llvm-project/llvm/lib/Target/AArch64/AArch64Subtarget.cpp

371 lines
12 KiB
C++

//===-- AArch64Subtarget.cpp - AArch64 Subtarget Information ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the AArch64 specific subclass of TargetSubtarget.
//
//===----------------------------------------------------------------------===//
#include "AArch64Subtarget.h"
#include "AArch64.h"
#include "AArch64InstrInfo.h"
#include "AArch64PBQPRegAlloc.h"
#include "AArch64TargetMachine.h"
#include "GISel/AArch64CallLowering.h"
#include "GISel/AArch64LegalizerInfo.h"
#include "GISel/AArch64RegisterBankInfo.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/Support/TargetParser.h"
using namespace llvm;
#define DEBUG_TYPE "aarch64-subtarget"
#define GET_SUBTARGETINFO_CTOR
#define GET_SUBTARGETINFO_TARGET_DESC
#include "AArch64GenSubtargetInfo.inc"
static cl::opt<bool>
EnableEarlyIfConvert("aarch64-early-ifcvt", cl::desc("Enable the early if "
"converter pass"), cl::init(true), cl::Hidden);
// If OS supports TBI, use this flag to enable it.
static cl::opt<bool>
UseAddressTopByteIgnored("aarch64-use-tbi", cl::desc("Assume that top byte of "
"an address is ignored"), cl::init(false), cl::Hidden);
static cl::opt<bool>
UseNonLazyBind("aarch64-enable-nonlazybind",
cl::desc("Call nonlazybind functions via direct GOT load"),
cl::init(false), cl::Hidden);
static cl::opt<unsigned> SVEVectorBitsMax(
"aarch64-sve-vector-bits-max",
cl::desc("Assume SVE vector registers are at most this big, "
"with zero meaning no maximum size is assumed."),
cl::init(0), cl::Hidden);
static cl::opt<unsigned> SVEVectorBitsMin(
"aarch64-sve-vector-bits-min",
cl::desc("Assume SVE vector registers are at least this big, "
"with zero meaning no minimum size is assumed."),
cl::init(0), cl::Hidden);
AArch64Subtarget &
AArch64Subtarget::initializeSubtargetDependencies(StringRef FS,
StringRef CPUString) {
// Determine default and user-specified characteristics
if (CPUString.empty())
CPUString = "generic";
ParseSubtargetFeatures(CPUString, /*TuneCPU*/ CPUString, FS);
initializeProperties();
return *this;
}
void AArch64Subtarget::initializeProperties() {
// Initialize CPU specific properties. We should add a tablegen feature for
// this in the future so we can specify it together with the subtarget
// features.
switch (ARMProcFamily) {
case Others:
break;
case Carmel:
CacheLineSize = 64;
break;
case CortexA35:
break;
case CortexA53:
PrefFunctionLogAlignment = 3;
break;
case CortexA55:
break;
case CortexA57:
MaxInterleaveFactor = 4;
PrefFunctionLogAlignment = 4;
break;
case CortexA65:
PrefFunctionLogAlignment = 3;
break;
case CortexA72:
case CortexA73:
case CortexA75:
case CortexA76:
case CortexA77:
case CortexA78:
case CortexR82:
case CortexX1:
PrefFunctionLogAlignment = 4;
break;
case A64FX:
CacheLineSize = 256;
PrefFunctionLogAlignment = 5;
PrefLoopLogAlignment = 5;
break;
case AppleA7:
case AppleA10:
case AppleA11:
case AppleA12:
case AppleA13:
CacheLineSize = 64;
PrefetchDistance = 280;
MinPrefetchStride = 2048;
MaxPrefetchIterationsAhead = 3;
break;
case ExynosM3:
MaxInterleaveFactor = 4;
MaxJumpTableSize = 20;
PrefFunctionLogAlignment = 5;
PrefLoopLogAlignment = 4;
break;
case Falkor:
MaxInterleaveFactor = 4;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
CacheLineSize = 128;
PrefetchDistance = 820;
MinPrefetchStride = 2048;
MaxPrefetchIterationsAhead = 8;
break;
case Kryo:
MaxInterleaveFactor = 4;
VectorInsertExtractBaseCost = 2;
CacheLineSize = 128;
PrefetchDistance = 740;
MinPrefetchStride = 1024;
