forked from OSchip/llvm-project
5375 lines
185 KiB
C++
5375 lines
185 KiB
C++
/*
|
|
* kmp_affinity.cpp -- affinity management
|
|
*/
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is dual licensed under the MIT and the University of Illinois Open
|
|
// Source Licenses. See LICENSE.txt for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "kmp.h"
|
|
#include "kmp_affinity.h"
|
|
#include "kmp_i18n.h"
|
|
#include "kmp_io.h"
|
|
#include "kmp_str.h"
|
|
#include "kmp_wrapper_getpid.h"
|
|
#if KMP_USE_HIER_SCHED
|
|
#include "kmp_dispatch_hier.h"
|
|
#endif
|
|
|
|
// Store the real or imagined machine hierarchy here
|
|
static hierarchy_info machine_hierarchy;
|
|
|
|
void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
|
|
|
|
void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
|
|
kmp_uint32 depth;
|
|
// The test below is true if affinity is available, but set to "none". Need to
|
|
// init on first use of hierarchical barrier.
|
|
if (TCR_1(machine_hierarchy.uninitialized))
|
|
machine_hierarchy.init(NULL, nproc);
|
|
|
|
// Adjust the hierarchy in case num threads exceeds original
|
|
if (nproc > machine_hierarchy.base_num_threads)
|
|
machine_hierarchy.resize(nproc);
|
|
|
|
depth = machine_hierarchy.depth;
|
|
KMP_DEBUG_ASSERT(depth > 0);
|
|
|
|
thr_bar->depth = depth;
|
|
thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0] - 1;
|
|
thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
|
|
}
|
|
|
|
#if KMP_AFFINITY_SUPPORTED
|
|
|
|
bool KMPAffinity::picked_api = false;
|
|
|
|
void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
|
|
void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
|
|
void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
|
|
void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
|
|
void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
|
|
void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
|
|
|
|
void KMPAffinity::pick_api() {
|
|
KMPAffinity *affinity_dispatch;
|
|
if (picked_api)
|
|
return;
|
|
#if KMP_USE_HWLOC
|
|
// Only use Hwloc if affinity isn't explicitly disabled and
|
|
// user requests Hwloc topology method
|
|
if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
|
|
__kmp_affinity_type != affinity_disabled) {
|
|
affinity_dispatch = new KMPHwlocAffinity();
|
|
} else
|
|
#endif
|
|
{
|
|
affinity_dispatch = new KMPNativeAffinity();
|
|
}
|
|
__kmp_affinity_dispatch = affinity_dispatch;
|
|
picked_api = true;
|
|
}
|
|
|
|
void KMPAffinity::destroy_api() {
|
|
if (__kmp_affinity_dispatch != NULL) {
|
|
delete __kmp_affinity_dispatch;
|
|
__kmp_affinity_dispatch = NULL;
|
|
picked_api = false;
|
|
}
|
|
}
|
|
|
|
#define KMP_ADVANCE_SCAN(scan) \
|
|
while (*scan != '\0') { \
|
|
scan++; \
|
|
}
|
|
|
|
// Print the affinity mask to the character array in a pretty format.
|
|
// The format is a comma separated list of non-negative integers or integer
|
|
// ranges: e.g., 1,2,3-5,7,9-15
|
|
// The format can also be the string "{<empty>}" if no bits are set in mask
|
|
char *__kmp_affinity_print_mask(char *buf, int buf_len,
|
|
kmp_affin_mask_t *mask) {
|
|
int start = 0, finish = 0, previous = 0;
|
|
bool first_range;
|
|
KMP_ASSERT(buf);
|
|
KMP_ASSERT(buf_len >= 40);
|
|
KMP_ASSERT(mask);
|
|
char *scan = buf;
|
|
char *end = buf + buf_len - 1;
|
|
|
|
// Check for empty set.
|
|
if (mask->begin() == mask->end()) {
|
|
KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}");
|
|
KMP_ADVANCE_SCAN(scan);
|
|
KMP_ASSERT(scan <= end);
|
|
return buf;
|
|
}
|
|
|
|
first_range = true;
|
|
start = mask->begin();
|
|
while (1) {
|
|
// Find next range
|
|
// [start, previous] is inclusive range of contiguous bits in mask
|
|
for (finish = mask->next(start), previous = start;
|
|
finish == previous + 1 && finish != mask->end();
|
|
finish = mask->next(finish)) {
|
|
previous = finish;
|
|
}
|
|
|
|
// The first range does not need a comma printed before it, but the rest
|
|
// of the ranges do need a comma beforehand
|
|
if (!first_range) {
|
|
KMP_SNPRINTF(scan, end - scan + 1, "%s", ",");
|
|
KMP_ADVANCE_SCAN(scan);
|
|
} else {
|
|
first_range = false;
|
|
}
|
|
// Range with three or more contiguous bits in the affinity mask
|
|
if (previous - start > 1) {
|
|
KMP_SNPRINTF(scan, end - scan + 1, "%d-%d", static_cast<int>(start),
|
|
static_cast<int>(previous));
|
|
} else {
|
|
// Range with one or two contiguous bits in the affinity mask
|
|
KMP_SNPRINTF(scan, end - scan + 1, "%d", static_cast<int>(start));
|
|
KMP_ADVANCE_SCAN(scan);
|
|
if (previous - start > 0) {
|
|
KMP_SNPRINTF(scan, end - scan + 1, ",%d", static_cast<int>(previous));
|
|
}
|
|
}
|
|
KMP_ADVANCE_SCAN(scan);
|
|
// Start over with new start point
|
|
start = finish;
|
|
if (start == mask->end())
|
|
break;
|
|
// Check for overflow
|
|
if (end - scan < 2)
|
|
break;
|
|
}
|
|
|
|
// Check for overflow
|
|
KMP_ASSERT(scan <= end);
|
|
return buf;
|
|
}
|
|
#undef KMP_ADVANCE_SCAN
|
|
|
|
// Print the affinity mask to the string buffer object in a pretty format
|
|
// The format is a comma separated list of non-negative integers or integer
|
|
// ranges: e.g., 1,2,3-5,7,9-15
|
|
// The format can also be the string "{<empty>}" if no bits are set in mask
|
|
kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
|
|
kmp_affin_mask_t *mask) {
|
|
int start = 0, finish = 0, previous = 0;
|
|
bool first_range;
|
|
KMP_ASSERT(buf);
|
|
KMP_ASSERT(mask);
|
|
|
|
__kmp_str_buf_clear(buf);
|
|
|
|
// Check for empty set.
|
|
if (mask->begin() == mask->end()) {
|
|
__kmp_str_buf_print(buf, "%s", "{<empty>}");
|
|
return buf;
|
|
}
|
|
|
|
first_range = true;
|
|
start = mask->begin();
|
|
while (1) {
|
|
// Find next range
|
|
// [start, previous] is inclusive range of contiguous bits in mask
|
|
for (finish = mask->next(start), previous = start;
|
|
finish == previous + 1 && finish != mask->end();
|
|
finish = mask->next(finish)) {
|
|
previous = finish;
|
|
}
|
|
|
|
// The first range does not need a comma printed before it, but the rest
|
|
// of the ranges do need a comma beforehand
|
|
if (!first_range) {
|
|
__kmp_str_buf_print(buf, "%s", ",");
|
|
} else {
|
|
first_range = false;
|
|
}
|
|
// Range with three or more contiguous bits in the affinity mask
|
|
if (previous - start > 1) {
|
|
__kmp_str_buf_print(buf, "%d-%d", static_cast<int>(start),
|
|
static_cast<int>(previous));
|
|
} else {
|
|
// Range with one or two contiguous bits in the affinity mask
|
|
__kmp_str_buf_print(buf, "%d", static_cast<int>(start));
|
|
if (previous - start > 0) {
|
|
__kmp_str_buf_print(buf, ",%d", static_cast<int>(previous));
|
|
}
|
|
}
|
|
// Start over with new start point
|
|
start = finish;
|
|
if (start == mask->end())
|
|
break;
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
|
|
KMP_CPU_ZERO(mask);
|
|
|
|
#if KMP_GROUP_AFFINITY
|
|
|
|
if (__kmp_num_proc_groups > 1) {
|
|
int group;
|
|
KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
|
|
for (group = 0; group < __kmp_num_proc_groups; group++) {
|
|
int i;
|
|
int num = __kmp_GetActiveProcessorCount(group);
|
|
for (i = 0; i < num; i++) {
|
|
KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
|
|
}
|
|
}
|
|
} else
|
|
|
|
#endif /* KMP_GROUP_AFFINITY */
|
|
|
|
{
|
|
int proc;
|
|
for (proc = 0; proc < __kmp_xproc; proc++) {
|
|
KMP_CPU_SET(proc, mask);
|
|
}
|
|
}
|
|
}
|
|
|
|
// When sorting by labels, __kmp_affinity_assign_child_nums() must first be
|
|
// called to renumber the labels from [0..n] and place them into the child_num
|
|
// vector of the address object. This is done in case the labels used for
|
|
// the children at one node of the hierarchy differ from those used for
|
|
// another node at the same level. Example: suppose the machine has 2 nodes
|
|
// with 2 packages each. The first node contains packages 601 and 602, and
|
|
// second node contains packages 603 and 604. If we try to sort the table
|
|
// for "scatter" affinity, the table will still be sorted 601, 602, 603, 604
|
|
// because we are paying attention to the labels themselves, not the ordinal
|
|
// child numbers. By using the child numbers in the sort, the result is
|
|
// {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604.
|
|
static void __kmp_affinity_assign_child_nums(AddrUnsPair *address2os,
|
|
int numAddrs) {
|
|
KMP_DEBUG_ASSERT(numAddrs > 0);
|
|
int depth = address2os->first.depth;
|
|
unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
|
|
unsigned *lastLabel = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
|
|
int labCt;
|
|
for (labCt = 0; labCt < depth; labCt++) {
|
|
address2os[0].first.childNums[labCt] = counts[labCt] = 0;
|
|
lastLabel[labCt] = address2os[0].first.labels[labCt];
|
|
}
|
|
int i;
|
|
for (i = 1; i < numAddrs; i++) {
|
|
for (labCt = 0; labCt < depth; labCt++) {
|
|
if (address2os[i].first.labels[labCt] != lastLabel[labCt]) {
|
|
int labCt2;
|
|
for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) {
|
|
counts[labCt2] = 0;
|
|
lastLabel[labCt2] = address2os[i].first.labels[labCt2];
|
|
}
|
|
counts[labCt]++;
|
|
lastLabel[labCt] = address2os[i].first.labels[labCt];
|
|
break;
|
|
}
|
|
}
|
|
for (labCt = 0; labCt < depth; labCt++) {
|
|
address2os[i].first.childNums[labCt] = counts[labCt];
|
|
}
|
|
for (; labCt < (int)Address::maxDepth; labCt++) {
|
|
address2os[i].first.childNums[labCt] = 0;
|
|
}
|
|
}
|
|
__kmp_free(lastLabel);
|
|
__kmp_free(counts);
|
|
}
|
|
|
|
// All of the __kmp_affinity_create_*_map() routines should set
|
|
// __kmp_affinity_masks to a vector of affinity mask objects of length
|
|
// __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and return
|
|
// the number of levels in the machine topology tree (zero if
|
|
// __kmp_affinity_type == affinity_none).
|
|
//
|
|
// All of the __kmp_affinity_create_*_map() routines should set
|
|
// *__kmp_affin_fullMask to the affinity mask for the initialization thread.
|
|
// They need to save and restore the mask, and it could be needed later, so
|
|
// saving it is just an optimization to avoid calling kmp_get_system_affinity()
|
|
// again.
|
|
kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
|
|
|
|
static int nCoresPerPkg, nPackages;
|
|
static int __kmp_nThreadsPerCore;
|
|
#ifndef KMP_DFLT_NTH_CORES
|
|
static int __kmp_ncores;
|
|
#endif
|
|
static int *__kmp_pu_os_idx = NULL;
|
|
|
|
// __kmp_affinity_uniform_topology() doesn't work when called from
|
|
// places which support arbitrarily many levels in the machine topology
|
|
// map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map()
|
|
// __kmp_affinity_create_x2apicid_map().
|
|
inline static bool __kmp_affinity_uniform_topology() {
|
|
return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages);
|
|
}
|
|
|
|
// Print out the detailed machine topology map, i.e. the physical locations
|
|
// of each OS proc.
|
|
static void __kmp_affinity_print_topology(AddrUnsPair *address2os, int len,
|
|
int depth, int pkgLevel,
|
|
int coreLevel, int threadLevel) {
|
|
int proc;
|
|
|
|
KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
|
|
for (proc = 0; proc < len; proc++) {
|
|
int level;
|
|
kmp_str_buf_t buf;
|
|
__kmp_str_buf_init(&buf);
|
|
for (level = 0; level < depth; level++) {
|
|
if (level == threadLevel) {
|
|
__kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread));
|
|
} else if (level == coreLevel) {
|
|
__kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core));
|
|
} else if (level == pkgLevel) {
|
|
__kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package));
|
|
} else if (level > pkgLevel) {
|
|
__kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node),
|
|
level - pkgLevel - 1);
|
|
} else {
|
|
__kmp_str_buf_print(&buf, "L%d ", level);
|
|
}
|
|
__kmp_str_buf_print(&buf, "%d ", address2os[proc].first.labels[level]);
|
|
}
|
|
KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second,
|
|
buf.str);
|
|
__kmp_str_buf_free(&buf);
|
|
}
|
|
}
|
|
|
|
#if KMP_USE_HWLOC
|
|
|
|
static void __kmp_affinity_print_hwloc_tp(AddrUnsPair *addrP, int len,
|
|
int depth, int *levels) {
|
|
int proc;
|
|
kmp_str_buf_t buf;
|
|
__kmp_str_buf_init(&buf);
|
|
KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
|
|
for (proc = 0; proc < len; proc++) {
|
|
__kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Package),
|
|
addrP[proc].first.labels[0]);
|
|
if (depth > 1) {
|
|
int level = 1; // iterate over levels
|
|
int label = 1; // iterate over labels
|
|
if (__kmp_numa_detected)
|
|
// node level follows package
|
|
if (levels[level++] > 0)
|
|
__kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Node),
|
|
addrP[proc].first.labels[label++]);
|
|
if (__kmp_tile_depth > 0)
|
|
// tile level follows node if any, or package
|
|
if (levels[level++] > 0)
|
|
__kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Tile),
|
|
addrP[proc].first.labels[label++]);
|
|
if (levels[level++] > 0)
|
|
// core level follows
|
|
__kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Core),
|
|
addrP[proc].first.labels[label++]);
|
|
if (levels[level++] > 0)
|
|
// thread level is the latest
|
|
__kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Thread),
|
|
addrP[proc].first.labels[label++]);
|
|
KMP_DEBUG_ASSERT(label == depth);
|
|
}
|
|
KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", addrP[proc].second, buf.str);
|
|
__kmp_str_buf_clear(&buf);
|
|
}
|
|
__kmp_str_buf_free(&buf);
|
|
}
|
|
|
|
static int nNodePerPkg, nTilePerPkg, nTilePerNode, nCorePerNode, nCorePerTile;
|
|
|
|
// This function removes the topology levels that are radix 1 and don't offer
|
|
// further information about the topology. The most common example is when you
|
|
// have one thread context per core, we don't want the extra thread context
|
|
// level if it offers no unique labels. So they are removed.
|
|
// return value: the new depth of address2os
|
|
static int __kmp_affinity_remove_radix_one_levels(AddrUnsPair *addrP, int nTh,
|
|
int depth, int *levels) {
|
|
int level;
|
|
int i;
|
|
int radix1_detected;
|
|
int new_depth = depth;
|
|
for (level = depth - 1; level > 0; --level) {
|
|
// Detect if this level is radix 1
|
|
radix1_detected = 1;
|
|
for (i = 1; i < nTh; ++i) {
|
|
if (addrP[0].first.labels[level] != addrP[i].first.labels[level]) {
|
|
// There are differing label values for this level so it stays
|
|
radix1_detected = 0;
|
|
break;
|
|
}
|
|
}
|
|
if (!radix1_detected)
|
|
continue;
|
|
// Radix 1 was detected
|
|
--new_depth;
|
|
levels[level] = -1; // mark level as not present in address2os array
|
|
if (level == new_depth) {
|
|
// "turn off" deepest level, just decrement the depth that removes
|
|
// the level from address2os array
|
|
for (i = 0; i < nTh; ++i) {
|
|
addrP[i].first.depth--;
|
|
}
|
|
} else {
|
|
// For other levels, we move labels over and also reduce the depth
|
|
int j;
|
|
for (j = level; j < new_depth; ++j) {
|
|
for (i = 0; i < nTh; ++i) {
|
|
addrP[i].first.labels[j] = addrP[i].first.labels[j + 1];
|
|
addrP[i].first.depth--;
|
|
}
|
|
levels[j + 1] -= 1;
|
|
}
|
|
}
|
|
}
|
|
return new_depth;
|
|
}
|
|
|
|
// Returns the number of objects of type 'type' below 'obj' within the topology
|
|
// tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
|
|
// HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
|
|
// object.
|
|
static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
|
|
hwloc_obj_type_t type) {
|
|
int retval = 0;
|
|
hwloc_obj_t first;
|
|
for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
|
|
obj->logical_index, type, 0);
|
|
first != NULL &&
|
|
hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, obj->type, first) ==
|
|
obj;
|
|
first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
|
|
first)) {
|
|
++retval;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
static int __kmp_hwloc_count_children_by_depth(hwloc_topology_t t,
|
|
hwloc_obj_t o, unsigned depth,
|
|
hwloc_obj_t *f) {
|
|
if (o->depth == depth) {
|
|
if (*f == NULL)
|
|
*f = o; // output first descendant found
|
|
return 1;
|
|
}
|
|
int sum = 0;
|
|
for (unsigned i = 0; i < o->arity; i++)
|
|
sum += __kmp_hwloc_count_children_by_depth(t, o->children[i], depth, f);
|
|
return sum; // will be 0 if no one found (as PU arity is 0)
|
|
}
|
|
|
|
static int __kmp_hwloc_count_children_by_type(hwloc_topology_t t, hwloc_obj_t o,
|
|
hwloc_obj_type_t type,
|
|
hwloc_obj_t *f) {
|
|
if (!hwloc_compare_types(o->type, type)) {
|
|
if (*f == NULL)
|
|
*f = o; // output first descendant found
|
|
return 1;
|
|
}
|
|
int sum = 0;
|
|
for (unsigned i = 0; i < o->arity; i++)
|
|
sum += __kmp_hwloc_count_children_by_type(t, o->children[i], type, f);
|
|
return sum; // will be 0 if no one found (as PU arity is 0)
|
|
}
|
|
|
|
static int __kmp_hwloc_process_obj_core_pu(AddrUnsPair *addrPair,
|
|
int &nActiveThreads,
|
|
int &num_active_cores,
|
|
hwloc_obj_t obj, int depth,
|
|
int *labels) {
|
|
hwloc_obj_t core = NULL;
|
|
hwloc_topology_t &tp = __kmp_hwloc_topology;
|
|
int NC = __kmp_hwloc_count_children_by_type(tp, obj, HWLOC_OBJ_CORE, &core);
|
|
for (int core_id = 0; core_id < NC; ++core_id, core = core->next_cousin) {
|
|
hwloc_obj_t pu = NULL;
|
|
KMP_DEBUG_ASSERT(core != NULL);
|
|
int num_active_threads = 0;
|
|
int NT = __kmp_hwloc_count_children_by_type(tp, core, HWLOC_OBJ_PU, &pu);
|
|
// int NT = core->arity; pu = core->first_child; // faster?
