forked from OSchip/llvm-project
966 lines
38 KiB
C++
966 lines
38 KiB
C++
//===-- SelectionDAGBuilder.h - Selection-DAG building --------*- C++ -*---===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements routines for translating from LLVM IR into SelectionDAG IR.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
|
|
#define LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
|
|
|
|
#include "StatepointLowering.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/CodeGen/Analysis.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SelectionDAGNodes.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/Statepoint.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
|
|
class AddrSpaceCastInst;
|
|
class AllocaInst;
|
|
class BasicBlock;
|
|
class BitCastInst;
|
|
class BranchInst;
|
|
class CallInst;
|
|
class DbgValueInst;
|
|
class ExtractElementInst;
|
|
class ExtractValueInst;
|
|
class FCmpInst;
|
|
class FPExtInst;
|
|
class FPToSIInst;
|
|
class FPToUIInst;
|
|
class FPTruncInst;
|
|
class Function;
|
|
class FunctionLoweringInfo;
|
|
class GetElementPtrInst;
|
|
class GCFunctionInfo;
|
|
class ICmpInst;
|
|
class IntToPtrInst;
|
|
class IndirectBrInst;
|
|
class InvokeInst;
|
|
class InsertElementInst;
|
|
class InsertValueInst;
|
|
class Instruction;
|
|
class LoadInst;
|
|
class MachineBasicBlock;
|
|
class MachineInstr;
|
|
class MachineRegisterInfo;
|
|
class MDNode;
|
|
class MVT;
|
|
class PHINode;
|
|
class PtrToIntInst;
|
|
class ReturnInst;
|
|
class SDDbgValue;
|
|
class SExtInst;
|
|
class SelectInst;
|
|
class ShuffleVectorInst;
|
|
class SIToFPInst;
|
|
class StoreInst;
|
|
class SwitchInst;
|
|
class DataLayout;
|
|
class TargetLibraryInfo;
|
|
class TargetLowering;
|
|
class TruncInst;
|
|
class UIToFPInst;
|
|
class UnreachableInst;
|
|
class VAArgInst;
|
|
class ZExtInst;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// SelectionDAGBuilder - This is the common target-independent lowering
|
|
/// implementation that is parameterized by a TargetLowering object.
|
|
///
|
|
class SelectionDAGBuilder {
|
|
/// CurInst - The current instruction being visited
|
|
const Instruction *CurInst;
|
|
|
|
DenseMap<const Value*, SDValue> NodeMap;
|
|
|
|
/// UnusedArgNodeMap - Maps argument value for unused arguments. This is used
|
|
/// to preserve debug information for incoming arguments.
|
|
DenseMap<const Value*, SDValue> UnusedArgNodeMap;
|
|
|
|
/// DanglingDebugInfo - Helper type for DanglingDebugInfoMap.
|
|
class DanglingDebugInfo {
|
|
const DbgValueInst* DI;
|
|
DebugLoc dl;
|
|
unsigned SDNodeOrder;
|
|
public:
|
|
DanglingDebugInfo() : DI(nullptr), dl(DebugLoc()), SDNodeOrder(0) { }
|
|
DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO) :
|
|
DI(di), dl(DL), SDNodeOrder(SDNO) { }
|
|
const DbgValueInst* getDI() { return DI; }
|
|
DebugLoc getdl() { return dl; }
|
|
unsigned getSDNodeOrder() { return SDNodeOrder; }
|
|
};
|
|
|
|
/// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not
|
|
/// yet seen the referent. We defer handling these until we do see it.
|
|
DenseMap<const Value*, DanglingDebugInfo> DanglingDebugInfoMap;
|
|
|
|
public:
|
|
/// PendingLoads - Loads are not emitted to the program immediately. We bunch
|
|
/// them up and then emit token factor nodes when possible. This allows us to
|
|
/// get simple disambiguation between loads without worrying about alias
|
|
/// analysis.
|
|
SmallVector<SDValue, 8> PendingLoads;
|
|
|
|
/// State used while lowering a statepoint sequence (gc_statepoint,
|
|
/// gc_relocate, and gc_result). See StatepointLowering.hpp/cpp for details.
|
|
StatepointLoweringState StatepointLowering;
|
|
private:
|
|
|
|
/// PendingExports - CopyToReg nodes that copy values to virtual registers
|
|
/// for export to other blocks need to be emitted before any terminator
|
|
/// instruction, but they have no other ordering requirements. We bunch them
|
|
/// up and the emit a single tokenfactor for them just before terminator
|
|
/// instructions.
|
|
SmallVector<SDValue, 8> PendingExports;
|
|
|
|
/// SDNodeOrder - A unique monotonically increasing number used to order the
|
|
/// SDNodes we create.
|
|
unsigned SDNodeOrder;
|
|
|
|
enum CaseClusterKind {
|
|
/// A cluster of adjacent case labels with the same destination, or just one
|
|
/// case.
|
|
CC_Range,
|
|
/// A cluster of cases suitable for jump table lowering.
|
|
CC_JumpTable,
|
|
/// A cluster of cases suitable for bit test lowering.
|
|
CC_BitTests
|
|
};
|
|
|
|
/// A cluster of case labels.