MaxPrefetchIterationsAhead = 11;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
break;
case NeoverseE1:
PrefFunctionLogAlignment = 3;
break;
case NeoverseN1:
case NeoverseV1:
PrefFunctionLogAlignment = 4;
break;
case Saphira:
MaxInterleaveFactor = 4;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
break;
case ThunderX2T99:
CacheLineSize = 64;
PrefFunctionLogAlignment = 3;
PrefLoopLogAlignment = 2;
MaxInterleaveFactor = 4;
PrefetchDistance = 128;
MinPrefetchStride = 1024;
MaxPrefetchIterationsAhead = 4;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
break;
case ThunderX:
case ThunderXT88:
case ThunderXT81:
case ThunderXT83:
CacheLineSize = 128;
PrefFunctionLogAlignment = 3;
PrefLoopLogAlignment = 2;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
break;
case TSV110:
CacheLineSize = 64;
PrefFunctionLogAlignment = 4;
PrefLoopLogAlignment = 2;
break;
case ThunderX3T110:
CacheLineSize = 64;
PrefFunctionLogAlignment = 4;
PrefLoopLogAlignment = 2;
MaxInterleaveFactor = 4;
PrefetchDistance = 128;
MinPrefetchStride = 1024;
MaxPrefetchIterationsAhead = 4;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
break;
}
}
AArch64Subtarget::AArch64Subtarget(const Triple &TT, const std::string &CPU,
const std::string &FS,
const TargetMachine &TM, bool LittleEndian)
: AArch64GenSubtargetInfo(TT, CPU, /*TuneCPU*/ CPU, FS),
ReserveXRegister(AArch64::GPR64commonRegClass.getNumRegs()),
CustomCallSavedXRegs(AArch64::GPR64commonRegClass.getNumRegs()),
IsLittle(LittleEndian),
TargetTriple(TT), FrameLowering(),
InstrInfo(initializeSubtargetDependencies(FS, CPU)), TSInfo(),
TLInfo(TM, *this) {
if (AArch64::isX18ReservedByDefault(TT))
ReserveXRegister.set(18);
CallLoweringInfo.reset(new AArch64CallLowering(*getTargetLowering()));
InlineAsmLoweringInfo.reset(new InlineAsmLowering(getTargetLowering()));
Legalizer.reset(new AArch64LegalizerInfo(*this));
auto *RBI = new AArch64RegisterBankInfo(*getRegisterInfo());
// FIXME: At this point, we can't rely on Subtarget having RBI.
// It's awkward to mix passing RBI and the Subtarget; should we pass
// TII/TRI as well?
InstSelector.reset(createAArch64InstructionSelector(
*static_cast<const AArch64TargetMachine *>(&TM), *this, *RBI));
RegBankInfo.reset(RBI);
}
const CallLowering *AArch64Subtarget::getCallLowering() const {
return CallLoweringInfo.get();
}
const InlineAsmLowering *AArch64Subtarget::getInlineAsmLowering() const {
return InlineAsmLoweringInfo.get();
}
InstructionSelector *AArch64Subtarget::getInstructionSelector() const {
return InstSelector.get();
}
const LegalizerInfo *AArch64Subtarget::getLegalizerInfo() const {
return Legalizer.get();
}
const RegisterBankInfo *AArch64Subtarget::getRegBankInfo() const {
return RegBankInfo.get();
}
/// Find the target operand flags that describe how a global value should be
/// referenced for the current subtarget.
unsigned
AArch64Subtarget::ClassifyGlobalReference(const GlobalValue *GV,
const TargetMachine &TM) const {
// MachO large model always goes via a GOT, simply to get a single 8-byte
// absolute relocation on all global addresses.
if (TM.getCodeModel() == CodeModel::Large && isTargetMachO())
return AArch64II::MO_GOT;
if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) {
if (GV->hasDLLImportStorageClass())
return AArch64II::MO_GOT | AArch64II::MO_DLLIMPORT;
if (getTargetTriple().isOSWindows())
return AArch64II::MO_GOT | AArch64II::MO_COFFSTUB;
return AArch64II::MO_GOT;
}
// The small code model's direct accesses use ADRP, which cannot
// necessarily produce the value 0 (if the code is above 4GB).