|
|
for (int pu_id = 0; pu_id < NT; ++pu_id, pu = pu->next_cousin) {
|
|
KMP_DEBUG_ASSERT(pu != NULL);
|
|
if (!KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask))
|
|
continue; // skip inactive (inaccessible) unit
|
|
Address addr(depth + 2);
|
|
KA_TRACE(20, ("Hwloc inserting %d (%d) %d (%d) %d (%d) into address2os\n",
|
|
obj->os_index, obj->logical_index, core->os_index,
|
|
core->logical_index, pu->os_index, pu->logical_index));
|
|
for (int i = 0; i < depth; ++i)
|
|
addr.labels[i] = labels[i]; // package, etc.
|
|
addr.labels[depth] = core_id; // core
|
|
addr.labels[depth + 1] = pu_id; // pu
|
|
addrPair[nActiveThreads] = AddrUnsPair(addr, pu->os_index);
|
|
__kmp_pu_os_idx[nActiveThreads] = pu->os_index;
|
|
nActiveThreads++;
|
|
++num_active_threads; // count active threads per core
|
|
}
|
|
if (num_active_threads) { // were there any active threads on the core?
|
|
++__kmp_ncores; // count total active cores
|
|
++num_active_cores; // count active cores per socket
|
|
if (num_active_threads > __kmp_nThreadsPerCore)
|
|
__kmp_nThreadsPerCore = num_active_threads; // calc maximum
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Check if NUMA node detected below the package,
|
|
// and if tile object is detected and return its depth
|
|
static int __kmp_hwloc_check_numa() {
|
|
hwloc_topology_t &tp = __kmp_hwloc_topology;
|
|
hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to)
|
|
int depth;
|
|
|
|
// Get some PU
|
|
hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, 0);
|
|
if (hT == NULL) // something has gone wrong
|
|
return 1;
|
|
|
|
// check NUMA node below PACKAGE
|
|
hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT);
|
|
hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT);
|
|
KMP_DEBUG_ASSERT(hS != NULL);
|
|
if (hN != NULL && hN->depth > hS->depth) {
|
|
__kmp_numa_detected = TRUE; // socket includes node(s)
|
|
if (__kmp_affinity_gran == affinity_gran_node) {
|
|
__kmp_affinity_gran == affinity_gran_numa;
|
|
}
|
|
}
|
|
|
|
// check tile, get object by depth because of multiple caches possible
|
|
depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED);
|
|
hL = hwloc_get_ancestor_obj_by_depth(tp, depth, hT);
|
|
hC = NULL; // not used, but reset it here just in case
|
|
if (hL != NULL &&
|
|
__kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1)
|
|
__kmp_tile_depth = depth; // tile consists of multiple cores
|
|
return 0;
|
|
}
|
|
|
|
static int __kmp_affinity_create_hwloc_map(AddrUnsPair **address2os,
|
|
kmp_i18n_id_t *const msg_id) {
|
|
hwloc_topology_t &tp = __kmp_hwloc_topology; // shortcut of a long name
|
|
*address2os = NULL;
|
|
*msg_id = kmp_i18n_null;
|
|
|
|
// Save the affinity mask for the current thread.
|
|
kmp_affin_mask_t *oldMask;
|
|
KMP_CPU_ALLOC(oldMask);
|
|
__kmp_get_system_affinity(oldMask, TRUE);
|
|
__kmp_hwloc_check_numa();
|
|
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
// Hack to try and infer the machine topology using only the data
|
|
// available from cpuid on the current thread, and __kmp_xproc.
|
|
KMP_ASSERT(__kmp_affinity_type == affinity_none);
|
|
|
|
nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(
|
|
hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0), HWLOC_OBJ_CORE);
|
|
__kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(
|
|
hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0), HWLOC_OBJ_PU);
|
|
__kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
|
|
nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
|
|
if (__kmp_affinity_verbose) {
|
|
KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
|
|
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
|
|
if (__kmp_affinity_uniform_topology()) {
|
|
KMP_INFORM(Uniform, "KMP_AFFINITY");
|
|
} else {
|
|
KMP_INFORM(NonUniform, "KMP_AFFINITY");
|
|
}
|
|
KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
|
|
__kmp_nThreadsPerCore, __kmp_ncores);
|
|
}
|
|
KMP_CPU_FREE(oldMask);
|
|
return 0;
|
|
}
|
|
|
|
int depth = 3;
|
|
int levels[5] = {0, 1, 2, 3, 4}; // package, [node,] [tile,] core, thread
|
|
int labels[3] = {0}; // package [,node] [,tile] - head of lables array
|
|
if (__kmp_numa_detected)
|
|
++depth;
|
|
if (__kmp_tile_depth)
|
|
++depth;
|
|
|
|
// Allocate the data structure to be returned.
|
|
AddrUnsPair *retval =
|
|
(AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
|
|
KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
|
|
__kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
|
|
|
|
// When affinity is off, this routine will still be called to set
|
|
// __kmp_ncores, as well as __kmp_nThreadsPerCore,
|
|
// nCoresPerPkg, & nPackages. Make sure all these vars are set
|
|
// correctly, and return if affinity is not enabled.
|
|
|
|
hwloc_obj_t socket, node, tile;
|
|
int nActiveThreads = 0;
|
|
int socket_id = 0;
|
|
// re-calculate globals to count only accessible resources
|
|
__kmp_ncores = nPackages = nCoresPerPkg = __kmp_nThreadsPerCore = 0;
|
|
nNodePerPkg = nTilePerPkg = nTilePerNode = nCorePerNode = nCorePerTile = 0;
|
|
for (socket = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); socket != NULL;
|
|
socket = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, socket),
|
|
socket_id++) {
|
|
labels[0] = socket_id;
|
|
if (__kmp_numa_detected) {
|
|
int NN;
|
|
int n_active_nodes = 0;
|
|
node = NULL;
|
|
NN = __kmp_hwloc_count_children_by_type(tp, socket, HWLOC_OBJ_NUMANODE,
|
|
&node);
|
|
for (int node_id = 0; node_id < NN; ++node_id, node = node->next_cousin) {
|
|
labels[1] = node_id;
|
|
if (__kmp_tile_depth) {
|
|
// NUMA + tiles
|
|
int NT;
|
|
int n_active_tiles = 0;
|
|
tile = NULL;
|
|
NT = __kmp_hwloc_count_children_by_depth(tp, node, __kmp_tile_depth,
|
|
&tile);
|
|
for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) {
|
|
labels[2] = tl_id;
|
|
int n_active_cores = 0;
|
|
__kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
|
|
n_active_cores, tile, 3, labels);
|
|
if (n_active_cores) { // were there any active cores on the socket?
|
|
++n_active_tiles; // count active tiles per node
|
|
if (n_active_cores > nCorePerTile)
|
|
nCorePerTile = n_active_cores; // calc maximum
|
|
}
|
|
}
|
|
if (n_active_tiles) { // were there any active tiles on the socket?
|
|
++n_active_nodes; // count active nodes per package
|
|
if (n_active_tiles > nTilePerNode)
|
|
nTilePerNode = n_active_tiles; // calc maximum
|
|
}
|
|
} else {
|
|
// NUMA, no tiles
|
|
int n_active_cores = 0;
|
|
__kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
|
|
n_active_cores, node, 2, labels);
|
|
if (n_active_cores) { // were there any active cores on the socket?
|
|
++n_active_nodes; // count active nodes per package
|
|
if (n_active_cores > nCorePerNode)
|
|
nCorePerNode = n_active_cores; // calc maximum
|
|
}
|
|
}
|
|
}
|
|
if (n_active_nodes) { // were there any active nodes on the socket?
|
|
++nPackages; // count total active packages
|
|
if (n_active_nodes > nNodePerPkg)
|
|
nNodePerPkg = n_active_nodes; // calc maximum
|
|
}
|
|
} else {
|
|
if (__kmp_tile_depth) {
|
|
// no NUMA, tiles
|
|
int NT;
|
|
int n_active_tiles = 0;
|
|
tile = NULL;
|
|
NT = __kmp_hwloc_count_children_by_depth(tp, socket, __kmp_tile_depth,
|
|
&tile);
|
|
for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) {
|
|
labels[1] = tl_id;
|
|
int n_active_cores = 0;
|
|
__kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
|
|
n_active_cores, tile, 2, labels);
|
|
if (n_active_cores) { // were there any active cores on the socket?
|
|
++n_active_tiles; // count active tiles per package
|
|
if (n_active_cores > nCorePerTile)
|
|
nCorePerTile = n_active_cores; // calc maximum
|
|
}
|
|
}
|
|
if (n_active_tiles) { // were there any active tiles on the socket?
|
|
++nPackages; // count total active packages
|
|
if (n_active_tiles > nTilePerPkg)
|
|
nTilePerPkg = n_active_tiles; // calc maximum
|
|
}
|
|
} else {
|
|
// no NUMA, no tiles
|
|
int n_active_cores = 0;
|
|
__kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, n_active_cores,
|
|
socket, 1, labels);
|
|
if (n_active_cores) { // were there any active cores on the socket?
|
|
++nPackages; // count total active packages
|
|
if (n_active_cores > nCoresPerPkg)
|
|
nCoresPerPkg = n_active_cores; // calc maximum
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If there's only one thread context to bind to, return now.
|
|
KMP_DEBUG_ASSERT(nActiveThreads == __kmp_avail_proc);
|
|
KMP_ASSERT(nActiveThreads > 0);
|
|
if (nActiveThreads == 1) {
|
|
__kmp_ncores = nPackages = 1;
|
|
__kmp_nThreadsPerCore = nCoresPerPkg = 1;
|
|
if (__kmp_affinity_verbose) {
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
|
|
|
|
KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
|
|
if (__kmp_affinity_respect_mask) {
|
|
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
|
|
} else {
|
|
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
|
|
}
|
|
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
|
|
KMP_INFORM(Uniform, "KMP_AFFINITY");
|
|
KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
|
|
__kmp_nThreadsPerCore, __kmp_ncores);
|
|
}
|
|
|
|
if (__kmp_affinity_type == affinity_none) {
|
|
__kmp_free(retval);
|
|
KMP_CPU_FREE(oldMask);
|
|
return 0;
|
|
}
|
|
|
|
// Form an Address object which only includes the package level.
|
|
Address addr(1);
|
|
addr.labels[0] = retval[0].first.labels[0];
|
|
retval[0].first = addr;
|
|
|
|
if (__kmp_affinity_gran_levels < 0) {
|
|
__kmp_affinity_gran_levels = 0;
|
|
}
|
|
|
|
if (__kmp_affinity_verbose) {
|
|
__kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
|
|
}
|
|
|
|
*address2os = retval;
|
|
KMP_CPU_FREE(oldMask);
|
|
return 1;
|
|
}
|
|
|
|
// Sort the table by physical Id.
|
|
qsort(retval, nActiveThreads, sizeof(*retval),
|
|
__kmp_affinity_cmp_Address_labels);
|
|
|
|
// Check to see if the machine topology is uniform
|
|
int nPUs = nPackages * __kmp_nThreadsPerCore;
|
|
if (__kmp_numa_detected) {
|
|
if (__kmp_tile_depth) { // NUMA + tiles
|
|
nPUs *= (nNodePerPkg * nTilePerNode * nCorePerTile);
|
|
} else { // NUMA, no tiles
|
|
nPUs *= (nNodePerPkg * nCorePerNode);
|
|
}
|
|
} else {
|
|
if (__kmp_tile_depth) { // no NUMA, tiles
|
|
nPUs *= (nTilePerPkg * nCorePerTile);
|
|
} else { // no NUMA, no tiles
|
|
nPUs *= nCoresPerPkg;
|
|
}
|
|
}
|
|
unsigned uniform = (nPUs == nActiveThreads);
|
|
|
|
// Print the machine topology summary.
|
|
if (__kmp_affinity_verbose) {
|
|
char mask[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
|
|
if (__kmp_affinity_respect_mask) {
|
|
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
|
|
} else {
|
|
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
|
|
}
|
|
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
|
|
if (uniform) {
|
|
KMP_INFORM(Uniform, "KMP_AFFINITY");
|
|
} else {
|
|
KMP_INFORM(NonUniform, "KMP_AFFINITY");
|
|
}
|
|
if (__kmp_numa_detected) {
|
|
if (__kmp_tile_depth) { // NUMA + tiles
|
|
KMP_INFORM(TopologyExtraNoTi, "KMP_AFFINITY", nPackages, nNodePerPkg,
|
|
nTilePerNode, nCorePerTile, __kmp_nThreadsPerCore,
|
|
__kmp_ncores);
|
|
} else { // NUMA, no tiles
|
|
KMP_INFORM(TopologyExtraNode, "KMP_AFFINITY", nPackages, nNodePerPkg,
|
|
nCorePerNode, __kmp_nThreadsPerCore, __kmp_ncores);
|
|
nPUs *= (nNodePerPkg * nCorePerNode);
|
|
}
|
|
} else {
|
|
if (__kmp_tile_depth) { // no NUMA, tiles
|
|
KMP_INFORM(TopologyExtraTile, "KMP_AFFINITY", nPackages, nTilePerPkg,
|
|
nCorePerTile, __kmp_nThreadsPerCore, __kmp_ncores);
|
|
} else { // no NUMA, no tiles
|
|
kmp_str_buf_t buf;
|
|
__kmp_str_buf_init(&buf);
|
|
__kmp_str_buf_print(&buf, "%d", nPackages);
|
|
KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
|
|
__kmp_nThreadsPerCore, __kmp_ncores);
|
|
__kmp_str_buf_free(&buf);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (__kmp_affinity_type == affinity_none) {
|
|
__kmp_free(retval);
|
|
KMP_CPU_FREE(oldMask);
|
|
return 0;
|
|
}
|
|
|
|
int depth_full = depth; // number of levels before compressing
|
|
// Find any levels with radiix 1, and remove them from the map
|
|
// (except for the package level).
|
|
depth = __kmp_affinity_remove_radix_one_levels(retval, nActiveThreads, depth,
|
|
levels);
|
|
KMP_DEBUG_ASSERT(__kmp_affinity_gran != affinity_gran_default);
|
|
if (__kmp_affinity_gran_levels < 0) {
|
|
// Set the granularity level based on what levels are modeled
|
|
// in the machine topology map.
|
|
__kmp_affinity_gran_levels = 0; // lowest level (e.g. fine)
|
|
if (__kmp_affinity_gran > affinity_gran_thread) {
|
|
for (int i = 1; i <= depth_full; ++i) {
|
|
if (__kmp_affinity_gran <= i) // only count deeper levels
|
|
break;
|
|
if (levels[depth_full - i] > 0)
|
|
__kmp_affinity_gran_levels++;
|
|
}
|
|
}
|
|
if (__kmp_affinity_gran > affinity_gran_package)
|
|
__kmp_affinity_gran_levels++; // e.g. granularity = group
|
|
}
|
|
|
|
if (__kmp_affinity_verbose)
|
|
__kmp_affinity_print_hwloc_tp(retval, nActiveThreads, depth, levels);
|
|
|
|
KMP_CPU_FREE(oldMask);
|
|
*address2os = retval;
|
|
return depth;
|
|
}
|
|
#endif // KMP_USE_HWLOC
|
|
|
|
// If we don't know how to retrieve the machine's processor topology, or
|
|
// encounter an error in doing so, this routine is called to form a "flat"
|
|
// mapping of os thread id's <-> processor id's.
|
|
static int __kmp_affinity_create_flat_map(AddrUnsPair **address2os,
|
|
kmp_i18n_id_t *const msg_id) {
|
|
*address2os = NULL;
|
|
*msg_id = kmp_i18n_null;
|
|
|
|
// Even if __kmp_affinity_type == affinity_none, this routine might still
|
|
// called to set __kmp_ncores, as well as
|
|
// __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
KMP_ASSERT(__kmp_affinity_type == affinity_none);
|
|
__kmp_ncores = nPackages = __kmp_xproc;
|
|
__kmp_nThreadsPerCore = nCoresPerPkg = 1;
|
|
if (__kmp_affinity_verbose) {
|
|
KMP_INFORM(AffFlatTopology, "KMP_AFFINITY");
|
|
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
|
|
KMP_INFORM(Uniform, "KMP_AFFINITY");
|
|
KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
|
|
__kmp_nThreadsPerCore, __kmp_ncores);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// When affinity is off, this routine will still be called to set
|
|
// __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
|
|
// Make sure all these vars are set correctly, and return now if affinity is
|
|
// not enabled.
|
|
__kmp_ncores = nPackages = __kmp_avail_proc;
|
|
__kmp_nThreadsPerCore = nCoresPerPkg = 1;
|
|
if (__kmp_affinity_verbose) {
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
|
|
__kmp_affin_fullMask);
|
|
|
|
KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY");
|
|
if (__kmp_affinity_respect_mask) {
|
|
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
|
|
} else {
|
|
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
|
|
}
|
|
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
|
|
KMP_INFORM(Uniform, "KMP_AFFINITY");
|
|
KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
|
|
__kmp_nThreadsPerCore, __kmp_ncores);
|
|
}
|
|
KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
|
|
__kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
|
|
if (__kmp_affinity_type == affinity_none) {
|
|
int avail_ct = 0;
|
|
int i;
|
|
KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
|
|
if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask))
|
|
continue;
|
|
__kmp_pu_os_idx[avail_ct++] = i; // suppose indices are flat
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Contruct the data structure to be returned.
|
|
*address2os =
|
|
(AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
|
|
int avail_ct = 0;
|
|
int i;
|
|
KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
|
|
// Skip this proc if it is not included in the machine model.
|
|
if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
|
|
continue;
|
|
}
|
|
__kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
|
|
Address addr(1);
|
|
addr.labels[0] = i;
|
|
(*address2os)[avail_ct++] = AddrUnsPair(addr, i);
|
|
}
|
|
if (__kmp_affinity_verbose) {
|
|
KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
|
|
}
|
|
|
|
if (__kmp_affinity_gran_levels < 0) {
|
|
// Only the package level is modeled in the machine topology map,
|
|
// so the #levels of granularity is either 0 or 1.
|
|
if (__kmp_affinity_gran > affinity_gran_package) {
|
|
__kmp_affinity_gran_levels = 1;
|
|
} else {
|
|
__kmp_affinity_gran_levels = 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
#if KMP_GROUP_AFFINITY
|
|
|
|
// If multiple Windows* OS processor groups exist, we can create a 2-level
|
|
// topology map with the groups at level 0 and the individual procs at level 1.
|
|
// This facilitates letting the threads float among all procs in a group,
|
|
// if granularity=group (the default when there are multiple groups).
|
|
static int __kmp_affinity_create_proc_group_map(AddrUnsPair **address2os,
|
|
kmp_i18n_id_t *const msg_id) {
|
|
*address2os = NULL;
|
|
*msg_id = kmp_i18n_null;
|
|
|
|
// If we aren't affinity capable, then return now.
|
|
// The flat mapping will be used.