|
|
struct CaseCluster {
|
|
CaseClusterKind Kind;
|
|
const ConstantInt *Low, *High;
|
|
union {
|
|
MachineBasicBlock *MBB;
|
|
unsigned JTCasesIndex;
|
|
unsigned BTCasesIndex;
|
|
};
|
|
uint32_t Weight;
|
|
|
|
static CaseCluster range(const ConstantInt *Low, const ConstantInt *High,
|
|
MachineBasicBlock *MBB, uint32_t Weight) {
|
|
CaseCluster C;
|
|
C.Kind = CC_Range;
|
|
C.Low = Low;
|
|
C.High = High;
|
|
C.MBB = MBB;
|
|
C.Weight = Weight;
|
|
return C;
|
|
}
|
|
|
|
static CaseCluster jumpTable(const ConstantInt *Low,
|
|
const ConstantInt *High, unsigned JTCasesIndex,
|
|
uint32_t Weight) {
|
|
CaseCluster C;
|
|
C.Kind = CC_JumpTable;
|
|
C.Low = Low;
|
|
C.High = High;
|
|
C.JTCasesIndex = JTCasesIndex;
|
|
C.Weight = Weight;
|
|
return C;
|
|
}
|
|
|
|
static CaseCluster bitTests(const ConstantInt *Low, const ConstantInt *High,
|
|
unsigned BTCasesIndex, uint32_t Weight) {
|
|
CaseCluster C;
|
|
C.Kind = CC_BitTests;
|
|
C.Low = Low;
|
|
C.High = High;
|
|
C.BTCasesIndex = BTCasesIndex;
|
|
C.Weight = Weight;
|
|
return C;
|
|
}
|
|
};
|
|
|
|
typedef std::vector<CaseCluster> CaseClusterVector;
|
|
typedef CaseClusterVector::iterator CaseClusterIt;
|
|
|
|
struct CaseBits {
|
|
uint64_t Mask;
|
|
MachineBasicBlock* BB;
|
|
unsigned Bits;
|
|
uint32_t ExtraWeight;
|
|
|
|
CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits,
|
|
uint32_t Weight):
|
|
Mask(mask), BB(bb), Bits(bits), ExtraWeight(Weight) { }
|
|
|
|
CaseBits() : Mask(0), BB(nullptr), Bits(0), ExtraWeight(0) {}
|
|
};
|
|
|
|
typedef std::vector<CaseBits> CaseBitsVector;
|
|
|
|
/// Sort Clusters and merge adjacent cases.
|
|
void sortAndRangeify(CaseClusterVector &Clusters);
|
|
|
|
/// CaseBlock - This structure is used to communicate between
|
|
/// SelectionDAGBuilder and SDISel for the code generation of additional basic
|
|
/// blocks needed by multi-case switch statements.
|
|
struct CaseBlock {
|
|
CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs,
|
|
const Value *cmpmiddle,
|
|
MachineBasicBlock *truebb, MachineBasicBlock *falsebb,
|
|
MachineBasicBlock *me,
|
|
uint32_t trueweight = 0, uint32_t falseweight = 0)
|
|
: CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
|
|
TrueBB(truebb), FalseBB(falsebb), ThisBB(me),
|
|
TrueWeight(trueweight), FalseWeight(falseweight) { }
|
|
|
|
// CC - the condition code to use for the case block's setcc node
|
|
ISD::CondCode CC;
|
|
|
|
// CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
|
|
// Emit by default LHS op RHS. MHS is used for range comparisons:
|
|
// If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
|
|
const Value *CmpLHS, *CmpMHS, *CmpRHS;
|
|
|
|
// TrueBB/FalseBB - the block to branch to if the setcc is true/false.
|
|
MachineBasicBlock *TrueBB, *FalseBB;
|
|
|
|
// ThisBB - the block into which to emit the code for the setcc and branches
|
|
MachineBasicBlock *ThisBB;
|
|
|
|
// TrueWeight/FalseWeight - branch weights.
|
|
uint32_t TrueWeight, FalseWeight;
|
|
};
|
|
|
|
struct JumpTable {
|
|
JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
|
|
MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
|
|
|
|
/// Reg - the virtual register containing the index of the jump table entry
|
|
//. to jump to.
|
|
unsigned Reg;
|
|
/// JTI - the JumpTableIndex for this jump table in the function.
|
|
unsigned JTI;
|
|
/// MBB - the MBB into which to emit the code for the indirect jump.
|
|
MachineBasicBlock *MBB;
|
|
/// Default - the MBB of the default bb, which is a successor of the range
|
|
/// check MBB. This is when updating PHI nodes in successors.