// Same for the tiny code model, where we have a pc relative LDR.
if ((useSmallAddressing() || TM.getCodeModel() == CodeModel::Tiny) &&
GV->hasExternalWeakLinkage())
return AArch64II::MO_GOT;
// References to tagged globals are marked with MO_NC | MO_TAGGED to indicate
// that their nominal addresses are tagged and outside of the code model. In
// AArch64ExpandPseudo::expandMI we emit an additional instruction to set the
// tag if necessary based on MO_TAGGED.
if (AllowTaggedGlobals && !isa<FunctionType>(GV->getValueType()))
return AArch64II::MO_NC | AArch64II::MO_TAGGED;
return AArch64II::MO_NO_FLAG;
}
unsigned AArch64Subtarget::classifyGlobalFunctionReference(
const GlobalValue *GV, const TargetMachine &TM) const {
// MachO large model always goes via a GOT, because we don't have the
// relocations available to do anything else..
if (TM.getCodeModel() == CodeModel::Large && isTargetMachO() &&
!GV->hasInternalLinkage())
return AArch64II::MO_GOT;
// NonLazyBind goes via GOT unless we know it's available locally.
auto *F = dyn_cast<Function>(GV);
if (UseNonLazyBind && F && F->hasFnAttribute(Attribute::NonLazyBind) &&
!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
return AArch64II::MO_GOT;
// Use ClassifyGlobalReference for setting MO_DLLIMPORT/MO_COFFSTUB.
if (getTargetTriple().isOSWindows())
return ClassifyGlobalReference(GV, TM);
return AArch64II::MO_NO_FLAG;
}
void AArch64Subtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
unsigned NumRegionInstrs) const {
// LNT run (at least on Cyclone) showed reasonably significant gains for
// bi-directional scheduling. 253.perlbmk.
Policy.OnlyTopDown = false;
Policy.OnlyBottomUp = false;
// Enabling or Disabling the latency heuristic is a close call: It seems to
// help nearly no benchmark on out-of-order architectures, on the other hand
// it regresses register pressure on a few benchmarking.
Policy.DisableLatencyHeuristic = DisableLatencySchedHeuristic;
}
bool AArch64Subtarget::enableEarlyIfConversion() const {
return EnableEarlyIfConvert;
}
bool AArch64Subtarget::supportsAddressTopByteIgnored() const {
if (!UseAddressTopByteIgnored)
return false;
if (TargetTriple.isiOS()) {
unsigned Major, Minor, Micro;
TargetTriple.getiOSVersion(Major, Minor, Micro);
return Major >= 8;
}
return false;
}
std::unique_ptr<PBQPRAConstraint>
AArch64Subtarget::getCustomPBQPConstraints() const {
return balanceFPOps() ? std::make_unique<A57ChainingConstraint>() : nullptr;
}
void AArch64Subtarget::mirFileLoaded(MachineFunction &MF) const {
// We usually compute max call frame size after ISel. Do the computation now
// if the .mir file didn't specify it. Note that this will probably give you
// bogus values after PEI has eliminated the callframe setup/destroy pseudo
// instructions, specify explicitly if you need it to be correct.
MachineFrameInfo &MFI = MF.getFrameInfo();
if (!MFI.isMaxCallFrameSizeComputed())
MFI.computeMaxCallFrameSize(MF);
}
unsigned AArch64Subtarget::getMaxSVEVectorSizeInBits() const {
assert(HasSVE && "Tried to get SVE vector length without SVE support!");
assert(SVEVectorBitsMax % 128 == 0 &&
"SVE requires vector length in multiples of 128!");
assert((SVEVectorBitsMax >= SVEVectorBitsMin || SVEVectorBitsMax == 0) &&
"Minimum SVE vector size should not be larger than its maximum!");
if (SVEVectorBitsMax == 0)
return 0;
return (std::max(SVEVectorBitsMin, SVEVectorBitsMax) / 128) * 128;
}
unsigned AArch64Subtarget::getMinSVEVectorSizeInBits() const {
assert(HasSVE && "Tried to get SVE vector length without SVE support!");
assert(SVEVectorBitsMin % 128 == 0 &&
"SVE requires vector length in multiples of 128!");
assert((SVEVectorBitsMax >= SVEVectorBitsMin || SVEVectorBitsMax == 0) &&
"Minimum SVE vector size should not be larger than its maximum!");
if (SVEVectorBitsMax == 0)
return (SVEVectorBitsMin / 128) * 128;
return (std::min(SVEVectorBitsMin, SVEVectorBitsMax) / 128) * 128;
}