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
// FIXME set *msg_id
|
|
return -1;
|
|
}
|
|
|
|
// Contruct the data structure to be returned.
|
|
*address2os =
|
|
(AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
|
|
KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
|
|
__kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
|
|
int avail_ct = 0;
|
|
int i;
|
|
KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
|
|
// Skip this proc if it is not included in the machine model.
|
|
if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
|
|
continue;
|
|
}
|
|
__kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
|
|
Address addr(2);
|
|
addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR));
|
|
addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR));
|
|
(*address2os)[avail_ct++] = AddrUnsPair(addr, i);
|
|
|
|
if (__kmp_affinity_verbose) {
|
|
KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0],
|
|
addr.labels[1]);
|
|
}
|
|
}
|
|
|
|
if (__kmp_affinity_gran_levels < 0) {
|
|
if (__kmp_affinity_gran == affinity_gran_group) {
|
|
__kmp_affinity_gran_levels = 1;
|
|
} else if ((__kmp_affinity_gran == affinity_gran_fine) ||
|
|
(__kmp_affinity_gran == affinity_gran_thread)) {
|
|
__kmp_affinity_gran_levels = 0;
|
|
} else {
|
|
const char *gran_str = NULL;
|
|
if (__kmp_affinity_gran == affinity_gran_core) {
|
|
gran_str = "core";
|
|
} else if (__kmp_affinity_gran == affinity_gran_package) {
|
|
gran_str = "package";
|
|
} else if (__kmp_affinity_gran == affinity_gran_node) {
|
|
gran_str = "node";
|
|
} else {
|
|
KMP_ASSERT(0);
|
|
}
|
|
|
|
// Warning: can't use affinity granularity \"gran\" with group topology
|
|
// method, using "thread"
|
|
__kmp_affinity_gran_levels = 0;
|
|
}
|
|
}
|
|
return 2;
|
|
}
|
|
|
|
#endif /* KMP_GROUP_AFFINITY */
|
|
|
|
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
|
|
|
|
static int __kmp_cpuid_mask_width(int count) {
|
|
int r = 0;
|
|
|
|
while ((1 << r) < count)
|
|
++r;
|
|
return r;
|
|
}
|
|
|
|
class apicThreadInfo {
|
|
public:
|
|
unsigned osId; // param to __kmp_affinity_bind_thread
|
|
unsigned apicId; // from cpuid after binding
|
|
unsigned maxCoresPerPkg; // ""
|
|
unsigned maxThreadsPerPkg; // ""
|
|
unsigned pkgId; // inferred from above values
|
|
unsigned coreId; // ""
|
|
unsigned threadId; // ""
|
|
};
|
|
|
|
static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
|
|
const void *b) {
|
|
const apicThreadInfo *aa = (const apicThreadInfo *)a;
|
|
const apicThreadInfo *bb = (const apicThreadInfo *)b;
|
|
if (aa->pkgId < bb->pkgId)
|
|
return -1;
|
|
if (aa->pkgId > bb->pkgId)
|
|
return 1;
|
|
if (aa->coreId < bb->coreId)
|
|
return -1;
|
|
if (aa->coreId > bb->coreId)
|
|
return 1;
|
|
if (aa->threadId < bb->threadId)
|
|
return -1;
|
|
if (aa->threadId > bb->threadId)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
// On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
|
|
// an algorithm which cycles through the available os threads, setting
|
|
// the current thread's affinity mask to that thread, and then retrieves
|
|
// the Apic Id for each thread context using the cpuid instruction.
|
|
static int __kmp_affinity_create_apicid_map(AddrUnsPair **address2os,
|
|
kmp_i18n_id_t *const msg_id) {
|
|
kmp_cpuid buf;
|
|
*address2os = NULL;
|
|
*msg_id = kmp_i18n_null;
|
|
|
|
// Check if cpuid leaf 4 is supported.
|
|
__kmp_x86_cpuid(0, 0, &buf);
|
|
if (buf.eax < 4) {
|
|
*msg_id = kmp_i18n_str_NoLeaf4Support;
|
|
return -1;
|
|
}
|
|
|
|
// The algorithm used starts by setting the affinity to each available thread
|
|
// and retrieving info from the cpuid instruction, so if we are not capable of
|
|
// calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
|
|
// need to do something else - use the defaults that we calculated from
|
|
// issuing cpuid without binding to each proc.
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
// Hack to try and infer the machine topology using only the data
|
|
// available from cpuid on the current thread, and __kmp_xproc.
|
|
KMP_ASSERT(__kmp_affinity_type == affinity_none);
|
|
|
|
// Get an upper bound on the number of threads per package using cpuid(1).
|
|
// On some OS/chps combinations where HT is supported by the chip but is
|
|
// disabled, this value will be 2 on a single core chip. Usually, it will be
|
|
// 2 if HT is enabled and 1 if HT is disabled.
|
|
__kmp_x86_cpuid(1, 0, &buf);
|
|
int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
|
|
if (maxThreadsPerPkg == 0) {
|
|
maxThreadsPerPkg = 1;
|
|
}
|
|
|
|
// The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
|
|
// value.
|
|
//
|
|
// The author of cpu_count.cpp treated this only an upper bound on the
|
|
// number of cores, but I haven't seen any cases where it was greater than
|
|
// the actual number of cores, so we will treat it as exact in this block of
|
|
// code.
|
|
//
|
|
// First, we need to check if cpuid(4) is supported on this chip. To see if
|
|
// cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
|
|
// greater.
|
|
__kmp_x86_cpuid(0, 0, &buf);
|
|
if (buf.eax >= 4) {
|
|
__kmp_x86_cpuid(4, 0, &buf);
|
|
nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
|
|
} else {
|
|
nCoresPerPkg = 1;
|
|
}
|
|
|
|
// There is no way to reliably tell if HT is enabled without issuing the
|
|
// cpuid instruction from every thread, can correlating the cpuid info, so
|
|
// if the machine is not affinity capable, we assume that HT is off. We have
|
|
// seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
|
|
// does not support HT.
|
|
//
|
|
// - Older OSes are usually found on machines with older chips, which do not
|
|
// support HT.
|
|
// - The performance penalty for mistakenly identifying a machine as HT when
|
|
// it isn't (which results in blocktime being incorrecly set to 0) is
|
|
// greater than the penalty when for mistakenly identifying a machine as
|
|
// being 1 thread/core when it is really HT enabled (which results in
|
|
// blocktime being incorrectly set to a positive value).
|
|
__kmp_ncores = __kmp_xproc;
|
|
nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
|
|
__kmp_nThreadsPerCore = 1;
|
|
if (__kmp_affinity_verbose) {
|
|
KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY");
|
|
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
|
|
if (__kmp_affinity_uniform_topology()) {
|
|
KMP_INFORM(Uniform, "KMP_AFFINITY");
|
|
} else {
|
|
KMP_INFORM(NonUniform, "KMP_AFFINITY");
|
|
}
|
|
KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
|
|
__kmp_nThreadsPerCore, __kmp_ncores);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// From here on, we can assume that it is safe to call
|
|
// __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
|
|
// __kmp_affinity_type = affinity_none.
|
|
|
|
// Save the affinity mask for the current thread.
|
|
kmp_affin_mask_t *oldMask;
|
|
KMP_CPU_ALLOC(oldMask);
|
|
KMP_ASSERT(oldMask != NULL);
|
|
__kmp_get_system_affinity(oldMask, TRUE);
|
|
|
|
// Run through each of the available contexts, binding the current thread
|
|
// to it, and obtaining the pertinent information using the cpuid instr.
|
|
//
|
|
// The relevant information is:
|
|
// - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
|
|
// has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
|
|
// - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
|
|
// of this field determines the width of the core# + thread# fields in the
|
|
// Apic Id. It is also an upper bound on the number of threads per
|
|
// package, but it has been verified that situations happen were it is not
|
|
// exact. In particular, on certain OS/chip combinations where Intel(R)
|
|
// Hyper-Threading Technology is supported by the chip but has been
|
|
// disabled, the value of this field will be 2 (for a single core chip).
|
|
// On other OS/chip combinations supporting Intel(R) Hyper-Threading
|
|
// Technology, the value of this field will be 1 when Intel(R)
|
|
// Hyper-Threading Technology is disabled and 2 when it is enabled.
|
|
// - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value
|
|
// of this field (+1) determines the width of the core# field in the Apic
|
|
// Id. The comments in "cpucount.cpp" say that this value is an upper
|
|
// bound, but the IA-32 architecture manual says that it is exactly the
|
|
// number of cores per package, and I haven't seen any case where it
|
|
// wasn't.
|
|
//
|
|
// From this information, deduce the package Id, core Id, and thread Id,
|
|
// and set the corresponding fields in the apicThreadInfo struct.
|
|
unsigned i;
|
|
apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
|
|
__kmp_avail_proc * sizeof(apicThreadInfo));
|
|
unsigned nApics = 0;
|
|
KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
|
|
// Skip this proc if it is not included in the machine model.
|
|
if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
|
|
continue;
|
|
}
|
|
KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
|
|
|
|
__kmp_affinity_dispatch->bind_thread(i);
|
|
threadInfo[nApics].osId = i;
|
|
|
|
// The apic id and max threads per pkg come from cpuid(1).
|
|
__kmp_x86_cpuid(1, 0, &buf);
|
|
if (((buf.edx >> 9) & 1) == 0) {
|
|
__kmp_set_system_affinity(oldMask, TRUE);
|
|
__kmp_free(threadInfo);
|
|
KMP_CPU_FREE(oldMask);
|
|
*msg_id = kmp_i18n_str_ApicNotPresent;
|
|
return -1;
|
|
}
|
|
threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
|
|
threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
|
|
if (threadInfo[nApics].maxThreadsPerPkg == 0) {
|
|
threadInfo[nApics].maxThreadsPerPkg = 1;
|
|
}
|
|
|
|
// Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
|
|
// value.
|
|
//
|
|
// First, we need to check if cpuid(4) is supported on this chip. To see if
|
|
// cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
|
|
// or greater.
|
|
__kmp_x86_cpuid(0, 0, &buf);
|
|
if (buf.eax >= 4) {
|
|
__kmp_x86_cpuid(4, 0, &buf);
|
|
threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
|
|
} else {
|
|
threadInfo[nApics].maxCoresPerPkg = 1;
|
|
}
|
|
|
|
// Infer the pkgId / coreId / threadId using only the info obtained locally.
|
|
int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
|
|
threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
|
|
|
|
int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
|
|
int widthT = widthCT - widthC;
|
|
if (widthT < 0) {
|
|
// I've never seen this one happen, but I suppose it could, if the cpuid
|
|
// instruction on a chip was really screwed up. Make sure to restore the
|
|
// affinity mask before the tail call.
|
|
__kmp_set_system_affinity(oldMask, TRUE);
|
|
__kmp_free(threadInfo);
|
|
KMP_CPU_FREE(oldMask);
|
|
*msg_id = kmp_i18n_str_InvalidCpuidInfo;
|
|
return -1;
|
|
}
|
|
|
|
int maskC = (1 << widthC) - 1;
|
|
threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
|
|
|
|
int maskT = (1 << widthT) - 1;
|
|
threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
|
|
|
|
nApics++;
|
|
}
|
|
|
|
// We've collected all the info we need.
|
|
// Restore the old affinity mask for this thread.
|
|
__kmp_set_system_affinity(oldMask, TRUE);
|
|
|
|
// If there's only one thread context to bind to, form an Address object
|
|
// with depth 1 and return immediately (or, if affinity is off, set
|
|
// address2os to NULL and return).
|
|
//
|
|
// If it is configured to omit the package level when there is only a single
|
|
// package, the logic at the end of this routine won't work if there is only
|
|
// a single thread - it would try to form an Address object with depth 0.
|
|
KMP_ASSERT(nApics > 0);
|
|
if (nApics == 1) {
|
|
__kmp_ncores = nPackages = 1;
|
|
__kmp_nThreadsPerCore = nCoresPerPkg = 1;
|
|
if (__kmp_affinity_verbose) {
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
|
|
|
|
KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
|
|
if (__kmp_affinity_respect_mask) {
|
|
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
|
|
} else {
|
|
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
|
|
}
|
|
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
|
|
KMP_INFORM(Uniform, "KMP_AFFINITY");
|
|
KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
|
|
__kmp_nThreadsPerCore, __kmp_ncores);
|
|
}
|
|
|
|
if (__kmp_affinity_type == affinity_none) {
|
|
__kmp_free(threadInfo);
|
|
KMP_CPU_FREE(oldMask);
|
|
return 0;
|
|
}
|
|
|
|
*address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair));
|
|
Address addr(1);
|
|
addr.labels[0] = threadInfo[0].pkgId;
|
|
(*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId);
|
|
|
|
if (__kmp_affinity_gran_levels < 0) {
|
|
__kmp_affinity_gran_levels = 0;
|
|
}
|
|
|
|
if (__kmp_affinity_verbose) {
|
|
__kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
|
|
}
|
|
|
|
__kmp_free(threadInfo);
|
|
KMP_CPU_FREE(oldMask);
|
|
return 1;
|
|
}
|
|
|
|
// Sort the threadInfo table by physical Id.
|
|
qsort(threadInfo, nApics, sizeof(*threadInfo),
|
|
__kmp_affinity_cmp_apicThreadInfo_phys_id);
|
|
|
|
// The table is now sorted by pkgId / coreId / threadId, but we really don't
|
|
// know the radix of any of the fields. pkgId's may be sparsely assigned among
|
|
// the chips on a system. Although coreId's are usually assigned
|
|
// [0 .. coresPerPkg-1] and threadId's are usually assigned
|
|
// [0..threadsPerCore-1], we don't want to make any such assumptions.
|
|
//
|
|
// For that matter, we don't know what coresPerPkg and threadsPerCore (or the
|
|
// total # packages) are at this point - we want to determine that now. We
|
|
// only have an upper bound on the first two figures.
|
|
//
|
|
// We also perform a consistency check at this point: the values returned by
|
|
// the cpuid instruction for any thread bound to a given package had better
|
|
// return the same info for maxThreadsPerPkg and maxCoresPerPkg.
|
|
nPackages = 1;
|
|
nCoresPerPkg = 1;
|
|
__kmp_nThreadsPerCore = 1;
|
|
unsigned nCores = 1;
|
|
|
|
unsigned pkgCt = 1; // to determine radii
|
|
unsigned lastPkgId = threadInfo[0].pkgId;
|
|
unsigned coreCt = 1;
|
|
unsigned lastCoreId = threadInfo[0].coreId;
|
|
unsigned threadCt = 1;
|
|
unsigned lastThreadId = threadInfo[0].threadId;
|
|
|
|
// intra-pkg consist checks
|
|
unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
|
|
unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
|
|
|
|
for (i = 1; i < nApics; i++) {
|
|
if (threadInfo[i].pkgId != lastPkgId) {
|
|
nCores++;
|
|
pkgCt++;
|
|
lastPkgId = threadInfo[i].pkgId;
|
|
if ((int)coreCt > nCoresPerPkg)
|
|
nCoresPerPkg = coreCt;
|
|
coreCt = 1;
|
|
lastCoreId = threadInfo[i].coreId;
|
|
if ((int)threadCt > __kmp_nThreadsPerCore)
|
|
__kmp_nThreadsPerCore = threadCt;
|
|
threadCt = 1;
|
|
lastThreadId = threadInfo[i].threadId;
|
|
|
|
// This is a different package, so go on to the next iteration without
|
|
// doing any consistency checks. Reset the consistency check vars, though.
|
|
prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
|
|
prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
|
|
continue;
|
|
}
|
|
|
|
if (threadInfo[i].coreId != lastCoreId) {
|
|
nCores++;
|
|
coreCt++;
|
|
lastCoreId = threadInfo[i].coreId;
|
|
if ((int)threadCt > __kmp_nThreadsPerCore)
|
|
__kmp_nThreadsPerCore = threadCt;
|
|
threadCt = 1;
|
|
lastThreadId = threadInfo[i].threadId;
|
|
} else if (threadInfo[i].threadId != lastThreadId) {
|
|
threadCt++;
|
|
lastThreadId = threadInfo[i].threadId;
|
|
} else {
|
|
__kmp_free(threadInfo);
|
|
KMP_CPU_FREE(oldMask);
|
|
*msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
|
|
return -1;
|
|
}
|
|
|
|
// Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
|
|
// fields agree between all the threads bounds to a given package.
|
|
if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
|
|
(prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
|
|
__kmp_free(threadInfo);
|
|
KMP_CPU_FREE(oldMask);
|
|
*msg_id = kmp_i18n_str_InconsistentCpuidInfo;
|
|
return -1;
|
|
}
|
|
}
|
|
nPackages = pkgCt;
|
|
if ((int)coreCt > nCoresPerPkg)
|
|
nCoresPerPkg = coreCt;
|
|
if ((int)threadCt > __kmp_nThreadsPerCore)
|
|
__kmp_nThreadsPerCore = threadCt;
|
|
|
|
// When affinity is off, this routine will still be called to set
|
|
// __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
|
|
// Make sure all these vars are set correctly, and return now if affinity is
|
|
// not enabled.
|
|
__kmp_ncores = nCores;
|
|
if (__kmp_affinity_verbose) {
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
|
|
|
|
KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
|
|
if (__kmp_affinity_respect_mask) {
|
|
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
|
|
} else {
|
|
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
|
|
}
|
|
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
|
|
if (__kmp_affinity_uniform_topology()) {
|
|
KMP_INFORM(Uniform, "KMP_AFFINITY");
|
|
} else {
|
|
KMP_INFORM(NonUniform, "KMP_AFFINITY");
|
|
}
|
|
KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
|
|
__kmp_nThreadsPerCore, __kmp_ncores);
|
|
}
|
|
KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
|
|
KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc);
|
|
__kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
|
|
for (i = 0; i < nApics; ++i) {
|
|
__kmp_pu_os_idx[i] = threadInfo[i].osId;
|
|
}
|
|
if (__kmp_affinity_type == affinity_none) {
|
|
__kmp_free(threadInfo);
|
|
KMP_CPU_FREE(oldMask);
|
|
return 0;
|
|
}
|
|
|
|
// Now that we've determined the number of packages, the number of cores per
|
|
// package, and the number of threads per core, we can construct the data
|
|
// structure that is to be returned.
