forked from OSchip/llvm-project
2969 lines
105 KiB
C++
2969 lines
105 KiB
C++
//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
|
||
//
|
||
// The LLVM Compiler Infrastructure
|
||
//
|
||
// This file is distributed under the University of Illinois Open Source
|
||
// License. See LICENSE.TXT for details.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// These classes wrap the information about a call or function
|
||
// definition used to handle ABI compliancy.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "TargetInfo.h"
|
||
#include "ABIInfo.h"
|
||
#include "CodeGenFunction.h"
|
||
#include "clang/AST/RecordLayout.h"
|
||
#include "clang/Frontend/CodeGenOptions.h"
|
||
#include "llvm/Type.h"
|
||
#include "llvm/Target/TargetData.h"
|
||
#include "llvm/ADT/Triple.h"
|
||
#include "llvm/Support/raw_ostream.h"
|
||
using namespace clang;
|
||
using namespace CodeGen;
|
||
|
||
static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
|
||
llvm::Value *Array,
|
||
llvm::Value *Value,
|
||
unsigned FirstIndex,
|
||
unsigned LastIndex) {
|
||
// Alternatively, we could emit this as a loop in the source.
|
||
for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
|
||
llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
|
||
Builder.CreateStore(Value, Cell);
|
||
}
|
||
}
|
||
|
||
static bool isAggregateTypeForABI(QualType T) {
|
||
return CodeGenFunction::hasAggregateLLVMType(T) ||
|
||
T->isMemberFunctionPointerType();
|
||
}
|
||
|
||
ABIInfo::~ABIInfo() {}
|
||
|
||
ASTContext &ABIInfo::getContext() const {
|
||
return CGT.getContext();
|
||
}
|
||
|
||
llvm::LLVMContext &ABIInfo::getVMContext() const {
|
||
return CGT.getLLVMContext();
|
||
}
|
||
|
||
const llvm::TargetData &ABIInfo::getTargetData() const {
|
||
return CGT.getTargetData();
|
||
}
|
||
|
||
|
||
void ABIArgInfo::dump() const {
|
||
llvm::raw_ostream &OS = llvm::errs();
|
||
OS << "(ABIArgInfo Kind=";
|
||
switch (TheKind) {
|
||
case Direct:
|
||
OS << "Direct Type=";
|
||
if (const llvm::Type *Ty = getCoerceToType())
|
||
Ty->print(OS);
|
||
else
|
||
OS << "null";
|
||
break;
|
||
case Extend:
|
||
OS << "Extend";
|
||
break;
|
||
case Ignore:
|
||
OS << "Ignore";
|
||
break;
|
||
case Indirect:
|
||
OS << "Indirect Align=" << getIndirectAlign()
|
||
<< " Byal=" << getIndirectByVal()
|
||
<< " Realign=" << getIndirectRealign();
|
||
break;
|
||
case Expand:
|
||
OS << "Expand";
|
||
break;
|
||
}
|
||
OS << ")\n";
|
||
}
|
||
|
||
TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
|
||
|
||
static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
|
||
|
||
/// isEmptyField - Return true iff a the field is "empty", that is it
|
||
/// is an unnamed bit-field or an (array of) empty record(s).
|
||
static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
|
||
bool AllowArrays) {
|
||
if (FD->isUnnamedBitfield())
|
||
return true;
|
||
|
||
QualType FT = FD->getType();
|
||
|
||
// Constant arrays of empty records count as empty, strip them off.
|
||
if (AllowArrays)
|
||
while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
|
||
FT = AT->getElementType();
|
||
|
||
const RecordType *RT = FT->getAs<RecordType>();
|
||
if (!RT)
|
||
return false;
|
||
|
||
// C++ record fields are never empty, at least in the Itanium ABI.
|
||
//
|
||
// FIXME: We should use a predicate for whether this behavior is true in the
|
||
// current ABI.
|
||
if (isa<CXXRecordDecl>(RT->getDecl()))
|
||
return false;
|
||
|
||
return isEmptyRecord(Context, FT, AllowArrays);
|
||
}
|
||
|
||
/// isEmptyRecord - Return true iff a structure contains only empty
|
||
/// fields. Note that a structure with a flexible array member is not
|
||
/// considered empty.
|
||
static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
|
||
const RecordType *RT = T->getAs<RecordType>();
|
||
if (!RT)
|
||
return 0;
|
||
const RecordDecl *RD = RT->getDecl();
|
||
if (RD->hasFlexibleArrayMember())
|
||
return false;
|
||
|
||
// If this is a C++ record, check the bases first.
|
||
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
|
||
for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
|
||
e = CXXRD->bases_end(); i != e; ++i)
|
||
if (!isEmptyRecord(Context, i->getType(), true))
|
||
return false;
|
||
|
||
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
||
i != e; ++i)
|
||
if (!isEmptyField(Context, *i, AllowArrays))
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
|
||
/// a non-trivial destructor or a non-trivial copy constructor.
|
||
static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
|
||
const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
|
||
if (!RD)
|
||
return false;
|
||
|
||
return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
|
||
}
|
||
|
||
/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
|
||
/// a record type with either a non-trivial destructor or a non-trivial copy
|
||
/// constructor.
|
||
static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
|
||
const RecordType *RT = T->getAs<RecordType>();
|
||
if (!RT)
|
||
return false;
|
||
|
||
return hasNonTrivialDestructorOrCopyConstructor(RT);
|
||
}
|
||
|
||
/// isSingleElementStruct - Determine if a structure is a "single
|
||
/// element struct", i.e. it has exactly one non-empty field or
|
||
/// exactly one field which is itself a single element
|
||
/// struct. Structures with flexible array members are never
|
||
/// considered single element structs.
|
||
///
|
||
/// \return The field declaration for the single non-empty field, if
|
||
/// it exists.
|
||
static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
|
||
const RecordType *RT = T->getAsStructureType();
|
||
if (!RT)
|
||
return 0;
|
||
|
||
const RecordDecl *RD = RT->getDecl();
|
||
if (RD->hasFlexibleArrayMember())
|
||
return 0;
|
||
|
||
const Type *Found = 0;
|
||
|
||
// If this is a C++ record, check the bases first.
|
||
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
|
||
for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
|
||
e = CXXRD->bases_end(); i != e; ++i) {
|
||
// Ignore empty records.
|
||
if (isEmptyRecord(Context, i->getType(), true))
|
||
continue;
|
||
|
||
// If we already found an element then this isn't a single-element struct.
|
||
if (Found)
|
||
return 0;
|
||
|
||
// If this is non-empty and not a single element struct, the composite
|
||
// cannot be a single element struct.
|
||
Found = isSingleElementStruct(i->getType(), Context);
|
||
if (!Found)
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
// Check for single element.
|
||
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
||
i != e; ++i) {
|
||
const FieldDecl *FD = *i;
|
||
QualType FT = FD->getType();
|
||
|
||
// Ignore empty fields.
|
||
if (isEmptyField(Context, FD, true))
|
||
continue;
|
||
|
||
// If we already found an element then this isn't a single-element
|
||
// struct.
|
||
if (Found)
|
||
return 0;
|
||
|
||
// Treat single element arrays as the element.
|
||
while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
|
||
if (AT->getSize().getZExtValue() != 1)
|
||
break;
|
||
FT = AT->getElementType();
|
||
}
|
||
|
||
if (!isAggregateTypeForABI(FT)) {
|
||
Found = FT.getTypePtr();
|
||
} else {
|
||
Found = isSingleElementStruct(FT, Context);
|
||
if (!Found)
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
return Found;
|
||
}
|
||
|
||
static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
|
||
if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
|
||
!Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
|
||
!Ty->isBlockPointerType())
|
||
return false;
|
||
|
||
uint64_t Size = Context.getTypeSize(Ty);
|
||
return Size == 32 || Size == 64;
|
||
}
|
||
|
||
/// canExpandIndirectArgument - Test whether an argument type which is to be
|
||
/// passed indirectly (on the stack) would have the equivalent layout if it was
|
||
/// expanded into separate arguments. If so, we prefer to do the latter to avoid
|
||
/// inhibiting optimizations.
|
||
///
|
||
// FIXME: This predicate is missing many cases, currently it just follows
|
||
// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
|
||
// should probably make this smarter, or better yet make the LLVM backend
|
||
// capable of handling it.
|
||
static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
|
||
// We can only expand structure types.
|
||
const RecordType *RT = Ty->getAs<RecordType>();
|
||
if (!RT)
|
||
return false;
|
||
|
||
// We can only expand (C) structures.
|
||
//
|
||
// FIXME: This needs to be generalized to handle classes as well.
|
||
const RecordDecl *RD = RT->getDecl();
|
||
if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
|
||
return false;
|
||
|
||
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
||
i != e; ++i) {
|
||
const FieldDecl *FD = *i;
|
||
|
||
if (!is32Or64BitBasicType(FD->getType(), Context))
|
||
return false;
|
||
|
||
// FIXME: Reject bit-fields wholesale; there are two problems, we don't know
|
||
// how to expand them yet, and the predicate for telling if a bitfield still
|
||
// counts as "basic" is more complicated than what we were doing previously.
|
||
if (FD->isBitField())
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
namespace {
|
||
/// DefaultABIInfo - The default implementation for ABI specific
|
||
/// details. This implementation provides information which results in
|
||
/// self-consistent and sensible LLVM IR generation, but does not
|
||
/// conform to any particular ABI.
|
||
class DefaultABIInfo : public ABIInfo {
|
||
public:
|
||
DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
|
||
|
||
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
||
ABIArgInfo classifyArgumentType(QualType RetTy) const;
|
||
|
||
virtual void computeInfo(CGFunctionInfo &FI) const {
|
||
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
||
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
||
it != ie; ++it)
|
||
it->info = classifyArgumentType(it->type);
|
||
}
|
||
|
||
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
||
CodeGenFunction &CGF) const;
|
||
};
|
||
|
||
class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
|
||
public:
|
||
DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
|
||
: TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
|
||
};
|
||
|
||
llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
||
CodeGenFunction &CGF) const {
|
||
return 0;
|
||
}
|
||
|
||
ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
|
||
if (isAggregateTypeForABI(Ty))
|
||
return ABIArgInfo::getIndirect(0);
|
||
|
||
// Treat an enum type as its underlying type.
|
||
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
||
Ty = EnumTy->getDecl()->getIntegerType();
|
||
|
||
return (Ty->isPromotableIntegerType() ?
|
||
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
||
}
|
||
|
||
ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
|
||
if (RetTy->isVoidType())
|
||
return ABIArgInfo::getIgnore();
|
||
|
||
if (isAggregateTypeForABI(RetTy))
|
||
return ABIArgInfo::getIndirect(0);
|
||
|
||
// Treat an enum type as its underlying type.
|
||
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
||
RetTy = EnumTy->getDecl()->getIntegerType();
|
||
|
||
return (RetTy->isPromotableIntegerType() ?
|
||
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
||
}
|
||
|
||
/// UseX86_MMXType - Return true if this is an MMX type that should use the special
|
||
/// x86_mmx type.
|
||
bool UseX86_MMXType(const llvm::Type *IRType) {
|
||
// If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
|
||
// special x86_mmx type.
|
||
return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
|
||
cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
|
||
IRType->getScalarSizeInBits() != 64;
|
||
}
|
||
|
||
static const llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
|
||
llvm::StringRef Constraint,
|
||
const llvm::Type* Ty) {
|
||
if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
|
||
return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
|
||
return Ty;
|
||
}
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// X86-32 ABI Implementation
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
/// X86_32ABIInfo - The X86-32 ABI information.
|
||
class X86_32ABIInfo : public ABIInfo {
|
||
static const unsigned MinABIStackAlignInBytes = 4;
|
||
|
||
bool IsDarwinVectorABI;
|
||
bool IsSmallStructInRegABI;
|
||
|
||
static bool isRegisterSize(unsigned Size) {
|
||
return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
|
||
}
|
||
|
||
static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
|
||
|
||
/// getIndirectResult - Give a source type \arg Ty, return a suitable result
|
||
/// such that the argument will be passed in memory.
|
||
ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
|
||
|
||
/// \brief Return the alignment to use for the given type on the stack.