|
|
MachineBasicBlock *Default;
|
|
};
|
|
struct JumpTableHeader {
|
|
JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H,
|
|
bool E = false):
|
|
First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
|
|
APInt First;
|
|
APInt Last;
|
|
const Value *SValue;
|
|
MachineBasicBlock *HeaderBB;
|
|
bool Emitted;
|
|
};
|
|
typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;
|
|
|
|
struct BitTestCase {
|
|
BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr,
|
|
uint32_t Weight):
|
|
Mask(M), ThisBB(T), TargetBB(Tr), ExtraWeight(Weight) { }
|
|
uint64_t Mask;
|
|
MachineBasicBlock *ThisBB;
|
|
MachineBasicBlock *TargetBB;
|
|
uint32_t ExtraWeight;
|
|
};
|
|
|
|
typedef SmallVector<BitTestCase, 3> BitTestInfo;
|
|
|
|
struct BitTestBlock {
|
|
BitTestBlock(APInt F, APInt R, const Value *SV, unsigned Rg, MVT RgVT,
|
|
bool E, bool CR, MachineBasicBlock *P, MachineBasicBlock *D,
|
|
BitTestInfo C, uint32_t W)
|
|
: First(F), Range(R), SValue(SV), Reg(Rg), RegVT(RgVT), Emitted(E),
|
|
ContiguousRange(CR), Parent(P), Default(D), Cases(std::move(C)),
|
|
Weight(W), DefaultWeight(0) {}
|
|
APInt First;
|
|
APInt Range;
|
|
const Value *SValue;
|
|
unsigned Reg;
|
|
MVT RegVT;
|
|
bool Emitted;
|
|
bool ContiguousRange;
|
|
MachineBasicBlock *Parent;
|
|
MachineBasicBlock *Default;
|
|
BitTestInfo Cases;
|
|
uint32_t Weight;
|
|
uint32_t DefaultWeight;
|
|
};
|
|
|
|
/// Minimum jump table density, in percent.
|
|
enum { MinJumpTableDensity = 40 };
|
|
|
|
/// Check whether a range of clusters is dense enough for a jump table.
|
|
bool isDense(const CaseClusterVector &Clusters, unsigned *TotalCases,
|
|
unsigned First, unsigned Last);
|
|
|
|
/// Build a jump table cluster from Clusters[First..Last]. Returns false if it
|
|
/// decides it's not a good idea.
|
|
bool buildJumpTable(CaseClusterVector &Clusters, unsigned First,
|
|
unsigned Last, const SwitchInst *SI,
|
|
MachineBasicBlock *DefaultMBB, CaseCluster &JTCluster);
|
|
|
|
/// Find clusters of cases suitable for jump table lowering.
|
|
void findJumpTables(CaseClusterVector &Clusters, const SwitchInst *SI,
|
|
MachineBasicBlock *DefaultMBB);
|
|
|
|
/// Check whether the range [Low,High] fits in a machine word.
|
|
bool rangeFitsInWord(const APInt &Low, const APInt &High);
|
|
|
|
/// Check whether these clusters are suitable for lowering with bit tests based
|
|
/// on the number of destinations, comparison metric, and range.
|
|
bool isSuitableForBitTests(unsigned NumDests, unsigned NumCmps,
|
|
const APInt &Low, const APInt &High);
|
|
|
|
/// Build a bit test cluster from Clusters[First..Last]. Returns false if it
|
|
/// decides it's not a good idea.
|
|
bool buildBitTests(CaseClusterVector &Clusters, unsigned First, unsigned Last,
|
|
const SwitchInst *SI, CaseCluster &BTCluster);
|
|
|
|
/// Find clusters of cases suitable for bit test lowering.
|
|
void findBitTestClusters(CaseClusterVector &Clusters, const SwitchInst *SI);
|
|
|
|
struct SwitchWorkListItem {
|
|
MachineBasicBlock *MBB;
|
|
CaseClusterIt FirstCluster;
|
|
CaseClusterIt LastCluster;
|
|
const ConstantInt *GE;
|
|
const ConstantInt *LT;
|
|
uint32_t DefaultWeight;
|
|
};
|
|
typedef SmallVector<SwitchWorkListItem, 4> SwitchWorkList;
|
|
|
|
/// Determine the rank by weight of CC in [First,Last]. If CC has more weight
|
|
/// than each cluster in the range, its rank is 0.
|
|
static unsigned caseClusterRank(const CaseCluster &CC, CaseClusterIt First,
|
|
CaseClusterIt Last);
|
|
|
|
/// Emit comparison and split W into two subtrees.
|
|
void splitWorkItem(SwitchWorkList &WorkList, const SwitchWorkListItem &W,
|
|
Value *Cond, MachineBasicBlock *SwitchMBB);
|
|
|
|
/// Lower W.
|
|
void lowerWorkItem(SwitchWorkListItem W, Value *Cond,
|
|
MachineBasicBlock *SwitchMBB,
|
|
MachineBasicBlock *DefaultMBB);
|
|
|
|
|
|
/// A class which encapsulates all of the information needed to generate a
|
|
/// stack protector check and signals to isel via its state being initialized
|
|
/// that a stack protector needs to be generated.
|
|
///
|
|
/// *NOTE* The following is a high level documentation of SelectionDAG Stack
|
|
/// Protector Generation. The reason that it is placed here is for a lack of
|
|
/// other good places to stick it.
|
|
///
|
|
/// High Level Overview of SelectionDAG Stack Protector Generation:
|
|
///
|
|
/// Previously, generation of stack protectors was done exclusively in the
|
|
/// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated
|
|
/// splitting basic blocks at the IR level to create the success/failure basic
|
|
/// blocks in the tail of the basic block in question. As a result of this,
|
|
/// calls that would have qualified for the sibling call optimization were no
|
|
/// longer eligible for optimization since said calls were no longer right in
|
|
/// the "tail position" (i.e. the immediate predecessor of a ReturnInst
|
|
/// instruction).
|
|
///
|
|
/// Then it was noticed that since the sibling call optimization causes the
|
|
/// callee to reuse the caller's stack, if we could delay the generation of
|
|
/// the stack protector check until later in CodeGen after the sibling call
|
|
/// decision was made, we get both the tail call optimization and the stack
|
|
/// protector check!
