forked from OSchip/llvm-project
669 lines
25 KiB
C++
669 lines
25 KiB
C++
//===- LoadStoreOpt.cpp ----------- Generic memory optimizations -*- C++ -*-==//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file implements the LoadStoreOpt optimization pass.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/GlobalISel/LoadStoreOpt.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
|
|
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
|
|
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
|
|
#include "llvm/CodeGen/GlobalISel/Utils.h"
|
|
#include "llvm/CodeGen/LowLevelType.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Register.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Support/AtomicOrdering.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <algorithm>
|
|
|
|
#define DEBUG_TYPE "loadstore-opt"
|
|
|
|
using namespace llvm;
|
|
using namespace ore;
|
|
using namespace MIPatternMatch;
|
|
|
|
STATISTIC(NumStoresMerged, "Number of stores merged");
|
|
|
|
const unsigned MaxStoreSizeToForm = 128;
|
|
|
|
char LoadStoreOpt::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations",
|
|
false, false)
|
|
INITIALIZE_PASS_END(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations",
|
|
false, false)
|
|
|
|
LoadStoreOpt::LoadStoreOpt(std::function<bool(const MachineFunction &)> F)
|
|
: MachineFunctionPass(ID), DoNotRunPass(F) {}
|
|
|
|
LoadStoreOpt::LoadStoreOpt()
|
|
: LoadStoreOpt([](const MachineFunction &) { return false; }) {}
|
|
|
|
void LoadStoreOpt::init(MachineFunction &MF) {
|
|
this->MF = &MF;
|
|
MRI = &MF.getRegInfo();
|
|
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
TLI = MF.getSubtarget().getTargetLowering();
|
|
LI = MF.getSubtarget().getLegalizerInfo();
|
|
Builder.setMF(MF);
|
|
IsPreLegalizer = !MF.getProperties().hasProperty(
|
|
MachineFunctionProperties::Property::Legalized);
|
|
InstsToErase.clear();
|
|
}
|
|
|
|
void LoadStoreOpt::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
getSelectionDAGFallbackAnalysisUsage(AU);
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
BaseIndexOffset GISelAddressing::getPointerInfo(Register Ptr,
|
|
MachineRegisterInfo &MRI) {
|
|
BaseIndexOffset Info;
|
|
Register PtrAddRHS;
|
|
if (!mi_match(Ptr, MRI, m_GPtrAdd(m_Reg(Info.BaseReg), m_Reg(PtrAddRHS)))) {
|
|
Info.BaseReg = Ptr;
|
|
Info.IndexReg = Register();
|
|
Info.IsIndexSignExt = false;
|
|
return Info;
|
|
}
|
|
|
|
auto RHSCst = getIConstantVRegValWithLookThrough(PtrAddRHS, MRI);
|
|
if (RHSCst)
|
|
Info.Offset = RHSCst->Value.getSExtValue();
|
|
|
|
// Just recognize a simple case for now. In future we'll need to match
|
|
// indexing patterns for base + index + constant.
|
|
Info.IndexReg = PtrAddRHS;
|
|
Info.IsIndexSignExt = false;
|
|
return Info;
|
|
}
|
|
|
|
bool GISelAddressing::aliasIsKnownForLoadStore(const MachineInstr &MI1,
|
|
const MachineInstr &MI2,
|
|
bool &IsAlias,
|
|
MachineRegisterInfo &MRI) {
|
|
auto *LdSt1 = dyn_cast<GLoadStore>(&MI1);
|
|
auto *LdSt2 = dyn_cast<GLoadStore>(&MI2);
|
|
if (!LdSt1 || !LdSt2)
|
|
return false;
|
|
|
|
BaseIndexOffset BasePtr0 = getPointerInfo(LdSt1->getPointerReg(), MRI);
|
|
BaseIndexOffset BasePtr1 = getPointerInfo(LdSt2->getPointerReg(), MRI);
|
|
|
|
if (!BasePtr0.BaseReg.isValid() || !BasePtr1.BaseReg.isValid())
|
|
return false;
|
|
|
|
int64_t Size1 = LdSt1->getMemSize();
|
|
int64_t Size2 = LdSt2->getMemSize();
|
|
|
|
int64_t PtrDiff;
|
|
if (BasePtr0.BaseReg == BasePtr1.BaseReg) {
|
|
PtrDiff = BasePtr1.Offset - BasePtr0.Offset;
|
|
// If the size of memory access is unknown, do not use it to do analysis.
