llvm-project/lldb/source/Utility/ReproducerInstrumentation.cpp

254 lines
7.8 KiB
C++

//===-- ReproducerInstrumentation.cpp -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Utility/ReproducerInstrumentation.h"
#include "lldb/Utility/Reproducer.h"
#include <limits>
#include <stdio.h>
#include <stdlib.h>
#include <thread>
using namespace lldb_private;
using namespace lldb_private::repro;
void *IndexToObject::GetObjectForIndexImpl(unsigned idx) {
return m_mapping.lookup(idx);
}
void IndexToObject::AddObjectForIndexImpl(unsigned idx, void *object) {
assert(idx != 0 && "Cannot add object for sentinel");
m_mapping[idx] = object;
}
std::vector<void *> IndexToObject::GetAllObjects() const {
std::vector<std::pair<unsigned, void *>> pairs;
for (auto &e : m_mapping) {
pairs.emplace_back(e.first, e.second);
}
// Sort based on index.
std::sort(pairs.begin(), pairs.end(),
[](auto &lhs, auto &rhs) { return lhs.first < rhs.first; });
std::vector<void *> objects;
objects.reserve(pairs.size());
for (auto &p : pairs) {
objects.push_back(p.second);
}
return objects;
}
template <> const uint8_t *Deserializer::Deserialize<const uint8_t *>() {
return Deserialize<uint8_t *>();
}
template <> void *Deserializer::Deserialize<void *>() {
return const_cast<void *>(Deserialize<const void *>());
}
template <> const void *Deserializer::Deserialize<const void *>() {
return nullptr;
}
template <> char *Deserializer::Deserialize<char *>() {
return const_cast<char *>(Deserialize<const char *>());
}
template <> const char *Deserializer::Deserialize<const char *>() {
const size_t size = Deserialize<size_t>();
if (size == std::numeric_limits<size_t>::max())
return nullptr;
assert(HasData(size + 1));
const char *str = m_buffer.data();
m_buffer = m_buffer.drop_front(size + 1);
#ifdef LLDB_REPRO_INSTR_TRACE
llvm::errs() << "Deserializing with " << LLVM_PRETTY_FUNCTION << " -> \""
<< str << "\"\n";
#endif
return str;
}
template <> const char **Deserializer::Deserialize<const char **>() {
const size_t size = Deserialize<size_t>();
if (size == 0)
return nullptr;
const char **r =
reinterpret_cast<const char **>(calloc(size + 1, sizeof(char *)));
for (size_t i = 0; i < size; ++i)
r[i] = Deserialize<const char *>();
return r;
}
void Deserializer::CheckSequence(unsigned sequence) {
if (m_expected_sequence && *m_expected_sequence != sequence)
llvm::report_fatal_error(
"The result does not match the preceding "
"function. This is probably the result of concurrent "
"use of the SB API during capture, which is currently not "
"supported.");
m_expected_sequence.reset();
}
bool Registry::Replay(const FileSpec &file) {
auto error_or_file = llvm::MemoryBuffer::getFile(file.GetPath());
if (auto err = error_or_file.getError())
return false;
return Replay((*error_or_file)->getBuffer());
}
bool Registry::Replay(llvm::StringRef buffer) {
Deserializer deserializer(buffer);
return Replay(deserializer);
}
bool Registry::Replay(Deserializer &deserializer) {
#ifndef LLDB_REPRO_INSTR_TRACE
Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_API);
#endif
// Disable buffering stdout so that we approximate the way things get flushed
// during an interactive session.
setvbuf(stdout, nullptr, _IONBF, 0);
while (deserializer.HasData(1)) {
unsigned sequence = deserializer.Deserialize<unsigned>();
unsigned id = deserializer.Deserialize<unsigned>();
#ifndef LLDB_REPRO_INSTR_TRACE
LLDB_LOG(log, "Replaying {0}: {1}", id, GetSignature(id));
#else
llvm::errs() << "Replaying " << id << ": " << GetSignature(id) << "\n";
#endif
deserializer.SetExpectedSequence(sequence);
GetReplayer(id)->operator()(deserializer);
}
// Add a small artificial delay to ensure that all asynchronous events have
// completed before we exit.
