forked from OSchip/llvm-project
606 lines
21 KiB
C++
606 lines
21 KiB
C++
//===----- CodeGen/ExpandVectorPredication.cpp - Expand VP intrinsics -----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass implements IR expansion for vector predication intrinsics, allowing
|
|
// targets to enable vector predication until just before codegen.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/ExpandVectorPredication.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace llvm;
|
|
|
|
using VPLegalization = TargetTransformInfo::VPLegalization;
|
|
using VPTransform = TargetTransformInfo::VPLegalization::VPTransform;
|
|
|
|
// Keep this in sync with TargetTransformInfo::VPLegalization.
|
|
#define VPINTERNAL_VPLEGAL_CASES \
|
|
VPINTERNAL_CASE(Legal) \
|
|
VPINTERNAL_CASE(Discard) \
|
|
VPINTERNAL_CASE(Convert)
|
|
|
|
#define VPINTERNAL_CASE(X) "|" #X
|
|
|
|
// Override options.
|
|
static cl::opt<std::string> EVLTransformOverride(
|
|
"expandvp-override-evl-transform", cl::init(""), cl::Hidden,
|
|
cl::desc("Options: <empty>" VPINTERNAL_VPLEGAL_CASES
|
|
". If non-empty, ignore "
|
|
"TargetTransformInfo and "
|
|
"always use this transformation for the %evl parameter (Used in "
|
|
"testing)."));
|
|
|
|
static cl::opt<std::string> MaskTransformOverride(
|
|
"expandvp-override-mask-transform", cl::init(""), cl::Hidden,
|
|
cl::desc("Options: <empty>" VPINTERNAL_VPLEGAL_CASES
|
|
". If non-empty, Ignore "
|
|
"TargetTransformInfo and "
|
|
"always use this transformation for the %mask parameter (Used in "
|
|
"testing)."));
|
|
|
|
#undef VPINTERNAL_CASE
|
|
#define VPINTERNAL_CASE(X) .Case(#X, VPLegalization::X)
|
|
|
|
static VPTransform parseOverrideOption(const std::string &TextOpt) {
|
|
return StringSwitch<VPTransform>(TextOpt) VPINTERNAL_VPLEGAL_CASES;
|
|
}
|
|
|
|
#undef VPINTERNAL_VPLEGAL_CASES
|
|
|
|
// Whether any override options are set.
|
|
static bool anyExpandVPOverridesSet() {
|
|
return !EVLTransformOverride.empty() || !MaskTransformOverride.empty();
|
|
}
|
|
|
|
#define DEBUG_TYPE "expandvp"
|
|
|
|
STATISTIC(NumFoldedVL, "Number of folded vector length params");
|
|
STATISTIC(NumLoweredVPOps, "Number of folded vector predication operations");
|
|
|
|
///// Helpers {
|
|
|
|
/// \returns Whether the vector mask \p MaskVal has all lane bits set.
|
|
static bool isAllTrueMask(Value *MaskVal) {
|
|
auto *ConstVec = dyn_cast<ConstantVector>(MaskVal);
|
|
return ConstVec && ConstVec->isAllOnesValue();
|
|
}
|
|
|
|
/// \returns A non-excepting divisor constant for this type.
|
|
static Constant *getSafeDivisor(Type *DivTy) {
|
|
assert(DivTy->isIntOrIntVectorTy() && "Unsupported divisor type");
|
|
return ConstantInt::get(DivTy, 1u, false);
|
|
}
|
|
|
|
/// Transfer operation properties from \p OldVPI to \p NewVal.
|
|
static void transferDecorations(Value &NewVal, VPIntrinsic &VPI) {
|
|
auto *NewInst = dyn_cast<Instruction>(&NewVal);
|
|
if (!NewInst || !isa<FPMathOperator>(NewVal))
|
|
return;
|
|
|
|
auto *OldFMOp = dyn_cast<FPMathOperator>(&VPI);
|
|
if (!OldFMOp)
|
|
return;
|
|
|
|
NewInst->setFastMathFlags(OldFMOp->getFastMathFlags());
|
|
}
|
|
|
|
/// Transfer all properties from \p OldOp to \p NewOp and replace all uses.