|
|
// One example of unknown size memory access is to load/store scalable
|
|
// vector objects on the stack.
|
|
// BasePtr1 is PtrDiff away from BasePtr0. They alias if none of the
|
|
// following situations arise:
|
|
if (PtrDiff >= 0 &&
|
|
Size1 != static_cast<int64_t>(MemoryLocation::UnknownSize)) {
|
|
// [----BasePtr0----]
|
|
// [---BasePtr1--]
|
|
// ========PtrDiff========>
|
|
IsAlias = !(Size1 <= PtrDiff);
|
|
return true;
|
|
}
|
|
if (PtrDiff < 0 &&
|
|
Size2 != static_cast<int64_t>(MemoryLocation::UnknownSize)) {
|
|
// [----BasePtr0----]
|
|
// [---BasePtr1--]
|
|
// =====(-PtrDiff)====>
|
|
IsAlias = !((PtrDiff + Size2) <= 0);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// If both BasePtr0 and BasePtr1 are FrameIndexes, we will not be
|
|
// able to calculate their relative offset if at least one arises
|
|
// from an alloca. However, these allocas cannot overlap and we
|
|
// can infer there is no alias.
|
|
auto *Base0Def = getDefIgnoringCopies(BasePtr0.BaseReg, MRI);
|
|
auto *Base1Def = getDefIgnoringCopies(BasePtr1.BaseReg, MRI);
|
|
if (!Base0Def || !Base1Def)
|
|
return false; // Couldn't tell anything.
|
|
|
|
|
|
if (Base0Def->getOpcode() != Base1Def->getOpcode())
|
|
return false;
|
|
|
|
if (Base0Def->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
|
|
MachineFrameInfo &MFI = Base0Def->getMF()->getFrameInfo();
|
|
// If the bases have the same frame index but we couldn't find a
|
|
// constant offset, (indices are different) be conservative.
|
|
if (Base0Def != Base1Def &&
|
|
(!MFI.isFixedObjectIndex(Base0Def->getOperand(1).getIndex()) ||
|
|
!MFI.isFixedObjectIndex(Base1Def->getOperand(1).getIndex()))) {
|
|
IsAlias = false;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// This implementation is a lot more primitive than the SDAG one for now.
|
|
// FIXME: what about constant pools?
|
|
if (Base0Def->getOpcode() == TargetOpcode::G_GLOBAL_VALUE) {
|
|
auto GV0 = Base0Def->getOperand(1).getGlobal();
|
|
auto GV1 = Base1Def->getOperand(1).getGlobal();
|
|
if (GV0 != GV1) {
|
|
IsAlias = false;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Can't tell anything about aliasing.
|
|
return false;
|
|
}
|
|
|
|
bool GISelAddressing::instMayAlias(const MachineInstr &MI,
|
|
const MachineInstr &Other,
|
|
MachineRegisterInfo &MRI,
|
|
AliasAnalysis *AA) {
|
|
struct MemUseCharacteristics {
|
|
bool IsVolatile;
|
|
bool IsAtomic;
|
|
Register BasePtr;
|
|
int64_t Offset;
|
|
uint64_t NumBytes;
|
|
MachineMemOperand *MMO;
|
|
};
|
|
|
|
auto getCharacteristics =
|
|
[&](const MachineInstr *MI) -> MemUseCharacteristics {
|
|
if (const auto *LS = dyn_cast<GLoadStore>(MI)) {
|
|
Register BaseReg;
|
|
int64_t Offset = 0;
|
|
// No pre/post-inc addressing modes are considered here, unlike in SDAG.