|
||
unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
|
||
|
||
public:
|
||
|
||
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
||
ABIArgInfo classifyArgumentType(QualType RetTy) const;
|
||
|
||
virtual void computeInfo(CGFunctionInfo &FI) const {
|
||
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
||
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
||
it != ie; ++it)
|
||
it->info = classifyArgumentType(it->type);
|
||
}
|
||
|
||
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
||
CodeGenFunction &CGF) const;
|
||
|
||
X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
|
||
: ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p) {}
|
||
};
|
||
|
||
class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
|
||
public:
|
||
X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
|
||
:TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p)) {}
|
||
|
||
void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
||
CodeGen::CodeGenModule &CGM) const;
|
||
|
||
int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
|
||
// Darwin uses different dwarf register numbers for EH.
|
||
if (CGM.isTargetDarwin()) return 5;
|
||
|
||
return 4;
|
||
}
|
||
|
||
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
||
llvm::Value *Address) const;
|
||
|
||
const llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
|
||
llvm::StringRef Constraint,
|
||
const llvm::Type* Ty) const {
|
||
return X86AdjustInlineAsmType(CGF, Constraint, Ty);
|
||
}
|
||
|
||
};
|
||
|
||
}
|
||
|
||
/// shouldReturnTypeInRegister - Determine if the given type should be
|
||
/// passed in a register (for the Darwin ABI).
|
||
bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
|
||
ASTContext &Context) {
|
||
uint64_t Size = Context.getTypeSize(Ty);
|
||
|
||
// Type must be register sized.
|
||
if (!isRegisterSize(Size))
|
||
return false;
|
||
|
||
if (Ty->isVectorType()) {
|
||
// 64- and 128- bit vectors inside structures are not returned in
|
||
// registers.
|
||
if (Size == 64 || Size == 128)
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
// If this is a builtin, pointer, enum, complex type, member pointer, or
|
||
// member function pointer it is ok.
|
||
if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
|
||
Ty->isAnyComplexType() || Ty->isEnumeralType() ||
|
||
Ty->isBlockPointerType() || Ty->isMemberPointerType())
|
||
return true;
|
||
|
||
// Arrays are treated like records.
|
||
if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
|
||
return shouldReturnTypeInRegister(AT->getElementType(), Context);
|
||
|
||
// Otherwise, it must be a record type.
|
||
const RecordType *RT = Ty->getAs<RecordType>();
|
||
if (!RT) return false;
|
||
|
||
// FIXME: Traverse bases here too.
|
||
|
||
// Structure types are passed in register if all fields would be
|
||
// passed in a register.
|
||
for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
|
||
e = RT->getDecl()->field_end(); i != e; ++i) {
|
||
const FieldDecl *FD = *i;
|
||
|
||
// Empty fields are ignored.
|
||
if (isEmptyField(Context, FD, true))
|
||
continue;
|
||
|
||
// Check fields recursively.
|
||
if (!shouldReturnTypeInRegister(FD->getType(), Context))
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const {
|
||
if (RetTy->isVoidType())
|
||
return ABIArgInfo::getIgnore();
|
||
|
||
if (const VectorType *VT = RetTy->getAs<VectorType>()) {
|
||
// On Darwin, some vectors are returned in registers.
|
||
if (IsDarwinVectorABI) {
|
||
uint64_t Size = getContext().getTypeSize(RetTy);
|
||
|
||
// 128-bit vectors are a special case; they are returned in
|
||
// registers and we need to make sure to pick a type the LLVM
|
||
// backend will like.
|
||
if (Size == 128)
|
||
return ABIArgInfo::getDirect(llvm::VectorType::get(
|
||
llvm::Type::getInt64Ty(getVMContext()), 2));
|
||
|
||
// Always return in register if it fits in a general purpose
|
||
// register, or if it is 64 bits and has a single element.
|
||
if ((Size == 8 || Size == 16 || Size == 32) ||
|
||
(Size == 64 && VT->getNumElements() == 1))
|
||
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
|
||
Size));
|
||
|
||
return ABIArgInfo::getIndirect(0);
|
||
}
|
||
|
||
return ABIArgInfo::getDirect();
|
||
}
|
||
|
||
if (isAggregateTypeForABI(RetTy)) {
|
||
if (const RecordType *RT = RetTy->getAs<RecordType>()) {
|
||
// Structures with either a non-trivial destructor or a non-trivial
|
||
// copy constructor are always indirect.
|
||
if (hasNonTrivialDestructorOrCopyConstructor(RT))
|
||
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
||
|
||
// Structures with flexible arrays are always indirect.
|
||
if (RT->getDecl()->hasFlexibleArrayMember())
|
||
return ABIArgInfo::getIndirect(0);
|
||
}
|
||
|
||
// If specified, structs and unions are always indirect.
|
||
if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
|
||
return ABIArgInfo::getIndirect(0);
|
||
|
||
// Classify "single element" structs as their element type.
|
||
if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) {
|
||
if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
|
||
if (BT->isIntegerType()) {
|
||
// We need to use the size of the structure, padding
|
||
// bit-fields can adjust that to be larger than the single
|
||
// element type.
|
||
uint64_t Size = getContext().getTypeSize(RetTy);
|
||
return ABIArgInfo::getDirect(
|
||
llvm::IntegerType::get(getVMContext(), (unsigned)Size));
|
||
}
|
||
|
||
if (BT->getKind() == BuiltinType::Float) {
|
||
assert(getContext().getTypeSize(RetTy) ==
|
||
getContext().getTypeSize(SeltTy) &&
|
||
"Unexpect single element structure size!");
|
||
return ABIArgInfo::getDirect(llvm::Type::getFloatTy(getVMContext()));
|
||
}
|
||
|
||
if (BT->getKind() == BuiltinType::Double) {
|
||
assert(getContext().getTypeSize(RetTy) ==
|
||
getContext().getTypeSize(SeltTy) &&
|
||
"Unexpect single element structure size!");
|
||
return ABIArgInfo::getDirect(llvm::Type::getDoubleTy(getVMContext()));
|
||
}
|
||
} else if (SeltTy->isPointerType()) {
|
||
// FIXME: It would be really nice if this could come out as the proper
|
||
// pointer type.
|
||
const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(getVMContext());
|
||
return ABIArgInfo::getDirect(PtrTy);
|
||
} else if (SeltTy->isVectorType()) {
|
||
// 64- and 128-bit vectors are never returned in a
|
||
// register when inside a structure.
|
||
uint64_t Size = getContext().getTypeSize(RetTy);
|
||
if (Size == 64 || Size == 128)
|
||
return ABIArgInfo::getIndirect(0);
|
||
|
||
return classifyReturnType(QualType(SeltTy, 0));
|
||
}
|
||
}
|
||
|
||
// Small structures which are register sized are generally returned
|
||
// in a register.
|
||
if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) {
|
||
uint64_t Size = getContext().getTypeSize(RetTy);
|
||
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
|
||
}
|
||
|
||
return ABIArgInfo::getIndirect(0);
|
||
}
|
||
|
||
// Treat an enum type as its underlying type.
|
||
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
||
RetTy = EnumTy->getDecl()->getIntegerType();
|
||
|
||
return (RetTy->isPromotableIntegerType() ?
|
||
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
||
}
|
||
|
||
static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
|
||
const RecordType *RT = Ty->getAs<RecordType>();
|
||
if (!RT)
|
||
return 0;
|
||
const RecordDecl *RD = RT->getDecl();
|
||
|
||
// If this is a C++ record, check the bases first.
|
||
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
|
||
for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
|
||
e = CXXRD->bases_end(); i != e; ++i)
|
||
if (!isRecordWithSSEVectorType(Context, i->getType()))
|
||
return false;
|
||
|
||
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
||
i != e; ++i) {
|
||
QualType FT = i->getType();
|
||
|
||
if (FT->getAs<VectorType>() && Context.getTypeSize(Ty) == 128)
|
||
return true;
|
||
|
||
if (isRecordWithSSEVectorType(Context, FT))
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
|
||
unsigned Align) const {
|
||
// Otherwise, if the alignment is less than or equal to the minimum ABI
|
||
// alignment, just use the default; the backend will handle this.
|
||
if (Align <= MinABIStackAlignInBytes)
|
||
return 0; // Use default alignment.
|
||
|
||
// On non-Darwin, the stack type alignment is always 4.
|
||
if (!IsDarwinVectorABI) {
|
||
// Set explicit alignment, since we may need to realign the top.
|
||
return MinABIStackAlignInBytes;
|
||
}
|
||
|
||
// Otherwise, if the type contains an SSE vector type, the alignment is 16.
|
||
if (isRecordWithSSEVectorType(getContext(), Ty))
|
||
return 16;
|
||
|
||
return MinABIStackAlignInBytes;
|
||
}
|
||
|
||
ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
|
||
if (!ByVal)
|
||
return ABIArgInfo::getIndirect(0, false);
|
||
|
||
// Compute the byval alignment.
|
||
unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
|
||
unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
|
||
if (StackAlign == 0)
|
||
return ABIArgInfo::getIndirect(0);
|
||
|
||
// If the stack alignment is less than the type alignment, realign the
|
||
// argument.
|
||
if (StackAlign < TypeAlign)
|
||
return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
|
||
/*Realign=*/true);
|
||
|
||
return ABIArgInfo::getIndirect(StackAlign);
|
||
}
|
||
|
||
ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
|
||
// FIXME: Set alignment on indirect arguments.
|
||
if (isAggregateTypeForABI(Ty)) {
|
||
// Structures with flexible arrays are always indirect.
|
||
if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
||
// Structures with either a non-trivial destructor or a non-trivial
|
||
// copy constructor are always indirect.
|
||
if (hasNonTrivialDestructorOrCopyConstructor(RT))
|
||
return getIndirectResult(Ty, /*ByVal=*/false);
|
||
|
||
if (RT->getDecl()->hasFlexibleArrayMember())
|
||
return getIndirectResult(Ty);
|
||
}
|
||
|
||
// Ignore empty structs.
|
||
if (Ty->isStructureType() && getContext().getTypeSize(Ty) == 0)
|
||
return ABIArgInfo::getIgnore();
|
||
|
||
// Expand small (<= 128-bit) record types when we know that the stack layout
|
||
// of those arguments will match the struct. This is important because the
|
||
// LLVM backend isn't smart enough to remove byval, which inhibits many
|
||
// optimizations.
|
||
if (getContext().getTypeSize(Ty) <= 4*32 &&
|
||
canExpandIndirectArgument(Ty, getContext()))
|
||
return ABIArgInfo::getExpand();
|
||
|
||
return getIndirectResult(Ty);
|
||
}
|
||
|
||
if (const VectorType *VT = Ty->getAs<VectorType>()) {
|
||
// On Darwin, some vectors are passed in memory, we handle this by passing
|
||
// it as an i8/i16/i32/i64.
|
||
if (IsDarwinVectorABI) {
|
||
uint64_t Size = getContext().getTypeSize(Ty);
|
||
if ((Size == 8 || Size == 16 || Size == 32) ||
|
||
(Size == 64 && VT->getNumElements() == 1))
|
||
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
|
||
Size));
|
||
}
|
||
|
||
const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
|
||
if (UseX86_MMXType(IRType)) {
|
||
ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
|
||
AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
|
||
return AAI;
|
||
}
|
||
|
||
return ABIArgInfo::getDirect();
|
||
}
|
||
|
||
|
||
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
||
Ty = EnumTy->getDecl()->getIntegerType();
|
||
|
||
return (Ty->isPromotableIntegerType() ?
|
||
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
||
}
|
||
|
||
llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
||
CodeGenFunction &CGF) const {
|
||
const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
|
||
const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
|
||
|
||
CGBuilderTy &Builder = CGF.Builder;
|
||
llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
|
||
"ap");
|
||
llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
|
||
llvm::Type *PTy =
|
||
llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
|
||
llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
|
||
|
||
uint64_t Offset =
|
||
llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
|
||
llvm::Value *NextAddr =
|
||
Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
|
||
"ap.next");
|
||
Builder.CreateStore(NextAddr, VAListAddrAsBPP);
|
||
|
||
return AddrTyped;
|
||
}
|
||
|
||
void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
|
||
llvm::GlobalValue *GV,
|
||
CodeGen::CodeGenModule &CGM) const {
|
||
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
||
if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
|
||
// Get the LLVM function.
|
||
llvm::Function *Fn = cast<llvm::Function>(GV);
|
||
|
||
// Now add the 'alignstack' attribute with a value of 16.
