forked from OSchip/llvm-project
212 lines
10 KiB
LLVM
212 lines
10 KiB
LLVM
; RUN: llc -march=mips -relocation-model=static < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=O32 --check-prefix=O32BE %s
|
|
; RUN: llc -march=mipsel -relocation-model=static < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=O32 --check-prefix=O32LE %s
|
|
|
|
; RUN-TODO: llc -march=mips64 -relocation-model=static -mattr=-n64,+o32 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=O32 %s
|
|
; RUN-TODO: llc -march=mips64el -relocation-model=static -mattr=-n64,+o32 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=O32 %s
|
|
|
|
; RUN: llc -march=mips64 -relocation-model=static -mattr=-n64,+n32 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=NEW %s
|
|
; RUN: llc -march=mips64el -relocation-model=static -mattr=-n64,+n32 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=NEW %s
|
|
|
|
; RUN: llc -march=mips64 -relocation-model=static -mattr=-n64,+n64 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM64 --check-prefix=NEW %s
|
|
; RUN: llc -march=mips64el -relocation-model=static -mattr=-n64,+n64 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM64 --check-prefix=NEW %s
|
|
|
|
; Test the floating point arguments for all ABI's and byte orders as specified
|
|
; by section 5 of MD00305 (MIPS ABIs Described).
|
|
;
|
|
; N32/N64 are identical in this area so their checks have been combined into
|
|
; the 'NEW' prefix (the N stands for New).
|
|
|
|
@bytes = global [11 x i8] zeroinitializer
|
|
@dwords = global [11 x i64] zeroinitializer
|
|
@floats = global [11 x float] zeroinitializer
|
|
@doubles = global [11 x double] zeroinitializer
|
|
|
|
define void @double_args(double %a, double %b, double %c, double %d, double %e,
|
|
double %f, double %g, double %h, double %i) nounwind {
|
|
entry:
|
|
%0 = getelementptr [11 x double]* @doubles, i32 0, i32 1
|
|
store volatile double %a, double* %0
|
|
%1 = getelementptr [11 x double]* @doubles, i32 0, i32 2
|
|
store volatile double %b, double* %1
|
|
%2 = getelementptr [11 x double]* @doubles, i32 0, i32 3
|
|
store volatile double %c, double* %2
|
|
%3 = getelementptr [11 x double]* @doubles, i32 0, i32 4
|
|
store volatile double %d, double* %3
|
|
%4 = getelementptr [11 x double]* @doubles, i32 0, i32 5
|
|
store volatile double %e, double* %4
|
|
%5 = getelementptr [11 x double]* @doubles, i32 0, i32 6
|
|
store volatile double %f, double* %5
|
|
%6 = getelementptr [11 x double]* @doubles, i32 0, i32 7
|
|
store volatile double %g, double* %6
|
|
%7 = getelementptr [11 x double]* @doubles, i32 0, i32 8
|
|
store volatile double %h, double* %7
|
|
%8 = getelementptr [11 x double]* @doubles, i32 0, i32 9
|
|
store volatile double %i, double* %8
|
|
ret void
|
|
}
|
|
|
|
; ALL-LABEL: double_args:
|
|
; We won't test the way the global address is calculated in this test. This is
|
|
; just to get the register number for the other checks.
|
|
; SYM32-DAG: addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(doubles)
|
|
; SYM64-DAG: ld [[R2:\$[0-9]]], %got_disp(doubles)(
|
|
|
|
; The first argument is floating point so floating point registers are used.