|
|
if (!mi_match(LS->getPointerReg(), MRI,
|
|
m_GPtrAdd(m_Reg(BaseReg), m_ICst(Offset)))) {
|
|
BaseReg = LS->getPointerReg();
|
|
Offset = 0;
|
|
}
|
|
|
|
uint64_t Size = MemoryLocation::getSizeOrUnknown(
|
|
LS->getMMO().getMemoryType().getSizeInBytes());
|
|
return {LS->isVolatile(), LS->isAtomic(), BaseReg,
|
|
Offset /*base offset*/, Size, &LS->getMMO()};
|
|
}
|
|
// FIXME: support recognizing lifetime instructions.
|
|
// Default.
|
|
return {false /*isvolatile*/,
|
|
/*isAtomic*/ false, Register(),
|
|
(int64_t)0 /*offset*/, 0 /*size*/,
|
|
(MachineMemOperand *)nullptr};
|
|
};
|
|
MemUseCharacteristics MUC0 = getCharacteristics(&MI),
|
|
MUC1 = getCharacteristics(&Other);
|
|
|
|
// If they are to the same address, then they must be aliases.
|
|
if (MUC0.BasePtr.isValid() && MUC0.BasePtr == MUC1.BasePtr &&
|
|
MUC0.Offset == MUC1.Offset)
|
|
return true;
|
|
|
|
// If they are both volatile then they cannot be reordered.
|
|
if (MUC0.IsVolatile && MUC1.IsVolatile)
|
|
return true;
|
|
|
|
// Be conservative about atomics for the moment
|
|
// TODO: This is way overconservative for unordered atomics (see D66309)
|
|
if (MUC0.IsAtomic && MUC1.IsAtomic)
|
|
return true;
|
|
|
|
// If one operation reads from invariant memory, and the other may store, they
|
|
// cannot alias.
|
|
if (MUC0.MMO && MUC1.MMO) {
|
|
if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
|
|
(MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
|
|
return false;
|
|
}
|
|
|
|
// Try to prove that there is aliasing, or that there is no aliasing. Either
|
|
// way, we can return now. If nothing can be proved, proceed with more tests.
|
|
bool IsAlias;
|
|
if (GISelAddressing::aliasIsKnownForLoadStore(MI, Other, IsAlias, MRI))
|
|
return IsAlias;
|
|
|
|
// The following all rely on MMO0 and MMO1 being valid.
|
|
if (!MUC0.MMO || !MUC1.MMO)
|
|
return true;
|
|
|
|
// FIXME: port the alignment based alias analysis from SDAG's isAlias().
|
|
int64_t SrcValOffset0 = MUC0.MMO->getOffset();
|
|
int64_t SrcValOffset1 = MUC1.MMO->getOffset();
|
|
uint64_t Size0 = MUC0.NumBytes;
|
|
uint64_t Size1 = MUC1.NumBytes;
|
|
if (AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() &&
|
|
Size0 != MemoryLocation::UnknownSize &&
|
|
Size1 != MemoryLocation::UnknownSize) {
|
|
// Use alias analysis information.
|
|
int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1);
|
|
int64_t Overlap0 = Size0 + SrcValOffset0 - MinOffset;
|
|
int64_t Overlap1 = Size1 + SrcValOffset1 - MinOffset;
|
|
if (AA->isNoAlias(MemoryLocation(MUC0.MMO->getValue(), Overlap0,
|
|
MUC0.MMO->getAAInfo()),
|
|
MemoryLocation(MUC1.MMO->getValue(), Overlap1,
|
|
MUC1.MMO->getAAInfo())))
|
|
return false;
|
|
}
|
|
|
|
// Otherwise we have to assume they alias.