|
||
Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
|
||
}
|
||
}
|
||
}
|
||
|
||
bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
|
||
CodeGen::CodeGenFunction &CGF,
|
||
llvm::Value *Address) const {
|
||
CodeGen::CGBuilderTy &Builder = CGF.Builder;
|
||
llvm::LLVMContext &Context = CGF.getLLVMContext();
|
||
|
||
const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
|
||
llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
|
||
|
||
// 0-7 are the eight integer registers; the order is different
|
||
// on Darwin (for EH), but the range is the same.
|
||
// 8 is %eip.
|
||
AssignToArrayRange(Builder, Address, Four8, 0, 8);
|
||
|
||
if (CGF.CGM.isTargetDarwin()) {
|
||
// 12-16 are st(0..4). Not sure why we stop at 4.
|
||
// These have size 16, which is sizeof(long double) on
|
||
// platforms with 8-byte alignment for that type.
|
||
llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
|
||
AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
|
||
|
||
} else {
|
||
// 9 is %eflags, which doesn't get a size on Darwin for some
|
||
// reason.
|
||
Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
|
||
|
||
// 11-16 are st(0..5). Not sure why we stop at 5.
|
||
// These have size 12, which is sizeof(long double) on
|
||
// platforms with 4-byte alignment for that type.
|
||
llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
|
||
AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// X86-64 ABI Implementation
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
|
||
namespace {
|
||
/// X86_64ABIInfo - The X86_64 ABI information.
|
||
class X86_64ABIInfo : public ABIInfo {
|
||
enum Class {
|
||
Integer = 0,
|
||
SSE,
|
||
SSEUp,
|
||
X87,
|
||
X87Up,
|
||
ComplexX87,
|
||
NoClass,
|
||
Memory
|
||
};
|
||
|
||
/// merge - Implement the X86_64 ABI merging algorithm.
|
||
///
|
||
/// Merge an accumulating classification \arg Accum with a field
|
||
/// classification \arg Field.
|
||
///
|
||
/// \param Accum - The accumulating classification. This should
|
||
/// always be either NoClass or the result of a previous merge
|
||
/// call. In addition, this should never be Memory (the caller
|
||
/// should just return Memory for the aggregate).
|
||
static Class merge(Class Accum, Class Field);
|
||
|
||
/// classify - Determine the x86_64 register classes in which the
|
||
/// given type T should be passed.
|
||
///
|
||
/// \param Lo - The classification for the parts of the type
|
||
/// residing in the low word of the containing object.
|
||
///
|
||
/// \param Hi - The classification for the parts of the type
|
||
/// residing in the high word of the containing object.
|
||
///
|
||
/// \param OffsetBase - The bit offset of this type in the
|
||
/// containing object. Some parameters are classified different
|
||
/// depending on whether they straddle an eightbyte boundary.
|
||
///
|
||
/// If a word is unused its result will be NoClass; if a type should
|
||
/// be passed in Memory then at least the classification of \arg Lo
|
||
/// will be Memory.
|
||
///
|
||
/// The \arg Lo class will be NoClass iff the argument is ignored.
|
||
///
|
||
/// If the \arg Lo class is ComplexX87, then the \arg Hi class will
|
||
/// also be ComplexX87.
|
||
void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
|
||
|
||
const llvm::Type *Get16ByteVectorType(QualType Ty) const;
|
||
const llvm::Type *GetSSETypeAtOffset(const llvm::Type *IRType,
|
||
unsigned IROffset, QualType SourceTy,
|
||
unsigned SourceOffset) const;
|
||
const llvm::Type *GetINTEGERTypeAtOffset(const llvm::Type *IRType,
|
||
unsigned IROffset, QualType SourceTy,
|
||
unsigned SourceOffset) const;
|
||
|
||
/// getIndirectResult - Give a source type \arg Ty, return a suitable result
|
||
/// such that the argument will be returned in memory.
|
||
ABIArgInfo getIndirectReturnResult(QualType Ty) const;
|
||
|
||
/// getIndirectResult - Give a source type \arg Ty, return a suitable result
|
||
/// such that the argument will be passed in memory.
|
||
ABIArgInfo getIndirectResult(QualType Ty) const;
|
||
|
||
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
||
|
||
ABIArgInfo classifyArgumentType(QualType Ty,
|
||
unsigned &neededInt,
|
||
unsigned &neededSSE) const;
|
||
|
||
/// The 0.98 ABI revision clarified a lot of ambiguities,
|
||
/// unfortunately in ways that were not always consistent with
|
||
/// certain previous compilers. In particular, platforms which
|
||
/// required strict binary compatibility with older versions of GCC
|
||
/// may need to exempt themselves.
|
||
bool honorsRevision0_98() const {
|
||
return !getContext().Target.getTriple().isOSDarwin();
|
||
}
|
||
|
||
public:
|
||
X86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
|
||
|
||
virtual void computeInfo(CGFunctionInfo &FI) const;
|
||
|
||
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
||
CodeGenFunction &CGF) const;
|
||
};
|
||
|
||
/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
|
||
class WinX86_64ABIInfo : public ABIInfo {
|
||
|
||
ABIArgInfo classify(QualType Ty) const;
|
||
|
||
public:
|
||
WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
|
||
|
||
virtual void computeInfo(CGFunctionInfo &FI) const;
|
||
|
||
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
||
CodeGenFunction &CGF) const;
|
||
};
|
||
|
||
class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
|
||
public:
|
||
X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
|
||
: TargetCodeGenInfo(new X86_64ABIInfo(CGT)) {}
|
||
|
||
int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
|
||
return 7;
|
||
}
|
||
|
||
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
||
llvm::Value *Address) const {
|
||
CodeGen::CGBuilderTy &Builder = CGF.Builder;
|
||
llvm::LLVMContext &Context = CGF.getLLVMContext();
|
||
|
||
const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
|
||
llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
|
||
|
||
// 0-15 are the 16 integer registers.
|
||
// 16 is %rip.
|
||
AssignToArrayRange(Builder, Address, Eight8, 0, 16);
|
||
|
||
return false;
|
||
}
|
||
|
||
const llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
|
||
llvm::StringRef Constraint,
|
||
const llvm::Type* Ty) const {
|
||
return X86AdjustInlineAsmType(CGF, Constraint, Ty);
|
||
}
|
||
|
||
};
|
||
|
||
class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
|
||
public:
|
||
WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
|
||
: TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
|
||
|
||
int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
|
||
return 7;
|
||
}
|
||
|
||
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
||
llvm::Value *Address) const {
|
||
CodeGen::CGBuilderTy &Builder = CGF.Builder;
|
||
llvm::LLVMContext &Context = CGF.getLLVMContext();
|
||
|
||
const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
|
||
llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
|
||
|
||
// 0-15 are the 16 integer registers.
|
||
// 16 is %rip.
|
||
AssignToArrayRange(Builder, Address, Eight8, 0, 16);
|
||
|
||
return false;
|
||
}
|
||
};
|
||
|
||
}
|
||
|
||
X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
|
||
// AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
|
||
// classified recursively so that always two fields are
|
||
// considered. The resulting class is calculated according to
|
||
// the classes of the fields in the eightbyte:
|
||
//
|
||
// (a) If both classes are equal, this is the resulting class.
|
||
//
|
||
// (b) If one of the classes is NO_CLASS, the resulting class is
|
||
// the other class.
|
||
//
|
||
// (c) If one of the classes is MEMORY, the result is the MEMORY
|
||
// class.
|
||
//
|
||
// (d) If one of the classes is INTEGER, the result is the
|
||
// INTEGER.
|
||
//
|
||
// (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
|
||
// MEMORY is used as class.
|
||
//
|
||
// (f) Otherwise class SSE is used.
|
||
|
||
// Accum should never be memory (we should have returned) or
|
||
// ComplexX87 (because this cannot be passed in a structure).
|
||
assert((Accum != Memory && Accum != ComplexX87) &&
|
||
"Invalid accumulated classification during merge.");
|
||
if (Accum == Field || Field == NoClass)
|
||
return Accum;
|
||
if (Field == Memory)
|
||
return Memory;
|
||
if (Accum == NoClass)
|
||
return Field;
|
||
if (Accum == Integer || Field == Integer)
|
||
return Integer;
|
||
if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
|
||
Accum == X87 || Accum == X87Up)
|
||
return Memory;
|
||
return SSE;
|
||
}
|
||
|
||
void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
|
||
Class &Lo, Class &Hi) const {
|
||
// FIXME: This code can be simplified by introducing a simple value class for
|
||
// Class pairs with appropriate constructor methods for the various
|
||
// situations.
|
||
|
||
// FIXME: Some of the split computations are wrong; unaligned vectors
|
||
// shouldn't be passed in registers for example, so there is no chance they
|
||
// can straddle an eightbyte. Verify & simplify.
|
||
|
||
Lo = Hi = NoClass;
|
||
|
||
Class &Current = OffsetBase < 64 ? Lo : Hi;
|
||
Current = Memory;
|
||
|
||
if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
|
||
BuiltinType::Kind k = BT->getKind();
|
||
|
||
if (k == BuiltinType::Void) {
|
||
Current = NoClass;
|
||
} else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
|
||
Lo = Integer;
|
||
Hi = Integer;
|
||
} else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
|
||
Current = Integer;
|
||
} else if (k == BuiltinType::Float || k == BuiltinType::Double) {
|
||
Current = SSE;
|
||
} else if (k == BuiltinType::LongDouble) {
|
||
Lo = X87;
|
||
Hi = X87Up;
|
||
}
|
||
// FIXME: _Decimal32 and _Decimal64 are SSE.
|
||
// FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
|
||
return;
|
||
}
|
||
|
||
if (const EnumType *ET = Ty->getAs<EnumType>()) {
|
||
// Classify the underlying integer type.
|
||
classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
|
||
return;
|
||
}
|
||
|
||
if (Ty->hasPointerRepresentation()) {
|
||
Current = Integer;
|
||
return;
|
||
}
|
||
|
||
if (Ty->isMemberPointerType()) {
|
||
if (Ty->isMemberFunctionPointerType())
|
||
Lo = Hi = Integer;
|
||
else
|
||
Current = Integer;
|
||
return;
|
||
}
|
||
|
||
if (const VectorType *VT = Ty->getAs<VectorType>()) {
|
||
uint64_t Size = getContext().getTypeSize(VT);
|
||
if (Size == 32) {
|
||
// gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
|
||
// float> as integer.
|
||
Current = Integer;
|
||
|
||
// If this type crosses an eightbyte boundary, it should be
|
||
// split.
|
||
uint64_t EB_Real = (OffsetBase) / 64;
|
||
uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
|
||
if (EB_Real != EB_Imag)
|
||
Hi = Lo;
|
||
} else if (Size == 64) {
|
||
// gcc passes <1 x double> in memory. :(
|
||
if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
|
||
return;
|
||
|
||
// gcc passes <1 x long long> as INTEGER.
|
||
if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
|
||
VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
|
||
VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
|
||
VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
|
||
Current = Integer;
|
||
else
|
||
Current = SSE;
|
||
|
||
// If this type crosses an eightbyte boundary, it should be
|
||
// split.
|
||
if (OffsetBase && OffsetBase != 64)
|
||
Hi = Lo;
|
||
} else if (Size == 128) {
|
||
Lo = SSE;
|
||
Hi = SSEUp;
|
||
}
|
||
return;
|
||
}
|
||
|
||
if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
|
||
QualType ET = getContext().getCanonicalType(CT->getElementType());
|
||
|
||
uint64_t Size = getContext().getTypeSize(Ty);
|
||
if (ET->isIntegralOrEnumerationType()) {
|
||
if (Size <= 64)
|
||
Current = Integer;
|
||
else if (Size <= 128)
|
||
Lo = Hi = Integer;
|
||
} else if (ET == getContext().FloatTy)
|
||
Current = SSE;
|
||
else if (ET == getContext().DoubleTy)
|
||
Lo = Hi = SSE;
|
||
else if (ET == getContext().LongDoubleTy)
|
||
Current = ComplexX87;
|
||
|
||
// If this complex type crosses an eightbyte boundary then it
|
||
// should be split.
|
||
uint64_t EB_Real = (OffsetBase) / 64;
|
||
uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
|
||
if (Hi == NoClass && EB_Real != EB_Imag)
|
||
Hi = Lo;
|
||
|
||
return;
|
||
}
|
||
|
||
if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
|
||
// Arrays are treated like structures.
