forked from OSchip/llvm-project
1cf07ea6bb
Instrumentation passes now use attributes address_safety/thread_safety/memory_safety which are added by Clang frontend. Clang parses the blacklist file and adds the attributes accordingly. Currently blacklist is still used in ASan module pass to disable instrumentation for certain global variables. We should fix this as well by collecting the set of globals we're going to instrument in Clang and passing it to ASan in metadata (as we already do for dynamically-initialized globals and init-order checking). This change also removes -tsan-blacklist and -msan-blacklist LLVM commandline flags in favor of -fsanitize-blacklist= Clang flag. llvm-svn: 210037 |
||
---|---|---|
.. | ||
ABIInfo.h | ||
BackendUtil.cpp | ||
CGAtomic.cpp | ||
CGBlocks.cpp | ||
CGBlocks.h | ||
CGBuilder.h | ||
CGBuiltin.cpp | ||
CGCUDANV.cpp | ||
CGCUDARuntime.cpp | ||
CGCUDARuntime.h | ||
CGCXX.cpp | ||
CGCXXABI.cpp | ||
CGCXXABI.h | ||
CGCall.cpp | ||
CGCall.h | ||
CGClass.cpp | ||
CGCleanup.cpp | ||
CGCleanup.h | ||
CGDebugInfo.cpp | ||
CGDebugInfo.h | ||
CGDecl.cpp | ||
CGDeclCXX.cpp | ||
CGException.cpp | ||
CGExpr.cpp | ||
CGExprAgg.cpp | ||
CGExprCXX.cpp | ||
CGExprComplex.cpp | ||
CGExprConstant.cpp | ||
CGExprScalar.cpp | ||
CGLoopInfo.cpp | ||
CGLoopInfo.h | ||
CGObjC.cpp | ||
CGObjCGNU.cpp | ||
CGObjCMac.cpp | ||
CGObjCRuntime.cpp | ||
CGObjCRuntime.h | ||
CGOpenCLRuntime.cpp | ||
CGOpenCLRuntime.h | ||
CGOpenMPRuntime.cpp | ||
CGOpenMPRuntime.h | ||
CGRTTI.cpp | ||
CGRecordLayout.h | ||
CGRecordLayoutBuilder.cpp | ||
CGStmt.cpp | ||
CGStmtOpenMP.cpp | ||
CGVTT.cpp | ||
CGVTables.cpp | ||
CGVTables.h | ||
CGValue.h | ||
CMakeLists.txt | ||
CodeGenABITypes.cpp | ||
CodeGenAction.cpp | ||
CodeGenFunction.cpp | ||
CodeGenFunction.h | ||
CodeGenModule.cpp | ||
CodeGenModule.h | ||
CodeGenPGO.cpp | ||
CodeGenPGO.h | ||
CodeGenTBAA.cpp | ||
CodeGenTBAA.h | ||
CodeGenTypes.cpp | ||
CodeGenTypes.h | ||
EHScopeStack.h | ||
ItaniumCXXABI.cpp | ||
Makefile | ||
MicrosoftCXXABI.cpp | ||
MicrosoftRTTI.cpp | ||
ModuleBuilder.cpp | ||
README.txt | ||
TargetInfo.cpp | ||
TargetInfo.h |
README.txt
IRgen optimization opportunities. //===---------------------------------------------------------------------===// The common pattern of -- short x; // or char, etc (x == 10) -- generates an zext/sext of x which can easily be avoided. //===---------------------------------------------------------------------===// Bitfields accesses can be shifted to simplify masking and sign extension. For example, if the bitfield width is 8 and it is appropriately aligned then is is a lot shorter to just load the char directly. //===---------------------------------------------------------------------===// It may be worth avoiding creation of alloca's for formal arguments for the common situation where the argument is never written to or has its address taken. The idea would be to begin generating code by using the argument directly and if its address is taken or it is stored to then generate the alloca and patch up the existing code. In theory, the same optimization could be a win for block local variables as long as the declaration dominates all statements in the block. NOTE: The main case we care about this for is for -O0 -g compile time performance, and in that scenario we will need to emit the alloca anyway currently to emit proper debug info. So this is blocked by being able to emit debug information which refers to an LLVM temporary, not an alloca. //===---------------------------------------------------------------------===// We should try and avoid generating basic blocks which only contain jumps. At -O0, this penalizes us all the way from IRgen (malloc & instruction overhead), all the way down through code generation and assembly time. On 176.gcc:expr.ll, it looks like over 12% of basic blocks are just direct branches! //===---------------------------------------------------------------------===//