;
|
|
|
|
// We write out the file in the following format:
|
|
//
|
|
// 1) We write down the XRay file header with version 1, type FDR_LOG.
|
|
// 2) Then we use the 'apply' member of the BufferQueue that's live, to
|
|
// ensure that at this point in time we write down the buffers that have
|
|
// been released (and marked "used") -- we dump the full buffer for now
|
|
// (fixed-sized) and let the tools reading the buffers deal with the data
|
|
// afterwards.
|
|
//
|
|
int Fd = -1;
|
|
{
|
|
__sanitizer::SpinMutexLock Guard(&FDROptionsMutex);
|
|
Fd = FDROptions.Fd;
|
|
}
|
|
if (Fd == -1)
|
|
Fd = getLogFD();
|
|
if (Fd == -1) {
|
|
auto Result = XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
|
|
__sanitizer::atomic_store(&LogFlushStatus, Result,
|
|
__sanitizer::memory_order_release);
|
|
return Result;
|
|
}
|
|
|
|
// Test for required CPU features and cache the cycle frequency
|
|
static bool TSCSupported = probeRequiredCPUFeatures();
|
|
static uint64_t CycleFrequency =
|
|
TSCSupported ? getTSCFrequency() : __xray::NanosecondsPerSecond;
|
|
|
|
XRayFileHeader Header;
|
|
Header.Version = 1;
|
|
Header.Type = FileTypes::FDR_LOG;
|
|
Header.CycleFrequency = CycleFrequency;
|
|
// FIXME: Actually check whether we have 'constant_tsc' and 'nonstop_tsc'
|
|
// before setting the values in the header.
|
|
Header.ConstantTSC = 1;
|
|
Header.NonstopTSC = 1;
|
|
Header.FdrData = FdrAdditionalHeaderData{LocalBQ->ConfiguredBufferSize()};
|
|
retryingWriteAll(Fd, reinterpret_cast<char *>(&Header),
|
|
reinterpret_cast<char *>(&Header) + sizeof(Header));
|
|
|
|
LocalBQ->apply([&](const BufferQueue::Buffer &B) {
|
|
uint64_t BufferSize = B.Size;
|
|
if (BufferSize > 0) {
|
|
retryingWriteAll(Fd, reinterpret_cast<char *>(B.Buffer),
|
|
reinterpret_cast<char *>(B.Buffer) + B.Size);
|
|
}
|
|
});
|
|
__sanitizer::atomic_store(&LogFlushStatus,
|
|
XRayLogFlushStatus::XRAY_LOG_FLUSHED,
|
|
__sanitizer::memory_order_release);
|
|
return XRayLogFlushStatus::XRAY_LOG_FLUSHED;
|
|
}
|
|
|
|
XRayLogInitStatus fdrLoggingFinalize() XRAY_NEVER_INSTRUMENT {
|
|
s32 CurrentStatus = XRayLogInitStatus::XRAY_LOG_INITIALIZED;
|
|
if (!__sanitizer::atomic_compare_exchange_strong(
|
|
&LoggingStatus, &CurrentStatus,
|
|
XRayLogInitStatus::XRAY_LOG_FINALIZING,
|
|
__sanitizer::memory_order_release))
|
|
return static_cast<XRayLogInitStatus>(CurrentStatus);
|
|
|
|
// Do special things to make the log finalize itself, and not allow any more
|
|
// operations to be performed until re-initialized.
|
|
BQ->finalize();
|
|
|
|
__sanitizer::atomic_store(&LoggingStatus,
|
|
XRayLogInitStatus::XRAY_LOG_FINALIZED,
|
|
__sanitizer::memory_order_release);
|
|
return XRayLogInitStatus::XRAY_LOG_FINALIZED;
|
|
}
|
|
|
|
XRayLogInitStatus fdrLoggingReset() XRAY_NEVER_INSTRUMENT {
|
|
s32 CurrentStatus = XRayLogInitStatus::XRAY_LOG_FINALIZED;
|
|
if (__sanitizer::atomic_compare_exchange_strong(
|
|
&LoggingStatus, &CurrentStatus,
|
|
XRayLogInitStatus::XRAY_LOG_INITIALIZED,
|
|
__sanitizer::memory_order_release))
|
|
return static_cast<XRayLogInitStatus>(CurrentStatus);
|
|
|
|
// Release the in-memory buffer queue.