|
|
int pkgLevel = 0;
|
|
int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1;
|
|
int threadLevel =
|
|
(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
|
|
unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
|
|
|
|
KMP_ASSERT(depth > 0);
|
|
*address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
|
|
|
|
for (i = 0; i < nApics; ++i) {
|
|
Address addr(depth);
|
|
unsigned os = threadInfo[i].osId;
|
|
int d = 0;
|
|
|
|
if (pkgLevel >= 0) {
|
|
addr.labels[d++] = threadInfo[i].pkgId;
|
|
}
|
|
if (coreLevel >= 0) {
|
|
addr.labels[d++] = threadInfo[i].coreId;
|
|
}
|
|
if (threadLevel >= 0) {
|
|
addr.labels[d++] = threadInfo[i].threadId;
|
|
}
|
|
(*address2os)[i] = AddrUnsPair(addr, os);
|
|
}
|
|
|
|
if (__kmp_affinity_gran_levels < 0) {
|
|
// Set the granularity level based on what levels are modeled in the machine
|
|
// topology map.
|
|
__kmp_affinity_gran_levels = 0;
|
|
if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
|
|
__kmp_affinity_gran_levels++;
|
|
}
|
|
if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
|
|
__kmp_affinity_gran_levels++;
|
|
}
|
|
if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) {
|
|
__kmp_affinity_gran_levels++;
|
|
}
|
|
}
|
|
|
|
if (__kmp_affinity_verbose) {
|
|
__kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel,
|
|
coreLevel, threadLevel);
|
|
}
|
|
|
|
__kmp_free(threadInfo);
|
|
KMP_CPU_FREE(oldMask);
|
|
return depth;
|
|
}
|
|
|
|
// Intel(R) microarchitecture code name Nehalem, Dunnington and later
|
|
// architectures support a newer interface for specifying the x2APIC Ids,
|
|
// based on cpuid leaf 11.
|
|
static int __kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os,
|
|
kmp_i18n_id_t *const msg_id) {
|
|
kmp_cpuid buf;
|
|
*address2os = NULL;
|
|
*msg_id = kmp_i18n_null;
|
|
|
|
// Check to see if cpuid leaf 11 is supported.
|
|
__kmp_x86_cpuid(0, 0, &buf);
|
|
if (buf.eax < 11) {
|
|
*msg_id = kmp_i18n_str_NoLeaf11Support;
|
|
return -1;
|
|
}
|
|
__kmp_x86_cpuid(11, 0, &buf);
|
|
if (buf.ebx == 0) {
|
|
*msg_id = kmp_i18n_str_NoLeaf11Support;
|
|
return -1;
|
|
}
|
|
|
|
// Find the number of levels in the machine topology. While we're at it, get
|
|
// the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will try to
|
|
// get more accurate values later by explicitly counting them, but get
|
|
// reasonable defaults now, in case we return early.
|
|
int level;
|
|
int threadLevel = -1;
|
|
int coreLevel = -1;
|
|
int pkgLevel = -1;
|
|
__kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
|
|
|
|
for (level = 0;; level++) {
|
|
if (level > 31) {
|
|
// FIXME: Hack for DPD200163180
|
|
//
|
|
// If level is big then something went wrong -> exiting
|
|
//
|
|
// There could actually be 32 valid levels in the machine topology, but so
|
|
// far, the only machine we have seen which does not exit this loop before
|
|
// iteration 32 has fubar x2APIC settings.
|
|
//
|
|
// For now, just reject this case based upon loop trip count.
|
|
*msg_id = kmp_i18n_str_InvalidCpuidInfo;
|
|
return -1;
|
|
}
|
|
__kmp_x86_cpuid(11, level, &buf);
|
|
if (buf.ebx == 0) {
|
|
if (pkgLevel < 0) {
|
|
// Will infer nPackages from __kmp_xproc
|
|
pkgLevel = level;
|
|
level++;
|
|
}
|
|
break;
|
|
}
|
|
int kind = (buf.ecx >> 8) & 0xff;
|
|
if (kind == 1) {
|
|
// SMT level
|
|
threadLevel = level;
|
|
coreLevel = -1;
|
|
pkgLevel = -1;
|
|
__kmp_nThreadsPerCore = buf.ebx & 0xffff;
|
|
if (__kmp_nThreadsPerCore == 0) {
|
|
*msg_id = kmp_i18n_str_InvalidCpuidInfo;
|
|
return -1;
|
|
}
|
|
} else if (kind == 2) {
|
|
// core level
|
|
coreLevel = level;
|
|
pkgLevel = -1;
|
|
nCoresPerPkg = buf.ebx & 0xffff;
|
|
if (nCoresPerPkg == 0) {
|
|
*msg_id = kmp_i18n_str_InvalidCpuidInfo;
|
|
return -1;
|
|
}
|
|
} else {
|
|
if (level <= 0) {
|
|
*msg_id = kmp_i18n_str_InvalidCpuidInfo;
|
|
return -1;
|
|
}
|
|
if (pkgLevel >= 0) {
|
|
continue;
|
|
}
|
|
pkgLevel = level;
|
|
nPackages = buf.ebx & 0xffff;
|
|
if (nPackages == 0) {
|
|
*msg_id = kmp_i18n_str_InvalidCpuidInfo;
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
int depth = level;
|
|
|
|
// In the above loop, "level" was counted from the finest level (usually
|
|
// thread) to the coarsest. The caller expects that we will place the labels
|
|
// in (*address2os)[].first.labels[] in the inverse order, so we need to
|
|
// invert the vars saying which level means what.
|
|
if (threadLevel >= 0) {
|
|
threadLevel = depth - threadLevel - 1;
|
|
}
|
|
if (coreLevel >= 0) {
|
|
coreLevel = depth - coreLevel - 1;
|
|
}
|
|
KMP_DEBUG_ASSERT(pkgLevel >= 0);
|
|
pkgLevel = depth - pkgLevel - 1;
|
|
|
|
// The algorithm used starts by setting the affinity to each available thread
|
|
// and retrieving info from the cpuid instruction, so if we are not capable of
|
|
// calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
|
|
// need to do something else - use the defaults that we calculated from
|
|
// issuing cpuid without binding to each proc.
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
// Hack to try and infer the machine topology using only the data
|
|
// available from cpuid on the current thread, and __kmp_xproc.
|
|
KMP_ASSERT(__kmp_affinity_type == affinity_none);
|
|
|
|
__kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
|
|
nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
|
|
if (__kmp_affinity_verbose) {
|
|
KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
|
|
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
|
|
if (__kmp_affinity_uniform_topology()) {
|
|
KMP_INFORM(Uniform, "KMP_AFFINITY");
|
|
} else {
|
|
KMP_INFORM(NonUniform, "KMP_AFFINITY");
|
|
}
|
|
KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
|
|
__kmp_nThreadsPerCore, __kmp_ncores);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// From here on, we can assume that it is safe to call
|
|
// __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
|
|
// __kmp_affinity_type = affinity_none.
|
|
|
|
// Save the affinity mask for the current thread.
|
|
kmp_affin_mask_t *oldMask;
|
|
KMP_CPU_ALLOC(oldMask);
|
|
__kmp_get_system_affinity(oldMask, TRUE);
|
|
|
|
// Allocate the data structure to be returned.
|
|
AddrUnsPair *retval =
|
|
(AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
|
|
|
|
// Run through each of the available contexts, binding the current thread
|
|
// to it, and obtaining the pertinent information using the cpuid instr.
|
|
unsigned int proc;
|
|
int nApics = 0;
|
|
KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
|
|
// Skip this proc if it is not included in the machine model.
|
|
if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
|
|
continue;
|
|
}
|
|
KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc);
|
|
|
|
__kmp_affinity_dispatch->bind_thread(proc);
|
|
|
|
// Extract labels for each level in the machine topology map from Apic ID.
|
|
Address addr(depth);
|
|
int prev_shift = 0;
|
|
|
|
for (level = 0; level < depth; level++) {
|
|
__kmp_x86_cpuid(11, level, &buf);
|
|
unsigned apicId = buf.edx;
|
|
if (buf.ebx == 0) {
|
|
if (level != depth - 1) {
|
|
KMP_CPU_FREE(oldMask);
|
|
*msg_id = kmp_i18n_str_InconsistentCpuidInfo;
|
|
return -1;
|
|
}
|
|
addr.labels[depth - level - 1] = apicId >> prev_shift;
|
|
level++;
|
|
break;
|
|
}
|
|
int shift = buf.eax & 0x1f;
|
|
int mask = (1 << shift) - 1;
|
|
addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift;
|
|
prev_shift = shift;
|
|
}
|
|
if (level != depth) {
|
|
KMP_CPU_FREE(oldMask);
|
|
*msg_id = kmp_i18n_str_InconsistentCpuidInfo;
|
|
return -1;
|
|
}
|
|
|
|
retval[nApics] = AddrUnsPair(addr, proc);
|
|
nApics++;
|
|
}
|
|
|
|
// We've collected all the info we need.
|
|
// Restore the old affinity mask for this thread.
|
|
__kmp_set_system_affinity(oldMask, TRUE);
|
|
|
|
// If there's only one thread context to bind to, return now.
|
|
KMP_ASSERT(nApics > 0);
|
|
if (nApics == 1) {
|
|
__kmp_ncores = nPackages = 1;
|
|
__kmp_nThreadsPerCore = nCoresPerPkg = 1;
|
|
if (__kmp_affinity_verbose) {
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
|
|
|
|
KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
|
|
if (__kmp_affinity_respect_mask) {
|
|
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
|
|
} else {
|
|
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
|
|
}
|
|
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
|
|
KMP_INFORM(Uniform, "KMP_AFFINITY");
|
|
KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
|
|
__kmp_nThreadsPerCore, __kmp_ncores);
|
|
}
|
|
|
|
if (__kmp_affinity_type == affinity_none) {
|
|
__kmp_free(retval);
|
|
KMP_CPU_FREE(oldMask);
|
|
return 0;
|
|
}
|
|
|
|
// Form an Address object which only includes the package level.
|
|
Address addr(1);
|
|
addr.labels[0] = retval[0].first.labels[pkgLevel];
|
|
retval[0].first = addr;
|
|
|
|
if (__kmp_affinity_gran_levels < 0) {
|
|
__kmp_affinity_gran_levels = 0;
|
|
}
|
|
|
|
if (__kmp_affinity_verbose) {
|
|
__kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
|
|
}
|
|
|
|
*address2os = retval;
|
|
KMP_CPU_FREE(oldMask);
|
|
return 1;
|
|
}
|
|
|
|
// Sort the table by physical Id.
|
|
qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels);
|
|
|
|
// Find the radix at each of the levels.
|
|
unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
|
|
unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
|
|
unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
|
|
unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
|
|
for (level = 0; level < depth; level++) {
|
|
totals[level] = 1;
|
|
maxCt[level] = 1;
|
|
counts[level] = 1;
|
|
last[level] = retval[0].first.labels[level];
|
|
}
|
|
|
|
// From here on, the iteration variable "level" runs from the finest level to
|
|
// the coarsest, i.e. we iterate forward through
|
|
// (*address2os)[].first.labels[] - in the previous loops, we iterated
|
|
// backwards.
|
|
for (proc = 1; (int)proc < nApics; proc++) {
|
|
int level;
|
|
for (level = 0; level < depth; level++) {
|
|
if (retval[proc].first.labels[level] != last[level]) {
|
|
int j;
|
|
for (j = level + 1; j < depth; j++) {
|
|
totals[j]++;
|
|
counts[j] = 1;
|
|
// The line below causes printing incorrect topology information in
|
|
// case the max value for some level (maxCt[level]) is encountered
|
|
// earlier than some less value while going through the array. For
|
|
// example, let pkg0 has 4 cores and pkg1 has 2 cores. Then
|
|
// maxCt[1] == 2
|
|
// whereas it must be 4.
|
|
// TODO!!! Check if it can be commented safely
|
|
// maxCt[j] = 1;
|
|
last[j] = retval[proc].first.labels[j];
|
|
}
|
|
totals[level]++;
|
|
counts[level]++;
|
|
if (counts[level] > maxCt[level]) {
|
|
maxCt[level] = counts[level];
|
|
}
|
|
last[level] = retval[proc].first.labels[level];
|
|
break;
|
|
} else if (level == depth - 1) {
|
|
__kmp_free(last);
|
|
__kmp_free(maxCt);
|
|
__kmp_free(counts);
|
|
__kmp_free(totals);
|
|
__kmp_free(retval);
|
|
KMP_CPU_FREE(oldMask);
|
|
*msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
// When affinity is off, this routine will still be called to set
|
|
// __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
|
|
// Make sure all these vars are set correctly, and return if affinity is not
|
|
// enabled.
|
|
if (threadLevel >= 0) {
|
|
__kmp_nThreadsPerCore = maxCt[threadLevel];
|
|
} else {
|
|
__kmp_nThreadsPerCore = 1;
|
|
}
|
|
nPackages = totals[pkgLevel];
|
|
|
|
if (coreLevel >= 0) {
|
|
__kmp_ncores = totals[coreLevel];
|
|
nCoresPerPkg = maxCt[coreLevel];
|
|
} else {
|
|
__kmp_ncores = nPackages;
|
|
nCoresPerPkg = 1;
|
|
}
|
|
|
|
// Check to see if the machine topology is uniform
|
|
unsigned prod = maxCt[0];
|
|
for (level = 1; level < depth; level++) {
|
|
prod *= maxCt[level];
|
|
}
|
|
bool uniform = (prod == totals[level - 1]);
|
|
|
|
// Print the machine topology summary.
|
|
if (__kmp_affinity_verbose) {
|
|
char mask[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
|
|
|
|
KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
|
|
if (__kmp_affinity_respect_mask) {
|
|
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
|
|
} else {
|
|
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
|
|
}
|
|
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
|
|
if (uniform) {
|
|
KMP_INFORM(Uniform, "KMP_AFFINITY");
|
|
} else {
|
|
KMP_INFORM(NonUniform, "KMP_AFFINITY");
|
|
}
|
|
|
|
kmp_str_buf_t buf;
|
|
__kmp_str_buf_init(&buf);
|
|
|
|
__kmp_str_buf_print(&buf, "%d", totals[0]);
|
|
for (level = 1; level <= pkgLevel; level++) {
|
|
__kmp_str_buf_print(&buf, " x %d", maxCt[level]);
|
|
}
|
|
KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
|
|
__kmp_nThreadsPerCore, __kmp_ncores);
|
|
|
|
__kmp_str_buf_free(&buf);
|
|
}
|
|
KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
|
|
KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc);
|
|
__kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
|
|
for (proc = 0; (int)proc < nApics; ++proc) {
|
|
__kmp_pu_os_idx[proc] = retval[proc].second;
|
|
}
|
|
if (__kmp_affinity_type == affinity_none) {
|
|
__kmp_free(last);
|
|
__kmp_free(maxCt);
|
|
__kmp_free(counts);
|
|
__kmp_free(totals);
|
|
__kmp_free(retval);
|
|
KMP_CPU_FREE(oldMask);
|
|
return 0;
|
|
}
|
|
|
|
// Find any levels with radiix 1, and remove them from the map
|
|
// (except for the package level).
|
|
int new_depth = 0;
|
|
for (level = 0; level < depth; level++) {
|
|
if ((maxCt[level] == 1) && (level != pkgLevel)) {
|
|
continue;
|
|
}
|
|
new_depth++;
|
|
}
|
|
|
|
// If we are removing any levels, allocate a new vector to return,
|
|
// and copy the relevant information to it.
|
|
if (new_depth != depth) {
|
|
AddrUnsPair *new_retval =
|
|
(AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
|
|
for (proc = 0; (int)proc < nApics; proc++) {
|
|
Address addr(new_depth);
|
|
new_retval[proc] = AddrUnsPair(addr, retval[proc].second);
|
|
}
|
|
int new_level = 0;
|
|
int newPkgLevel = -1;
|
|
int newCoreLevel = -1;
|
|
int newThreadLevel = -1;
|
|
for (level = 0; level < depth; level++) {
|
|
if ((maxCt[level] == 1) && (level != pkgLevel)) {
|
|
// Remove this level. Never remove the package level
|
|
continue;
|
|
}
|
|
if (level == pkgLevel) {
|
|
newPkgLevel = new_level;
|
|
}
|
|
if (level == coreLevel) {
|
|
newCoreLevel = new_level;
|
|
}
|
|
if (level == threadLevel) {
|
|
newThreadLevel = new_level;
|
|
}
|
|
for (proc = 0; (int)proc < nApics; proc++) {
|
|
new_retval[proc].first.labels[new_level] =
|
|
retval[proc].first.labels[level];
|
|
}
|
|
new_level++;
|
|
}
|
|
|
|
__kmp_free(retval);
|
|
retval = new_retval;
|
|
depth = new_depth;
|
|
pkgLevel = newPkgLevel;
|
|
coreLevel = newCoreLevel;
|
|
threadLevel = newThreadLevel;
|
|
}
|
|
|
|
if (__kmp_affinity_gran_levels < 0) {
|
|
// Set the granularity level based on what levels are modeled
|
|
// in the machine topology map.
|
|
__kmp_affinity_gran_levels = 0;
|
|
if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
|
|
__kmp_affinity_gran_levels++;
|
|
}
|
|
if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
|
|
__kmp_affinity_gran_levels++;
|
|
}
|
|
if (__kmp_affinity_gran > affinity_gran_package) {
|
|
__kmp_affinity_gran_levels++;
|
|
}
|
|
}
|
|
|
|
if (__kmp_affinity_verbose) {
|
|
__kmp_affinity_print_topology(retval, nApics, depth, pkgLevel, coreLevel,
|
|
threadLevel);
|
|
}
|
|
|
|
__kmp_free(last);
|
|
__kmp_free(maxCt);
|
|
__kmp_free(counts);
|
|
__kmp_free(totals);
|
|
KMP_CPU_FREE(oldMask);
|
|
*address2os = retval;
|
|
return depth;
|
|
}
|
|
|
|
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
|
|
|
|
#define osIdIndex 0
|
|
#define threadIdIndex 1
|
|
#define coreIdIndex 2
|
|
#define pkgIdIndex 3
|
|
#define nodeIdIndex 4
|
|
|
|
typedef unsigned *ProcCpuInfo;
|
|
static unsigned maxIndex = pkgIdIndex;
|
|
|
|
static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
|
|
const void *b) {
|
|
unsigned i;
|
|
const unsigned *aa = *(unsigned *const *)a;
|
|
const unsigned *bb = *(unsigned *const *)b;
|
|
for (i = maxIndex;; i--) {
|
|
if (aa[i] < bb[i])
|
|
return -1;
|
|
if (aa[i] > bb[i])
|
|
return 1;
|
|
if (i == osIdIndex)
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#if KMP_USE_HIER_SCHED
|
|
// Set the array sizes for the hierarchy layers
|
|
static void __kmp_dispatch_set_hierarchy_values() {
|
|
// Set the maximum number of L1's to number of cores
|
|
// Set the maximum number of L2's to to either number of cores / 2 for
|
|
// Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing
|
|
// Or the number of cores for Intel(R) Xeon(R) processors
|
|
// Set the maximum number of NUMA nodes and L3's to number of packages
|
|
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] =
|
|
nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
|
|
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores;
|
|
#if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
|
|
if (__kmp_mic_type >= mic3)
|
|
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2;
|
|
else
|
|
#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
|
|
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores;
|
|
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages;
|
|
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages;
|
|
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1;
|
|
// Set the number of threads per unit
|
|
// Number of hardware threads per L1/L2/L3/NUMA/LOOP
|
|
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1;
|
|
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] =
|
|
__kmp_nThreadsPerCore;
|
|
#if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
|
|
if (__kmp_mic_type >= mic3)
|
|
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
|
|
2 * __kmp_nThreadsPerCore;
|
|
else
|
|
#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
|
|
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
|
|
__kmp_nThreadsPerCore;
|
|
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] =
|
|
nCoresPerPkg * __kmp_nThreadsPerCore;
|
|
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] =
|
|
nCoresPerPkg * __kmp_nThreadsPerCore;
|
|
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] =
|
|
nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
|
|
}
|
|
|
|
// Return the index into the hierarchy for this tid and layer type (L1, L2, etc)
|
|
// i.e., this thread's L1 or this thread's L2, etc.