|
||
|
||
uint64_t Size = getContext().getTypeSize(Ty);
|
||
|
||
// AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
|
||
// than two eightbytes, ..., it has class MEMORY.
|
||
if (Size > 128)
|
||
return;
|
||
|
||
// AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
|
||
// fields, it has class MEMORY.
|
||
//
|
||
// Only need to check alignment of array base.
|
||
if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
|
||
return;
|
||
|
||
// Otherwise implement simplified merge. We could be smarter about
|
||
// this, but it isn't worth it and would be harder to verify.
|
||
Current = NoClass;
|
||
uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
|
||
uint64_t ArraySize = AT->getSize().getZExtValue();
|
||
for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
|
||
Class FieldLo, FieldHi;
|
||
classify(AT->getElementType(), Offset, FieldLo, FieldHi);
|
||
Lo = merge(Lo, FieldLo);
|
||
Hi = merge(Hi, FieldHi);
|
||
if (Lo == Memory || Hi == Memory)
|
||
break;
|
||
}
|
||
|
||
// Do post merger cleanup (see below). Only case we worry about is Memory.
|
||
if (Hi == Memory)
|
||
Lo = Memory;
|
||
assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
|
||
return;
|
||
}
|
||
|
||
if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
||
uint64_t Size = getContext().getTypeSize(Ty);
|
||
|
||
// AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
|
||
// than two eightbytes, ..., it has class MEMORY.
|
||
if (Size > 128)
|
||
return;
|
||
|
||
// AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
|
||
// copy constructor or a non-trivial destructor, it is passed by invisible
|
||
// reference.
|
||
if (hasNonTrivialDestructorOrCopyConstructor(RT))
|
||
return;
|
||
|
||
const RecordDecl *RD = RT->getDecl();
|
||
|
||
// Assume variable sized types are passed in memory.
|
||
if (RD->hasFlexibleArrayMember())
|
||
return;
|
||
|
||
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
|
||
|
||
// Reset Lo class, this will be recomputed.
|
||
Current = NoClass;
|
||
|
||
// If this is a C++ record, classify the bases first.
|
||
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
|
||
for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
|
||
e = CXXRD->bases_end(); i != e; ++i) {
|
||
assert(!i->isVirtual() && !i->getType()->isDependentType() &&
|
||
"Unexpected base class!");
|
||
const CXXRecordDecl *Base =
|
||
cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
|
||
|
||
// Classify this field.
|
||
//
|
||
// AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
|
||
// single eightbyte, each is classified separately. Each eightbyte gets
|
||
// initialized to class NO_CLASS.
|
||
Class FieldLo, FieldHi;
|
||
uint64_t Offset = OffsetBase + Layout.getBaseClassOffsetInBits(Base);
|
||
classify(i->getType(), Offset, FieldLo, FieldHi);
|
||
Lo = merge(Lo, FieldLo);
|
||
Hi = merge(Hi, FieldHi);
|
||
if (Lo == Memory || Hi == Memory)
|
||
break;
|
||
}
|
||
}
|
||
|
||
// Classify the fields one at a time, merging the results.
|
||
unsigned idx = 0;
|
||
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
||
i != e; ++i, ++idx) {
|
||
uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
|
||
bool BitField = i->isBitField();
|
||
|
||
// AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
|
||
// fields, it has class MEMORY.
|
||
//
|
||
// Note, skip this test for bit-fields, see below.
|
||
if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
|
||
Lo = Memory;
|
||
return;
|
||
}
|
||
|
||
// Classify this field.
|
||
//
|
||
// AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
|
||
// exceeds a single eightbyte, each is classified
|
||
// separately. Each eightbyte gets initialized to class
|
||
// NO_CLASS.
|
||
Class FieldLo, FieldHi;
|
||
|
||
// Bit-fields require special handling, they do not force the
|
||
// structure to be passed in memory even if unaligned, and
|
||
// therefore they can straddle an eightbyte.
|
||
if (BitField) {
|
||
// Ignore padding bit-fields.
|
||
if (i->isUnnamedBitfield())
|
||
continue;
|
||
|
||
uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
|
||
uint64_t Size =
|
||
i->getBitWidth()->EvaluateAsInt(getContext()).getZExtValue();
|
||
|
||
uint64_t EB_Lo = Offset / 64;
|
||
uint64_t EB_Hi = (Offset + Size - 1) / 64;
|
||
FieldLo = FieldHi = NoClass;
|
||
if (EB_Lo) {
|
||
assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
|
||
FieldLo = NoClass;
|
||
FieldHi = Integer;
|
||
} else {
|
||
FieldLo = Integer;
|
||
FieldHi = EB_Hi ? Integer : NoClass;
|
||
}
|
||
} else
|
||
classify(i->getType(), Offset, FieldLo, FieldHi);
|
||
Lo = merge(Lo, FieldLo);
|
||
Hi = merge(Hi, FieldHi);
|
||
if (Lo == Memory || Hi == Memory)
|
||
break;
|
||
}
|
||
|
||
// AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
|
||
//
|
||
// (a) If one of the classes is MEMORY, the whole argument is
|
||
// passed in memory.
|
||
//
|
||
// (b) If X87UP is not preceded by X87, the whole argument is
|
||
// passed in memory.
|
||
//
|
||
// (c) If the size of the aggregate exceeds two eightbytes and the first
|
||
// eight-byte isn’t SSE or any other eightbyte isn’t SSEUP, the whole
|
||
// argument is passed in memory.
|
||
//
|
||
// (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
|
||
//
|
||
// Some of these are enforced by the merging logic. Others can arise
|
||
// only with unions; for example:
|
||
// union { _Complex double; unsigned; }
|
||
//
|
||
// Note that clauses (b) and (c) were added in 0.98.
|
||
if (Hi == Memory)
|
||
Lo = Memory;
|
||
if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
|
||
Lo = Memory;
|
||
if (Hi == SSEUp && Lo != SSE)
|
||
Hi = SSE;
|
||
}
|
||
}
|
||
|
||
ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
|
||
// If this is a scalar LLVM value then assume LLVM will pass it in the right
|
||
// place naturally.
|
||
if (!isAggregateTypeForABI(Ty)) {
|
||
// Treat an enum type as its underlying type.
|
||
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
||
Ty = EnumTy->getDecl()->getIntegerType();
|
||
|
||
return (Ty->isPromotableIntegerType() ?
|
||
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
||
}
|
||
|
||
return ABIArgInfo::getIndirect(0);
|
||
}
|
||
|
||
ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const {
|
||
// If this is a scalar LLVM value then assume LLVM will pass it in the right
|
||
// place naturally.
|
||
if (!isAggregateTypeForABI(Ty)) {
|
||
// Treat an enum type as its underlying type.
|
||
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
||
Ty = EnumTy->getDecl()->getIntegerType();
|
||
|
||
return (Ty->isPromotableIntegerType() ?
|
||
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
||
}
|
||
|
||
if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
|
||
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
||
|
||
// Compute the byval alignment. We trust the back-end to honor the
|
||
// minimum ABI alignment for byval, to make cleaner IR.
|
||
const unsigned MinABIAlign = 8;
|
||
unsigned Align = getContext().getTypeAlign(Ty) / 8;
|
||
if (Align > MinABIAlign)
|
||
return ABIArgInfo::getIndirect(Align);
|
||
return ABIArgInfo::getIndirect(0);
|
||
}
|
||
|
||
/// Get16ByteVectorType - The ABI specifies that a value should be passed in an
|
||
/// full vector XMM register. Pick an LLVM IR type that will be passed as a
|
||
/// vector register.
|
||
const llvm::Type *X86_64ABIInfo::Get16ByteVectorType(QualType Ty) const {
|
||
const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
|
||
|
||
// Wrapper structs that just contain vectors are passed just like vectors,
|
||
// strip them off if present.
|
||
const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
|
||
while (STy && STy->getNumElements() == 1) {
|
||
IRType = STy->getElementType(0);
|
||
STy = dyn_cast<llvm::StructType>(IRType);
|
||
}
|
||
|
||
// If the preferred type is a 16-byte vector, prefer to pass it.
|
||
if (const llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
|
||
const llvm::Type *EltTy = VT->getElementType();
|
||
if (VT->getBitWidth() == 128 &&
|
||
(EltTy->isFloatTy() || EltTy->isDoubleTy() ||
|
||
EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
|
||
EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
|
||
EltTy->isIntegerTy(128)))
|
||
return VT;
|
||
}
|
||
|
||
return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
|
||
}
|
||
|
||
/// BitsContainNoUserData - Return true if the specified [start,end) bit range
|
||
/// is known to either be off the end of the specified type or being in
|
||
/// alignment padding. The user type specified is known to be at most 128 bits
|
||
/// in size, and have passed through X86_64ABIInfo::classify with a successful
|
||
/// classification that put one of the two halves in the INTEGER class.
|
||
///
|
||
/// It is conservatively correct to return false.
|
||
static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
|
||
unsigned EndBit, ASTContext &Context) {
|
||
// If the bytes being queried are off the end of the type, there is no user
|
||
// data hiding here. This handles analysis of builtins, vectors and other
|
||
// types that don't contain interesting padding.
|
||
unsigned TySize = (unsigned)Context.getTypeSize(Ty);
|
||
if (TySize <= StartBit)
|
||
return true;
|
||
|
||
if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
|
||
unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
|
||
unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
|
||
|
||
// Check each element to see if the element overlaps with the queried range.
|
||
for (unsigned i = 0; i != NumElts; ++i) {
|
||
// If the element is after the span we care about, then we're done..
|
||
unsigned EltOffset = i*EltSize;
|
||
if (EltOffset >= EndBit) break;
|
||
|
||
unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
|
||
if (!BitsContainNoUserData(AT->getElementType(), EltStart,
|
||
EndBit-EltOffset, Context))
|
||
return false;
|
||
}
|
||
// If it overlaps no elements, then it is safe to process as padding.
|
||
return true;
|
||
}
|
||
|
||
if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
||
const RecordDecl *RD = RT->getDecl();
|
||
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
||
|
||
// If this is a C++ record, check the bases first.
|
||
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
|
||
for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
|
||
e = CXXRD->bases_end(); i != e; ++i) {
|
||
assert(!i->isVirtual() && !i->getType()->isDependentType() &&
|
||
"Unexpected base class!");
|
||
const CXXRecordDecl *Base =
|
||
cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
|
||
|
||
// If the base is after the span we care about, ignore it.
|
||
unsigned BaseOffset = (unsigned)Layout.getBaseClassOffsetInBits(Base);
|
||
if (BaseOffset >= EndBit) continue;
|
||
|
||
unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
|
||
if (!BitsContainNoUserData(i->getType(), BaseStart,
|
||
EndBit-BaseOffset, Context))
|
||
return false;
|
||
}
|
||
}
|
||
|
||
// Verify that no field has data that overlaps the region of interest. Yes
|
||
// this could be sped up a lot by being smarter about queried fields,
|
||
// however we're only looking at structs up to 16 bytes, so we don't care
|
||
// much.
|
||
unsigned idx = 0;
|
||
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
||
i != e; ++i, ++idx) {
|
||
unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
|
||
|
||
// If we found a field after the region we care about, then we're done.
|
||
if (FieldOffset >= EndBit) break;
|
||
|
||
unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
|
||
if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
|
||
Context))
|
||
return false;
|
||
}
|
||
|
||
// If nothing in this record overlapped the area of interest, then we're
|
||
// clean.