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if the instruction creates an unavoidable hazard that
|
|
/// forces a boundary between store merge candidates.
|
|
static bool isInstHardMergeHazard(MachineInstr &MI) {
|
|
return MI.hasUnmodeledSideEffects() || MI.hasOrderedMemoryRef();
|
|
}
|
|
|
|
bool LoadStoreOpt::mergeStores(SmallVectorImpl<GStore *> &StoresToMerge) {
|
|
// Try to merge all the stores in the vector, splitting into separate segments
|
|
// as necessary.
|
|
assert(StoresToMerge.size() > 1 && "Expected multiple stores to merge");
|
|
LLT OrigTy = MRI->getType(StoresToMerge[0]->getValueReg());
|
|
LLT PtrTy = MRI->getType(StoresToMerge[0]->getPointerReg());
|
|
unsigned AS = PtrTy.getAddressSpace();
|
|
// Ensure the legal store info is computed for this address space.
|
|
initializeStoreMergeTargetInfo(AS);
|
|
const auto &LegalSizes = LegalStoreSizes[AS];
|
|
|
|
#ifndef NDEBUG
|
|
for (auto StoreMI : StoresToMerge)
|
|
assert(MRI->getType(StoreMI->getValueReg()) == OrigTy);
|
|
#endif
|
|
|
|
const auto &DL = MF->getFunction().getParent()->getDataLayout();
|
|
bool AnyMerged = false;
|
|
do {
|
|
unsigned NumPow2 = PowerOf2Floor(StoresToMerge.size());
|
|
unsigned MaxSizeBits = NumPow2 * OrigTy.getSizeInBits().getFixedSize();
|
|
// Compute the biggest store we can generate to handle the number of stores.
|
|
unsigned MergeSizeBits;
|
|
for (MergeSizeBits = MaxSizeBits; MergeSizeBits > 1; MergeSizeBits /= 2) {
|
|
LLT StoreTy = LLT::scalar(MergeSizeBits);
|
|
EVT StoreEVT =
|
|
getApproximateEVTForLLT(StoreTy, DL, MF->getFunction().getContext());
|
|
if (LegalSizes.size() > MergeSizeBits && LegalSizes[MergeSizeBits] &&
|
|
TLI->canMergeStoresTo(AS, StoreEVT, *MF) &&
|
|
(TLI->isTypeLegal(StoreEVT)))
|
|
break; // We can generate a MergeSize bits store.
|
|
}
|
|
if (MergeSizeBits <= OrigTy.getSizeInBits())
|
|
return AnyMerged; // No greater merge.
|
|
|
|
unsigned NumStoresToMerge = MergeSizeBits / OrigTy.getSizeInBits();
|
|
// Perform the actual merging.
|
|
SmallVector<GStore *, 8> SingleMergeStores(
|
|
StoresToMerge.begin(), StoresToMerge.begin() + NumStoresToMerge);
|
|
AnyMerged |= doSingleStoreMerge(SingleMergeStores);
|
|
StoresToMerge.erase(StoresToMerge.begin(),
|
|
StoresToMerge.begin() + NumStoresToMerge);
|
|
} while (StoresToMerge.size() > 1);
|
|
return AnyMerged;
|
|
}
|
|
|
|
bool LoadStoreOpt::isLegalOrBeforeLegalizer(const LegalityQuery &Query,
|
|
MachineFunction &MF) const {
|
|
auto Action = LI->getAction(Query).Action;
|
|
// If the instruction is unsupported, it can't be legalized at all.
|
|
if (Action == LegalizeActions::Unsupported)
|
|
return false;
|
|
return IsPreLegalizer || Action == LegalizeAction::Legal;
|
|
}
|
|
|
|
bool LoadStoreOpt::doSingleStoreMerge(SmallVectorImpl<GStore *> &Stores) {
|
|
assert(Stores.size() > 1);
|
|
// We know that all the stores are consecutive and there are no aliasing
|
|
// operations in the range. However, the values that are being stored may be
|
|
// generated anywhere before each store. To ensure we have the values
|
|
// available, we materialize the wide value and new store at the place of the
|
|
// final store in the merge sequence.