|
|
///
|
|
/// A few goals in solving this problem were:
|
|
///
|
|
/// 1. Preserve the architecture independence of stack protector generation.
|
|
///
|
|
/// 2. Preserve the normal IR level stack protector check for platforms like
|
|
/// OpenBSD for which we support platform-specific stack protector
|
|
/// generation.
|
|
///
|
|
/// The main problem that guided the present solution is that one can not
|
|
/// solve this problem in an architecture independent manner at the IR level
|
|
/// only. This is because:
|
|
///
|
|
/// 1. The decision on whether or not to perform a sibling call on certain
|
|
/// platforms (for instance i386) requires lower level information
|
|
/// related to available registers that can not be known at the IR level.
|
|
///
|
|
/// 2. Even if the previous point were not true, the decision on whether to
|
|
/// perform a tail call is done in LowerCallTo in SelectionDAG which
|
|
/// occurs after the Stack Protector Pass. As a result, one would need to
|
|
/// put the relevant callinst into the stack protector check success
|
|
/// basic block (where the return inst is placed) and then move it back
|
|
/// later at SelectionDAG/MI time before the stack protector check if the
|
|
/// tail call optimization failed. The MI level option was nixed
|
|
/// immediately since it would require platform-specific pattern
|
|
/// matching. The SelectionDAG level option was nixed because
|
|
/// SelectionDAG only processes one IR level basic block at a time
|
|
/// implying one could not create a DAG Combine to move the callinst.
|
|
///
|
|
/// To get around this problem a few things were realized:
|
|
///
|
|
/// 1. While one can not handle multiple IR level basic blocks at the
|
|
/// SelectionDAG Level, one can generate multiple machine basic blocks
|
|
/// for one IR level basic block. This is how we handle bit tests and
|
|
/// switches.
|
|
///
|
|
/// 2. At the MI level, tail calls are represented via a special return
|
|
/// MIInst called "tcreturn". Thus if we know the basic block in which we
|
|
/// wish to insert the stack protector check, we get the correct behavior
|
|
/// by always inserting the stack protector check right before the return
|
|
/// statement. This is a "magical transformation" since no matter where
|
|
/// the stack protector check intrinsic is, we always insert the stack
|
|
/// protector check code at the end of the BB.
|
|
///
|
|
/// Given the aforementioned constraints, the following solution was devised:
|
|
///
|
|
/// 1. On platforms that do not support SelectionDAG stack protector check
|
|
/// generation, allow for the normal IR level stack protector check
|
|
/// generation to continue.
|
|
///
|
|
/// 2. On platforms that do support SelectionDAG stack protector check
|
|
/// generation:
|
|
///
|
|
/// a. Use the IR level stack protector pass to decide if a stack
|
|
/// protector is required/which BB we insert the stack protector check
|
|
/// in by reusing the logic already therein. If we wish to generate a
|
|
/// stack protector check in a basic block, we place a special IR
|
|
/// intrinsic called llvm.stackprotectorcheck right before the BB's
|
|
/// returninst or if there is a callinst that could potentially be
|
|
/// sibling call optimized, before the call inst.
|
|
///
|
|
/// b. Then when a BB with said intrinsic is processed, we codegen the BB
|
|
/// normally via SelectBasicBlock. In said process, when we visit the
|
|
/// stack protector check, we do not actually emit anything into the
|
|
/// BB. Instead, we just initialize the stack protector descriptor
|
|
/// class (which involves stashing information/creating the success
|
|
/// mbbb and the failure mbb if we have not created one for this
|
|
/// function yet) and export the guard variable that we are going to
|
|
/// compare.
|
|
///
|
|
/// c. After we finish selecting the basic block, in FinishBasicBlock if
|
|
/// the StackProtectorDescriptor attached to the SelectionDAGBuilder is
|
|
/// initialized, we first find a splice point in the parent basic block
|
|
/// before the terminator and then splice the terminator of said basic
|
|
/// block into the success basic block. Then we code-gen a new tail for
|
|
/// the parent basic block consisting of the two loads, the comparison,
|
|
/// and finally two branches to the success/failure basic blocks. We
|
|
/// conclude by code-gening the failure basic block if we have not
|
|
/// code-gened it already (all stack protector checks we generate in
|
|
/// the same function, use the same failure basic block).
|
|
class StackProtectorDescriptor {
|
|
public:
|
|
StackProtectorDescriptor() : ParentMBB(nullptr), SuccessMBB(nullptr),
|
|
FailureMBB(nullptr), Guard(nullptr),
|
|
GuardReg(0) { }
|
|
|
|
/// Returns true if all fields of the stack protector descriptor are
|
|
/// initialized implying that we should/are ready to emit a stack protector.
|
|
bool shouldEmitStackProtector() const {
|
|
return ParentMBB && SuccessMBB && FailureMBB && Guard;
|
|
}
|
|
|
|
/// Initialize the stack protector descriptor structure for a new basic
|
|
/// block.
|
|
void initialize(const BasicBlock *BB,
|
|
MachineBasicBlock *MBB,
|
|
const CallInst &StackProtCheckCall) {
|
|
// Make sure we are not initialized yet.