|
|
int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) {
|
|
int index = type + 1;
|
|
int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
|
|
KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST);
|
|
if (type == kmp_hier_layer_e::LAYER_THREAD)
|
|
return tid;
|
|
else if (type == kmp_hier_layer_e::LAYER_LOOP)
|
|
return 0;
|
|
KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0);
|
|
if (tid >= num_hw_threads)
|
|
tid = tid % num_hw_threads;
|
|
return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index];
|
|
}
|
|
|
|
// Return the number of t1's per t2
|
|
int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) {
|
|
int i1 = t1 + 1;
|
|
int i2 = t2 + 1;
|
|
KMP_DEBUG_ASSERT(i1 <= i2);
|
|
KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST);
|
|
KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST);
|
|
KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0);
|
|
// (nthreads/t2) / (nthreads/t1) = t1 / t2
|
|
return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1];
|
|
}
|
|
#endif // KMP_USE_HIER_SCHED
|
|
|
|
// Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
|
|
// affinity map.
|
|
static int __kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os,
|
|
int *line,
|
|
kmp_i18n_id_t *const msg_id,
|
|
FILE *f) {
|
|
*address2os = NULL;
|
|
*msg_id = kmp_i18n_null;
|
|
|
|
// Scan of the file, and count the number of "processor" (osId) fields,
|
|
// and find the highest value of <n> for a node_<n> field.
|
|
char buf[256];
|
|
unsigned num_records = 0;
|
|
while (!feof(f)) {
|
|
buf[sizeof(buf) - 1] = 1;
|
|
if (!fgets(buf, sizeof(buf), f)) {
|
|
// Read errors presumably because of EOF
|
|
break;
|
|
}
|
|
|
|
char s1[] = "processor";
|
|
if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
|
|
num_records++;
|
|
continue;
|
|
}
|
|
|
|
// FIXME - this will match "node_<n> <garbage>"
|
|
unsigned level;
|
|
if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
|
|
if (nodeIdIndex + level >= maxIndex) {
|
|
maxIndex = nodeIdIndex + level;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Check for empty file / no valid processor records, or too many. The number
|
|
// of records can't exceed the number of valid bits in the affinity mask.
|
|
if (num_records == 0) {
|
|
*line = 0;
|
|
*msg_id = kmp_i18n_str_NoProcRecords;
|
|
return -1;
|
|
}
|
|
if (num_records > (unsigned)__kmp_xproc) {
|
|
*line = 0;
|
|
*msg_id = kmp_i18n_str_TooManyProcRecords;
|
|
return -1;
|
|
}
|
|
|
|
// Set the file pointer back to the begginning, so that we can scan the file
|
|
// again, this time performing a full parse of the data. Allocate a vector of
|
|
// ProcCpuInfo object, where we will place the data. Adding an extra element
|
|
// at the end allows us to remove a lot of extra checks for termination
|
|
// conditions.
|
|
if (fseek(f, 0, SEEK_SET) != 0) {
|
|
*line = 0;
|
|
*msg_id = kmp_i18n_str_CantRewindCpuinfo;
|
|
return -1;
|
|
}
|
|
|
|
// Allocate the array of records to store the proc info in. The dummy
|
|
// element at the end makes the logic in filling them out easier to code.
|
|
unsigned **threadInfo =
|
|
(unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
|
|
unsigned i;
|
|
for (i = 0; i <= num_records; i++) {
|
|
threadInfo[i] =
|
|
(unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
|
|
}
|
|
|
|
#define CLEANUP_THREAD_INFO \
|
|
for (i = 0; i <= num_records; i++) { \
|
|
__kmp_free(threadInfo[i]); \
|
|
} \
|
|
__kmp_free(threadInfo);
|
|
|
|
// A value of UINT_MAX means that we didn't find the field
|
|
unsigned __index;
|
|
|
|
#define INIT_PROC_INFO(p) \
|
|
for (__index = 0; __index <= maxIndex; __index++) { \
|
|
(p)[__index] = UINT_MAX; \
|
|
}
|
|
|
|
for (i = 0; i <= num_records; i++) {
|
|
INIT_PROC_INFO(threadInfo[i]);
|
|
}
|
|
|
|
unsigned num_avail = 0;
|
|
*line = 0;
|
|
while (!feof(f)) {
|
|
// Create an inner scoping level, so that all the goto targets at the end of
|
|
// the loop appear in an outer scoping level. This avoids warnings about
|
|
// jumping past an initialization to a target in the same block.
|
|
{
|
|
buf[sizeof(buf) - 1] = 1;
|
|
bool long_line = false;
|
|
if (!fgets(buf, sizeof(buf), f)) {
|
|
// Read errors presumably because of EOF
|
|
// If there is valid data in threadInfo[num_avail], then fake
|
|
// a blank line in ensure that the last address gets parsed.
|
|
bool valid = false;
|
|
for (i = 0; i <= maxIndex; i++) {
|
|
if (threadInfo[num_avail][i] != UINT_MAX) {
|
|
valid = true;
|
|
}
|
|
}
|
|
if (!valid) {
|
|
break;
|
|
}
|
|
buf[0] = 0;
|
|
} else if (!buf[sizeof(buf) - 1]) {
|
|
// The line is longer than the buffer. Set a flag and don't
|
|
// emit an error if we were going to ignore the line, anyway.
|
|
long_line = true;
|
|
|
|
#define CHECK_LINE \
|
|
if (long_line) { \
|
|
CLEANUP_THREAD_INFO; \
|
|
*msg_id = kmp_i18n_str_LongLineCpuinfo; \
|
|
return -1; \
|
|
}
|
|
}
|
|
(*line)++;
|
|
|
|
char s1[] = "processor";
|
|
if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
|
|
CHECK_LINE;
|
|
char *p = strchr(buf + sizeof(s1) - 1, ':');
|
|
unsigned val;
|
|
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
|
|
goto no_val;
|
|
if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
|
|
#if KMP_ARCH_AARCH64
|
|
// Handle the old AArch64 /proc/cpuinfo layout differently,
|
|
// it contains all of the 'processor' entries listed in a
|
|
// single 'Processor' section, therefore the normal looking
|
|
// for duplicates in that section will always fail.
|
|
num_avail++;
|
|
#else
|
|
goto dup_field;
|
|
#endif
|
|
threadInfo[num_avail][osIdIndex] = val;
|
|
#if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
|
|
char path[256];
|
|
KMP_SNPRINTF(
|
|
path, sizeof(path),
|
|
"/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
|
|
threadInfo[num_avail][osIdIndex]);
|
|
__kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
|
|
|
|
KMP_SNPRINTF(path, sizeof(path),
|
|
"/sys/devices/system/cpu/cpu%u/topology/core_id",
|
|
threadInfo[num_avail][osIdIndex]);
|
|
__kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
|
|
continue;
|
|
#else
|
|
}
|
|
char s2[] = "physical id";
|
|
if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
|
|
CHECK_LINE;
|
|
char *p = strchr(buf + sizeof(s2) - 1, ':');
|
|
unsigned val;
|
|
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
|
|
goto no_val;
|
|
if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
|
|
goto dup_field;
|
|
threadInfo[num_avail][pkgIdIndex] = val;
|
|
continue;
|
|
}
|
|
char s3[] = "core id";
|
|
if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
|
|
CHECK_LINE;
|
|
char *p = strchr(buf + sizeof(s3) - 1, ':');
|
|
unsigned val;
|
|
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
|
|
goto no_val;
|
|
if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
|
|
goto dup_field;
|
|
threadInfo[num_avail][coreIdIndex] = val;
|
|
continue;
|
|
#endif // KMP_OS_LINUX && USE_SYSFS_INFO
|
|
}
|
|
char s4[] = "thread id";
|
|
if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
|
|
CHECK_LINE;
|
|
char *p = strchr(buf + sizeof(s4) - 1, ':');
|
|
unsigned val;
|
|
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
|
|
goto no_val;
|
|
if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
|
|
goto dup_field;
|
|
threadInfo[num_avail][threadIdIndex] = val;
|
|
continue;
|
|
}
|
|
unsigned level;
|
|
if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
|
|
CHECK_LINE;
|
|
char *p = strchr(buf + sizeof(s4) - 1, ':');
|
|
unsigned val;
|
|
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
|
|
goto no_val;
|
|
KMP_ASSERT(nodeIdIndex + level <= maxIndex);
|
|
if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
|
|
goto dup_field;
|
|
threadInfo[num_avail][nodeIdIndex + level] = val;
|
|
continue;
|
|
}
|
|
|
|
// We didn't recognize the leading token on the line. There are lots of
|
|
// leading tokens that we don't recognize - if the line isn't empty, go on
|
|
// to the next line.
|
|
if ((*buf != 0) && (*buf != '\n')) {
|
|
// If the line is longer than the buffer, read characters
|
|
// until we find a newline.
|
|
if (long_line) {
|
|
int ch;
|
|
while (((ch = fgetc(f)) != EOF) && (ch != '\n'))
|
|
;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// A newline has signalled the end of the processor record.
|
|
// Check that there aren't too many procs specified.
|
|
if ((int)num_avail == __kmp_xproc) {
|
|
CLEANUP_THREAD_INFO;
|
|
*msg_id = kmp_i18n_str_TooManyEntries;
|
|
return -1;
|
|
}
|
|
|
|
// Check for missing fields. The osId field must be there, and we
|
|
// currently require that the physical id field is specified, also.
|
|
if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
|
|
CLEANUP_THREAD_INFO;
|
|
*msg_id = kmp_i18n_str_MissingProcField;
|
|
return -1;
|
|
}
|
|
if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
|
|
CLEANUP_THREAD_INFO;
|
|
*msg_id = kmp_i18n_str_MissingPhysicalIDField;
|
|
return -1;
|
|
}
|
|
|
|
// Skip this proc if it is not included in the machine model.
|
|
if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
|
|
__kmp_affin_fullMask)) {
|
|
INIT_PROC_INFO(threadInfo[num_avail]);
|
|
continue;
|
|
}
|
|
|
|
// We have a successful parse of this proc's info.
|
|
// Increment the counter, and prepare for the next proc.
|
|
num_avail++;
|
|
KMP_ASSERT(num_avail <= num_records);
|
|
INIT_PROC_INFO(threadInfo[num_avail]);
|
|
}
|
|
continue;
|
|
|
|
no_val:
|
|
CLEANUP_THREAD_INFO;
|
|
*msg_id = kmp_i18n_str_MissingValCpuinfo;
|
|
return -1;
|
|
|
|
dup_field:
|
|
CLEANUP_THREAD_INFO;
|
|
*msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
|
|
return -1;
|
|
}
|
|
*line = 0;
|
|
|
|
#if KMP_MIC && REDUCE_TEAM_SIZE
|
|
unsigned teamSize = 0;
|
|
#endif // KMP_MIC && REDUCE_TEAM_SIZE
|
|
|
|
// check for num_records == __kmp_xproc ???
|
|
|
|
// If there's only one thread context to bind to, form an Address object with
|
|
// depth 1 and return immediately (or, if affinity is off, set address2os to
|
|
// NULL and return).
|
|
//
|
|
// If it is configured to omit the package level when there is only a single
|
|
// package, the logic at the end of this routine won't work if there is only a
|
|
// single thread - it would try to form an Address object with depth 0.
|
|
KMP_ASSERT(num_avail > 0);
|
|
KMP_ASSERT(num_avail <= num_records);
|
|
if (num_avail == 1) {
|
|
__kmp_ncores = 1;
|
|
__kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
|
|
if (__kmp_affinity_verbose) {
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
|
|
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
|
|
KMP_INFORM(Uniform, "KMP_AFFINITY");
|
|
} else {
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
|
|
__kmp_affin_fullMask);
|
|
KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
|
|
if (__kmp_affinity_respect_mask) {
|
|
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
|
|
} else {
|
|
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
|
|
}
|
|
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
|
|
KMP_INFORM(Uniform, "KMP_AFFINITY");
|
|
}
|
|
int index;
|
|
kmp_str_buf_t buf;
|
|
__kmp_str_buf_init(&buf);
|
|
__kmp_str_buf_print(&buf, "1");
|
|
for (index = maxIndex - 1; index > pkgIdIndex; index--) {
|
|
__kmp_str_buf_print(&buf, " x 1");
|
|
}
|
|
KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1);
|
|
__kmp_str_buf_free(&buf);
|
|
}
|
|
|
|
if (__kmp_affinity_type == affinity_none) {
|
|
CLEANUP_THREAD_INFO;
|
|
return 0;
|
|
}
|
|
|
|
*address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair));
|
|
Address addr(1);
|
|
addr.labels[0] = threadInfo[0][pkgIdIndex];
|
|
(*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]);
|
|
|
|
if (__kmp_affinity_gran_levels < 0) {
|
|
__kmp_affinity_gran_levels = 0;
|
|
}
|
|
|
|
if (__kmp_affinity_verbose) {
|
|
__kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
|
|
}
|
|
|
|
CLEANUP_THREAD_INFO;
|
|
return 1;
|
|
}
|
|
|
|
// Sort the threadInfo table by physical Id.
|
|
qsort(threadInfo, num_avail, sizeof(*threadInfo),
|
|
__kmp_affinity_cmp_ProcCpuInfo_phys_id);
|
|
|
|
// The table is now sorted by pkgId / coreId / threadId, but we really don't
|
|
// know the radix of any of the fields. pkgId's may be sparsely assigned among
|
|
// the chips on a system. Although coreId's are usually assigned
|
|
// [0 .. coresPerPkg-1] and threadId's are usually assigned
|
|
// [0..threadsPerCore-1], we don't want to make any such assumptions.
|
|
//
|
|
// For that matter, we don't know what coresPerPkg and threadsPerCore (or the
|
|
// total # packages) are at this point - we want to determine that now. We
|
|
// only have an upper bound on the first two figures.
|
|
unsigned *counts =
|
|
(unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
|
|
unsigned *maxCt =
|
|
(unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
|
|
unsigned *totals =
|
|
(unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
|
|
unsigned *lastId =
|
|
(unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
|
|
|
|
bool assign_thread_ids = false;
|
|
unsigned threadIdCt;
|
|
unsigned index;
|
|
|
|
restart_radix_check:
|
|
threadIdCt = 0;
|
|
|
|
// Initialize the counter arrays with data from threadInfo[0].
|
|
if (assign_thread_ids) {
|
|
if (threadInfo[0][threadIdIndex] == UINT_MAX) {
|
|
threadInfo[0][threadIdIndex] = threadIdCt++;
|
|
} else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
|
|
threadIdCt = threadInfo[0][threadIdIndex] + 1;
|
|
}
|
|
}
|
|
for (index = 0; index <= maxIndex; index++) {
|
|
counts[index] = 1;
|
|
maxCt[index] = 1;
|
|
totals[index] = 1;
|
|
lastId[index] = threadInfo[0][index];
|
|
;
|
|
}
|
|
|
|
// Run through the rest of the OS procs.
|
|
for (i = 1; i < num_avail; i++) {
|
|
// Find the most significant index whose id differs from the id for the
|
|
// previous OS proc.
|
|
for (index = maxIndex; index >= threadIdIndex; index--) {
|
|
if (assign_thread_ids && (index == threadIdIndex)) {
|
|
// Auto-assign the thread id field if it wasn't specified.
|
|
if (threadInfo[i][threadIdIndex] == UINT_MAX) {
|
|
threadInfo[i][threadIdIndex] = threadIdCt++;
|
|
}
|
|
// Apparently the thread id field was specified for some entries and not
|
|
// others. Start the thread id counter off at the next higher thread id.
|
|
else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
|
|
threadIdCt = threadInfo[i][threadIdIndex] + 1;
|
|
}
|
|
}
|
|
if (threadInfo[i][index] != lastId[index]) {
|
|
// Run through all indices which are less significant, and reset the
|
|
// counts to 1. At all levels up to and including index, we need to
|
|
// increment the totals and record the last id.
|
|
unsigned index2;
|
|
for (index2 = threadIdIndex; index2 < index; index2++) {
|
|
totals[index2]++;
|
|
if (counts[index2] > maxCt[index2]) {
|
|
maxCt[index2] = counts[index2];
|
|
}
|
|
counts[index2] = 1;
|
|
lastId[index2] = threadInfo[i][index2];
|
|
}
|
|
counts[index]++;
|
|
totals[index]++;
|
|
lastId[index] = threadInfo[i][index];
|
|
|
|
if (assign_thread_ids && (index > threadIdIndex)) {
|
|
|
|
#if KMP_MIC && REDUCE_TEAM_SIZE
|
|
// The default team size is the total #threads in the machine
|
|
// minus 1 thread for every core that has 3 or more threads.
|
|
teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
|
|
#endif // KMP_MIC && REDUCE_TEAM_SIZE
|
|
|
|
// Restart the thread counter, as we are on a new core.
|
|
threadIdCt = 0;
|
|
|
|
// Auto-assign the thread id field if it wasn't specified.
|
|
if (threadInfo[i][threadIdIndex] == UINT_MAX) {
|
|
threadInfo[i][threadIdIndex] = threadIdCt++;
|
|
}
|
|
|
|
// Aparrently the thread id field was specified for some entries and
|
|
// not others. Start the thread id counter off at the next higher
|
|
// thread id.
|
|
else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
|
|
threadIdCt = threadInfo[i][threadIdIndex] + 1;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if (index < threadIdIndex) {
|
|
// If thread ids were specified, it is an error if they are not unique.
|
|
// Also, check that we waven't already restarted the loop (to be safe -
|
|
// shouldn't need to).
|
|
if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
|
|
__kmp_free(lastId);
|
|
__kmp_free(totals);
|
|
__kmp_free(maxCt);
|
|
__kmp_free(counts);
|
|
CLEANUP_THREAD_INFO;
|
|
*msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
|
|
return -1;
|
|
}
|
|
|
|
// If the thread ids were not specified and we see entries entries that
|
|
// are duplicates, start the loop over and assign the thread ids manually.