|
|
GStore *FirstStore = Stores[0];
|
|
const unsigned NumStores = Stores.size();
|
|
LLT SmallTy = MRI->getType(FirstStore->getValueReg());
|
|
LLT WideValueTy =
|
|
LLT::scalar(NumStores * SmallTy.getSizeInBits().getFixedSize());
|
|
|
|
// For each store, compute pairwise merged debug locs.
|
|
DebugLoc MergedLoc;
|
|
for (unsigned AIdx = 0, BIdx = 1; BIdx < NumStores; ++AIdx, ++BIdx)
|
|
MergedLoc = DILocation::getMergedLocation(Stores[AIdx]->getDebugLoc(),
|
|
Stores[BIdx]->getDebugLoc());
|
|
Builder.setInstr(*Stores.back());
|
|
Builder.setDebugLoc(MergedLoc);
|
|
|
|
// If all of the store values are constants, then create a wide constant
|
|
// directly. Otherwise, we need to generate some instructions to merge the
|
|
// existing values together into a wider type.
|
|
SmallVector<APInt, 8> ConstantVals;
|
|
for (auto Store : Stores) {
|
|
auto MaybeCst =
|
|
getIConstantVRegValWithLookThrough(Store->getValueReg(), *MRI);
|
|
if (!MaybeCst) {
|
|
ConstantVals.clear();
|
|
break;
|
|
}
|
|
ConstantVals.emplace_back(MaybeCst->Value);
|
|
}
|
|
|
|
Register WideReg;
|
|
auto *WideMMO =
|
|
MF->getMachineMemOperand(&FirstStore->getMMO(), 0, WideValueTy);
|
|
if (ConstantVals.empty()) {
|
|
// Mimic the SDAG behaviour here and don't try to do anything for unknown
|
|
// values. In future, we should also support the cases of loads and
|
|
// extracted vector elements.
|
|
return false;
|
|
}
|
|
|
|
assert(ConstantVals.size() == NumStores);
|
|
// Check if our wide constant is legal.
|
|
if (!isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {WideValueTy}}, *MF))
|
|
return false;
|
|
APInt WideConst(WideValueTy.getSizeInBits(), 0);
|
|
for (unsigned Idx = 0; Idx < ConstantVals.size(); ++Idx) {
|
|
// Insert the smaller constant into the corresponding position in the
|
|
// wider one.
|
|
WideConst.insertBits(ConstantVals[Idx], Idx * SmallTy.getSizeInBits());
|
|
}
|
|
WideReg = Builder.buildConstant(WideValueTy, WideConst).getReg(0);
|
|
auto NewStore =
|
|
Builder.buildStore(WideReg, FirstStore->getPointerReg(), *WideMMO);
|
|
(void) NewStore;
|
|
LLVM_DEBUG(dbgs() << "Created merged store: " << *NewStore);
|
|
NumStoresMerged += Stores.size();
|
|
|
|
MachineOptimizationRemarkEmitter MORE(*MF, nullptr);
|
|
MORE.emit([&]() {
|
|
MachineOptimizationRemark R(DEBUG_TYPE, "MergedStore",
|
|
FirstStore->getDebugLoc(),
|
|
FirstStore->getParent());
|
|
R << "Merged " << NV("NumMerged", Stores.size()) << " stores of "
|
|
<< NV("OrigWidth", SmallTy.getSizeInBytes())
|
|
<< " bytes into a single store of "
|
|
<< NV("NewWidth", WideValueTy.getSizeInBytes()) << " bytes";
|
|
return R;
|
|
});
|
|
|
|
for (auto MI : Stores)
|
|
InstsToErase.insert(MI);
|
|
return true;
|
|
}
|
|
|
|
bool LoadStoreOpt::processMergeCandidate(StoreMergeCandidate &C) {
|
|
if (C.Stores.size() < 2) {
|
|
C.reset();
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Checking store merge candidate with " << C.Stores.size()
|
|
<< " stores, starting with " << *C.Stores[0]);
|
|
// We know that the stores in the candidate are adjacent.