|
|
/// OldVP gets erased.
|
|
static void replaceOperation(Value &NewOp, VPIntrinsic &OldOp) {
|
|
transferDecorations(NewOp, OldOp);
|
|
OldOp.replaceAllUsesWith(&NewOp);
|
|
OldOp.eraseFromParent();
|
|
}
|
|
|
|
//// } Helpers
|
|
|
|
namespace {
|
|
|
|
// Expansion pass state at function scope.
|
|
struct CachingVPExpander {
|
|
Function &F;
|
|
const TargetTransformInfo &TTI;
|
|
|
|
/// \returns A (fixed length) vector with ascending integer indices
|
|
/// (<0, 1, ..., NumElems-1>).
|
|
/// \p Builder
|
|
/// Used for instruction creation.
|
|
/// \p LaneTy
|
|
/// Integer element type of the result vector.
|
|
/// \p NumElems
|
|
/// Number of vector elements.
|
|
Value *createStepVector(IRBuilder<> &Builder, Type *LaneTy,
|
|
unsigned NumElems);
|
|
|
|
/// \returns A bitmask that is true where the lane position is less-than \p
|
|
/// EVLParam
|
|
///
|
|
/// \p Builder
|
|
/// Used for instruction creation.
|
|
/// \p VLParam
|
|
/// The explicit vector length parameter to test against the lane
|
|
/// positions.
|
|
/// \p ElemCount
|
|
/// Static (potentially scalable) number of vector elements.
|
|
Value *convertEVLToMask(IRBuilder<> &Builder, Value *EVLParam,
|
|
ElementCount ElemCount);
|
|
|
|
Value *foldEVLIntoMask(VPIntrinsic &VPI);
|
|
|
|
/// "Remove" the %evl parameter of \p PI by setting it to the static vector
|
|
/// length of the operation.
|
|
void discardEVLParameter(VPIntrinsic &PI);
|
|
|
|
/// \brief Lower this VP binary operator to a unpredicated binary operator.
|
|
Value *expandPredicationInBinaryOperator(IRBuilder<> &Builder,
|
|
VPIntrinsic &PI);
|
|
|
|
/// \brief Lower this VP reduction to a call to an unpredicated reduction
|
|
/// intrinsic.
|
|
Value *expandPredicationInReduction(IRBuilder<> &Builder,
|
|
VPReductionIntrinsic &PI);
|
|
|
|
/// \brief Query TTI and expand the vector predication in \p P accordingly.
|
|
Value *expandPredication(VPIntrinsic &PI);
|
|
|
|
/// \brief Determine how and whether the VPIntrinsic \p VPI shall be
|
|
/// expanded. This overrides TTI with the cl::opts listed at the top of this
|
|
/// file.
|
|
VPLegalization getVPLegalizationStrategy(const VPIntrinsic &VPI) const;
|
|
bool UsingTTIOverrides;
|
|
|
|
public:
|
|
CachingVPExpander(Function &F, const TargetTransformInfo &TTI)
|
|
: F(F), TTI(TTI), UsingTTIOverrides(anyExpandVPOverridesSet()) {}
|
|
|
|
bool expandVectorPredication();
|
|
};
|
|
|
|
//// CachingVPExpander {
|
|
|
|
Value *CachingVPExpander::createStepVector(IRBuilder<> &Builder, Type *LaneTy,
|
|
unsigned NumElems) {
|
|
// TODO add caching
|
|
SmallVector<Constant *, 16> ConstElems;
|
|
|
|
for (unsigned Idx = 0; Idx < NumElems; ++Idx)
|
|
ConstElems.push_back(ConstantInt::get(LaneTy, Idx, false));
|
|
|
|
return ConstantVector::get(ConstElems);
|
|
}
|
|
|
|
Value *CachingVPExpander::convertEVLToMask(IRBuilder<> &Builder,
|
|
Value *EVLParam,
|
|
ElementCount ElemCount) {
|
|
// TODO add caching
|
|
// Scalable vector %evl conversion.