|
|
assign_thread_ids = true;
|
|
goto restart_radix_check;
|
|
}
|
|
}
|
|
|
|
#if KMP_MIC && REDUCE_TEAM_SIZE
|
|
// The default team size is the total #threads in the machine
|
|
// minus 1 thread for every core that has 3 or more threads.
|
|
teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
|
|
#endif // KMP_MIC && REDUCE_TEAM_SIZE
|
|
|
|
for (index = threadIdIndex; index <= maxIndex; index++) {
|
|
if (counts[index] > maxCt[index]) {
|
|
maxCt[index] = counts[index];
|
|
}
|
|
}
|
|
|
|
__kmp_nThreadsPerCore = maxCt[threadIdIndex];
|
|
nCoresPerPkg = maxCt[coreIdIndex];
|
|
nPackages = totals[pkgIdIndex];
|
|
|
|
// Check to see if the machine topology is uniform
|
|
unsigned prod = totals[maxIndex];
|
|
for (index = threadIdIndex; index < maxIndex; index++) {
|
|
prod *= maxCt[index];
|
|
}
|
|
bool uniform = (prod == totals[threadIdIndex]);
|
|
|
|
// When affinity is off, this routine will still be called to set
|
|
// __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
|
|
// Make sure all these vars are set correctly, and return now if affinity is
|
|
// not enabled.
|
|
__kmp_ncores = totals[coreIdIndex];
|
|
|
|
if (__kmp_affinity_verbose) {
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
|
|
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
|
|
if (uniform) {
|
|
KMP_INFORM(Uniform, "KMP_AFFINITY");
|
|
} else {
|
|
KMP_INFORM(NonUniform, "KMP_AFFINITY");
|
|
}
|
|
} else {
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
|
|
__kmp_affin_fullMask);
|
|
KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
|
|
if (__kmp_affinity_respect_mask) {
|
|
KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
|
|
} else {
|
|
KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
|
|
}
|
|
KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
|
|
if (uniform) {
|
|
KMP_INFORM(Uniform, "KMP_AFFINITY");
|
|
} else {
|
|
KMP_INFORM(NonUniform, "KMP_AFFINITY");
|
|
}
|
|
}
|
|
kmp_str_buf_t buf;
|
|
__kmp_str_buf_init(&buf);
|
|
|
|
__kmp_str_buf_print(&buf, "%d", totals[maxIndex]);
|
|
for (index = maxIndex - 1; index >= pkgIdIndex; index--) {
|
|
__kmp_str_buf_print(&buf, " x %d", maxCt[index]);
|
|
}
|
|
KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex],
|
|
maxCt[threadIdIndex], __kmp_ncores);
|
|
|
|
__kmp_str_buf_free(&buf);
|
|
}
|
|
|
|
#if KMP_MIC && REDUCE_TEAM_SIZE
|
|
// Set the default team size.
|
|
if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
|
|
__kmp_dflt_team_nth = teamSize;
|
|
KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
|
|
"__kmp_dflt_team_nth = %d\n",
|
|
__kmp_dflt_team_nth));
|
|
}
|
|
#endif // KMP_MIC && REDUCE_TEAM_SIZE
|
|
|
|
KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
|
|
KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc);
|
|
__kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
|
|
for (i = 0; i < num_avail; ++i) { // fill the os indices
|
|
__kmp_pu_os_idx[i] = threadInfo[i][osIdIndex];
|
|
}
|
|
|
|
if (__kmp_affinity_type == affinity_none) {
|
|
__kmp_free(lastId);
|
|
__kmp_free(totals);
|
|
__kmp_free(maxCt);
|
|
__kmp_free(counts);
|
|
CLEANUP_THREAD_INFO;
|
|
return 0;
|
|
}
|
|
|
|
// Count the number of levels which have more nodes at that level than at the
|
|
// parent's level (with there being an implicit root node of the top level).
|
|
// This is equivalent to saying that there is at least one node at this level
|
|
// which has a sibling. These levels are in the map, and the package level is
|
|
// always in the map.
|
|
bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
|
|
for (index = threadIdIndex; index < maxIndex; index++) {
|
|
KMP_ASSERT(totals[index] >= totals[index + 1]);
|
|
inMap[index] = (totals[index] > totals[index + 1]);
|
|
}
|
|
inMap[maxIndex] = (totals[maxIndex] > 1);
|
|
inMap[pkgIdIndex] = true;
|
|
|
|
int depth = 0;
|
|
for (index = threadIdIndex; index <= maxIndex; index++) {
|
|
if (inMap[index]) {
|
|
depth++;
|
|
}
|
|
}
|
|
KMP_ASSERT(depth > 0);
|
|
|
|
// Construct the data structure that is to be returned.
|
|
*address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * num_avail);
|
|
int pkgLevel = -1;
|
|
int coreLevel = -1;
|
|
int threadLevel = -1;
|
|
|
|
for (i = 0; i < num_avail; ++i) {
|
|
Address addr(depth);
|
|
unsigned os = threadInfo[i][osIdIndex];
|
|
int src_index;
|
|
int dst_index = 0;
|
|
|
|
for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
|
|
if (!inMap[src_index]) {
|
|
continue;
|
|
}
|
|
addr.labels[dst_index] = threadInfo[i][src_index];
|
|
if (src_index == pkgIdIndex) {
|
|
pkgLevel = dst_index;
|
|
} else if (src_index == coreIdIndex) {
|
|
coreLevel = dst_index;
|
|
} else if (src_index == threadIdIndex) {
|
|
threadLevel = dst_index;
|
|
}
|
|
dst_index++;
|
|
}
|
|
(*address2os)[i] = AddrUnsPair(addr, os);
|
|
}
|
|
|
|
if (__kmp_affinity_gran_levels < 0) {
|
|
// Set the granularity level based on what levels are modeled
|
|
// in the machine topology map.
|
|
unsigned src_index;
|
|
__kmp_affinity_gran_levels = 0;
|
|
for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) {
|
|
if (!inMap[src_index]) {
|
|
continue;
|
|
}
|
|
switch (src_index) {
|
|
case threadIdIndex:
|
|
if (__kmp_affinity_gran > affinity_gran_thread) {
|
|
__kmp_affinity_gran_levels++;
|
|
}
|
|
|
|
break;
|
|
case coreIdIndex:
|
|
if (__kmp_affinity_gran > affinity_gran_core) {
|
|
__kmp_affinity_gran_levels++;
|
|
}
|
|
break;
|
|
|
|
case pkgIdIndex:
|
|
if (__kmp_affinity_gran > affinity_gran_package) {
|
|
__kmp_affinity_gran_levels++;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (__kmp_affinity_verbose) {
|
|
__kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel,
|
|
coreLevel, threadLevel);
|
|
}
|
|
|
|
__kmp_free(inMap);
|
|
__kmp_free(lastId);
|
|
__kmp_free(totals);
|
|
__kmp_free(maxCt);
|
|
__kmp_free(counts);
|
|
CLEANUP_THREAD_INFO;
|
|
return depth;
|
|
}
|
|
|
|
// Create and return a table of affinity masks, indexed by OS thread ID.
|
|
// This routine handles OR'ing together all the affinity masks of threads
|
|
// that are sufficiently close, if granularity > fine.
|
|
static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex,
|
|
unsigned *numUnique,
|
|
AddrUnsPair *address2os,
|
|
unsigned numAddrs) {
|
|
// First form a table of affinity masks in order of OS thread id.
|
|
unsigned depth;
|
|
unsigned maxOsId;
|
|
unsigned i;
|
|
|
|
KMP_ASSERT(numAddrs > 0);
|
|
depth = address2os[0].first.depth;
|
|
|
|
maxOsId = 0;
|
|
for (i = numAddrs - 1;; --i) {
|
|
unsigned osId = address2os[i].second;
|
|
if (osId > maxOsId) {
|
|
maxOsId = osId;
|
|
}
|
|
if (i == 0)
|
|
break;
|
|
}
|
|
kmp_affin_mask_t *osId2Mask;
|
|
KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1));
|
|
|
|
// Sort the address2os table according to physical order. Doing so will put
|
|
// all threads on the same core/package/node in consecutive locations.
|
|
qsort(address2os, numAddrs, sizeof(*address2os),
|
|
__kmp_affinity_cmp_Address_labels);
|
|
|
|
KMP_ASSERT(__kmp_affinity_gran_levels >= 0);
|
|
if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) {
|
|
KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels);
|
|
}
|
|
if (__kmp_affinity_gran_levels >= (int)depth) {
|
|
if (__kmp_affinity_verbose ||
|
|
(__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
|
|
KMP_WARNING(AffThreadsMayMigrate);
|
|
}
|
|
}
|
|
|
|
// Run through the table, forming the masks for all threads on each core.
|
|
// Threads on the same core will have identical "Address" objects, not
|
|
// considering the last level, which must be the thread id. All threads on a
|
|
// core will appear consecutively.
|
|
unsigned unique = 0;
|
|
unsigned j = 0; // index of 1st thread on core
|
|
unsigned leader = 0;
|
|
Address *leaderAddr = &(address2os[0].first);
|
|
kmp_affin_mask_t *sum;
|
|
KMP_CPU_ALLOC_ON_STACK(sum);
|
|
KMP_CPU_ZERO(sum);
|
|
KMP_CPU_SET(address2os[0].second, sum);
|
|
for (i = 1; i < numAddrs; i++) {
|
|
// If this thread is sufficiently close to the leader (within the
|
|
// granularity setting), then set the bit for this os thread in the
|
|
// affinity mask for this group, and go on to the next thread.
|
|
if (leaderAddr->isClose(address2os[i].first, __kmp_affinity_gran_levels)) {
|
|
KMP_CPU_SET(address2os[i].second, sum);
|
|
continue;
|
|
}
|
|
|
|
// For every thread in this group, copy the mask to the thread's entry in
|
|
// the osId2Mask table. Mark the first address as a leader.
|
|
for (; j < i; j++) {
|
|
unsigned osId = address2os[j].second;
|
|
KMP_DEBUG_ASSERT(osId <= maxOsId);
|
|
kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
|
|
KMP_CPU_COPY(mask, sum);
|
|
address2os[j].first.leader = (j == leader);
|
|
}
|
|
unique++;
|
|
|
|
// Start a new mask.
|
|
leader = i;
|
|
leaderAddr = &(address2os[i].first);
|
|
KMP_CPU_ZERO(sum);
|
|
KMP_CPU_SET(address2os[i].second, sum);
|
|
}
|
|
|
|
// For every thread in last group, copy the mask to the thread's
|
|
// entry in the osId2Mask table.
|
|
for (; j < i; j++) {
|
|
unsigned osId = address2os[j].second;
|
|
KMP_DEBUG_ASSERT(osId <= maxOsId);
|
|
kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
|
|
KMP_CPU_COPY(mask, sum);
|
|
address2os[j].first.leader = (j == leader);
|
|
}
|
|
unique++;
|
|
KMP_CPU_FREE_FROM_STACK(sum);
|
|
|
|
*maxIndex = maxOsId;
|
|
*numUnique = unique;
|
|
return osId2Mask;
|
|
}
|
|
|
|
// Stuff for the affinity proclist parsers. It's easier to declare these vars
|
|
// as file-static than to try and pass them through the calling sequence of
|
|
// the recursive-descent OMP_PLACES parser.
|
|
static kmp_affin_mask_t *newMasks;
|
|
static int numNewMasks;
|
|
static int nextNewMask;
|
|
|
|
#define ADD_MASK(_mask) \
|
|
{ \
|
|
if (nextNewMask >= numNewMasks) { \
|
|
int i; \
|
|
numNewMasks *= 2; \
|
|
kmp_affin_mask_t *temp; \
|
|
KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \
|
|
for (i = 0; i < numNewMasks / 2; i++) { \
|
|
kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \
|
|
kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \
|
|
KMP_CPU_COPY(dest, src); \
|
|
} \
|
|
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \
|
|
newMasks = temp; \
|
|
} \
|
|
KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \
|
|
nextNewMask++; \
|
|
}
|
|
|
|
#define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \
|
|
{ \
|
|
if (((_osId) > _maxOsId) || \
|
|
(!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \
|
|
if (__kmp_affinity_verbose || \
|
|
(__kmp_affinity_warnings && \
|
|
(__kmp_affinity_type != affinity_none))) { \
|
|
KMP_WARNING(AffIgnoreInvalidProcID, _osId); \
|
|
} \
|
|
} else { \
|
|
ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \
|
|
} \
|
|
}
|
|
|
|
// Re-parse the proclist (for the explicit affinity type), and form the list
|
|
// of affinity newMasks indexed by gtid.
|
|
static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks,
|
|
unsigned int *out_numMasks,
|
|
const char *proclist,
|
|
kmp_affin_mask_t *osId2Mask,
|
|
int maxOsId) {
|
|
int i;
|
|
const char *scan = proclist;
|
|
const char *next = proclist;
|
|
|
|
// We use malloc() for the temporary mask vector, so that we can use
|
|
// realloc() to extend it.
|
|
numNewMasks = 2;
|
|
KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
|
|
nextNewMask = 0;
|
|
kmp_affin_mask_t *sumMask;
|
|
KMP_CPU_ALLOC(sumMask);
|
|
int setSize = 0;
|
|
|
|
for (;;) {
|
|
int start, end, stride;
|
|
|
|
SKIP_WS(scan);
|
|
next = scan;
|
|
if (*next == '\0') {
|
|
break;
|
|
}
|
|
|
|
if (*next == '{') {
|
|
int num;
|
|
setSize = 0;
|
|
next++; // skip '{'
|
|
SKIP_WS(next);
|
|
scan = next;
|
|
|
|
// Read the first integer in the set.
|
|
KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
|
|
SKIP_DIGITS(next);
|
|
num = __kmp_str_to_int(scan, *next);
|
|
KMP_ASSERT2(num >= 0, "bad explicit proc list");
|
|
|
|
// Copy the mask for that osId to the sum (union) mask.
|
|
if ((num > maxOsId) ||
|
|
(!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
|
|
if (__kmp_affinity_verbose ||
|
|
(__kmp_affinity_warnings &&
|
|
(__kmp_affinity_type != affinity_none))) {
|
|
KMP_WARNING(AffIgnoreInvalidProcID, num);
|
|
}
|
|
KMP_CPU_ZERO(sumMask);
|
|
} else {
|
|
KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
|
|
setSize = 1;
|
|
}
|
|
|
|
for (;;) {
|
|
// Check for end of set.
|
|
SKIP_WS(next);
|
|
if (*next == '}') {
|
|
next++; // skip '}'
|
|
break;
|
|
}
|
|
|
|
// Skip optional comma.
|
|
if (*next == ',') {
|
|
next++;
|
|
}
|
|
SKIP_WS(next);
|
|
|
|
// Read the next integer in the set.
|
|
scan = next;
|
|
KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
|
|
|
|
SKIP_DIGITS(next);
|
|
num = __kmp_str_to_int(scan, *next);
|
|
KMP_ASSERT2(num >= 0, "bad explicit proc list");
|
|
|
|
// Add the mask for that osId to the sum mask.
|
|
if ((num > maxOsId) ||
|
|
(!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
|
|
if (__kmp_affinity_verbose ||
|
|
(__kmp_affinity_warnings &&
|
|
(__kmp_affinity_type != affinity_none))) {
|
|
KMP_WARNING(AffIgnoreInvalidProcID, num);
|
|
}
|
|
} else {
|
|
KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
|
|
setSize++;
|
|
}
|
|
}
|
|
if (setSize > 0) {
|
|
ADD_MASK(sumMask);
|
|
}
|
|
|
|
SKIP_WS(next);
|
|
if (*next == ',') {
|
|
next++;
|
|
}
|
|
scan = next;
|
|
continue;
|
|
}
|
|
|
|
// Read the first integer.
|
|
KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
|
|
SKIP_DIGITS(next);
|
|
start = __kmp_str_to_int(scan, *next);
|
|
KMP_ASSERT2(start >= 0, "bad explicit proc list");
|
|
SKIP_WS(next);
|
|
|
|
// If this isn't a range, then add a mask to the list and go on.
|
|
if (*next != '-') {
|
|
ADD_MASK_OSID(start, osId2Mask, maxOsId);
|
|
|
|
// Skip optional comma.
|
|
if (*next == ',') {
|
|
next++;
|
|
}
|
|
scan = next;
|
|
continue;
|
|
}
|
|
|
|
// This is a range. Skip over the '-' and read in the 2nd int.
|
|
next++; // skip '-'
|
|
SKIP_WS(next);
|
|
scan = next;
|
|
KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
|
|
SKIP_DIGITS(next);
|
|
end = __kmp_str_to_int(scan, *next);
|
|
KMP_ASSERT2(end >= 0, "bad explicit proc list");
|
|
|
|
// Check for a stride parameter
|
|
stride = 1;
|
|
SKIP_WS(next);
|
|
if (*next == ':') {
|
|
// A stride is specified. Skip over the ':" and read the 3rd int.
|
|
int sign = +1;
|
|
next++; // skip ':'
|
|
SKIP_WS(next);
|
|
scan = next;
|
|
if (*next == '-') {
|
|
sign = -1;
|
|
next++;
|
|
SKIP_WS(next);
|
|
scan = next;
|
|
}
|
|
KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
|
|
SKIP_DIGITS(next);
|
|
stride = __kmp_str_to_int(scan, *next);
|
|
KMP_ASSERT2(stride >= 0, "bad explicit proc list");
|
|
stride *= sign;
|
|
}
|
|
|
|
// Do some range checks.
|
|
KMP_ASSERT2(stride != 0, "bad explicit proc list");
|
|
if (stride > 0) {
|
|
KMP_ASSERT2(start <= end, "bad explicit proc list");
|
|
} else {
|
|
KMP_ASSERT2(start >= end, "bad explicit proc list");
|
|
}
|
|
KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
|
|
|
|
// Add the mask for each OS proc # to the list.
|
|
if (stride > 0) {
|
|
do {
|
|
ADD_MASK_OSID(start, osId2Mask, maxOsId);
|
|
start += stride;
|
|
} while (start <= end);
|
|
} else {
|
|
do {
|
|
ADD_MASK_OSID(start, osId2Mask, maxOsId);
|
|
start += stride;
|
|
} while (start >= end);
|
|
}
|
|
|
|
// Skip optional comma.