|
|
// Now we need to check if any potential aliasing instructions recorded
|
|
// during the search alias with load/stores added to the candidate after.
|
|
// For example, if we have the candidate:
|
|
// C.Stores = [ST1, ST2, ST3, ST4]
|
|
// and after seeing ST2 we saw a load LD1, which did not alias with ST1 or
|
|
// ST2, then we would have recorded it into the PotentialAliases structure
|
|
// with the associated index value of "1". Then we see ST3 and ST4 and add
|
|
// them to the candidate group. We know that LD1 does not alias with ST1 or
|
|
// ST2, since we already did that check. However we don't yet know if it
|
|
// may alias ST3 and ST4, so we perform those checks now.
|
|
SmallVector<GStore *> StoresToMerge;
|
|
|
|
auto DoesStoreAliasWithPotential = [&](unsigned Idx, GStore &CheckStore) {
|
|
for (auto AliasInfo : reverse(C.PotentialAliases)) {
|
|
MachineInstr *PotentialAliasOp = AliasInfo.first;
|
|
unsigned PreCheckedIdx = AliasInfo.second;
|
|
if (static_cast<unsigned>(Idx) > PreCheckedIdx) {
|
|
// Need to check this alias.
|
|
if (GISelAddressing::instMayAlias(CheckStore, *PotentialAliasOp, *MRI,
|
|
AA)) {
|
|
LLVM_DEBUG(dbgs() << "Potential alias " << *PotentialAliasOp
|
|
<< " detected\n");
|
|
return true;
|
|
}
|
|
} else {
|
|
// Once our store index is lower than the index associated with the
|
|
// potential alias, we know that we've already checked for this alias
|
|
// and all of the earlier potential aliases too.
|
|
return false;
|
|
}
|
|
}
|
|
return false;
|
|
};
|
|
// Start from the last store in the group, and check if it aliases with any
|
|
// of the potential aliasing operations in the list.
|
|
for (int StoreIdx = C.Stores.size() - 1; StoreIdx >= 0; --StoreIdx) {
|
|
auto *CheckStore = C.Stores[StoreIdx];
|
|
if (DoesStoreAliasWithPotential(StoreIdx, *CheckStore))
|
|
continue;
|
|
StoresToMerge.emplace_back(CheckStore);
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << StoresToMerge.size()
|
|
<< " stores remaining after alias checks. Merging...\n");
|
|
|
|
// Now we've checked for aliasing hazards, merge any stores left.
|
|
C.reset();
|
|
if (StoresToMerge.size() < 2)
|
|
return false;
|
|
return mergeStores(StoresToMerge);
|
|
}
|
|
|
|
bool LoadStoreOpt::operationAliasesWithCandidate(MachineInstr &MI,
|
|
StoreMergeCandidate &C) {
|
|
if (C.Stores.empty())
|
|
return false;
|
|
return llvm::any_of(C.Stores, [&](MachineInstr *OtherMI) {
|
|
return instMayAlias(MI, *OtherMI, *MRI, AA);
|
|
});
|
|
}
|
|
|
|
void LoadStoreOpt::StoreMergeCandidate::addPotentialAlias(MachineInstr &MI) {
|
|
PotentialAliases.emplace_back(std::make_pair(&MI, Stores.size() - 1));
|
|
}
|
|
|
|
bool LoadStoreOpt::addStoreToCandidate(GStore &StoreMI,
|
|
StoreMergeCandidate &C) {
|
|
// Check if the given store writes to an adjacent address, and other
|
|
// requirements.