|
|
assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is "
|
|
"already initialized!");
|
|
ParentMBB = MBB;
|
|
SuccessMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ true);
|
|
FailureMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ false, FailureMBB);
|
|
if (!Guard)
|
|
Guard = StackProtCheckCall.getArgOperand(0);
|
|
}
|
|
|
|
/// Reset state that changes when we handle different basic blocks.
|
|
///
|
|
/// This currently includes:
|
|
///
|
|
/// 1. The specific basic block we are generating a
|
|
/// stack protector for (ParentMBB).
|
|
///
|
|
/// 2. The successor machine basic block that will contain the tail of
|
|
/// parent mbb after we create the stack protector check (SuccessMBB). This
|
|
/// BB is visited only on stack protector check success.
|
|
void resetPerBBState() {
|
|
ParentMBB = nullptr;
|
|
SuccessMBB = nullptr;
|
|
}
|
|
|
|
/// Reset state that only changes when we switch functions.
|
|
///
|
|
/// This currently includes:
|
|
///
|
|
/// 1. FailureMBB since we reuse the failure code path for all stack
|
|
/// protector checks created in an individual function.
|
|
///
|
|
/// 2.The guard variable since the guard variable we are checking against is
|
|
/// always the same.
|
|
void resetPerFunctionState() {
|
|
FailureMBB = nullptr;
|
|
Guard = nullptr;
|
|
GuardReg = 0;
|
|
}
|
|
|
|
MachineBasicBlock *getParentMBB() { return ParentMBB; }
|
|
MachineBasicBlock *getSuccessMBB() { return SuccessMBB; }
|
|
MachineBasicBlock *getFailureMBB() { return FailureMBB; }
|
|
const Value *getGuard() { return Guard; }
|
|
|
|
unsigned getGuardReg() const { return GuardReg; }
|
|
void setGuardReg(unsigned R) { GuardReg = R; }
|
|
|
|
private:
|
|
/// The basic block for which we are generating the stack protector.
|
|
///
|
|
/// As a result of stack protector generation, we will splice the
|
|
/// terminators of this basic block into the successor mbb SuccessMBB and
|
|
/// replace it with a compare/branch to the successor mbbs
|
|
/// SuccessMBB/FailureMBB depending on whether or not the stack protector
|
|
/// was violated.
|
|
MachineBasicBlock *ParentMBB;
|
|
|
|
/// A basic block visited on stack protector check success that contains the
|
|
/// terminators of ParentMBB.
|
|
MachineBasicBlock *SuccessMBB;
|
|
|
|
/// This basic block visited on stack protector check failure that will
|
|
/// contain a call to __stack_chk_fail().
|
|
MachineBasicBlock *FailureMBB;
|
|
|
|
/// The guard variable which we will compare against the stored value in the
|
|
/// stack protector stack slot.
|
|
const Value *Guard;
|
|
|
|
/// The virtual register holding the stack guard value.
|
|
unsigned GuardReg;
|
|
|
|
/// Add a successor machine basic block to ParentMBB. If the successor mbb
|
|
/// has not been created yet (i.e. if SuccMBB = 0), then the machine basic
|
|
/// block will be created. Assign a large weight if IsLikely is true.
|
|
MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB,
|
|
MachineBasicBlock *ParentMBB,
|
|
bool IsLikely,
|
|
MachineBasicBlock *SuccMBB = nullptr);
|
|
};
|
|
|
|
private:
|
|
const TargetMachine &TM;
|
|
public:
|
|
/// Lowest valid SDNodeOrder. The special case 0 is reserved for scheduling
|
|
/// nodes without a corresponding SDNode.
|
|
static const unsigned LowestSDNodeOrder = 1;
|
|
|
|
SelectionDAG &DAG;
|
|
const DataLayout *DL;
|
|
AliasAnalysis *AA;
|
|
const TargetLibraryInfo *LibInfo;
|
|
|
|
/// SwitchCases - Vector of CaseBlock structures used to communicate
|
|
/// SwitchInst code generation information.
|
|
std::vector<CaseBlock> SwitchCases;
|
|
/// JTCases - Vector of JumpTable structures used to communicate
|
|
/// SwitchInst code generation information.
|
|
std::vector<JumpTableBlock> JTCases;
|
|
/// BitTestCases - Vector of BitTestBlock structures used to communicate
|
|
/// SwitchInst code generation information.
|
|
std::vector<BitTestBlock> BitTestCases;
|
|
/// A StackProtectorDescriptor structure used to communicate stack protector
|
|
/// information in between SelectBasicBlock and FinishBasicBlock.
|
|
StackProtectorDescriptor SPDescriptor;
|
|
|
|
// Emit PHI-node-operand constants only once even if used by multiple
|
|
// PHI nodes.
|
|
DenseMap<const Constant *, unsigned> ConstantsOut;
|
|
|
|
/// FuncInfo - Information about the function as a whole.
|
|
///
|
|
FunctionLoweringInfo &FuncInfo;
|
|
|
|
/// GFI - Garbage collection metadata for the function.
|
|
GCFunctionInfo *GFI;
|
|
|
|
/// LPadToCallSiteMap - Map a landing pad to the call site indexes.
|
|
DenseMap<MachineBasicBlock*, SmallVector<unsigned, 4> > LPadToCallSiteMap;
|
|
|
|
/// HasTailCall - This is set to true if a call in the current
|
|
/// block has been translated as a tail call. In this case,
|
|
/// no subsequent DAG nodes should be created.