|
|
SKIP_WS(next);
|
|
if (*next == ',') {
|
|
next++;
|
|
}
|
|
scan = next;
|
|
}
|
|
|
|
*out_numMasks = nextNewMask;
|
|
if (nextNewMask == 0) {
|
|
*out_masks = NULL;
|
|
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
|
|
return;
|
|
}
|
|
KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
|
|
for (i = 0; i < nextNewMask; i++) {
|
|
kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
|
|
kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
|
|
KMP_CPU_COPY(dest, src);
|
|
}
|
|
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
|
|
KMP_CPU_FREE(sumMask);
|
|
}
|
|
|
|
#if OMP_40_ENABLED
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
|
|
places. Again, Here is the grammar:
|
|
|
|
place_list := place
|
|
place_list := place , place_list
|
|
place := num
|
|
place := place : num
|
|
place := place : num : signed
|
|
place := { subplacelist }
|
|
place := ! place // (lowest priority)
|
|
subplace_list := subplace
|
|
subplace_list := subplace , subplace_list
|
|
subplace := num
|
|
subplace := num : num
|
|
subplace := num : num : signed
|
|
signed := num
|
|
signed := + signed
|
|
signed := - signed
|
|
-----------------------------------------------------------------------------*/
|
|
|
|
static void __kmp_process_subplace_list(const char **scan,
|
|
kmp_affin_mask_t *osId2Mask,
|
|
int maxOsId, kmp_affin_mask_t *tempMask,
|
|
int *setSize) {
|
|
const char *next;
|
|
|
|
for (;;) {
|
|
int start, count, stride, i;
|
|
|
|
// Read in the starting proc id
|
|
SKIP_WS(*scan);
|
|
KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
|
|
next = *scan;
|
|
SKIP_DIGITS(next);
|
|
start = __kmp_str_to_int(*scan, *next);
|
|
KMP_ASSERT(start >= 0);
|
|
*scan = next;
|
|
|
|
// valid follow sets are ',' ':' and '}'
|
|
SKIP_WS(*scan);
|
|
if (**scan == '}' || **scan == ',') {
|
|
if ((start > maxOsId) ||
|
|
(!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
|
|
if (__kmp_affinity_verbose ||
|
|
(__kmp_affinity_warnings &&
|
|
(__kmp_affinity_type != affinity_none))) {
|
|
KMP_WARNING(AffIgnoreInvalidProcID, start);
|
|
}
|
|
} else {
|
|
KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
|
|
(*setSize)++;
|
|
}
|
|
if (**scan == '}') {
|
|
break;
|
|
}
|
|
(*scan)++; // skip ','
|
|
continue;
|
|
}
|
|
KMP_ASSERT2(**scan == ':', "bad explicit places list");
|
|
(*scan)++; // skip ':'
|
|
|
|
// Read count parameter
|
|
SKIP_WS(*scan);
|
|
KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
|
|
next = *scan;
|
|
SKIP_DIGITS(next);
|
|
count = __kmp_str_to_int(*scan, *next);
|
|
KMP_ASSERT(count >= 0);
|
|
*scan = next;
|
|
|
|
// valid follow sets are ',' ':' and '}'
|
|
SKIP_WS(*scan);
|
|
if (**scan == '}' || **scan == ',') {
|
|
for (i = 0; i < count; i++) {
|
|
if ((start > maxOsId) ||
|
|
(!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
|
|
if (__kmp_affinity_verbose ||
|
|
(__kmp_affinity_warnings &&
|
|
(__kmp_affinity_type != affinity_none))) {
|
|
KMP_WARNING(AffIgnoreInvalidProcID, start);
|
|
}
|
|
break; // don't proliferate warnings for large count
|
|
} else {
|
|
KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
|
|
start++;
|
|
(*setSize)++;
|
|
}
|
|
}
|
|
if (**scan == '}') {
|
|
break;
|
|
}
|
|
(*scan)++; // skip ','
|
|
continue;
|
|
}
|
|
KMP_ASSERT2(**scan == ':', "bad explicit places list");
|
|
(*scan)++; // skip ':'
|
|
|
|
// Read stride parameter
|
|
int sign = +1;
|
|
for (;;) {
|
|
SKIP_WS(*scan);
|
|
if (**scan == '+') {
|
|
(*scan)++; // skip '+'
|
|
continue;
|
|
}
|
|
if (**scan == '-') {
|
|
sign *= -1;
|
|
(*scan)++; // skip '-'
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
SKIP_WS(*scan);
|
|
KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
|
|
next = *scan;
|
|
SKIP_DIGITS(next);
|
|
stride = __kmp_str_to_int(*scan, *next);
|
|
KMP_ASSERT(stride >= 0);
|
|
*scan = next;
|
|
stride *= sign;
|
|
|
|
// valid follow sets are ',' and '}'
|
|
SKIP_WS(*scan);
|
|
if (**scan == '}' || **scan == ',') {
|
|
for (i = 0; i < count; i++) {
|
|
if ((start > maxOsId) ||
|
|
(!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
|
|
if (__kmp_affinity_verbose ||
|
|
(__kmp_affinity_warnings &&
|
|
(__kmp_affinity_type != affinity_none))) {
|
|
KMP_WARNING(AffIgnoreInvalidProcID, start);
|
|
}
|
|
break; // don't proliferate warnings for large count
|
|
} else {
|
|
KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
|
|
start += stride;
|
|
(*setSize)++;
|
|
}
|
|
}
|
|
if (**scan == '}') {
|
|
break;
|
|
}
|
|
(*scan)++; // skip ','
|
|
continue;
|
|
}
|
|
|
|
KMP_ASSERT2(0, "bad explicit places list");
|
|
}
|
|
}
|
|
|
|
static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask,
|
|
int maxOsId, kmp_affin_mask_t *tempMask,
|
|
int *setSize) {
|
|
const char *next;
|
|
|
|
// valid follow sets are '{' '!' and num
|
|
SKIP_WS(*scan);
|
|
if (**scan == '{') {
|
|
(*scan)++; // skip '{'
|
|
__kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize);
|
|
KMP_ASSERT2(**scan == '}', "bad explicit places list");
|
|
(*scan)++; // skip '}'
|
|
} else if (**scan == '!') {
|
|
(*scan)++; // skip '!'
|
|
__kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize);
|
|
KMP_CPU_COMPLEMENT(maxOsId, tempMask);
|
|
} else if ((**scan >= '0') && (**scan <= '9')) {
|
|
next = *scan;
|
|
SKIP_DIGITS(next);
|
|
int num = __kmp_str_to_int(*scan, *next);
|
|
KMP_ASSERT(num >= 0);
|
|
if ((num > maxOsId) ||
|
|
(!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
|
|
if (__kmp_affinity_verbose ||
|
|
(__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
|
|
KMP_WARNING(AffIgnoreInvalidProcID, num);
|
|
}
|
|
} else {
|
|
KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
|
|
(*setSize)++;
|
|
}
|
|
*scan = next; // skip num
|
|
} else {
|
|
KMP_ASSERT2(0, "bad explicit places list");
|
|
}
|
|
}
|
|
|
|
// static void
|
|
void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks,
|
|
unsigned int *out_numMasks,
|
|
const char *placelist,
|
|
kmp_affin_mask_t *osId2Mask,
|
|
int maxOsId) {
|
|
int i, j, count, stride, sign;
|
|
const char *scan = placelist;
|
|
const char *next = placelist;
|
|
|
|
numNewMasks = 2;
|
|
KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
|
|
nextNewMask = 0;
|
|
|
|
// tempMask is modified based on the previous or initial
|
|
// place to form the current place
|
|
// previousMask contains the previous place
|
|
kmp_affin_mask_t *tempMask;
|
|
kmp_affin_mask_t *previousMask;
|
|
KMP_CPU_ALLOC(tempMask);
|
|
KMP_CPU_ZERO(tempMask);
|
|
KMP_CPU_ALLOC(previousMask);
|
|
KMP_CPU_ZERO(previousMask);
|
|
int setSize = 0;
|
|
|
|
for (;;) {
|
|
__kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize);
|
|
|
|
// valid follow sets are ',' ':' and EOL
|
|
SKIP_WS(scan);
|
|
if (*scan == '\0' || *scan == ',') {
|
|
if (setSize > 0) {
|
|
ADD_MASK(tempMask);
|
|
}
|
|
KMP_CPU_ZERO(tempMask);
|
|
setSize = 0;
|
|
if (*scan == '\0') {
|
|
break;
|
|
}
|
|
scan++; // skip ','
|
|
continue;
|
|
}
|
|
|
|
KMP_ASSERT2(*scan == ':', "bad explicit places list");
|
|
scan++; // skip ':'
|
|
|
|
// Read count parameter
|
|
SKIP_WS(scan);
|
|
KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
|
|
next = scan;
|
|
SKIP_DIGITS(next);
|
|
count = __kmp_str_to_int(scan, *next);
|
|
KMP_ASSERT(count >= 0);
|
|
scan = next;
|
|
|
|
// valid follow sets are ',' ':' and EOL
|
|
SKIP_WS(scan);
|
|
if (*scan == '\0' || *scan == ',') {
|
|
stride = +1;
|
|
} else {
|
|
KMP_ASSERT2(*scan == ':', "bad explicit places list");
|
|
scan++; // skip ':'
|
|
|
|
// Read stride parameter
|
|
sign = +1;
|
|
for (;;) {
|
|
SKIP_WS(scan);
|
|
if (*scan == '+') {
|
|
scan++; // skip '+'
|
|
continue;
|
|
}
|
|
if (*scan == '-') {
|
|
sign *= -1;
|
|
scan++; // skip '-'
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
SKIP_WS(scan);
|
|
KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
|
|
next = scan;
|
|
SKIP_DIGITS(next);
|
|
stride = __kmp_str_to_int(scan, *next);
|
|
KMP_DEBUG_ASSERT(stride >= 0);
|
|
scan = next;
|
|
stride *= sign;
|
|
}
|
|
|
|
// Add places determined by initial_place : count : stride
|
|
for (i = 0; i < count; i++) {
|
|
if (setSize == 0) {
|
|
break;
|
|
}
|
|
// Add the current place, then build the next place (tempMask) from that
|
|
KMP_CPU_COPY(previousMask, tempMask);
|
|
ADD_MASK(previousMask);
|
|
KMP_CPU_ZERO(tempMask);
|
|
setSize = 0;
|
|
KMP_CPU_SET_ITERATE(j, previousMask) {
|
|
if (!KMP_CPU_ISSET(j, previousMask)) {
|
|
continue;
|
|
}
|
|
if ((j + stride > maxOsId) || (j + stride < 0) ||
|
|
(!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
|
|
(!KMP_CPU_ISSET(j + stride,
|
|
KMP_CPU_INDEX(osId2Mask, j + stride)))) {
|
|
if ((__kmp_affinity_verbose ||
|
|
(__kmp_affinity_warnings &&
|
|
(__kmp_affinity_type != affinity_none))) &&
|
|
i < count - 1) {
|
|
KMP_WARNING(AffIgnoreInvalidProcID, j + stride);
|
|
}
|
|
continue;
|
|
}
|
|
KMP_CPU_SET(j + stride, tempMask);
|
|
setSize++;
|
|
}
|
|
}
|
|
KMP_CPU_ZERO(tempMask);
|
|
setSize = 0;
|
|
|
|
// valid follow sets are ',' and EOL
|
|
SKIP_WS(scan);
|
|
if (*scan == '\0') {
|
|
break;
|
|
}
|
|
if (*scan == ',') {
|
|
scan++; // skip ','
|
|
continue;
|
|
}
|
|
|
|
KMP_ASSERT2(0, "bad explicit places list");
|
|
}
|
|
|
|
*out_numMasks = nextNewMask;
|
|
if (nextNewMask == 0) {
|
|
*out_masks = NULL;
|
|
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
|
|
return;
|
|
}
|
|
KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
|
|
KMP_CPU_FREE(tempMask);
|
|
KMP_CPU_FREE(previousMask);
|
|
for (i = 0; i < nextNewMask; i++) {
|
|
kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
|
|
kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
|
|
KMP_CPU_COPY(dest, src);
|
|
}
|
|
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
|
|
}
|
|
|
|
#endif /* OMP_40_ENABLED */
|
|
|
|
#undef ADD_MASK
|
|
#undef ADD_MASK_OSID
|
|
|
|
#if KMP_USE_HWLOC
|
|
static int __kmp_hwloc_skip_PUs_obj(hwloc_topology_t t, hwloc_obj_t o) {
|
|
// skip PUs descendants of the object o
|
|
int skipped = 0;
|
|
hwloc_obj_t hT = NULL;
|
|
int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT);
|
|
for (int i = 0; i < N; ++i) {
|
|
KMP_DEBUG_ASSERT(hT);
|
|
unsigned idx = hT->os_index;
|
|
if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
|
|
KMP_CPU_CLR(idx, __kmp_affin_fullMask);
|
|
KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
|
|
++skipped;
|
|
}
|
|
hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT);
|
|
}
|
|
return skipped; // count number of skipped units
|
|
}
|
|
|
|
static int __kmp_hwloc_obj_has_PUs(hwloc_topology_t t, hwloc_obj_t o) {
|
|
// check if obj has PUs present in fullMask
|
|
hwloc_obj_t hT = NULL;
|
|
int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT);
|
|
for (int i = 0; i < N; ++i) {
|
|
KMP_DEBUG_ASSERT(hT);
|
|
unsigned idx = hT->os_index;
|
|
if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask))
|
|
return 1; // found PU
|
|
hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT);
|
|
}
|
|
return 0; // no PUs found
|
|
}
|
|
#endif // KMP_USE_HWLOC
|
|
|
|
static void __kmp_apply_thread_places(AddrUnsPair **pAddr, int depth) {
|
|
AddrUnsPair *newAddr;
|
|
if (__kmp_hws_requested == 0)
|
|
goto _exit; // no topology limiting actions requested, exit
|
|
#if KMP_USE_HWLOC
|
|
if (__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
|
|
// Number of subobjects calculated dynamically, this works fine for
|
|
// any non-uniform topology.
|
|
// L2 cache objects are determined by depth, other objects - by type.
|
|
hwloc_topology_t tp = __kmp_hwloc_topology;
|
|
int nS = 0, nN = 0, nL = 0, nC = 0,
|
|
nT = 0; // logical index including skipped
|
|
int nCr = 0, nTr = 0; // number of requested units
|
|
int nPkg = 0, nCo = 0, n_new = 0, n_old = 0, nCpP = 0, nTpC = 0; // counters
|
|
hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to)
|
|
int L2depth, idx;
|
|
|
|
// check support of extensions ----------------------------------
|
|
int numa_support = 0, tile_support = 0;
|
|
if (__kmp_pu_os_idx)
|
|
hT = hwloc_get_pu_obj_by_os_index(tp,
|
|
__kmp_pu_os_idx[__kmp_avail_proc - 1]);
|
|
else
|
|
hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, __kmp_avail_proc - 1);
|
|
if (hT == NULL) { // something's gone wrong
|
|
KMP_WARNING(AffHWSubsetUnsupported);
|
|
goto _exit;
|
|
}
|
|
// check NUMA node
|
|
hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT);
|
|
hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT);
|
|
if (hN != NULL && hN->depth > hS->depth) {
|
|
numa_support = 1; // 1 in case socket includes node(s)
|
|
} else if (__kmp_hws_node.num > 0) {
|
|
// don't support sockets inside NUMA node (no such HW found for testing)
|
|
KMP_WARNING(AffHWSubsetUnsupported);
|
|
goto _exit;
|
|
}
|
|
// check L2 cahce, get object by depth because of multiple caches
|
|
L2depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED);
|
|
hL = hwloc_get_ancestor_obj_by_depth(tp, L2depth, hT);
|
|
if (hL != NULL &&
|
|
__kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) {
|
|
tile_support = 1; // no sense to count L2 if it includes single core
|
|
} else if (__kmp_hws_tile.num > 0) {
|
|
if (__kmp_hws_core.num == 0) {
|
|
__kmp_hws_core = __kmp_hws_tile; // replace L2 with core
|
|
__kmp_hws_tile.num = 0;
|
|
} else {
|
|
// L2 and core are both requested, but represent same object
|
|
KMP_WARNING(AffHWSubsetInvalid);
|
|
goto _exit;
|
|
}
|
|
}
|
|
// end of check of extensions -----------------------------------
|
|
|
|
// fill in unset items, validate settings -----------------------
|
|
if (__kmp_hws_socket.num == 0)
|
|
__kmp_hws_socket.num = nPackages; // use all available sockets
|
|
if (__kmp_hws_socket.offset >= nPackages) {
|
|
KMP_WARNING(AffHWSubsetManySockets);
|
|
goto _exit;
|
|
}
|
|
if (numa_support) {
|
|
hN = NULL;
|
|
int NN = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE,
|
|
&hN); // num nodes in socket
|
|
if (__kmp_hws_node.num == 0)
|
|
__kmp_hws_node.num = NN; // use all available nodes
|
|
if (__kmp_hws_node.offset >= NN) {
|
|
KMP_WARNING(AffHWSubsetManyNodes);
|
|
goto _exit;
|
|
}
|
|
if (tile_support) {
|
|
// get num tiles in node
|
|
int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL);
|
|
if (__kmp_hws_tile.num == 0) {
|
|
__kmp_hws_tile.num = NL + 1;
|
|
} // use all available tiles, some node may have more tiles, thus +1
|
|
if (__kmp_hws_tile.offset >= NL) {
|
|
KMP_WARNING(AffHWSubsetManyTiles);
|
|
goto _exit;
|
|
}
|
|
int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
|
|
&hC); // num cores in tile
|
|
if (__kmp_hws_core.num == 0)
|
|
__kmp_hws_core.num = NC; // use all available cores
|
|
if (__kmp_hws_core.offset >= NC) {
|
|
KMP_WARNING(AffHWSubsetManyCores);
|
|
goto _exit;
|
|
}
|
|
} else { // tile_support
|
|
int NC = __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE,
|
|
&hC); // num cores in node
|
|
if (__kmp_hws_core.num == 0)
|
|
__kmp_hws_core.num = NC; // use all available cores
|
|
if (__kmp_hws_core.offset >= NC) {
|
|
KMP_WARNING(AffHWSubsetManyCores);
|
|
goto _exit;
|
|
}
|
|
} // tile_support
|
|
} else { // numa_support
|
|
if (tile_support) {
|
|
// get num tiles in socket
|
|
int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL);
|
|
if (__kmp_hws_tile.num == 0)
|
|
__kmp_hws_tile.num = NL; // use all available tiles
|
|
if (__kmp_hws_tile.offset >= NL) {
|
|
KMP_WARNING(AffHWSubsetManyTiles);
|
|
goto _exit;
|
|
}
|
|
int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
|
|
&hC); // num cores in tile
|
|
if (__kmp_hws_core.num == 0)
|
|
__kmp_hws_core.num = NC; // use all available cores
|
|
if (__kmp_hws_core.offset >= NC) {
|
|
KMP_WARNING(AffHWSubsetManyCores);
|
|
goto _exit;
|
|
}
|
|
} else { // tile_support
|
|
int NC = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE,
|
|
&hC); // num cores in socket
|
|
if (__kmp_hws_core.num == 0)
|
|
__kmp_hws_core.num = NC; // use all available cores
|
|
if (__kmp_hws_core.offset >= NC) {
|
|
KMP_WARNING(AffHWSubsetManyCores);
|
|
goto _exit;
|
|
}
|
|
} // tile_support
|
|
}
|
|
if (__kmp_hws_proc.num == 0)
|
|
__kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all available procs
|
|
if (__kmp_hws_proc.offset >= __kmp_nThreadsPerCore) {
|
|
KMP_WARNING(AffHWSubsetManyProcs);
|
|
goto _exit;
|
|
}
|
|
// end of validation --------------------------------------------
|
|
|
|
if (pAddr) // pAddr is NULL in case of affinity_none
|
|
newAddr = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) *
|
|
__kmp_avail_proc); // max size
|
|
// main loop to form HW subset ----------------------------------
|
|
hS = NULL;
|
|
int NP = hwloc_get_nbobjs_by_type(tp, HWLOC_OBJ_PACKAGE);
|
|
for (int s = 0; s < NP; ++s) {
|
|
// Check Socket -----------------------------------------------
|
|
hS = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hS);
|
|
if (!__kmp_hwloc_obj_has_PUs(tp, hS))
|
|
continue; // skip socket if all PUs are out of fullMask