|
|
LLT ValueTy = MRI->getType(StoreMI.getValueReg());
|
|
LLT PtrTy = MRI->getType(StoreMI.getPointerReg());
|
|
|
|
// Only handle scalars.
|
|
if (!ValueTy.isScalar())
|
|
return false;
|
|
|
|
// Don't allow truncating stores for now.
|
|
if (StoreMI.getMemSizeInBits() != ValueTy.getSizeInBits())
|
|
return false;
|
|
|
|
Register StoreAddr = StoreMI.getPointerReg();
|
|
auto BIO = getPointerInfo(StoreAddr, *MRI);
|
|
Register StoreBase = BIO.BaseReg;
|
|
uint64_t StoreOffCst = BIO.Offset;
|
|
if (C.Stores.empty()) {
|
|
// This is the first store of the candidate.
|
|
// If the offset can't possibly allow for a lower addressed store with the
|
|
// same base, don't bother adding it.
|
|
if (StoreOffCst < ValueTy.getSizeInBytes())
|
|
return false;
|
|
C.BasePtr = StoreBase;
|
|
C.CurrentLowestOffset = StoreOffCst;
|
|
C.Stores.emplace_back(&StoreMI);
|
|
LLVM_DEBUG(dbgs() << "Starting a new merge candidate group with: "
|
|
<< StoreMI);
|
|
return true;
|
|
}
|
|
|
|
// Check the store is the same size as the existing ones in the candidate.
|
|
if (MRI->getType(C.Stores[0]->getValueReg()).getSizeInBits() !=
|
|
ValueTy.getSizeInBits())
|
|
return false;
|
|
|
|
if (MRI->getType(C.Stores[0]->getPointerReg()).getAddressSpace() !=
|
|
PtrTy.getAddressSpace())
|
|
return false;
|
|
|
|
// There are other stores in the candidate. Check that the store address
|
|
// writes to the next lowest adjacent address.
|
|
if (C.BasePtr != StoreBase)
|
|
return false;
|
|
if ((C.CurrentLowestOffset - ValueTy.getSizeInBytes()) !=
|
|
static_cast<uint64_t>(StoreOffCst))
|
|
return false;
|
|
|
|
// This writes to an adjacent address. Allow it.
|
|
C.Stores.emplace_back(&StoreMI);
|
|
C.CurrentLowestOffset = C.CurrentLowestOffset - ValueTy.getSizeInBytes();
|
|
LLVM_DEBUG(dbgs() << "Candidate added store: " << StoreMI);
|
|
return true;
|
|
}
|
|
|
|
bool LoadStoreOpt::mergeBlockStores(MachineBasicBlock &MBB) {
|
|
bool Changed = false;
|
|
// Walk through the block bottom-up, looking for merging candidates.
|
|
StoreMergeCandidate Candidate;
|
|
for (MachineInstr &MI : llvm::reverse(MBB)) {
|
|
if (InstsToErase.contains(&MI))
|
|
continue;
|
|
|
|
if (auto *StoreMI = dyn_cast<GStore>(&MI)) {
|
|
// We have a G_STORE. Add it to the candidate if it writes to an adjacent
|
|
// address.
|
|
if (!addStoreToCandidate(*StoreMI, Candidate)) {
|
|
// Store wasn't eligible to be added. May need to record it as a
|
|
// potential alias.
|
|
if (operationAliasesWithCandidate(*StoreMI, Candidate)) {
|
|
Changed |= processMergeCandidate(Candidate);
|
|
continue;
|
|
}
|
|
Candidate.addPotentialAlias(*StoreMI);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// If we don't have any stores yet, this instruction can't pose a problem.
|
|
if (Candidate.Stores.empty())
|
|
continue;
|
|
|
|
// We're dealing with some other kind of instruction.