|
|
if (ElemCount.isScalable()) {
|
|
auto *M = Builder.GetInsertBlock()->getModule();
|
|
Type *BoolVecTy = VectorType::get(Builder.getInt1Ty(), ElemCount);
|
|
Function *ActiveMaskFunc = Intrinsic::getDeclaration(
|
|
M, Intrinsic::get_active_lane_mask, {BoolVecTy, EVLParam->getType()});
|
|
// `get_active_lane_mask` performs an implicit less-than comparison.
|
|
Value *ConstZero = Builder.getInt32(0);
|
|
return Builder.CreateCall(ActiveMaskFunc, {ConstZero, EVLParam});
|
|
}
|
|
|
|
// Fixed vector %evl conversion.
|
|
Type *LaneTy = EVLParam->getType();
|
|
unsigned NumElems = ElemCount.getFixedValue();
|
|
Value *VLSplat = Builder.CreateVectorSplat(NumElems, EVLParam);
|
|
Value *IdxVec = createStepVector(Builder, LaneTy, NumElems);
|
|
return Builder.CreateICmp(CmpInst::ICMP_ULT, IdxVec, VLSplat);
|
|
}
|
|
|
|
Value *
|
|
CachingVPExpander::expandPredicationInBinaryOperator(IRBuilder<> &Builder,
|
|
VPIntrinsic &VPI) {
|
|
assert((isSafeToSpeculativelyExecute(&VPI) ||
|
|
VPI.canIgnoreVectorLengthParam()) &&
|
|
"Implicitly dropping %evl in non-speculatable operator!");
|
|
|
|
auto OC = static_cast<Instruction::BinaryOps>(*VPI.getFunctionalOpcode());
|
|
assert(Instruction::isBinaryOp(OC));
|
|
|
|
Value *Op0 = VPI.getOperand(0);
|
|
Value *Op1 = VPI.getOperand(1);
|
|
Value *Mask = VPI.getMaskParam();
|
|
|
|
// Blend in safe operands.
|
|
if (Mask && !isAllTrueMask(Mask)) {
|
|
switch (OC) {
|
|
default:
|
|
// Can safely ignore the predicate.
|
|
break;
|
|
|
|
// Division operators need a safe divisor on masked-off lanes (1).
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
// 2nd operand must not be zero.
|
|
Value *SafeDivisor = getSafeDivisor(VPI.getType());
|
|
Op1 = Builder.CreateSelect(Mask, Op1, SafeDivisor);
|
|
}
|
|
}
|
|
|
|
Value *NewBinOp = Builder.CreateBinOp(OC, Op0, Op1, VPI.getName());
|
|
|
|
replaceOperation(*NewBinOp, VPI);
|
|
return NewBinOp;
|
|
}
|
|
|
|
static Value *getNeutralReductionElement(const VPReductionIntrinsic &VPI,
|
|
Type *EltTy) {
|
|
bool Negative = false;
|
|
unsigned EltBits = EltTy->getScalarSizeInBits();
|
|
switch (VPI.getIntrinsicID()) {
|
|
default:
|
|
llvm_unreachable("Expecting a VP reduction intrinsic");
|
|
case Intrinsic::vp_reduce_add:
|
|
case Intrinsic::vp_reduce_or:
|
|
case Intrinsic::vp_reduce_xor:
|
|
case Intrinsic::vp_reduce_umax:
|
|
return Constant::getNullValue(EltTy);
|
|
case Intrinsic::vp_reduce_mul:
|
|
return ConstantInt::get(EltTy, 1, /*IsSigned*/ false);
|
|
case Intrinsic::vp_reduce_and:
|
|
case Intrinsic::vp_reduce_umin:
|
|
return ConstantInt::getAllOnesValue(EltTy);
|
|
case Intrinsic::vp_reduce_smin:
|
|
return ConstantInt::get(EltTy->getContext(),
|
|