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
|
||
/// float member at the specified offset. For example, {int,{float}} has a
|
||
/// float at offset 4. It is conservatively correct for this routine to return
|
||
/// false.
|
||
static bool ContainsFloatAtOffset(const llvm::Type *IRType, unsigned IROffset,
|
||
const llvm::TargetData &TD) {
|
||
// Base case if we find a float.
|
||
if (IROffset == 0 && IRType->isFloatTy())
|
||
return true;
|
||
|
||
// If this is a struct, recurse into the field at the specified offset.
|
||
if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
|
||
const llvm::StructLayout *SL = TD.getStructLayout(STy);
|
||
unsigned Elt = SL->getElementContainingOffset(IROffset);
|
||
IROffset -= SL->getElementOffset(Elt);
|
||
return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
|
||
}
|
||
|
||
// If this is an array, recurse into the field at the specified offset.
|
||
if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
|
||
const llvm::Type *EltTy = ATy->getElementType();
|
||
unsigned EltSize = TD.getTypeAllocSize(EltTy);
|
||
IROffset -= IROffset/EltSize*EltSize;
|
||
return ContainsFloatAtOffset(EltTy, IROffset, TD);
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
|
||
/// low 8 bytes of an XMM register, corresponding to the SSE class.
|
||
const llvm::Type *X86_64ABIInfo::
|
||
GetSSETypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
|
||
QualType SourceTy, unsigned SourceOffset) const {
|
||
// The only three choices we have are either double, <2 x float>, or float. We
|
||
// pass as float if the last 4 bytes is just padding. This happens for
|
||
// structs that contain 3 floats.
|
||
if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
|
||
SourceOffset*8+64, getContext()))
|
||
return llvm::Type::getFloatTy(getVMContext());
|
||
|
||
// We want to pass as <2 x float> if the LLVM IR type contains a float at
|
||
// offset+0 and offset+4. Walk the LLVM IR type to find out if this is the
|
||
// case.
|
||
if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
|
||
ContainsFloatAtOffset(IRType, IROffset+4, getTargetData()))
|
||
return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
|
||
|
||
return llvm::Type::getDoubleTy(getVMContext());
|
||
}
|
||
|
||
|
||
/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
|
||
/// an 8-byte GPR. This means that we either have a scalar or we are talking
|
||
/// about the high or low part of an up-to-16-byte struct. This routine picks
|
||
/// the best LLVM IR type to represent this, which may be i64 or may be anything
|
||
/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
|
||
/// etc).
|
||
///
|
||
/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
|
||
/// the source type. IROffset is an offset in bytes into the LLVM IR type that
|
||
/// the 8-byte value references. PrefType may be null.
|
||
///
|
||
/// SourceTy is the source level type for the entire argument. SourceOffset is
|
||
/// an offset into this that we're processing (which is always either 0 or 8).
|
||
///
|
||
const llvm::Type *X86_64ABIInfo::
|
||
GetINTEGERTypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
|
||
QualType SourceTy, unsigned SourceOffset) const {
|
||
// If we're dealing with an un-offset LLVM IR type, then it means that we're
|
||
// returning an 8-byte unit starting with it. See if we can safely use it.
|
||
if (IROffset == 0) {
|
||
// Pointers and int64's always fill the 8-byte unit.
|
||
if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
|
||
return IRType;
|
||
|
||
// If we have a 1/2/4-byte integer, we can use it only if the rest of the
|
||
// goodness in the source type is just tail padding. This is allowed to
|
||
// kick in for struct {double,int} on the int, but not on
|
||
// struct{double,int,int} because we wouldn't return the second int. We
|
||
// have to do this analysis on the source type because we can't depend on
|
||
// unions being lowered a specific way etc.
|
||
if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
|
||
IRType->isIntegerTy(32)) {
|
||
unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
|
||
|
||
if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
|
||
SourceOffset*8+64, getContext()))
|
||
return IRType;
|
||
}
|
||
}
|
||
|
||
if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
|
||
// If this is a struct, recurse into the field at the specified offset.
|
||
const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
|
||
if (IROffset < SL->getSizeInBytes()) {
|
||
unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
|
||
IROffset -= SL->getElementOffset(FieldIdx);
|
||
|
||
return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
|
||
SourceTy, SourceOffset);
|
||
}
|
||
}
|
||
|
||
if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
|
||
const llvm::Type *EltTy = ATy->getElementType();
|
||
unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
|
||
unsigned EltOffset = IROffset/EltSize*EltSize;
|
||
return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
|
||
SourceOffset);
|
||
}
|
||
|
||
// Okay, we don't have any better idea of what to pass, so we pass this in an
|
||
// integer register that isn't too big to fit the rest of the struct.
|
||
unsigned TySizeInBytes =
|
||
(unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
|
||
|
||
assert(TySizeInBytes != SourceOffset && "Empty field?");
|
||
|
||
// It is always safe to classify this as an integer type up to i64 that
|
||
// isn't larger than the structure.
|
||
return llvm::IntegerType::get(getVMContext(),
|
||
std::min(TySizeInBytes-SourceOffset, 8U)*8);
|
||
}
|
||
|
||
|
||
/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
|
||
/// be used as elements of a two register pair to pass or return, return a
|
||
/// first class aggregate to represent them. For example, if the low part of
|
||
/// a by-value argument should be passed as i32* and the high part as float,
|
||
/// return {i32*, float}.
|
||
static const llvm::Type *
|
||
GetX86_64ByValArgumentPair(const llvm::Type *Lo, const llvm::Type *Hi,
|
||
const llvm::TargetData &TD) {
|
||
// In order to correctly satisfy the ABI, we need to the high part to start
|
||
// at offset 8. If the high and low parts we inferred are both 4-byte types
|
||
// (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
|
||
// the second element at offset 8. Check for this:
|
||
unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
|
||
unsigned HiAlign = TD.getABITypeAlignment(Hi);
|
||
unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign);
|
||
assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
|
||
|
||
// To handle this, we have to increase the size of the low part so that the
|
||
// second element will start at an 8 byte offset. We can't increase the size
|
||
// of the second element because it might make us access off the end of the
|
||
// struct.
|
||
if (HiStart != 8) {
|
||
// There are only two sorts of types the ABI generation code can produce for
|
||
// the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
|
||
// Promote these to a larger type.
|
||
if (Lo->isFloatTy())
|
||
Lo = llvm::Type::getDoubleTy(Lo->getContext());
|
||
else {
|
||
assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
|
||
Lo = llvm::Type::getInt64Ty(Lo->getContext());
|
||
}
|
||
}
|
||
|
||
const llvm::StructType *Result =
|
||
llvm::StructType::get(Lo->getContext(), Lo, Hi, NULL);
|
||
|
||
|
||
// Verify that the second element is at an 8-byte offset.
|
||
assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
|
||
"Invalid x86-64 argument pair!");
|
||
return Result;
|
||
}
|
||
|
||
ABIArgInfo X86_64ABIInfo::
|
||
classifyReturnType(QualType RetTy) const {
|
||
// AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
|
||
// classification algorithm.
|
||
X86_64ABIInfo::Class Lo, Hi;
|
||
classify(RetTy, 0, Lo, Hi);
|
||
|
||
// Check some invariants.
|
||
assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
|
||
assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
|
||
|
||
const llvm::Type *ResType = 0;
|
||
switch (Lo) {
|
||
case NoClass:
|
||
if (Hi == NoClass)
|
||
return ABIArgInfo::getIgnore();
|
||
// If the low part is just padding, it takes no register, leave ResType
|
||
// null.
|
||
assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
|
||
"Unknown missing lo part");
|
||
break;
|
||
|
||
case SSEUp:
|
||
case X87Up:
|
||
assert(0 && "Invalid classification for lo word.");
|
||
|
||
// AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
|
||
// hidden argument.
|
||
case Memory:
|
||
return getIndirectReturnResult(RetTy);
|
||
|
||
// AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
|
||
// available register of the sequence %rax, %rdx is used.
|
||
case Integer:
|
||
ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0,
|
||
RetTy, 0);
|
||
|
||
// If we have a sign or zero extended integer, make sure to return Extend
|
||
// so that the parameter gets the right LLVM IR attributes.
|
||
if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
|
||
// Treat an enum type as its underlying type.
|
||
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
||
RetTy = EnumTy->getDecl()->getIntegerType();
|
||
|
||
if (RetTy->isIntegralOrEnumerationType() &&
|
||
RetTy->isPromotableIntegerType())
|
||
return ABIArgInfo::getExtend();
|
||
}
|
||
break;
|
||
|
||
// AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
|
||
// available SSE register of the sequence %xmm0, %xmm1 is used.
|
||
case SSE:
|
||
ResType = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0, RetTy, 0);
|
||
break;
|
||
|
||
// AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
|
||
// returned on the X87 stack in %st0 as 80-bit x87 number.
|
||
case X87:
|
||
ResType = llvm::Type::getX86_FP80Ty(getVMContext());
|
||
break;
|
||
|
||
// AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
|
||
// part of the value is returned in %st0 and the imaginary part in
|
||
// %st1.
|
||
case ComplexX87:
|
||
assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
|
||
ResType = llvm::StructType::get(getVMContext(),
|
||
llvm::Type::getX86_FP80Ty(getVMContext()),
|
||
llvm::Type::getX86_FP80Ty(getVMContext()),
|
||
NULL);
|
||
break;
|
||
}
|
||
|
||
const llvm::Type *HighPart = 0;
|
||
switch (Hi) {
|
||
// Memory was handled previously and X87 should
|
||
// never occur as a hi class.
|
||
case Memory:
|
||
case X87:
|
||
assert(0 && "Invalid classification for hi word.");
|
||
|
||
case ComplexX87: // Previously handled.
|
||
case NoClass:
|
||
break;
|
||
|
||
case Integer:
|
||
HighPart = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy),
|
||
8, RetTy, 8);
|
||
if (Lo == NoClass) // Return HighPart at offset 8 in memory.
|
||
return ABIArgInfo::getDirect(HighPart, 8);
|
||
break;
|
||
case SSE:
|
||
HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 8, RetTy, 8);
|
||
if (Lo == NoClass) // Return HighPart at offset 8 in memory.
|
||
return ABIArgInfo::getDirect(HighPart, 8);
|
||
break;
|
||
|
||
// AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
|
||
// is passed in the upper half of the last used SSE register.
|
||
//
|
||
// SSEUP should always be preceded by SSE, just widen.
|
||
case SSEUp:
|
||
assert(Lo == SSE && "Unexpected SSEUp classification.");
|
||
ResType = Get16ByteVectorType(RetTy);
|
||
break;
|
||
|
||
// AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
|
||
// returned together with the previous X87 value in %st0.
|
||
case X87Up:
|
||
// If X87Up is preceded by X87, we don't need to do
|
||
// anything. However, in some cases with unions it may not be
|
||
// preceded by X87. In such situations we follow gcc and pass the
|
||
// extra bits in an SSE reg.
|
||
if (Lo != X87) {
|
||
HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy),
|
||
8, RetTy, 8);
|
||
if (Lo == NoClass) // Return HighPart at offset 8 in memory.
|
||
return ABIArgInfo::getDirect(HighPart, 8);
|
||
}
|
||
break;
|
||
}
|
||
|
||
// If a high part was specified, merge it together with the low part. It is
|
||
// known to pass in the high eightbyte of the result. We do this by forming a
|
||
// first class struct aggregate with the high and low part: {low, high}
|
||
if (HighPart)
|
||
ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
|
||
|
||
return ABIArgInfo::getDirect(ResType);
|
||
}
|
||
|
||
ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt,
|
||
unsigned &neededSSE) const {
|
||
X86_64ABIInfo::Class Lo, Hi;
|
||
classify(Ty, 0, Lo, Hi);
|
||
|
||
// Check some invariants.
|
||
// FIXME: Enforce these by construction.
|
||
assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
|
||
assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
|
||
|
||
neededInt = 0;
|
||
neededSSE = 0;
|
||
const llvm::Type *ResType = 0;
|
||
switch (Lo) {
|
||
case NoClass:
|
||
if (Hi == NoClass)
|
||
return ABIArgInfo::getIgnore();
|
||
// If the low part is just padding, it takes no register, leave ResType
|
||
// null.
|
||
assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
|
||
"Unknown missing lo part");
|
||
break;
|
||
|
||
// AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
|
||
// on the stack.
|
||
case Memory:
|
||
|
||
// AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
|
||
// COMPLEX_X87, it is passed in memory.
|
||
case X87:
|
||
case ComplexX87:
|
||
return getIndirectResult(Ty);
|
||
|
||
case SSEUp:
|
||
case X87Up:
|
||
assert(0 && "Invalid classification for lo word.");
|
||
|
||
// AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
|
||
// available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
|
||
// and %r9 is used.
|
||
case Integer:
|
||
++neededInt;
|
||
|
||
// Pick an 8-byte type based on the preferred type.
|
||
ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 0, Ty, 0);
|
||
|
||
// If we have a sign or zero extended integer, make sure to return Extend
|
||
// so that the parameter gets the right LLVM IR attributes.
|
||
if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
|
||
// Treat an enum type as its underlying type.