|
|
BQ.reset();
|
|
|
|
// Spin until the flushing status is flushed.
|
|
s32 CurrentFlushingStatus = XRayLogFlushStatus::XRAY_LOG_FLUSHED;
|
|
while (__sanitizer::atomic_compare_exchange_weak(
|
|
&LogFlushStatus, &CurrentFlushingStatus,
|
|
XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING,
|
|
__sanitizer::memory_order_release)) {
|
|
if (CurrentFlushingStatus == XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING)
|
|
break;
|
|
CurrentFlushingStatus = XRayLogFlushStatus::XRAY_LOG_FLUSHED;
|
|
}
|
|
|
|
// At this point, we know that the status is flushed, and that we can assume
|
|
return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
|
|
}
|
|
|
|
static std::tuple<uint64_t, unsigned char>
|
|
getTimestamp() XRAY_NEVER_INSTRUMENT {
|
|
// We want to get the TSC as early as possible, so that we can check whether
|
|
// we've seen this CPU before. We also do it before we load anything else, to
|
|
// allow for forward progress with the scheduling.
|
|
unsigned char CPU;
|
|
uint64_t TSC;
|
|
|
|
// Test once for required CPU features
|
|
static bool TSCSupported = probeRequiredCPUFeatures();
|
|
|
|
if (TSCSupported) {
|
|
TSC = __xray::readTSC(CPU);
|
|
} else {
|
|
// FIXME: This code needs refactoring as it appears in multiple locations
|
|
timespec TS;
|
|
int result = clock_gettime(CLOCK_REALTIME, &TS);
|
|
if (result != 0) {
|
|
Report("clock_gettime(2) return %d, errno=%d", result, int(errno));
|
|
TS = {0, 0};
|
|
}
|
|
CPU = 0;
|
|
TSC = TS.tv_sec * __xray::NanosecondsPerSecond + TS.tv_nsec;
|
|
}
|
|
return std::make_tuple(TSC, CPU);
|
|
}
|
|
|
|
void fdrLoggingHandleArg0(int32_t FuncId,
|
|
XRayEntryType Entry) XRAY_NEVER_INSTRUMENT {
|
|
auto TSC_CPU = getTimestamp();
|
|
__xray_fdr_internal::processFunctionHook(FuncId, Entry, std::get<0>(TSC_CPU),
|
|
std::get<1>(TSC_CPU), clock_gettime,
|
|
LoggingStatus, BQ);
|
|
}
|
|
|
|
void fdrLoggingHandleCustomEvent(void *Event,
|
|
std::size_t EventSize) XRAY_NEVER_INSTRUMENT {
|
|
using namespace __xray_fdr_internal;
|
|
auto TSC_CPU = getTimestamp();
|
|
auto &TSC = std::get<0>(TSC_CPU);
|
|
auto &CPU = std::get<1>(TSC_CPU);
|
|
thread_local bool Running = false;
|
|
RecursionGuard Guard{Running};
|
|
if (!Guard) {
|
|
assert(Running && "RecursionGuard is buggy!");
|
|
return;
|
|
}
|
|
if (EventSize > std::numeric_limits<int32_t>::max()) {
|
|
using Empty = struct {};
|
|
static Empty Once = [&] {
|
|
Report("Event size too large = %zu ; > max = %d\n", EventSize,
|
|
std::numeric_limits<int32_t>::max());
|
|
return Empty();
|
|
}();
|
|
(void)Once;
|
|
}
|
|
int32_t ReducedEventSize = static_cast<int32_t>(EventSize);
|
|
if (!isLogInitializedAndReady(LocalBQ, TSC, CPU, clock_gettime))
|
|
return;
|
|
|
|
// Here we need to prepare the log to handle:
|
|
// - The metadata record we're going to write. (16 bytes)
|
|
// - The additional data we're going to write. Currently, that's the size of
|
|
// the event we're going to dump into the log as free-form bytes.