APInt::getSignedMaxValue(EltBits));
|
|
case Intrinsic::vp_reduce_smax:
|
|
return ConstantInt::get(EltTy->getContext(),
|
|
APInt::getSignedMinValue(EltBits));
|
|
case Intrinsic::vp_reduce_fmax:
|
|
Negative = true;
|
|
LLVM_FALLTHROUGH;
|
|
case Intrinsic::vp_reduce_fmin: {
|
|
FastMathFlags Flags = VPI.getFastMathFlags();
|
|
const fltSemantics &Semantics = EltTy->getFltSemantics();
|
|
return !Flags.noNaNs() ? ConstantFP::getQNaN(EltTy, Negative)
|
|
: !Flags.noInfs()
|
|
? ConstantFP::getInfinity(EltTy, Negative)
|
|
: ConstantFP::get(EltTy,
|
|
APFloat::getLargest(Semantics, Negative));
|
|
}
|
|
case Intrinsic::vp_reduce_fadd:
|
|
return ConstantFP::getNegativeZero(EltTy);
|
|
case Intrinsic::vp_reduce_fmul:
|
|
return ConstantFP::get(EltTy, 1.0);
|
|
}
|
|
}
|
|
|
|
Value *
|
|
CachingVPExpander::expandPredicationInReduction(IRBuilder<> &Builder,
|
|
VPReductionIntrinsic &VPI) {
|
|
assert((isSafeToSpeculativelyExecute(&VPI) ||
|
|
VPI.canIgnoreVectorLengthParam()) &&
|
|
"Implicitly dropping %evl in non-speculatable operator!");
|
|
|
|
Value *Mask = VPI.getMaskParam();
|
|
Value *RedOp = VPI.getOperand(VPI.getVectorParamPos());
|
|
|
|
// Insert neutral element in masked-out positions
|
|
if (Mask && !isAllTrueMask(Mask)) {
|
|
auto *NeutralElt = getNeutralReductionElement(VPI, VPI.getType());
|
|
auto *NeutralVector = Builder.CreateVectorSplat(
|
|
cast<VectorType>(RedOp->getType())->getElementCount(), NeutralElt);
|
|
RedOp = Builder.CreateSelect(Mask, RedOp, NeutralVector);
|
|
}
|
|
|
|
Value *Reduction;
|
|
Value *Start = VPI.getOperand(VPI.getStartParamPos());
|
|
|
|
switch (VPI.getIntrinsicID()) {
|
|
default:
|
|
llvm_unreachable("Impossible reduction kind");
|
|
case Intrinsic::vp_reduce_add:
|
|
Reduction = Builder.CreateAddReduce(RedOp);
|
|
Reduction = Builder.CreateAdd(Reduction, Start);
|
|
break;
|
|
case Intrinsic::vp_reduce_mul:
|
|
Reduction = Builder.CreateMulReduce(RedOp);
|
|
Reduction = Builder.CreateMul(Reduction, Start);
|
|
break;
|
|
case Intrinsic::vp_reduce_and:
|
|
Reduction = Builder.CreateAndReduce(RedOp);
|
|
Reduction = Builder.CreateAnd(Reduction, Start);
|
|
break;
|
|
case Intrinsic::vp_reduce_or:
|
|
Reduction = Builder.CreateOrReduce(RedOp);
|
|
Reduction = Builder.CreateOr(Reduction, Start);
|
|
break;
|
|
case Intrinsic::vp_reduce_xor:
|
|
Reduction = Builder.CreateXorReduce(RedOp);
|
|
Reduction = Builder.CreateXor(Reduction, Start);
|
|
break;
|
|
case Intrinsic::vp_reduce_smax:
|
|
Reduction = Builder.CreateIntMaxReduce(RedOp, /*IsSigned*/ true);
|
|
Reduction =
|
|
Builder.CreateBinaryIntrinsic(Intrinsic::smax, Reduction, Start);
|
|
break;
|
|
case Intrinsic::vp_reduce_smin:
|
|