|
|
///
|
|
bool HasTailCall;
|
|
|
|
LLVMContext *Context;
|
|
|
|
SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo,
|
|
CodeGenOpt::Level ol)
|
|
: CurInst(nullptr), SDNodeOrder(LowestSDNodeOrder), TM(dag.getTarget()),
|
|
DAG(dag), FuncInfo(funcinfo),
|
|
HasTailCall(false) {
|
|
}
|
|
|
|
void init(GCFunctionInfo *gfi, AliasAnalysis &aa,
|
|
const TargetLibraryInfo *li);
|
|
|
|
/// clear - Clear out the current SelectionDAG and the associated
|
|
/// state and prepare this SelectionDAGBuilder object to be used
|
|
/// for a new block. This doesn't clear out information about
|
|
/// additional blocks that are needed to complete switch lowering
|
|
/// or PHI node updating; that information is cleared out as it is
|
|
/// consumed.
|
|
void clear();
|
|
|
|
/// clearDanglingDebugInfo - Clear the dangling debug information
|
|
/// map. This function is separated from the clear so that debug
|
|
/// information that is dangling in a basic block can be properly
|
|
/// resolved in a different basic block. This allows the
|
|
/// SelectionDAG to resolve dangling debug information attached
|
|
/// to PHI nodes.
|
|
void clearDanglingDebugInfo();
|
|
|
|
/// getRoot - Return the current virtual root of the Selection DAG,
|
|
/// flushing any PendingLoad items. This must be done before emitting
|
|
/// a store or any other node that may need to be ordered after any
|
|
/// prior load instructions.
|
|
///
|
|
SDValue getRoot();
|
|
|
|
/// getControlRoot - Similar to getRoot, but instead of flushing all the
|
|
/// PendingLoad items, flush all the PendingExports items. It is necessary
|
|
/// to do this before emitting a terminator instruction.
|
|
///
|
|
SDValue getControlRoot();
|
|
|
|
SDLoc getCurSDLoc() const {
|
|
return SDLoc(CurInst, SDNodeOrder);
|
|
}
|
|
|
|
DebugLoc getCurDebugLoc() const {
|
|
return CurInst ? CurInst->getDebugLoc() : DebugLoc();
|
|
}
|
|
|
|
unsigned getSDNodeOrder() const { return SDNodeOrder; }
|
|
|
|
void CopyValueToVirtualRegister(const Value *V, unsigned Reg);
|
|
|
|
void visit(const Instruction &I);
|
|
|
|
void visit(unsigned Opcode, const User &I);
|
|
|
|
/// getCopyFromRegs - If there was virtual register allocated for the value V
|
|
/// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
|
|
SDValue getCopyFromRegs(const Value *V, Type *Ty);
|
|
|
|
// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
|
|
// generate the debug data structures now that we've seen its definition.
|
|
void resolveDanglingDebugInfo(const Value *V, SDValue Val);
|
|
SDValue getValue(const Value *V);
|
|
bool findValue(const Value *V) const;
|
|
|
|
SDValue getNonRegisterValue(const Value *V);
|
|
SDValue getValueImpl(const Value *V);
|
|
|
|
void setValue(const Value *V, SDValue NewN) {
|
|
SDValue &N = NodeMap[V];
|
|
assert(!N.getNode() && "Already set a value for this node!");
|
|
N = NewN;
|
|
}
|
|
|
|
void setUnusedArgValue(const Value *V, SDValue NewN) {
|
|
SDValue &N = UnusedArgNodeMap[V];
|
|
assert(!N.getNode() && "Already set a value for this node!");
|
|
N = NewN;
|
|
}
|
|
|
|
void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
|
|
MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
|
|
MachineBasicBlock *SwitchBB,
|
|
Instruction::BinaryOps Opc,
|
|
uint32_t TW, uint32_t FW);
|
|
void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
|
|
MachineBasicBlock *FBB,
|
|
MachineBasicBlock *CurBB,
|
|
MachineBasicBlock *SwitchBB,
|
|
uint32_t TW, uint32_t FW);
|
|
bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
|
|
bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
|
|
void CopyToExportRegsIfNeeded(const Value *V);
|
|
void ExportFromCurrentBlock(const Value *V);
|
|
void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
|
|
const BasicBlock *EHPadBB = nullptr);
|
|
|
|
std::pair<SDValue, SDValue> lowerCallOperands(
|
|
ImmutableCallSite CS,
|
|
unsigned ArgIdx,
|
|
unsigned NumArgs,
|
|
SDValue Callee,
|
|
Type *ReturnTy,
|
|
const BasicBlock *EHPadBB = nullptr,
|
|
bool IsPatchPoint = false);
|
|
|
|
/// UpdateSplitBlock - When an MBB was split during scheduling, update the
|
|
/// references that need to refer to the last resulting block.
|
|
void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last);
|
|
|
|
// This function is responsible for the whole statepoint lowering process.
|
|
// It uniformly handles invoke and call statepoints.
|
|
void LowerStatepoint(ImmutableStatepoint Statepoint,
|
|
const BasicBlock *EHPadBB = nullptr);
|
|
private:
|
|
std::pair<SDValue, SDValue>
|
|
lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
|
|
const BasicBlock *EHPadBB = nullptr);
|
|
|
|
// Terminator instructions.