|
||
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
||
Ty = EnumTy->getDecl()->getIntegerType();
|
||
|
||
if (Ty->isIntegralOrEnumerationType() &&
|
||
Ty->isPromotableIntegerType())
|
||
return ABIArgInfo::getExtend();
|
||
}
|
||
|
||
break;
|
||
|
||
// AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
|
||
// available SSE register is used, the registers are taken in the
|
||
// order from %xmm0 to %xmm7.
|
||
case SSE: {
|
||
const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
|
||
if (Hi != NoClass || !UseX86_MMXType(IRType))
|
||
ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
|
||
else
|
||
// This is an MMX type. Treat it as such.
|
||
ResType = llvm::Type::getX86_MMXTy(getVMContext());
|
||
|
||
++neededSSE;
|
||
break;
|
||
}
|
||
}
|
||
|
||
const llvm::Type *HighPart = 0;
|
||
switch (Hi) {
|
||
// Memory was handled previously, ComplexX87 and X87 should
|
||
// never occur as hi classes, and X87Up must be preceded by X87,
|
||
// which is passed in memory.
|
||
case Memory:
|
||
case X87:
|
||
case ComplexX87:
|
||
assert(0 && "Invalid classification for hi word.");
|
||
break;
|
||
|
||
case NoClass: break;
|
||
|
||
case Integer:
|
||
++neededInt;
|
||
// Pick an 8-byte type based on the preferred type.
|
||
HighPart = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
|
||
|
||
if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
|
||
return ABIArgInfo::getDirect(HighPart, 8);
|
||
break;
|
||
|
||
// X87Up generally doesn't occur here (long double is passed in
|
||
// memory), except in situations involving unions.
|
||
case X87Up:
|
||
case SSE:
|
||
HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
|
||
|
||
if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
|
||
return ABIArgInfo::getDirect(HighPart, 8);
|
||
|
||
++neededSSE;
|
||
break;
|
||
|
||
// AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
|
||
// eightbyte is passed in the upper half of the last used SSE
|
||
// register. This only happens when 128-bit vectors are passed.
|
||
case SSEUp:
|
||
assert(Lo == SSE && "Unexpected SSEUp classification");
|
||
ResType = Get16ByteVectorType(Ty);
|
||
break;
|
||
}
|
||
|
||
// If a high part was specified, merge it together with the low part. It is
|
||
// known to pass in the high eightbyte of the result. We do this by forming a
|
||
// first class struct aggregate with the high and low part: {low, high}
|
||
if (HighPart)
|
||
ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
|
||
|
||
return ABIArgInfo::getDirect(ResType);
|
||
}
|
||
|
||
void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
||
|
||
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
||
|
||
// Keep track of the number of assigned registers.
|
||
unsigned freeIntRegs = 6, freeSSERegs = 8;
|
||
|
||
// If the return value is indirect, then the hidden argument is consuming one
|
||
// integer register.
|
||
if (FI.getReturnInfo().isIndirect())
|
||
--freeIntRegs;
|
||
|
||
// AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
|
||
// get assigned (in left-to-right order) for passing as follows...
|
||
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
||
it != ie; ++it) {
|
||
unsigned neededInt, neededSSE;
|
||
it->info = classifyArgumentType(it->type, neededInt, neededSSE);
|
||
|
||
// AMD64-ABI 3.2.3p3: If there are no registers available for any
|
||
// eightbyte of an argument, the whole argument is passed on the
|
||
// stack. If registers have already been assigned for some
|
||
// eightbytes of such an argument, the assignments get reverted.
|
||
if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
|
||
freeIntRegs -= neededInt;
|
||
freeSSERegs -= neededSSE;
|
||
} else {
|
||
it->info = getIndirectResult(it->type);
|
||
}
|
||
}
|
||
}
|
||
|
||
static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
|
||
QualType Ty,
|
||
CodeGenFunction &CGF) {
|
||
llvm::Value *overflow_arg_area_p =
|
||
CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
|
||
llvm::Value *overflow_arg_area =
|
||
CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
|
||
|
||
// AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
|
||
// byte boundary if alignment needed by type exceeds 8 byte boundary.
|
||
uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
|
||
if (Align > 8) {
|
||
// Note that we follow the ABI & gcc here, even though the type
|
||
// could in theory have an alignment greater than 16. This case
|
||
// shouldn't ever matter in practice.
|
||
|
||
// overflow_arg_area = (overflow_arg_area + 15) & ~15;
|
||
llvm::Value *Offset =
|
||
llvm::ConstantInt::get(CGF.Int32Ty, 15);
|
||
overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
|
||
llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
|
||
CGF.Int64Ty);
|
||
llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~15LL);
|
||
overflow_arg_area =
|
||
CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
|
||
overflow_arg_area->getType(),
|
||
"overflow_arg_area.align");
|
||
}
|
||
|
||
// AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
|
||
const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
|
||
llvm::Value *Res =
|
||
CGF.Builder.CreateBitCast(overflow_arg_area,
|
||
llvm::PointerType::getUnqual(LTy));
|
||
|
||
// AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
|
||
// l->overflow_arg_area + sizeof(type).
|
||
// AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
|
||
// an 8 byte boundary.
|
||
|
||
uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
|
||
llvm::Value *Offset =
|
||
llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7);
|
||
overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
|
||
"overflow_arg_area.next");
|
||
CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
|
||
|
||
// AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
|
||
return Res;
|
||
}
|
||
|
||
llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
||
CodeGenFunction &CGF) const {
|
||
llvm::LLVMContext &VMContext = CGF.getLLVMContext();
|
||
|
||
// Assume that va_list type is correct; should be pointer to LLVM type:
|
||
// struct {
|
||
// i32 gp_offset;
|
||
// i32 fp_offset;
|
||
// i8* overflow_arg_area;
|
||
// i8* reg_save_area;
|
||
// };
|
||
unsigned neededInt, neededSSE;
|
||
|
||
Ty = CGF.getContext().getCanonicalType(Ty);
|
||
ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE);
|
||
|
||
// AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
|
||
// in the registers. If not go to step 7.
|
||
if (!neededInt && !neededSSE)
|
||
return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
|
||
|
||
// AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
|
||
// general purpose registers needed to pass type and num_fp to hold
|
||
// the number of floating point registers needed.
|
||
|
||
// AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
|
||
// registers. In the case: l->gp_offset > 48 - num_gp * 8 or
|
||
// l->fp_offset > 304 - num_fp * 16 go to step 7.
|
||
//
|
||
// NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
|
||
// register save space).
|
||
|
||
llvm::Value *InRegs = 0;
|
||
llvm::Value *gp_offset_p = 0, *gp_offset = 0;
|
||
llvm::Value *fp_offset_p = 0, *fp_offset = 0;
|
||
if (neededInt) {
|
||
gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
|
||
gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
|
||
InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
|
||
InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
|
||
}
|
||
|
||
if (neededSSE) {
|
||
fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
|
||
fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
|
||
llvm::Value *FitsInFP =
|
||
llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
|
||
FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
|
||
InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
|
||
}
|
||
|
||
llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
|
||
llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
|
||
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
|
||
CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
|
||
|
||
// Emit code to load the value if it was passed in registers.
|
||
|
||
CGF.EmitBlock(InRegBlock);
|
||
|
||
// AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
|
||
// an offset of l->gp_offset and/or l->fp_offset. This may require
|
||
// copying to a temporary location in case the parameter is passed
|
||
// in different register classes or requires an alignment greater
|
||
// than 8 for general purpose registers and 16 for XMM registers.
|
||
//
|
||
// FIXME: This really results in shameful code when we end up needing to
|
||
// collect arguments from different places; often what should result in a
|
||
// simple assembling of a structure from scattered addresses has many more
|
||
// loads than necessary. Can we clean this up?
|
||
const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
|
||
llvm::Value *RegAddr =
|
||
CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
|
||
"reg_save_area");
|
||
if (neededInt && neededSSE) {
|
||
// FIXME: Cleanup.
|
||
assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
|
||
const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
|
||
llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
|
||
assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
|
||
const llvm::Type *TyLo = ST->getElementType(0);
|
||
const llvm::Type *TyHi = ST->getElementType(1);
|
||
assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
|
||
"Unexpected ABI info for mixed regs");
|
||
const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
|
||
const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
|
||
llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
|
||
llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
|
||
llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
|
||
llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
|
||
llvm::Value *V =
|
||
CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
|
||
CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
|
||
V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
|
||
CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
|
||
|
||
RegAddr = CGF.Builder.CreateBitCast(Tmp,
|
||
llvm::PointerType::getUnqual(LTy));
|
||
} else if (neededInt) {
|
||
RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
|
||
RegAddr = CGF.Builder.CreateBitCast(RegAddr,
|
||
llvm::PointerType::getUnqual(LTy));
|
||
} else if (neededSSE == 1) {
|
||
RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
|
||
RegAddr = CGF.Builder.CreateBitCast(RegAddr,
|
||
llvm::PointerType::getUnqual(LTy));
|
||
} else {
|
||
assert(neededSSE == 2 && "Invalid number of needed registers!");
|
||
// SSE registers are spaced 16 bytes apart in the register save
|
||
// area, we need to collect the two eightbytes together.
|
||
llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
|
||
llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
|
||
const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
|
||
const llvm::Type *DblPtrTy =
|
||
llvm::PointerType::getUnqual(DoubleTy);
|
||
const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy,
|
||
DoubleTy, NULL);
|
||
llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
|
||
V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
|
||
DblPtrTy));
|
||
CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
|
||
V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
|
||
DblPtrTy));
|
||
CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
|
||
RegAddr = CGF.Builder.CreateBitCast(Tmp,
|
||
llvm::PointerType::getUnqual(LTy));
|
||
}
|
||
|
||
// AMD64-ABI 3.5.7p5: Step 5. Set:
|
||
// l->gp_offset = l->gp_offset + num_gp * 8
|
||
// l->fp_offset = l->fp_offset + num_fp * 16.
|
||
if (neededInt) {
|
||
llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
|
||
CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
|
||
gp_offset_p);
|
||
}
|
||
if (neededSSE) {
|
||
llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
|
||
CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
|
||
fp_offset_p);
|
||
}
|
||
CGF.EmitBranch(ContBlock);
|
||
|
||
// Emit code to load the value if it was passed in memory.
|
||
|
||
CGF.EmitBlock(InMemBlock);
|
||
llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
|
||
|
||
// Return the appropriate result.
|
||
|
||
CGF.EmitBlock(ContBlock);
|
||
llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
|
||
"vaarg.addr");
|
||
ResAddr->addIncoming(RegAddr, InRegBlock);
|
||
ResAddr->addIncoming(MemAddr, InMemBlock);
|
||
return ResAddr;
|
||
}
|
||
|
||
ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
|
||
|
||
if (Ty->isVoidType())
|
||
return ABIArgInfo::getIgnore();
|
||
|
||
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
||
Ty = EnumTy->getDecl()->getIntegerType();
|
||
|
||
uint64_t Size = getContext().getTypeSize(Ty);
|
||
|
||
if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
||
if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
|
||
RT->getDecl()->hasFlexibleArrayMember())
|
||
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
||
|
||
// FIXME: mingw-w64-gcc emits 128-bit struct as i128
|
||
if (Size == 128 &&
|
||
getContext().Target.getTriple().getOS() == llvm::Triple::MinGW32)
|
||
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
|
||
Size));
|
||
|
||
// MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
|
||
// not 1, 2, 4, or 8 bytes, must be passed by reference."
|
||
if (Size <= 64 &&
|
||
(Size & (Size - 1)) == 0)
|
||
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
|
||
Size));
|
||
|
||
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
||
}
|
||
|
||
if (Ty->isPromotableIntegerType())
|
||
return ABIArgInfo::getExtend();
|
||
|
||
return ABIArgInfo::getDirect();
|
||
}
|
||
|
||
void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
||
|
||
QualType RetTy = FI.getReturnType();
|
||
FI.getReturnInfo() = classify(RetTy);
|
||
|
||
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
||
it != ie; ++it)
|
||
it->info = classify(it->type);
|
||
}
|
||
|
||
llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
||
CodeGenFunction &CGF) const {
|
||
const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
|
||
const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
|
||
|
||
CGBuilderTy &Builder = CGF.Builder;
|
||
llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
|
||
"ap");
|
||
llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
|
||
llvm::Type *PTy =
|
||
llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
|
||
llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
|
||
|
||
uint64_t Offset =
|
||
llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
|
||
llvm::Value *NextAddr =
|
||
Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
|
||
"ap.next");
|
||
Builder.CreateStore(NextAddr, VAListAddrAsBPP);
|
||
|
||
return AddrTyped;
|
||
}
|
||
|
||
// PowerPC-32
|
||
|
||
namespace {
|
||
class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
|
||
public:
|
||
PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
|
||
|
||
int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
|
||
// This is recovered from gcc output.