std::this_thread::sleep_for(std::chrono::milliseconds(100));
return true;
}
void Registry::DoRegister(uintptr_t RunID, std::unique_ptr<Replayer> replayer,
SignatureStr signature) {
const unsigned id = m_replayers.size() + 1;
assert(m_replayers.find(RunID) == m_replayers.end());
m_replayers[RunID] = std::make_pair(std::move(replayer), id);
m_ids[id] =
std::make_pair(m_replayers[RunID].first.get(), std::move(signature));
}
unsigned Registry::GetID(uintptr_t addr) {
unsigned id = m_replayers[addr].second;
assert(id != 0 && "Forgot to add function to registry?");
return id;
}
std::string Registry::GetSignature(unsigned id) {
assert(m_ids.count(id) != 0 && "ID not in registry");
return m_ids[id].second.ToString();
}
void Registry::CheckID(unsigned expected, unsigned actual) {
if (expected != actual) {
llvm::errs() << "Reproducer expected signature " << expected << ": '"
<< GetSignature(expected) << "'\n";
llvm::errs() << "Reproducer actual signature " << actual << ": '"
<< GetSignature(actual) << "'\n";
llvm::report_fatal_error(
"Detected reproducer replay divergence. Refusing to continue.");
}
#ifdef LLDB_REPRO_INSTR_TRACE
llvm::errs() << "Replaying " << actual << ": " << GetSignature(actual)
<< "\n";
#endif
}
Replayer *Registry::GetReplayer(unsigned id) {
assert(m_ids.count(id) != 0 && "ID not in registry");
return m_ids[id].first;
}
std::string Registry::SignatureStr::ToString() const {
return (result + (result.empty() ? "" : " ") + scope + "::" + name + args)
.str();
}
unsigned ObjectToIndex::GetIndexForObjectImpl(const void *object) {
unsigned index = m_mapping.size() + 1;
auto it = m_mapping.find(object);
if (it == m_mapping.end())
m_mapping[object] = index;
return m_mapping[object];
}
Recorder::Recorder()
: m_serializer(nullptr), m_pretty_func(), m_pretty_args(),
m_local_boundary(false), m_result_recorded(true),
m_sequence(std::numeric_limits<unsigned>::max()) {
if (!g_global_boundary) {
g_global_boundary = true;
m_local_boundary = true;
m_sequence = GetNextSequenceNumber();
}
}
Recorder::Recorder(llvm::StringRef pretty_func, std::string &&pretty_args)
: m_serializer(nullptr), m_pretty_func(pretty_func),
m_pretty_args(pretty_args), m_local_boundary(false),
m_result_recorded(true),
m_sequence(std::numeric_limits<unsigned>::max()) {
if (!g_global_boundary) {
g_global_boundary = true;
m_local_boundary = true;
m_sequence = GetNextSequenceNumber();
LLDB_LOG(GetLogIfAllCategoriesSet(LIBLLDB_LOG_API), "{0} ({1})",
m_pretty_func, m_pretty_args);
}
}
Recorder::~Recorder() {
assert(m_result_recorded && "Did you forget LLDB_RECORD_RESULT?");
UpdateBoundary();
}
unsigned Recorder::GetSequenceNumber() const {
assert(m_sequence != std::numeric_limits<unsigned>::max());
return m_sequence;
}
void InstrumentationData::Initialize(Serializer &serializer,
Registry &registry) {
InstanceImpl().emplace(serializer, registry);
}
void InstrumentationData::Initialize(Deserializer &deserializer,
Registry &registry) {
InstanceImpl().emplace(deserializer, registry);
}
InstrumentationData &InstrumentationData::Instance() {
if (!InstanceImpl())
InstanceImpl().emplace();
return *InstanceImpl();
}
llvm::Optional<InstrumentationData> &InstrumentationData::InstanceImpl() {
static llvm::Optional<InstrumentationData> g_instrumentation_data;
return g_instrumentation_data;
}
thread_local bool lldb_private::repro::Recorder::g_global_boundary = false;
std::atomic<unsigned> lldb_private::repro::Recorder::g_sequence;
std::mutex lldb_private::repro::Recorder::g_mutex;