|
|
void visitRet(const ReturnInst &I);
|
|
void visitBr(const BranchInst &I);
|
|
void visitSwitch(const SwitchInst &I);
|
|
void visitIndirectBr(const IndirectBrInst &I);
|
|
void visitUnreachable(const UnreachableInst &I);
|
|
void visitCleanupEndPad(const CleanupEndPadInst &I);
|
|
void visitCleanupRet(const CleanupReturnInst &I);
|
|
void visitCatchEndPad(const CatchEndPadInst &I);
|
|
void visitCatchRet(const CatchReturnInst &I);
|
|
void visitCatchPad(const CatchPadInst &I);
|
|
void visitTerminatePad(const TerminatePadInst &TPI);
|
|
void visitCleanupPad(const CleanupPadInst &CPI);
|
|
|
|
uint32_t getEdgeWeight(const MachineBasicBlock *Src,
|
|
const MachineBasicBlock *Dst) const;
|
|
void addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
|
|
uint32_t Weight = 0);
|
|
public:
|
|
void visitSwitchCase(CaseBlock &CB,
|
|
MachineBasicBlock *SwitchBB);
|
|
void visitSPDescriptorParent(StackProtectorDescriptor &SPD,
|
|
MachineBasicBlock *ParentBB);
|
|
void visitSPDescriptorFailure(StackProtectorDescriptor &SPD);
|
|
void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB);
|
|
void visitBitTestCase(BitTestBlock &BB,
|
|
MachineBasicBlock* NextMBB,
|
|
uint32_t BranchWeightToNext,
|
|
unsigned Reg,
|
|
BitTestCase &B,
|
|
MachineBasicBlock *SwitchBB);
|
|
void visitJumpTable(JumpTable &JT);
|
|
void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH,
|
|
MachineBasicBlock *SwitchBB);
|
|
|
|
private:
|
|
// These all get lowered before this pass.
|
|
void visitInvoke(const InvokeInst &I);
|
|
void visitResume(const ResumeInst &I);
|
|
|
|
void visitBinary(const User &I, unsigned OpCode);
|
|
void visitShift(const User &I, unsigned Opcode);
|
|
void visitAdd(const User &I) { visitBinary(I, ISD::ADD); }
|
|
void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
|
|
void visitSub(const User &I) { visitBinary(I, ISD::SUB); }
|
|
void visitFSub(const User &I);
|
|
void visitMul(const User &I) { visitBinary(I, ISD::MUL); }
|
|
void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
|
|
void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
|
|
void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
|
|
void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
|
|
void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
|
|
void visitSDiv(const User &I);
|
|
void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
|
|
void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
|
|
void visitOr (const User &I) { visitBinary(I, ISD::OR); }
|
|
void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
|
|
void visitShl (const User &I) { visitShift(I, ISD::SHL); }
|
|
void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
|
|
void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
|
|
void visitICmp(const User &I);
|
|
void visitFCmp(const User &I);
|
|
// Visit the conversion instructions
|
|
void visitTrunc(const User &I);
|
|
void visitZExt(const User &I);
|
|
void visitSExt(const User &I);
|
|
void visitFPTrunc(const User &I);
|
|
void visitFPExt(const User &I);
|
|
void visitFPToUI(const User &I);
|
|
void visitFPToSI(const User &I);
|
|
void visitUIToFP(const User &I);
|
|
void visitSIToFP(const User &I);
|
|
void visitPtrToInt(const User &I);
|
|
void visitIntToPtr(const User &I);
|
|
void visitBitCast(const User &I);
|
|
void visitAddrSpaceCast(const User &I);
|
|
|
|
void visitExtractElement(const User &I);
|
|
void visitInsertElement(const User &I);
|
|
void visitShuffleVector(const User &I);
|
|
|
|
void visitExtractValue(const ExtractValueInst &I);
|
|
void visitInsertValue(const InsertValueInst &I);
|
|
void visitLandingPad(const LandingPadInst &I);
|
|
|
|
void visitGetElementPtr(const User &I);
|
|
void visitSelect(const User &I);
|
|
|
|
void visitAlloca(const AllocaInst &I);
|
|
void visitLoad(const LoadInst &I);
|
|
void visitStore(const StoreInst &I);
|
|
void visitMaskedLoad(const CallInst &I);
|
|
void visitMaskedStore(const CallInst &I);
|
|
void visitMaskedGather(const CallInst &I);
|
|
void visitMaskedScatter(const CallInst &I);
|
|
void visitAtomicCmpXchg(const AtomicCmpXchgInst &I);
|
|
void visitAtomicRMW(const AtomicRMWInst &I);
|
|
void visitFence(const FenceInst &I);
|
|
void visitPHI(const PHINode &I);
|
|
void visitCall(const CallInst &I);
|
|
bool visitMemCmpCall(const CallInst &I);
|
|
bool visitMemChrCall(const CallInst &I);
|
|
bool visitStrCpyCall(const CallInst &I, bool isStpcpy);
|
|
bool visitStrCmpCall(const CallInst &I);
|
|
bool visitStrLenCall(const CallInst &I);
|
|
bool visitStrNLenCall(const CallInst &I);
|
|
bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode);
|
|
bool visitBinaryFloatCall(const CallInst &I, unsigned Opcode);
|
|
void visitAtomicLoad(const LoadInst &I);
|
|
void visitAtomicStore(const StoreInst &I);
|
|
|
|
void visitInlineAsm(ImmutableCallSite CS);
|
|
const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
|
|
void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
|
|
|
|
void visitVAStart(const CallInst &I);
|
|
void visitVAArg(const VAArgInst &I);
|
|
void visitVAEnd(const CallInst &I);
|
|
void visitVACopy(const CallInst &I);
|
|
void visitStackmap(const CallInst &I);
|
|
void visitPatchpoint(ImmutableCallSite CS,
|
|
const BasicBlock *EHPadBB = nullptr);
|
|
|
|
// These three are implemented in StatepointLowering.cpp
|
|
void visitStatepoint(const CallInst &I);
|
|
void visitGCRelocate(const CallInst &I);
|
|
void visitGCResult(const CallInst &I);
|
|
|
|
void visitUserOp1(const Instruction &I) {
|
|
llvm_unreachable("UserOp1 should not exist at instruction selection time!");
|
|
}
|
|
void visitUserOp2(const Instruction &I) {
|
|
llvm_unreachable("UserOp2 should not exist at instruction selection time!");
|
|
}
|
|
|
|
void processIntegerCallValue(const Instruction &I,
|
|
SDValue Value, bool IsSigned);
|
|
|
|
void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
|
|
|
|
/// EmitFuncArgumentDbgValue - If V is an function argument then create
|
|
/// corresponding DBG_VALUE machine instruction for it now. At the end of
|
|
/// instruction selection, they will be inserted to the entry BB.