|
|
if (!prepareBuffer(clock_gettime, MetadataRecSize + EventSize)) {
|
|
LocalBQ = nullptr;
|
|
return;
|
|
}
|
|
|
|
// Write the custom event metadata record, which consists of the following
|
|
// information:
|
|
// - 8 bytes (64-bits) for the full TSC when the event started.
|
|
// - 4 bytes (32-bits) for the length of the data.
|
|
MetadataRecord CustomEvent;
|
|
CustomEvent.Type = uint8_t(RecordType::Metadata);
|
|
CustomEvent.RecordKind =
|
|
uint8_t(MetadataRecord::RecordKinds::CustomEventMarker);
|
|
constexpr auto TSCSize = sizeof(std::get<0>(TSC_CPU));
|
|
std::memcpy(&CustomEvent.Data, &ReducedEventSize, sizeof(int32_t));
|
|
std::memcpy(&CustomEvent.Data[sizeof(int32_t)], &TSC, TSCSize);
|
|
std::memcpy(RecordPtr, &CustomEvent, sizeof(CustomEvent));
|
|
RecordPtr += sizeof(CustomEvent);
|
|
std::memcpy(RecordPtr, Event, ReducedEventSize);
|
|
endBufferIfFull();
|
|
}
|
|
|
|
XRayLogInitStatus fdrLoggingInit(std::size_t BufferSize, std::size_t BufferMax,
|
|
void *Options,
|
|
size_t OptionsSize) XRAY_NEVER_INSTRUMENT {
|
|
if (OptionsSize != sizeof(FDRLoggingOptions))
|
|
return static_cast<XRayLogInitStatus>(__sanitizer::atomic_load(
|
|
&LoggingStatus, __sanitizer::memory_order_acquire));
|
|
s32 CurrentStatus = XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
|
|
if (!__sanitizer::atomic_compare_exchange_strong(
|
|
&LoggingStatus, &CurrentStatus,
|
|
XRayLogInitStatus::XRAY_LOG_INITIALIZING,
|
|
__sanitizer::memory_order_release))
|
|
return static_cast<XRayLogInitStatus>(CurrentStatus);
|
|
|
|
{
|
|
__sanitizer::SpinMutexLock Guard(&FDROptionsMutex);
|
|
memcpy(&FDROptions, Options, OptionsSize);
|
|
}
|
|
|
|
bool Success = false;
|
|
BQ = std::make_shared<BufferQueue>(BufferSize, BufferMax, Success);
|
|
if (!Success) {
|
|
Report("BufferQueue init failed.\n");
|
|
return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
|
|
}
|
|
|
|
// Install the actual handleArg0 handler after initialising the buffers.
|
|
__xray_set_handler(fdrLoggingHandleArg0);
|
|
__xray_set_customevent_handler(fdrLoggingHandleCustomEvent);
|
|
|
|
__sanitizer::atomic_store(&LoggingStatus,
|
|
XRayLogInitStatus::XRAY_LOG_INITIALIZED,
|
|
__sanitizer::memory_order_release);
|
|
Report("XRay FDR init successful.\n");
|
|
return XRayLogInitStatus::XRAY_LOG_INITIALIZED;
|
|
}
|
|
|
|
} // namespace __xray
|
|
|
|
static auto UNUSED Unused = [] {
|
|
using namespace __xray;
|
|
if (flags()->xray_fdr_log) {
|
|
XRayLogImpl Impl{
|
|
fdrLoggingInit, fdrLoggingFinalize, fdrLoggingHandleArg0,
|
|
fdrLoggingFlush,
|
|
};
|
|
__xray_set_log_impl(Impl);
|
|
}
|
|
return true;
|
|
}();
|