|
||
return 1; // r1 is the dedicated stack pointer
|
||
}
|
||
|
||
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
||
llvm::Value *Address) const;
|
||
};
|
||
|
||
}
|
||
|
||
bool
|
||
PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
||
llvm::Value *Address) const {
|
||
// This is calculated from the LLVM and GCC tables and verified
|
||
// against gcc output. AFAIK all ABIs use the same encoding.
|
||
|
||
CodeGen::CGBuilderTy &Builder = CGF.Builder;
|
||
llvm::LLVMContext &Context = CGF.getLLVMContext();
|
||
|
||
const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
|
||
llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
|
||
llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
|
||
llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
|
||
|
||
// 0-31: r0-31, the 4-byte general-purpose registers
|
||
AssignToArrayRange(Builder, Address, Four8, 0, 31);
|
||
|
||
// 32-63: fp0-31, the 8-byte floating-point registers
|
||
AssignToArrayRange(Builder, Address, Eight8, 32, 63);
|
||
|
||
// 64-76 are various 4-byte special-purpose registers:
|
||
// 64: mq
|
||
// 65: lr
|
||
// 66: ctr
|
||
// 67: ap
|
||
// 68-75 cr0-7
|
||
// 76: xer
|
||
AssignToArrayRange(Builder, Address, Four8, 64, 76);
|
||
|
||
// 77-108: v0-31, the 16-byte vector registers
|
||
AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
|
||
|
||
// 109: vrsave
|
||
// 110: vscr
|
||
// 111: spe_acc
|
||
// 112: spefscr
|
||
// 113: sfp
|
||
AssignToArrayRange(Builder, Address, Four8, 109, 113);
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// ARM ABI Implementation
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
namespace {
|
||
|
||
class ARMABIInfo : public ABIInfo {
|
||
public:
|
||
enum ABIKind {
|
||
APCS = 0,
|
||
AAPCS = 1,
|
||
AAPCS_VFP
|
||
};
|
||
|
||
private:
|
||
ABIKind Kind;
|
||
|
||
public:
|
||
ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
|
||
|
||
private:
|
||
ABIKind getABIKind() const { return Kind; }
|
||
|
||
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
||
ABIArgInfo classifyArgumentType(QualType RetTy) const;
|
||
|
||
virtual void computeInfo(CGFunctionInfo &FI) const;
|
||
|
||
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
||
CodeGenFunction &CGF) const;
|
||
};
|
||
|
||
class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
|
||
public:
|
||
ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
|
||
:TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
|
||
|
||
int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
|
||
return 13;
|
||
}
|
||
};
|
||
|
||
}
|
||
|
||
void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
||
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
||
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
||
it != ie; ++it)
|
||
it->info = classifyArgumentType(it->type);
|
||
|
||
// Always honor user-specified calling convention.
|
||
if (FI.getCallingConvention() != llvm::CallingConv::C)
|
||
return;
|
||
|
||
// Calling convention as default by an ABI.
|
||
llvm::CallingConv::ID DefaultCC;
|
||
llvm::StringRef Env = getContext().Target.getTriple().getEnvironmentName();
|
||
if (Env == "gnueabi" || Env == "eabi")
|
||
DefaultCC = llvm::CallingConv::ARM_AAPCS;
|
||
else
|
||
DefaultCC = llvm::CallingConv::ARM_APCS;
|
||
|
||
// If user did not ask for specific calling convention explicitly (e.g. via
|
||
// pcs attribute), set effective calling convention if it's different than ABI
|
||
// default.
|
||
switch (getABIKind()) {
|
||
case APCS:
|
||
if (DefaultCC != llvm::CallingConv::ARM_APCS)
|
||
FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
|
||
break;
|
||
case AAPCS:
|
||
if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
|
||
FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
|
||
break;
|
||
case AAPCS_VFP:
|
||
if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
|
||
FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
|
||
break;
|
||
}
|
||
}
|
||
|
||
ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
|
||
if (!isAggregateTypeForABI(Ty)) {
|
||
// Treat an enum type as its underlying type.
|
||
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
||
Ty = EnumTy->getDecl()->getIntegerType();
|
||
|
||
return (Ty->isPromotableIntegerType() ?
|
||
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
||
}
|
||
|
||
// Ignore empty records.
|
||
if (isEmptyRecord(getContext(), Ty, true))
|
||
return ABIArgInfo::getIgnore();
|
||
|
||
// Structures with either a non-trivial destructor or a non-trivial
|
||
// copy constructor are always indirect.
|
||
if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
|
||
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
||
|
||
// Otherwise, pass by coercing to a structure of the appropriate size.
|
||
//
|
||
// FIXME: This is kind of nasty... but there isn't much choice because the ARM
|
||
// backend doesn't support byval.
|
||
// FIXME: This doesn't handle alignment > 64 bits.
|
||
const llvm::Type* ElemTy;
|
||
unsigned SizeRegs;
|
||
if (getContext().getTypeAlign(Ty) > 32) {
|
||
ElemTy = llvm::Type::getInt64Ty(getVMContext());
|
||
SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
|
||
} else {
|
||
ElemTy = llvm::Type::getInt32Ty(getVMContext());
|
||
SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
|
||
}
|
||
std::vector<const llvm::Type*> LLVMFields;
|
||
LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
|
||
const llvm::Type* STy = llvm::StructType::get(getVMContext(), LLVMFields,
|
||
true);
|
||
return ABIArgInfo::getDirect(STy);
|
||
}
|
||
|
||
static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
|
||
llvm::LLVMContext &VMContext) {
|
||
// APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
|
||
// is called integer-like if its size is less than or equal to one word, and
|
||
// the offset of each of its addressable sub-fields is zero.
|
||
|
||
uint64_t Size = Context.getTypeSize(Ty);
|
||
|
||
// Check that the type fits in a word.
|
||
if (Size > 32)
|
||
return false;
|
||
|
||
// FIXME: Handle vector types!
|
||
if (Ty->isVectorType())
|
||
return false;
|
||
|
||
// Float types are never treated as "integer like".
|
||
if (Ty->isRealFloatingType())
|
||
return false;
|
||
|
||
// If this is a builtin or pointer type then it is ok.
|
||
if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
|
||
return true;
|
||
|
||
// Small complex integer types are "integer like".
|
||
if (const ComplexType *CT = Ty->getAs<ComplexType>())
|
||
return isIntegerLikeType(CT->getElementType(), Context, VMContext);
|
||
|
||
// Single element and zero sized arrays should be allowed, by the definition
|
||
// above, but they are not.
|
||
|
||
// Otherwise, it must be a record type.
|
||
const RecordType *RT = Ty->getAs<RecordType>();
|
||
if (!RT) return false;
|
||
|
||
// Ignore records with flexible arrays.
|
||
const RecordDecl *RD = RT->getDecl();
|
||
if (RD->hasFlexibleArrayMember())
|
||
return false;
|
||
|
||
// Check that all sub-fields are at offset 0, and are themselves "integer
|
||
// like".
|
||
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
||
|
||
bool HadField = false;
|
||
unsigned idx = 0;
|
||
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
||
i != e; ++i, ++idx) {
|
||
const FieldDecl *FD = *i;
|
||
|
||
// Bit-fields are not addressable, we only need to verify they are "integer
|
||
// like". We still have to disallow a subsequent non-bitfield, for example:
|
||
// struct { int : 0; int x }
|
||
// is non-integer like according to gcc.
|
||
if (FD->isBitField()) {
|
||
if (!RD->isUnion())
|
||
HadField = true;
|
||
|
||
if (!isIntegerLikeType(FD->getType(), Context, VMContext))
|
||
return false;
|
||
|
||
continue;
|
||
}
|
||
|
||
// Check if this field is at offset 0.
|
||
if (Layout.getFieldOffset(idx) != 0)
|
||
return false;
|
||
|
||
if (!isIntegerLikeType(FD->getType(), Context, VMContext))
|
||
return false;
|
||
|
||
// Only allow at most one field in a structure. This doesn't match the
|
||
// wording above, but follows gcc in situations with a field following an
|
||
// empty structure.
|
||
if (!RD->isUnion()) {
|
||
if (HadField)
|
||
return false;
|
||
|
||
HadField = true;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
|
||
if (RetTy->isVoidType())
|
||
return ABIArgInfo::getIgnore();
|
||
|
||
// Large vector types should be returned via memory.
|
||
if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
|
||
return ABIArgInfo::getIndirect(0);
|
||
|
||
if (!isAggregateTypeForABI(RetTy)) {
|
||
// Treat an enum type as its underlying type.
|
||
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
||
RetTy = EnumTy->getDecl()->getIntegerType();
|
||
|
||
return (RetTy->isPromotableIntegerType() ?
|
||
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
||
}
|
||
|
||
// Structures with either a non-trivial destructor or a non-trivial
|
||
// copy constructor are always indirect.
|
||
if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
|
||
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
||
|
||
// Are we following APCS?
|
||
if (getABIKind() == APCS) {
|
||
if (isEmptyRecord(getContext(), RetTy, false))
|
||
return ABIArgInfo::getIgnore();
|
||
|
||
// Complex types are all returned as packed integers.
|
||
//
|
||
// FIXME: Consider using 2 x vector types if the back end handles them
|
||
// correctly.
|
||
if (RetTy->isAnyComplexType())
|
||
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
|
||
getContext().getTypeSize(RetTy)));
|
||
|
||
// Integer like structures are returned in r0.
|
||
if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
|
||
// Return in the smallest viable integer type.
|
||
uint64_t Size = getContext().getTypeSize(RetTy);
|
||
if (Size <= 8)
|
||
return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
|
||
if (Size <= 16)
|
||
return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
|
||
return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
|
||
}
|
||
|
||
// Otherwise return in memory.
|
||
return ABIArgInfo::getIndirect(0);
|
||
}
|
||
|
||
// Otherwise this is an AAPCS variant.
|
||
|
||
if (isEmptyRecord(getContext(), RetTy, true))
|
||
return ABIArgInfo::getIgnore();
|
||
|
||
// Aggregates <= 4 bytes are returned in r0; other aggregates
|
||
// are returned indirectly.
|
||
uint64_t Size = getContext().getTypeSize(RetTy);
|
||
if (Size <= 32) {
|
||
// Return in the smallest viable integer type.
|
||
if (Size <= 8)
|
||
return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
|
||
if (Size <= 16)
|
||
return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
|
||
return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
|
||
}
|
||
|
||
return ABIArgInfo::getIndirect(0);
|
||
}
|
||
|
||
llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
||
CodeGenFunction &CGF) const {
|
||
// FIXME: Need to handle alignment
|
||
const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
|
||
const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
|
||
|
||
CGBuilderTy &Builder = CGF.Builder;
|
||
llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
|
||
"ap");
|
||
llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
|
||
llvm::Type *PTy =
|
||
llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
|
||
llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
|
||
|
||
uint64_t Offset =
|
||
llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
|
||
llvm::Value *NextAddr =
|
||
Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
|
||
"ap.next");
|
||
Builder.CreateStore(NextAddr, VAListAddrAsBPP);
|
||
|
||
return AddrTyped;
|
||
}
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// PTX ABI Implementation
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
namespace {
|
||
|
||
class PTXABIInfo : public ABIInfo {
|
||
public:
|
||
PTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
|
||
|
||
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
||
ABIArgInfo classifyArgumentType(QualType Ty) const;
|
||
|
||
virtual void computeInfo(CGFunctionInfo &FI) const;
|
||
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
||
CodeGenFunction &CFG) const;
|
||
};
|
||
|
||
class PTXTargetCodeGenInfo : public TargetCodeGenInfo {
|
||
public:
|
||
PTXTargetCodeGenInfo(CodeGenTypes &CGT)
|
||
: TargetCodeGenInfo(new PTXABIInfo(CGT)) {}
|
||
};
|
||
|
||
ABIArgInfo PTXABIInfo::classifyReturnType(QualType RetTy) const {
|
||
if (RetTy->isVoidType())
|
||
return ABIArgInfo::getIgnore();
|
||
if (isAggregateTypeForABI(RetTy))
|
||
return ABIArgInfo::getIndirect(0);
|
||
return ABIArgInfo::getDirect();
|
||
}
|
||
|
||
ABIArgInfo PTXABIInfo::classifyArgumentType(QualType Ty) const {
|
||
if (isAggregateTypeForABI(Ty))
|
||
return ABIArgInfo::getIndirect(0);
|
||
|
||
return ABIArgInfo::getDirect();
|
||
}
|
||
|
||
void PTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
||
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
||
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
||
it != ie; ++it)
|
||
it->info = classifyArgumentType(it->type);
|
||
|
||
// Always honor user-specified calling convention.