|
|
bool EmitFuncArgumentDbgValue(const Value *V, DILocalVariable *Variable,
|
|
DIExpression *Expr, DILocation *DL,
|
|
int64_t Offset, bool IsIndirect,
|
|
const SDValue &N);
|
|
|
|
/// Return the next block after MBB, or nullptr if there is none.
|
|
MachineBasicBlock *NextBlock(MachineBasicBlock *MBB);
|
|
|
|
/// Update the DAG and DAG builder with the relevant information after
|
|
/// a new root node has been created which could be a tail call.
|
|
void updateDAGForMaybeTailCall(SDValue MaybeTC);
|
|
};
|
|
|
|
/// RegsForValue - This struct represents the registers (physical or virtual)
|
|
/// that a particular set of values is assigned, and the type information about
|
|
/// the value. The most common situation is to represent one value at a time,
|
|
/// but struct or array values are handled element-wise as multiple values. The
|
|
/// splitting of aggregates is performed recursively, so that we never have
|
|
/// aggregate-typed registers. The values at this point do not necessarily have
|
|
/// legal types, so each value may require one or more registers of some legal
|
|
/// type.
|
|
///
|
|
struct RegsForValue {
|
|
/// ValueVTs - The value types of the values, which may not be legal, and
|
|
/// may need be promoted or synthesized from one or more registers.
|
|
///
|
|
SmallVector<EVT, 4> ValueVTs;
|
|
|
|
/// RegVTs - The value types of the registers. This is the same size as
|
|
/// ValueVTs and it records, for each value, what the type of the assigned
|
|
/// register or registers are. (Individual values are never synthesized
|
|
/// from more than one type of register.)
|
|
///
|
|
/// With virtual registers, the contents of RegVTs is redundant with TLI's
|
|
/// getRegisterType member function, however when with physical registers
|
|
/// it is necessary to have a separate record of the types.
|
|
///
|
|
SmallVector<MVT, 4> RegVTs;
|
|
|
|
/// Regs - This list holds the registers assigned to the values.
|
|
/// Each legal or promoted value requires one register, and each
|
|
/// expanded value requires multiple registers.
|
|
///
|
|
SmallVector<unsigned, 4> Regs;
|
|
|
|
RegsForValue();
|
|
|
|
RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, EVT valuevt);
|
|
|
|
RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
|
|
const DataLayout &DL, unsigned Reg, Type *Ty);
|
|
|
|
/// append - Add the specified values to this one.
|
|
void append(const RegsForValue &RHS) {
|
|
ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
|
|
RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
|
|
Regs.append(RHS.Regs.begin(), RHS.Regs.end());
|
|
}
|
|
|
|
/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
|
|
/// this value and returns the result as a ValueVTs value. This uses
|
|
/// Chain/Flag as the input and updates them for the output Chain/Flag.
|
|
/// If the Flag pointer is NULL, no flag is used.
|
|
SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
|
|
SDLoc dl,
|
|
SDValue &Chain, SDValue *Flag,
|
|
const Value *V = nullptr) const;
|
|
|
|
/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the specified
|
|
/// value into the registers specified by this object. This uses Chain/Flag
|
|
/// as the input and updates them for the output Chain/Flag. If the Flag
|
|
/// pointer is nullptr, no flag is used. If V is not nullptr, then it is used
|
|
/// in printing better diagnostic messages on error.
|
|
void
|
|
getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain,
|
|
SDValue *Flag, const Value *V = nullptr,
|
|
ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const;
|
|
|
|
/// AddInlineAsmOperands - Add this value to the specified inlineasm node
|
|
/// operand list. This adds the code marker, matching input operand index
|
|
/// (if applicable), and includes the number of values added into it.
|
|
void AddInlineAsmOperands(unsigned Kind,
|
|
bool HasMatching, unsigned MatchingIdx, SDLoc dl,
|
|
SelectionDAG &DAG,
|
|
std::vector<SDValue> &Ops) const;
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif
|