Reduction = Builder.CreateIntMinReduce(RedOp, /*IsSigned*/ true);
|
|
Reduction =
|
|
Builder.CreateBinaryIntrinsic(Intrinsic::smin, Reduction, Start);
|
|
break;
|
|
case Intrinsic::vp_reduce_umax:
|
|
Reduction = Builder.CreateIntMaxReduce(RedOp, /*IsSigned*/ false);
|
|
Reduction =
|
|
Builder.CreateBinaryIntrinsic(Intrinsic::umax, Reduction, Start);
|
|
break;
|
|
case Intrinsic::vp_reduce_umin:
|
|
Reduction = Builder.CreateIntMinReduce(RedOp, /*IsSigned*/ false);
|
|
Reduction =
|
|
Builder.CreateBinaryIntrinsic(Intrinsic::umin, Reduction, Start);
|
|
break;
|
|
case Intrinsic::vp_reduce_fmax:
|
|
Reduction = Builder.CreateFPMaxReduce(RedOp);
|
|
transferDecorations(*Reduction, VPI);
|
|
Reduction =
|
|
Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, Reduction, Start);
|
|
break;
|
|
case Intrinsic::vp_reduce_fmin:
|
|
Reduction = Builder.CreateFPMinReduce(RedOp);
|
|
transferDecorations(*Reduction, VPI);
|
|
Reduction =
|
|
Builder.CreateBinaryIntrinsic(Intrinsic::minnum, Reduction, Start);
|
|
break;
|
|
case Intrinsic::vp_reduce_fadd:
|
|
Reduction = Builder.CreateFAddReduce(Start, RedOp);
|
|
break;
|
|
case Intrinsic::vp_reduce_fmul:
|
|
Reduction = Builder.CreateFMulReduce(Start, RedOp);
|
|
break;
|
|
}
|
|
|
|
replaceOperation(*Reduction, VPI);
|
|
return Reduction;
|
|
}
|
|
|
|
void CachingVPExpander::discardEVLParameter(VPIntrinsic &VPI) {
|
|
LLVM_DEBUG(dbgs() << "Discard EVL parameter in " << VPI << "\n");
|
|
|
|
if (VPI.canIgnoreVectorLengthParam())
|
|
return;
|
|
|
|
Value *EVLParam = VPI.getVectorLengthParam();
|
|
if (!EVLParam)
|
|
return;
|
|
|
|
ElementCount StaticElemCount = VPI.getStaticVectorLength();
|
|
Value *MaxEVL = nullptr;
|
|
Type *Int32Ty = Type::getInt32Ty(VPI.getContext());
|
|
if (StaticElemCount.isScalable()) {
|
|
// TODO add caching
|
|
auto *M = VPI.getModule();
|
|
Function *VScaleFunc =
|
|
Intrinsic::getDeclaration(M, Intrinsic::vscale, Int32Ty);
|
|
IRBuilder<> Builder(VPI.getParent(), VPI.getIterator());
|
|
Value *FactorConst = Builder.getInt32(StaticElemCount.getKnownMinValue());
|
|
Value *VScale = Builder.CreateCall(VScaleFunc, {}, "vscale");
|
|
MaxEVL = Builder.CreateMul(VScale, FactorConst, "scalable_size",
|
|
/*NUW*/ true, /*NSW*/ false);
|
|
} else {
|
|
MaxEVL = ConstantInt::get(Int32Ty, StaticElemCount.getFixedValue(), false);
|
|
}
|
|
VPI.setVectorLengthParam(MaxEVL);
|
|
}
|
|
|
|
Value *CachingVPExpander::foldEVLIntoMask(VPIntrinsic &VPI) {
|
|
LLVM_DEBUG(dbgs() << "Folding vlen for " << VPI << '\n');
|
|
|
|
IRBuilder<> Builder(&VPI);
|
|
|
|
// Ineffective %evl parameter and so nothing to do here.
|
|
if (VPI.canIgnoreVectorLengthParam())
|
|
return &VPI;
|
|
|
|
// Only VP intrinsics can have an %evl parameter.