|
||
if (FI.getCallingConvention() != llvm::CallingConv::C)
|
||
return;
|
||
|
||
// Calling convention as default by an ABI.
|
||
llvm::CallingConv::ID DefaultCC;
|
||
llvm::StringRef Env = getContext().Target.getTriple().getEnvironmentName();
|
||
if (Env == "device")
|
||
DefaultCC = llvm::CallingConv::PTX_Device;
|
||
else
|
||
DefaultCC = llvm::CallingConv::PTX_Kernel;
|
||
|
||
FI.setEffectiveCallingConvention(DefaultCC);
|
||
}
|
||
|
||
llvm::Value *PTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
||
CodeGenFunction &CFG) const {
|
||
llvm_unreachable("PTX does not support varargs");
|
||
return 0;
|
||
}
|
||
|
||
}
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// SystemZ ABI Implementation
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
namespace {
|
||
|
||
class SystemZABIInfo : public ABIInfo {
|
||
public:
|
||
SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
|
||
|
||
bool isPromotableIntegerType(QualType Ty) const;
|
||
|
||
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
||
ABIArgInfo classifyArgumentType(QualType RetTy) const;
|
||
|
||
virtual void computeInfo(CGFunctionInfo &FI) const {
|
||
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
||
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
||
it != ie; ++it)
|
||
it->info = classifyArgumentType(it->type);
|
||
}
|
||
|
||
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
||
CodeGenFunction &CGF) const;
|
||
};
|
||
|
||
class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
|
||
public:
|
||
SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
|
||
: TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
|
||
};
|
||
|
||
}
|
||
|
||
bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
|
||
// SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
|
||
if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
|
||
switch (BT->getKind()) {
|
||
case BuiltinType::Bool:
|
||
case BuiltinType::Char_S:
|
||
case BuiltinType::Char_U:
|
||
case BuiltinType::SChar:
|
||
case BuiltinType::UChar:
|
||
case BuiltinType::Short:
|
||
case BuiltinType::UShort:
|
||
case BuiltinType::Int:
|
||
case BuiltinType::UInt:
|
||
return true;
|
||
default:
|
||
return false;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
||
CodeGenFunction &CGF) const {
|
||
// FIXME: Implement
|
||
return 0;
|
||
}
|
||
|
||
|
||
ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
|
||
if (RetTy->isVoidType())
|
||
return ABIArgInfo::getIgnore();
|
||
if (isAggregateTypeForABI(RetTy))
|
||
return ABIArgInfo::getIndirect(0);
|
||
|
||
return (isPromotableIntegerType(RetTy) ?
|
||
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
||
}
|
||
|
||
ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
|
||
if (isAggregateTypeForABI(Ty))
|
||
return ABIArgInfo::getIndirect(0);
|
||
|
||
return (isPromotableIntegerType(Ty) ?
|
||
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
||
}
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// MBlaze ABI Implementation
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
namespace {
|
||
|
||
class MBlazeABIInfo : public ABIInfo {
|
||
public:
|
||
MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
|
||
|
||
bool isPromotableIntegerType(QualType Ty) const;
|
||
|
||
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
||
ABIArgInfo classifyArgumentType(QualType RetTy) const;
|
||
|
||
virtual void computeInfo(CGFunctionInfo &FI) const {
|
||
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
||
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
||
it != ie; ++it)
|
||
it->info = classifyArgumentType(it->type);
|
||
}
|
||
|
||
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
||
CodeGenFunction &CGF) const;
|
||
};
|
||
|
||
class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
|
||
public:
|
||
MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
|
||
: TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
|
||
void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
||
CodeGen::CodeGenModule &M) const;
|
||
};
|
||
|
||
}
|
||
|
||
bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
|
||
// MBlaze ABI requires all 8 and 16 bit quantities to be extended.
|
||
if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
|
||
switch (BT->getKind()) {
|
||
case BuiltinType::Bool:
|
||
case BuiltinType::Char_S:
|
||
case BuiltinType::Char_U:
|
||
case BuiltinType::SChar:
|
||
case BuiltinType::UChar:
|
||
case BuiltinType::Short:
|
||
case BuiltinType::UShort:
|
||
return true;
|
||
default:
|
||
return false;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
||
CodeGenFunction &CGF) const {
|
||
// FIXME: Implement
|
||
return 0;
|
||
}
|
||
|
||
|
||
ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
|
||
if (RetTy->isVoidType())
|
||
return ABIArgInfo::getIgnore();
|
||
if (isAggregateTypeForABI(RetTy))
|
||
return ABIArgInfo::getIndirect(0);
|
||
|
||
return (isPromotableIntegerType(RetTy) ?
|
||
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
||
}
|
||
|
||
ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
|
||
if (isAggregateTypeForABI(Ty))
|
||
return ABIArgInfo::getIndirect(0);
|
||
|
||
return (isPromotableIntegerType(Ty) ?
|
||
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
||
}
|
||
|
||
void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
|
||
llvm::GlobalValue *GV,
|
||
CodeGen::CodeGenModule &M)
|
||
const {
|
||
const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
|
||
if (!FD) return;
|
||
|
||
llvm::CallingConv::ID CC = llvm::CallingConv::C;
|
||
if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
|
||
CC = llvm::CallingConv::MBLAZE_INTR;
|
||
else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
|
||
CC = llvm::CallingConv::MBLAZE_SVOL;
|
||
|
||
if (CC != llvm::CallingConv::C) {
|
||
// Handle 'interrupt_handler' attribute:
|
||
llvm::Function *F = cast<llvm::Function>(GV);
|
||
|
||
// Step 1: Set ISR calling convention.
|
||
F->setCallingConv(CC);
|
||
|
||
// Step 2: Add attributes goodness.
|
||
F->addFnAttr(llvm::Attribute::NoInline);
|
||
}
|
||
|
||
// Step 3: Emit _interrupt_handler alias.
|
||
if (CC == llvm::CallingConv::MBLAZE_INTR)
|
||
new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
|
||
"_interrupt_handler", GV, &M.getModule());
|
||
}
|
||
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// MSP430 ABI Implementation
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
namespace {
|
||
|
||
class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
|
||
public:
|
||
MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
|
||
: TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
|
||
void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
||
CodeGen::CodeGenModule &M) const;
|
||
};
|
||
|
||
}
|
||
|
||
void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
|
||
llvm::GlobalValue *GV,
|
||
CodeGen::CodeGenModule &M) const {
|
||
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
||
if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
|
||
// Handle 'interrupt' attribute:
|
||
llvm::Function *F = cast<llvm::Function>(GV);
|
||
|
||
// Step 1: Set ISR calling convention.
|
||
F->setCallingConv(llvm::CallingConv::MSP430_INTR);
|
||
|
||
// Step 2: Add attributes goodness.
|
||
F->addFnAttr(llvm::Attribute::NoInline);
|
||
|
||
// Step 3: Emit ISR vector alias.
|
||
unsigned Num = attr->getNumber() + 0xffe0;
|
||
new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
|
||
"vector_" + llvm::Twine::utohexstr(Num),
|
||
GV, &M.getModule());
|
||
}
|
||
}
|
||
}
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// MIPS ABI Implementation. This works for both little-endian and
|
||
// big-endian variants.
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
namespace {
|
||
class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
|
||
public:
|
||
MIPSTargetCodeGenInfo(CodeGenTypes &CGT)
|
||
: TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
|
||
|
||
int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
|
||
return 29;
|
||
}
|
||
|
||
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
||
llvm::Value *Address) const;
|
||
};
|
||
}
|
||
|
||
bool
|
||
MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
||
llvm::Value *Address) const {
|
||
// This information comes from gcc's implementation, which seems to
|
||
// as canonical as it gets.
|
||
|
||
CodeGen::CGBuilderTy &Builder = CGF.Builder;
|
||
llvm::LLVMContext &Context = CGF.getLLVMContext();
|
||
|
||
// Everything on MIPS is 4 bytes. Double-precision FP registers
|
||
// are aliased to pairs of single-precision FP registers.
|
||
const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
|
||
llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
|
||
|
||
// 0-31 are the general purpose registers, $0 - $31.
|
||
// 32-63 are the floating-point registers, $f0 - $f31.
|
||
// 64 and 65 are the multiply/divide registers, $hi and $lo.
|
||
// 66 is the (notional, I think) register for signal-handler return.
|
||
AssignToArrayRange(Builder, Address, Four8, 0, 65);
|
||
|
||
// 67-74 are the floating-point status registers, $fcc0 - $fcc7.
|
||
// They are one bit wide and ignored here.
|
||
|
||
// 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
|
||
// (coprocessor 1 is the FP unit)
|
||
// 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
|
||
// 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
|
||
// 176-181 are the DSP accumulator registers.
|
||
AssignToArrayRange(Builder, Address, Four8, 80, 181);
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
|
||
if (TheTargetCodeGenInfo)
|
||
return *TheTargetCodeGenInfo;
|
||
|
||
// For now we just cache the TargetCodeGenInfo in CodeGenModule and don't
|
||
// free it.
|
||
|
||
const llvm::Triple &Triple = getContext().Target.getTriple();
|
||
switch (Triple.getArch()) {
|
||
default:
|
||
return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
|
||
|
||
case llvm::Triple::mips:
|
||
case llvm::Triple::mipsel:
|
||
return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types));
|
||
|
||
case llvm::Triple::arm:
|
||
case llvm::Triple::thumb:
|
||
{
|
||
ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
|
||
|
||
if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0)
|
||
Kind = ARMABIInfo::APCS;
|
||
else if (CodeGenOpts.FloatABI == "hard")
|
||
Kind = ARMABIInfo::AAPCS_VFP;
|
||
|
||
return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
|
||
}
|
||
|
||
case llvm::Triple::ppc:
|
||
return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
|
||
|
||
case llvm::Triple::ptx32:
|
||
case llvm::Triple::ptx64:
|
||
return *(TheTargetCodeGenInfo = new PTXTargetCodeGenInfo(Types));
|
||
|
||
case llvm::Triple::systemz:
|
||
return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
|
||
|
||
case llvm::Triple::mblaze:
|
||
return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
|
||
|
||
case llvm::Triple::msp430:
|
||
return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
|
||
|
||
case llvm::Triple::x86:
|
||
if (Triple.isOSDarwin())
|
||
return *(TheTargetCodeGenInfo =
|
||
new X86_32TargetCodeGenInfo(Types, true, true));
|
||
|
||
switch (Triple.getOS()) {
|
||
case llvm::Triple::Cygwin:
|
||
case llvm::Triple::MinGW32:
|
||
case llvm::Triple::AuroraUX:
|
||
case llvm::Triple::DragonFly:
|
||
case llvm::Triple::FreeBSD:
|
||
case llvm::Triple::OpenBSD:
|
||
case llvm::Triple::NetBSD:
|
||
return *(TheTargetCodeGenInfo =
|
||
new X86_32TargetCodeGenInfo(Types, false, true));
|
||
|
||
default:
|
||
return *(TheTargetCodeGenInfo =
|
||
new X86_32TargetCodeGenInfo(Types, false, false));
|
||
}
|
||
|
||
case llvm::Triple::x86_64:
|
||
switch (Triple.getOS()) {
|
||
case llvm::Triple::Win32:
|
||
case llvm::Triple::MinGW32:
|
||
case llvm::Triple::Cygwin:
|
||
return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
|
||
default:
|
||
return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types));
|
||
}
|
||
}
|
||
}
|