|
|
; The first argument is the same for O32/N32/N64 but the second argument differs
|
|
; by register
|
|
; ALL-DAG: sdc1 $f12, 8([[R2]])
|
|
; O32-DAG: sdc1 $f14, 16([[R2]])
|
|
; NEW-DAG: sdc1 $f13, 16([[R2]])
|
|
|
|
; O32 has run out of argument registers and starts using the stack
|
|
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 16($sp)
|
|
; O32-DAG: sdc1 [[F1]], 24([[R2]])
|
|
; NEW-DAG: sdc1 $f14, 24([[R2]])
|
|
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 24($sp)
|
|
; O32-DAG: sdc1 [[F1]], 32([[R2]])
|
|
; NEW-DAG: sdc1 $f15, 32([[R2]])
|
|
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 32($sp)
|
|
; O32-DAG: sdc1 [[F1]], 40([[R2]])
|
|
; NEW-DAG: sdc1 $f16, 40([[R2]])
|
|
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 40($sp)
|
|
; O32-DAG: sdc1 [[F1]], 48([[R2]])
|
|
; NEW-DAG: sdc1 $f17, 48([[R2]])
|
|
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 48($sp)
|
|
; O32-DAG: sdc1 [[F1]], 56([[R2]])
|
|
; NEW-DAG: sdc1 $f18, 56([[R2]])
|
|
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 56($sp)
|
|
; O32-DAG: sdc1 [[F1]], 64([[R2]])
|
|
; NEW-DAG: sdc1 $f19, 64([[R2]])
|
|
|
|
; N32/N64 have run out of registers and start using the stack too
|
|
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 64($sp)
|
|
; O32-DAG: sdc1 [[F1]], 72([[R2]])
|
|
; NEW-DAG: ldc1 [[F1:\$f[0-9]+]], 0($sp)
|
|
; NEW-DAG: sdc1 [[F1]], 72([[R2]])
|
|
|
|
define void @float_args(float %a, float %b, float %c, float %d, float %e,
|
|
float %f, float %g, float %h, float %i) nounwind {
|
|
entry:
|
|
%0 = getelementptr [11 x float]* @floats, i32 0, i32 1
|
|
store volatile float %a, float* %0
|
|
%1 = getelementptr [11 x float]* @floats, i32 0, i32 2
|
|
store volatile float %b, float* %1
|
|
%2 = getelementptr [11 x float]* @floats, i32 0, i32 3
|
|
store volatile float %c, float* %2
|
|
%3 = getelementptr [11 x float]* @floats, i32 0, i32 4
|
|
store volatile float %d, float* %3
|
|
%4 = getelementptr [11 x float]* @floats, i32 0, i32 5
|
|
store volatile float %e, float* %4
|
|
%5 = getelementptr [11 x float]* @floats, i32 0, i32 6
|
|
store volatile float %f, float* %5
|
|
%6 = getelementptr [11 x float]* @floats, i32 0, i32 7
|
|
store volatile float %g, float* %6
|
|
%7 = getelementptr [11 x float]* @floats, i32 0, i32 8
|
|
store volatile float %h, float* %7
|
|
%8 = getelementptr [11 x float]* @floats, i32 0, i32 9
|
|
store volatile float %i, float* %8
|
|
ret void
|
|
}
|
|
|
|
; ALL-LABEL: float_args:
|
|
; We won't test the way the global address is calculated in this test. This is
|
|
; just to get the register number for the other checks.
|
|
; SYM32-DAG: addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(floats)
|
|
; SYM64-DAG: ld [[R1:\$[0-9]]], %got_disp(floats)(
|
|
|
|
; The first argument is floating point so floating point registers are used.
|
|
; The first argument is the same for O32/N32/N64 but the second argument differs
|
|
; by register
|
|
; ALL-DAG: swc1 $f12, 4([[R1]])
|
|
; O32-DAG: swc1 $f14, 8([[R1]])
|
|
; NEW-DAG: swc1 $f13, 8([[R1]])
|
|
|
|
; O32 has run out of argument registers and (in theory) starts using the stack
|
|
; I've yet to find a reference in the documentation about this but GCC uses up
|
|
; the remaining two argument slots in the GPR's first. We'll do the same for
|
|
; compatibility.
|
|
; O32-DAG: sw $6, 12([[R1]])
|
|
; NEW-DAG: swc1 $f14, 12([[R1]])
|
|
; O32-DAG: sw $7, 16([[R1]])
|
|
; NEW-DAG: swc1 $f15, 16([[R1]])
|
|
|
|
; O32 is definitely out of registers now and switches to the stack.