|
|
Value *OldMaskParam = VPI.getMaskParam();
|
|
Value *OldEVLParam = VPI.getVectorLengthParam();
|
|
assert(OldMaskParam && "no mask param to fold the vl param into");
|
|
assert(OldEVLParam && "no EVL param to fold away");
|
|
|
|
LLVM_DEBUG(dbgs() << "OLD evl: " << *OldEVLParam << '\n');
|
|
LLVM_DEBUG(dbgs() << "OLD mask: " << *OldMaskParam << '\n');
|
|
|
|
// Convert the %evl predication into vector mask predication.
|
|
ElementCount ElemCount = VPI.getStaticVectorLength();
|
|
Value *VLMask = convertEVLToMask(Builder, OldEVLParam, ElemCount);
|
|
Value *NewMaskParam = Builder.CreateAnd(VLMask, OldMaskParam);
|
|
VPI.setMaskParam(NewMaskParam);
|
|
|
|
// Drop the %evl parameter.
|
|
discardEVLParameter(VPI);
|
|
assert(VPI.canIgnoreVectorLengthParam() &&
|
|
"transformation did not render the evl param ineffective!");
|
|
|
|
// Reassess the modified instruction.
|
|
return &VPI;
|
|
}
|
|
|
|
Value *CachingVPExpander::expandPredication(VPIntrinsic &VPI) {
|
|
LLVM_DEBUG(dbgs() << "Lowering to unpredicated op: " << VPI << '\n');
|
|
|
|
IRBuilder<> Builder(&VPI);
|
|
|
|
// Try lowering to a LLVM instruction first.
|
|
auto OC = VPI.getFunctionalOpcode();
|
|
|
|
if (OC && Instruction::isBinaryOp(*OC))
|
|
return expandPredicationInBinaryOperator(Builder, VPI);
|
|
|
|
if (auto *VPRI = dyn_cast<VPReductionIntrinsic>(&VPI))
|
|
return expandPredicationInReduction(Builder, *VPRI);
|
|
|
|
return &VPI;
|
|
}
|
|
|
|
//// } CachingVPExpander
|
|
|
|
struct TransformJob {
|
|
VPIntrinsic *PI;
|
|
TargetTransformInfo::VPLegalization Strategy;
|
|
TransformJob(VPIntrinsic *PI, TargetTransformInfo::VPLegalization InitStrat)
|
|
: PI(PI), Strategy(InitStrat) {}
|
|
|
|
bool isDone() const { return Strategy.shouldDoNothing(); }
|
|
};
|
|
|
|
void sanitizeStrategy(Instruction &I, VPLegalization &LegalizeStrat) {
|
|
// Speculatable instructions do not strictly need predication.
|
|
if (isSafeToSpeculativelyExecute(&I)) {
|
|
// Converting a speculatable VP intrinsic means dropping %mask and %evl.
|
|
// No need to expand %evl into the %mask only to ignore that code.
|
|
if (LegalizeStrat.OpStrategy == VPLegalization::Convert)
|
|
LegalizeStrat.EVLParamStrategy = VPLegalization::Discard;
|
|
return;
|
|
}
|
|
|
|
// We have to preserve the predicating effect of %evl for this
|
|
// non-speculatable VP intrinsic.
|
|
// 1) Never discard %evl.
|
|
// 2) If this VP intrinsic will be expanded to non-VP code, make sure that
|
|
// %evl gets folded into %mask.
|
|
if ((LegalizeStrat.EVLParamStrategy == VPLegalization::Discard) ||
|
|
(LegalizeStrat.OpStrategy == VPLegalization::Convert)) {
|
|
LegalizeStrat.EVLParamStrategy = VPLegalization::Convert;
|
|
}
|
|
}
|
|
|
|
VPLegalization
|
|
CachingVPExpander::getVPLegalizationStrategy(const VPIntrinsic &VPI) const {
|
|
auto VPStrat = TTI.getVPLegalizationStrategy(VPI);
|
|
if (LLVM_LIKELY(!UsingTTIOverrides)) {
|
|
// No overrides - we are in production.