|
|
if (isInstHardMergeHazard(MI)) {
|
|
Changed |= processMergeCandidate(Candidate);
|
|
Candidate.Stores.clear();
|
|
continue;
|
|
}
|
|
|
|
if (!MI.mayLoadOrStore())
|
|
continue;
|
|
|
|
if (operationAliasesWithCandidate(MI, Candidate)) {
|
|
// We have a potential alias, so process the current candidate if we can
|
|
// and then continue looking for a new candidate.
|
|
Changed |= processMergeCandidate(Candidate);
|
|
continue;
|
|
}
|
|
|
|
// Record this instruction as a potential alias for future stores that are
|
|
// added to the candidate.
|
|
Candidate.addPotentialAlias(MI);
|
|
}
|
|
|
|
// Process any candidate left after finishing searching the entire block.
|
|
Changed |= processMergeCandidate(Candidate);
|
|
|
|
// Erase instructions now that we're no longer iterating over the block.
|
|
for (auto *MI : InstsToErase)
|
|
MI->eraseFromParent();
|
|
InstsToErase.clear();
|
|
return Changed;
|
|
}
|
|
|
|
bool LoadStoreOpt::mergeFunctionStores(MachineFunction &MF) {
|
|
bool Changed = false;
|
|
for (auto &BB : MF) {
|
|
Changed |= mergeBlockStores(BB);
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
void LoadStoreOpt::initializeStoreMergeTargetInfo(unsigned AddrSpace) {
|
|
// Query the legalizer info to record what store types are legal.
|
|
// We record this because we don't want to bother trying to merge stores into
|
|
// illegal ones, which would just result in being split again.
|
|
|
|
if (LegalStoreSizes.count(AddrSpace)) {
|
|
assert(LegalStoreSizes[AddrSpace].any());
|
|
return; // Already cached sizes for this address space.
|
|
}
|
|
|
|
// Need to reserve at least MaxStoreSizeToForm + 1 bits.
|
|
BitVector LegalSizes(MaxStoreSizeToForm * 2);
|
|
const auto &LI = *MF->getSubtarget().getLegalizerInfo();
|
|
const auto &DL = MF->getFunction().getParent()->getDataLayout();
|
|
Type *IntPtrIRTy =
|
|
DL.getIntPtrType(MF->getFunction().getContext(), AddrSpace);
|
|
LLT PtrTy = getLLTForType(*IntPtrIRTy->getPointerTo(AddrSpace), DL);
|
|
// We assume that we're not going to be generating any stores wider than
|
|
// MaxStoreSizeToForm bits for now.
|
|
for (unsigned Size = 2; Size <= MaxStoreSizeToForm; Size *= 2) {
|
|
LLT Ty = LLT::scalar(Size);
|
|
SmallVector<LegalityQuery::MemDesc, 2> MemDescrs(
|
|
{{Ty, Ty.getSizeInBits(), AtomicOrdering::NotAtomic}});
|
|
SmallVector<LLT> StoreTys({Ty, PtrTy});
|
|
LegalityQuery Q(TargetOpcode::G_STORE, StoreTys, MemDescrs);
|
|
LegalizeActionStep ActionStep = LI.getAction(Q);
|
|
if (ActionStep.Action == LegalizeActions::Legal)
|
|
LegalSizes.set(Size);
|
|
}
|
|
assert(LegalSizes.any() && "Expected some store sizes to be legal!");
|
|
LegalStoreSizes[AddrSpace] = LegalSizes;
|
|
}
|
|
|
|
bool LoadStoreOpt::runOnMachineFunction(MachineFunction &MF) {
|
|
// If the ISel pipeline failed, do not bother running that pass.
|
|
if (MF.getProperties().hasProperty(
|
|
MachineFunctionProperties::Property::FailedISel))
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "Begin memory optimizations for: " << MF.getName()
|
|
<< '\n');
|
|
|
|
init(MF);
|
|
bool Changed = false;
|
|
Changed |= mergeFunctionStores(MF);
|
|
|
|
LegalStoreSizes.clear();
|
|
return Changed;
|
|
}
|