llvm-project/llvm/unittests/Analysis/LoopPassManagerTest.cpp

206 lines
6.5 KiB
C++

//===- llvm/unittest/Analysis/LoopPassManagerTest.cpp - LPM tests ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "gtest/gtest.h"
#include "llvm/Analysis/LoopPassManager.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/SourceMgr.h"
using namespace llvm;
namespace {
class TestLoopAnalysis {
/// \brief Private static data to provide unique ID.
static char PassID;
int &Runs;
public:
struct Result {
Result(int Count) : BlockCount(Count) {}
int BlockCount;
};
/// \brief Returns an opaque, unique ID for this pass type.
static void *ID() { return (void *)&PassID; }
/// \brief Returns the name of the analysis.
static StringRef name() { return "TestLoopAnalysis"; }
TestLoopAnalysis(int &Runs) : Runs(Runs) {}
/// \brief Run the analysis pass over the loop and return a result.
Result run(Loop &L, AnalysisManager<Loop> &AM) {
++Runs;
int Count = 0;
for (auto I = L.block_begin(), E = L.block_end(); I != E; ++I)
++Count;
return Result(Count);
}
};
char TestLoopAnalysis::PassID;
class TestLoopPass {
std::vector<StringRef> &VisitedLoops;
int &AnalyzedBlockCount;
bool OnlyUseCachedResults;
public:
TestLoopPass(std::vector<StringRef> &VisitedLoops, int &AnalyzedBlockCount,
bool OnlyUseCachedResults = false)
: VisitedLoops(VisitedLoops), AnalyzedBlockCount(AnalyzedBlockCount),
OnlyUseCachedResults(OnlyUseCachedResults) {}
PreservedAnalyses run(Loop &L, AnalysisManager<Loop> &AM) {
VisitedLoops.push_back(L.getName());
if (OnlyUseCachedResults) {
// Hack to force the use of the cached interface.
if (auto *AR = AM.getCachedResult<TestLoopAnalysis>(L))
AnalyzedBlockCount += AR->BlockCount;
} else {
// Typical path just runs the analysis as needed.
auto &AR = AM.getResult<TestLoopAnalysis>(L);
AnalyzedBlockCount += AR.BlockCount;
}
return PreservedAnalyses::all();
}
static StringRef name() { return "TestLoopPass"; }
};
// A test loop pass that invalidates the analysis for loops with the given name.
class TestLoopInvalidatingPass {
StringRef Name;
public:
TestLoopInvalidatingPass(StringRef LoopName) : Name(LoopName) {}
PreservedAnalyses run(Loop &L, AnalysisManager<Loop> &AM) {
return L.getName() == Name ? PreservedAnalyses::none()
: PreservedAnalyses::all();
}
static StringRef name() { return "TestLoopInvalidatingPass"; }
};
std::unique_ptr<Module> parseIR(const char *IR) {
LLVMContext &C = getGlobalContext();
SMDiagnostic Err;
return parseAssemblyString(IR, Err, C);
}
class LoopPassManagerTest : public ::testing::Test {
protected:
std::unique_ptr<Module> M;
public:
LoopPassManagerTest()
: M(parseIR("define void @f() {\n"
"entry:\n"
" br label %loop.0\n"
"loop.0:\n"
" br i1 undef, label %loop.0.0, label %end\n"
"loop.0.0:\n"
" br i1 undef, label %loop.0.0, label %loop.0.1\n"
"loop.0.1:\n"
" br i1 undef, label %loop.0.1, label %loop.0\n"
"end:\n"
" ret void\n"
"}\n"
"\n"
"define void @g() {\n"
"entry:\n"
" br label %loop.g.0\n"
"loop.g.0:\n"
" br i1 undef, label %loop.g.0, label %end\n"
"end:\n"
" ret void\n"
"}\n")) {}
};
#define EXPECT_N_ELEMENTS_EQ(N, EXPECTED, ACTUAL) \
do { \
EXPECT_EQ(N##UL, ACTUAL.size()); \
for (int I = 0; I < N; ++I) \
EXPECT_TRUE(EXPECTED[I] == ACTUAL[I]) << "Element " << I << " is " \
<< ACTUAL[I] << ". Expected " \
<< EXPECTED[I] << "."; \
} while (0)
TEST_F(LoopPassManagerTest, Basic) {
LoopAnalysisManager LAM(true);
int LoopAnalysisRuns = 0;
LAM.registerPass([&] { return TestLoopAnalysis(LoopAnalysisRuns); });
FunctionAnalysisManager FAM(true);
// We need DominatorTreeAnalysis for LoopAnalysis.
FAM.registerPass([&] { return DominatorTreeAnalysis(); });
FAM.registerPass([&] { return LoopAnalysis(); });
FAM.registerPass([&] { return LoopAnalysisManagerFunctionProxy(LAM); });
LAM.registerPass([&] { return FunctionAnalysisManagerLoopProxy(FAM); });
ModuleAnalysisManager MAM(true);
MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); });
FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); });
ModulePassManager MPM(true);
FunctionPassManager FPM(true);
// Visit all of the loops.
std::vector<StringRef> VisitedLoops1;
int AnalyzedBlockCount1 = 0;
{
LoopPassManager LPM;
LPM.addPass(TestLoopPass(VisitedLoops1, AnalyzedBlockCount1));
FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
}
// Only use cached analyses.
std::vector<StringRef> VisitedLoops2;
int AnalyzedBlockCount2 = 0;
{
LoopPassManager LPM;
LPM.addPass(TestLoopInvalidatingPass("loop.g.0"));
LPM.addPass(TestLoopPass(VisitedLoops2, AnalyzedBlockCount2,
/*OnlyUseCachedResults=*/true));
FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
}
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
MPM.run(*M, MAM);
StringRef ExpectedLoops[] = {"loop.0.0", "loop.0.1", "loop.0", "loop.g.0"};
// Validate the counters and order of loops visited.
// loop.0 has 3 blocks whereas loop.0.0, loop.0.1, and loop.g.0 each have 1.
EXPECT_N_ELEMENTS_EQ(4, ExpectedLoops, VisitedLoops1);
EXPECT_EQ(6, AnalyzedBlockCount1);
EXPECT_N_ELEMENTS_EQ(4, ExpectedLoops, VisitedLoops2);
// The block from loop.g.0 won't be counted, since it wasn't cached.
EXPECT_EQ(5, AnalyzedBlockCount2);
// The first LPM runs the loop analysis for all four loops, the second uses
// cached results for everything.
EXPECT_EQ(4, LoopAnalysisRuns);
}
}