|
|
return VPStrat;
|
|
}
|
|
|
|
// Overrides set - we are in testing, the following does not need to be
|
|
// efficient.
|
|
VPStrat.EVLParamStrategy = parseOverrideOption(EVLTransformOverride);
|
|
VPStrat.OpStrategy = parseOverrideOption(MaskTransformOverride);
|
|
return VPStrat;
|
|
}
|
|
|
|
/// \brief Expand llvm.vp.* intrinsics as requested by \p TTI.
|
|
bool CachingVPExpander::expandVectorPredication() {
|
|
SmallVector<TransformJob, 16> Worklist;
|
|
|
|
// Collect all VPIntrinsics that need expansion and determine their expansion
|
|
// strategy.
|
|
for (auto &I : instructions(F)) {
|
|
auto *VPI = dyn_cast<VPIntrinsic>(&I);
|
|
if (!VPI)
|
|
continue;
|
|
auto VPStrat = getVPLegalizationStrategy(*VPI);
|
|
sanitizeStrategy(I, VPStrat);
|
|
if (!VPStrat.shouldDoNothing())
|
|
Worklist.emplace_back(VPI, VPStrat);
|
|
}
|
|
if (Worklist.empty())
|
|
return false;
|
|
|
|
// Transform all VPIntrinsics on the worklist.
|
|
LLVM_DEBUG(dbgs() << "\n:::: Transforming " << Worklist.size()
|
|
<< " instructions ::::\n");
|
|
for (TransformJob Job : Worklist) {
|
|
// Transform the EVL parameter.
|
|
switch (Job.Strategy.EVLParamStrategy) {
|
|
case VPLegalization::Legal:
|
|
break;
|
|
case VPLegalization::Discard:
|
|
discardEVLParameter(*Job.PI);
|
|
break;
|
|
case VPLegalization::Convert:
|
|
if (foldEVLIntoMask(*Job.PI))
|
|
++NumFoldedVL;
|
|
break;
|
|
}
|
|
Job.Strategy.EVLParamStrategy = VPLegalization::Legal;
|
|
|
|
// Replace with a non-predicated operation.
|
|
switch (Job.Strategy.OpStrategy) {
|
|
case VPLegalization::Legal:
|
|
break;
|
|
case VPLegalization::Discard:
|
|
llvm_unreachable("Invalid strategy for operators.");
|
|
case VPLegalization::Convert:
|
|
expandPredication(*Job.PI);
|
|
++NumLoweredVPOps;
|
|
break;
|
|
}
|
|
Job.Strategy.OpStrategy = VPLegalization::Legal;
|
|
|
|
assert(Job.isDone() && "incomplete transformation");
|
|
}
|
|
|
|
return true;
|
|
}
|
|
class ExpandVectorPredication : public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
ExpandVectorPredication() : FunctionPass(ID) {
|
|
initializeExpandVectorPredicationPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
const auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
CachingVPExpander VPExpander(F, *TTI);
|
|
return VPExpander.expandVectorPredication();
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.setPreservesCFG();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
char ExpandVectorPredication::ID;
|
|
INITIALIZE_PASS_BEGIN(ExpandVectorPredication, "expandvp",
|
|
"Expand vector predication intrinsics", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_END(ExpandVectorPredication, "expandvp",
|
|
"Expand vector predication intrinsics", false, false)
|
|
|
|
FunctionPass *llvm::createExpandVectorPredicationPass() {
|
|
return new ExpandVectorPredication();
|
|
}
|
|
|
|
PreservedAnalyses
|
|
ExpandVectorPredicationPass::run(Function &F, FunctionAnalysisManager &AM) {
|
|
const auto &TTI = AM.getResult<TargetIRAnalysis>(F);
|
|
CachingVPExpander VPExpander(F, TTI);
|
|
if (!VPExpander.expandVectorPredication())
|
|
return PreservedAnalyses::all();
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
return PA;
|
|
}
|