|
|
; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 16($sp)
|
|
; O32-DAG: swc1 [[F1]], 20([[R1]])
|
|
; NEW-DAG: swc1 $f16, 20([[R1]])
|
|
; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 20($sp)
|
|
; O32-DAG: swc1 [[F1]], 24([[R1]])
|
|
; NEW-DAG: swc1 $f17, 24([[R1]])
|
|
; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 24($sp)
|
|
; O32-DAG: swc1 [[F1]], 28([[R1]])
|
|
; NEW-DAG: swc1 $f18, 28([[R1]])
|
|
; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 28($sp)
|
|
; O32-DAG: swc1 [[F1]], 32([[R1]])
|
|
; NEW-DAG: swc1 $f19, 32([[R1]])
|
|
|
|
; N32/N64 have run out of registers and start using the stack too
|
|
; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 32($sp)
|
|
; O32-DAG: swc1 [[F1]], 36([[R1]])
|
|
; NEW-DAG: lwc1 [[F1:\$f[0-9]+]], 0($sp)
|
|
; NEW-DAG: swc1 [[F1]], 36([[R1]])
|
|
|
|
|
|
define void @double_arg2(i8 %a, double %b) nounwind {
|
|
entry:
|
|
%0 = getelementptr [11 x i8]* @bytes, i32 0, i32 1
|
|
store volatile i8 %a, i8* %0
|
|
%1 = getelementptr [11 x double]* @doubles, i32 0, i32 1
|
|
store volatile double %b, double* %1
|
|
ret void
|
|
}
|
|
|
|
; ALL-LABEL: double_arg2:
|
|
; We won't test the way the global address is calculated in this test. This is
|
|
; just to get the register number for the other checks.
|
|
; SYM32-DAG: addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes)
|
|
; SYM64-DAG: ld [[R1:\$[0-9]]], %got_disp(bytes)(
|
|
; SYM32-DAG: addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(doubles)
|
|
; SYM64-DAG: ld [[R2:\$[0-9]]], %got_disp(doubles)(
|
|
|
|
; The first argument is the same in O32/N32/N64.
|
|
; ALL-DAG: sb $4, 1([[R1]])
|
|
|
|
; The first argument isn't floating point so floating point registers are not
|
|
; used in O32, but N32/N64 will still use them.
|
|
; The second slot is insufficiently aligned for double on O32 so it is skipped.
|
|
; Also, double occupies two slots on O32 and only one for N32/N64.
|
|
; O32LE-DAG: mtc1 $6, [[F1:\$f[0-9]*[02468]+]]
|
|
; O32LE-DAG: mtc1 $7, [[F2:\$f[0-9]*[13579]+]]
|
|
; O32BE-DAG: mtc1 $6, [[F2:\$f[0-9]*[13579]+]]
|
|
; O32BE-DAG: mtc1 $7, [[F1:\$f[0-9]*[02468]+]]
|
|
; O32-DAG: sdc1 [[F1]], 8([[R2]])
|
|
; NEW-DAG: sdc1 $f13, 8([[R2]])
|
|
|
|
define void @float_arg2(i8 %a, float %b) nounwind {
|
|
entry:
|
|
%0 = getelementptr [11 x i8]* @bytes, i32 0, i32 1
|
|
store volatile i8 %a, i8* %0
|
|
%1 = getelementptr [11 x float]* @floats, i32 0, i32 1
|
|
store volatile float %b, float* %1
|
|
ret void
|
|
}
|
|
|
|
; ALL-LABEL: float_arg2:
|
|
; We won't test the way the global address is calculated in this test. This is
|
|
; just to get the register number for the other checks.
|
|
; SYM32-DAG: addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes)
|
|
; SYM64-DAG: ld [[R1:\$[0-9]]], %got_disp(bytes)(
|
|
; SYM32-DAG: addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(floats)
|
|
; SYM64-DAG: ld [[R2:\$[0-9]]], %got_disp(floats)(
|
|
|
|
; The first argument is the same in O32/N32/N64.
|
|
; ALL-DAG: sb $4, 1([[R1]])
|
|
|
|
; The first argument isn't floating point so floating point registers are not
|
|
; used in O32, but N32/N64 will still use them.
|
|
; MD00305 and GCC disagree on this one. MD00305 says that floats are treated
|
|
; as 8-byte aligned and occupy two slots on O32. GCC is treating them as 4-byte
|
|
; aligned and occupying one slot. We'll use GCC's definition.
|
|
; O32-DAG: sw $5, 4([[R2]])
|
|
; NEW-DAG: swc1 $f13, 4([[R2]])
|