|
|
++nS; // only count objects those have PUs in affinity mask
|
|
if (nS <= __kmp_hws_socket.offset ||
|
|
nS > __kmp_hws_socket.num + __kmp_hws_socket.offset) {
|
|
n_old += __kmp_hwloc_skip_PUs_obj(tp, hS); // skip socket
|
|
continue; // move to next socket
|
|
}
|
|
nCr = 0; // count number of cores per socket
|
|
// socket requested, go down the topology tree
|
|
// check 4 cases: (+NUMA+Tile), (+NUMA-Tile), (-NUMA+Tile), (-NUMA-Tile)
|
|
if (numa_support) {
|
|
nN = 0;
|
|
hN = NULL;
|
|
// num nodes in current socket
|
|
int NN =
|
|
__kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, &hN);
|
|
for (int n = 0; n < NN; ++n) {
|
|
// Check NUMA Node ----------------------------------------
|
|
if (!__kmp_hwloc_obj_has_PUs(tp, hN)) {
|
|
hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
|
|
continue; // skip node if all PUs are out of fullMask
|
|
}
|
|
++nN;
|
|
if (nN <= __kmp_hws_node.offset ||
|
|
nN > __kmp_hws_node.num + __kmp_hws_node.offset) {
|
|
// skip node as not requested
|
|
n_old += __kmp_hwloc_skip_PUs_obj(tp, hN); // skip node
|
|
hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
|
|
continue; // move to next node
|
|
}
|
|
// node requested, go down the topology tree
|
|
if (tile_support) {
|
|
nL = 0;
|
|
hL = NULL;
|
|
int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL);
|
|
for (int l = 0; l < NL; ++l) {
|
|
// Check L2 (tile) ------------------------------------
|
|
if (!__kmp_hwloc_obj_has_PUs(tp, hL)) {
|
|
hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
|
|
continue; // skip tile if all PUs are out of fullMask
|
|
}
|
|
++nL;
|
|
if (nL <= __kmp_hws_tile.offset ||
|
|
nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) {
|
|
// skip tile as not requested
|
|
n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile
|
|
hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
|
|
continue; // move to next tile
|
|
}
|
|
// tile requested, go down the topology tree
|
|
nC = 0;
|
|
hC = NULL;
|
|
// num cores in current tile
|
|
int NC = __kmp_hwloc_count_children_by_type(tp, hL,
|
|
HWLOC_OBJ_CORE, &hC);
|
|
for (int c = 0; c < NC; ++c) {
|
|
// Check Core ---------------------------------------
|
|
if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
|
|
hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
|
|
continue; // skip core if all PUs are out of fullMask
|
|
}
|
|
++nC;
|
|
if (nC <= __kmp_hws_core.offset ||
|
|
nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
|
|
// skip node as not requested
|
|
n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
|
|
hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
|
|
continue; // move to next node
|
|
}
|
|
// core requested, go down to PUs
|
|
nT = 0;
|
|
nTr = 0;
|
|
hT = NULL;
|
|
// num procs in current core
|
|
int NT = __kmp_hwloc_count_children_by_type(tp, hC,
|
|
HWLOC_OBJ_PU, &hT);
|
|
for (int t = 0; t < NT; ++t) {
|
|
// Check PU ---------------------------------------
|
|
idx = hT->os_index;
|
|
if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
|
|
hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
|
|
continue; // skip PU if not in fullMask
|
|
}
|
|
++nT;
|
|
if (nT <= __kmp_hws_proc.offset ||
|
|
nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
|
|
// skip PU
|
|
KMP_CPU_CLR(idx, __kmp_affin_fullMask);
|
|
++n_old;
|
|
KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
|
|
hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
|
|
continue; // move to next node
|
|
}
|
|
++nTr;
|
|
if (pAddr) // collect requested thread's data
|
|
newAddr[n_new] = (*pAddr)[n_old];
|
|
++n_new;
|
|
++n_old;
|
|
hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
|
|
} // threads loop
|
|
if (nTr > 0) {
|
|
++nCr; // num cores per socket
|
|
++nCo; // total num cores
|
|
if (nTr > nTpC)
|
|
nTpC = nTr; // calc max threads per core
|
|
}
|
|
hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
|
|
} // cores loop
|
|
hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
|
|
} // tiles loop
|
|
} else { // tile_support
|
|
// no tiles, check cores
|
|
nC = 0;
|
|
hC = NULL;
|
|
// num cores in current node
|
|
int NC =
|
|
__kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, &hC);
|
|
for (int c = 0; c < NC; ++c) {
|
|
// Check Core ---------------------------------------
|
|
if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
|
|
hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
|
|
continue; // skip core if all PUs are out of fullMask
|
|
}
|
|
++nC;
|
|
if (nC <= __kmp_hws_core.offset ||
|
|
nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
|
|
// skip node as not requested
|
|
n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
|
|
hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
|
|
continue; // move to next node
|
|
}
|
|
// core requested, go down to PUs
|
|
nT = 0;
|
|
nTr = 0;
|
|
hT = NULL;
|
|
int NT =
|
|
__kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
|
|
for (int t = 0; t < NT; ++t) {
|
|
// Check PU ---------------------------------------
|
|
idx = hT->os_index;
|
|
if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
|
|
hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
|
|
continue; // skip PU if not in fullMask
|
|
}
|
|
++nT;
|
|
if (nT <= __kmp_hws_proc.offset ||
|
|
nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
|
|
// skip PU
|
|
KMP_CPU_CLR(idx, __kmp_affin_fullMask);
|
|
++n_old;
|
|
KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
|
|
hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
|
|
continue; // move to next node
|
|
}
|
|
++nTr;
|
|
if (pAddr) // collect requested thread's data
|
|
newAddr[n_new] = (*pAddr)[n_old];
|
|
++n_new;
|
|
++n_old;
|
|
hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
|
|
} // threads loop
|
|
if (nTr > 0) {
|
|
++nCr; // num cores per socket
|
|
++nCo; // total num cores
|
|
if (nTr > nTpC)
|
|
nTpC = nTr; // calc max threads per core
|
|
}
|
|
hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
|
|
} // cores loop
|
|
} // tiles support
|
|
hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
|
|
} // nodes loop
|
|
} else { // numa_support
|
|
// no NUMA support
|
|
if (tile_support) {
|
|
nL = 0;
|
|
hL = NULL;
|
|
// num tiles in current socket
|
|
int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL);
|
|
for (int l = 0; l < NL; ++l) {
|
|
// Check L2 (tile) ------------------------------------
|
|
if (!__kmp_hwloc_obj_has_PUs(tp, hL)) {
|
|
hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
|
|
continue; // skip tile if all PUs are out of fullMask
|
|
}
|
|
++nL;
|
|
if (nL <= __kmp_hws_tile.offset ||
|
|
nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) {
|
|
// skip tile as not requested
|
|
n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile
|
|
hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
|
|
continue; // move to next tile
|
|
}
|
|
// tile requested, go down the topology tree
|
|
nC = 0;
|
|
hC = NULL;
|
|
// num cores per tile
|
|
int NC =
|
|
__kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC);
|
|
for (int c = 0; c < NC; ++c) {
|
|
// Check Core ---------------------------------------
|
|
if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
|
|
hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
|
|
continue; // skip core if all PUs are out of fullMask
|
|
}
|
|
++nC;
|
|
if (nC <= __kmp_hws_core.offset ||
|
|
nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
|
|
// skip node as not requested
|
|
n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
|
|
hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
|
|
continue; // move to next node
|
|
}
|
|
// core requested, go down to PUs
|
|
nT = 0;
|
|
nTr = 0;
|
|
hT = NULL;
|
|
// num procs per core
|
|
int NT =
|
|
__kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
|
|
for (int t = 0; t < NT; ++t) {
|
|
// Check PU ---------------------------------------
|
|
idx = hT->os_index;
|
|
if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
|
|
hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
|
|
continue; // skip PU if not in fullMask
|
|
}
|
|
++nT;
|
|
if (nT <= __kmp_hws_proc.offset ||
|
|
nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
|
|
// skip PU
|
|
KMP_CPU_CLR(idx, __kmp_affin_fullMask);
|
|
++n_old;
|
|
KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
|
|
hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
|
|
continue; // move to next node
|
|
}
|
|
++nTr;
|
|
if (pAddr) // collect requested thread's data
|
|
newAddr[n_new] = (*pAddr)[n_old];
|
|
++n_new;
|
|
++n_old;
|
|
hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
|
|
} // threads loop
|
|
if (nTr > 0) {
|
|
++nCr; // num cores per socket
|
|
++nCo; // total num cores
|
|
if (nTr > nTpC)
|
|
nTpC = nTr; // calc max threads per core
|
|
}
|
|
hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
|
|
} // cores loop
|
|
hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
|
|
} // tiles loop
|
|
} else { // tile_support
|
|
// no tiles, check cores
|
|
nC = 0;
|
|
hC = NULL;
|
|
// num cores in socket
|
|
int NC =
|
|
__kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, &hC);
|
|
for (int c = 0; c < NC; ++c) {
|
|
// Check Core -------------------------------------------
|
|
if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
|
|
hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
|
|
continue; // skip core if all PUs are out of fullMask
|
|
}
|
|
++nC;
|
|
if (nC <= __kmp_hws_core.offset ||
|
|
nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
|
|
// skip node as not requested
|
|
n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
|
|
hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
|
|
continue; // move to next node
|
|
}
|
|
// core requested, go down to PUs
|
|
nT = 0;
|
|
nTr = 0;
|
|
hT = NULL;
|
|
// num procs per core
|
|
int NT =
|
|
__kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
|
|
for (int t = 0; t < NT; ++t) {
|
|
// Check PU ---------------------------------------
|
|
idx = hT->os_index;
|
|
if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
|
|
hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
|
|
continue; // skip PU if not in fullMask
|
|
}
|
|
++nT;
|
|
if (nT <= __kmp_hws_proc.offset ||
|
|
nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
|
|
// skip PU
|
|
KMP_CPU_CLR(idx, __kmp_affin_fullMask);
|
|
++n_old;
|
|
KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
|
|
hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
|
|
continue; // move to next node
|
|
}
|
|
++nTr;
|
|
if (pAddr) // collect requested thread's data
|
|
newAddr[n_new] = (*pAddr)[n_old];
|
|
++n_new;
|
|
++n_old;
|
|
hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
|
|
} // threads loop
|
|
if (nTr > 0) {
|
|
++nCr; // num cores per socket
|
|
++nCo; // total num cores
|
|
if (nTr > nTpC)
|
|
nTpC = nTr; // calc max threads per core
|
|
}
|
|
hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
|
|
} // cores loop
|
|
} // tiles support
|
|
} // numa_support
|
|
if (nCr > 0) { // found cores?
|
|
++nPkg; // num sockets
|
|
if (nCr > nCpP)
|
|
nCpP = nCr; // calc max cores per socket
|
|
}
|
|
} // sockets loop
|
|
|
|
// check the subset is valid
|
|
KMP_DEBUG_ASSERT(n_old == __kmp_avail_proc);
|
|
KMP_DEBUG_ASSERT(nPkg > 0);
|
|
KMP_DEBUG_ASSERT(nCpP > 0);
|
|
KMP_DEBUG_ASSERT(nTpC > 0);
|
|
KMP_DEBUG_ASSERT(nCo > 0);
|
|
KMP_DEBUG_ASSERT(nPkg <= nPackages);
|
|
KMP_DEBUG_ASSERT(nCpP <= nCoresPerPkg);
|
|
KMP_DEBUG_ASSERT(nTpC <= __kmp_nThreadsPerCore);
|
|
KMP_DEBUG_ASSERT(nCo <= __kmp_ncores);
|
|
|
|
nPackages = nPkg; // correct num sockets
|
|
nCoresPerPkg = nCpP; // correct num cores per socket
|
|
__kmp_nThreadsPerCore = nTpC; // correct num threads per core
|
|
__kmp_avail_proc = n_new; // correct num procs
|
|
__kmp_ncores = nCo; // correct num cores
|
|
// hwloc topology method end
|
|
} else
|
|
#endif // KMP_USE_HWLOC
|
|
{
|
|
int n_old = 0, n_new = 0, proc_num = 0;
|
|
if (__kmp_hws_node.num > 0 || __kmp_hws_tile.num > 0) {
|
|
KMP_WARNING(AffHWSubsetNoHWLOC);
|
|
goto _exit;
|
|
}
|
|
if (__kmp_hws_socket.num == 0)
|
|
__kmp_hws_socket.num = nPackages; // use all available sockets
|
|
if (__kmp_hws_core.num == 0)
|
|
__kmp_hws_core.num = nCoresPerPkg; // use all available cores
|
|
if (__kmp_hws_proc.num == 0 || __kmp_hws_proc.num > __kmp_nThreadsPerCore)
|
|
__kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all HW contexts
|
|
if (!__kmp_affinity_uniform_topology()) {
|
|
KMP_WARNING(AffHWSubsetNonUniform);
|
|
goto _exit; // don't support non-uniform topology
|
|
}
|
|
if (depth > 3) {
|
|
KMP_WARNING(AffHWSubsetNonThreeLevel);
|
|
goto _exit; // don't support not-3-level topology
|
|
}
|
|
if (__kmp_hws_socket.offset + __kmp_hws_socket.num > nPackages) {
|
|
KMP_WARNING(AffHWSubsetManySockets);
|
|
goto _exit;
|
|
}
|
|
if (__kmp_hws_core.offset + __kmp_hws_core.num > nCoresPerPkg) {
|
|
KMP_WARNING(AffHWSubsetManyCores);
|
|
goto _exit;
|
|
}
|
|
// Form the requested subset
|
|
if (pAddr) // pAddr is NULL in case of affinity_none
|
|
newAddr = (AddrUnsPair *)__kmp_allocate(
|
|
sizeof(AddrUnsPair) * __kmp_hws_socket.num * __kmp_hws_core.num *
|
|
__kmp_hws_proc.num);
|
|
for (int i = 0; i < nPackages; ++i) {
|
|
if (i < __kmp_hws_socket.offset ||
|
|
i >= __kmp_hws_socket.offset + __kmp_hws_socket.num) {
|
|
// skip not-requested socket
|
|
n_old += nCoresPerPkg * __kmp_nThreadsPerCore;
|
|
if (__kmp_pu_os_idx != NULL) {
|
|
// walk through skipped socket
|
|
for (int j = 0; j < nCoresPerPkg; ++j) {
|
|
for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
|
|
KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
|
|
++proc_num;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// walk through requested socket
|
|
for (int j = 0; j < nCoresPerPkg; ++j) {
|
|
if (j < __kmp_hws_core.offset ||
|
|
j >= __kmp_hws_core.offset +
|
|
__kmp_hws_core.num) { // skip not-requested core
|
|
n_old += __kmp_nThreadsPerCore;
|
|
if (__kmp_pu_os_idx != NULL) {
|
|
for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
|
|
KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
|
|
++proc_num;
|
|
}
|
|
}
|
|
} else {
|
|
// walk through requested core
|
|
for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
|
|
if (k < __kmp_hws_proc.num) {
|
|
if (pAddr) // collect requested thread's data
|
|
newAddr[n_new] = (*pAddr)[n_old];
|
|
n_new++;
|
|
} else {
|
|
if (__kmp_pu_os_idx != NULL)
|
|
KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
|
|
}
|
|
n_old++;
|
|
++proc_num;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore);
|
|
KMP_DEBUG_ASSERT(n_new ==
|
|
__kmp_hws_socket.num * __kmp_hws_core.num *
|
|
__kmp_hws_proc.num);
|
|
nPackages = __kmp_hws_socket.num; // correct nPackages
|
|
nCoresPerPkg = __kmp_hws_core.num; // correct nCoresPerPkg
|
|
__kmp_nThreadsPerCore = __kmp_hws_proc.num; // correct __kmp_nThreadsPerCore
|
|
__kmp_avail_proc = n_new; // correct avail_proc
|
|
__kmp_ncores = nPackages * __kmp_hws_core.num; // correct ncores
|
|
} // non-hwloc topology method
|
|
if (pAddr) {
|
|
__kmp_free(*pAddr);
|
|
*pAddr = newAddr; // replace old topology with new one
|
|
}
|
|
if (__kmp_affinity_verbose) {
|
|
char m[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(m, KMP_AFFIN_MASK_PRINT_LEN,
|
|
__kmp_affin_fullMask);
|
|
if (__kmp_affinity_respect_mask) {
|
|
KMP_INFORM(InitOSProcSetRespect, "KMP_HW_SUBSET", m);
|
|
} else {
|
|
KMP_INFORM(InitOSProcSetNotRespect, "KMP_HW_SUBSET", m);
|
|
}
|
|
KMP_INFORM(AvailableOSProc, "KMP_HW_SUBSET", __kmp_avail_proc);
|
|
kmp_str_buf_t buf;
|
|
__kmp_str_buf_init(&buf);
|
|
__kmp_str_buf_print(&buf, "%d", nPackages);
|
|
KMP_INFORM(TopologyExtra, "KMP_HW_SUBSET", buf.str, nCoresPerPkg,
|
|
__kmp_nThreadsPerCore, __kmp_ncores);
|
|
__kmp_str_buf_free(&buf);
|
|
}
|
|
_exit:
|
|
if (__kmp_pu_os_idx != NULL) {
|
|
__kmp_free(__kmp_pu_os_idx);
|
|
__kmp_pu_os_idx = NULL;
|
|
}
|
|
}
|
|
|
|
// This function figures out the deepest level at which there is at least one
|
|
// cluster/core with more than one processing unit bound to it.
|
|
static int __kmp_affinity_find_core_level(const AddrUnsPair *address2os,
|
|
int nprocs, int bottom_level) {
|
|
int core_level = 0;
|
|
|
|
for (int i = 0; i < nprocs; i++) {
|
|
for (int j = bottom_level; j > 0; j--) {
|
|
if (address2os[i].first.labels[j] > 0) {
|
|
if (core_level < (j - 1)) {
|
|
core_level = j - 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return core_level;
|
|
}
|
|
|
|
// This function counts number of clusters/cores at given level.
|
|
static int __kmp_affinity_compute_ncores(const AddrUnsPair *address2os,
|
|
int nprocs, int bottom_level,
|
|
int core_level) {
|
|
int ncores = 0;
|
|
int i, j;
|
|
|
|
j = bottom_level;
|
|
for (i = 0; i < nprocs; i++) {
|
|
for (j = bottom_level; j > core_level; j--) {
|
|
if ((i + 1) < nprocs) {
|
|
if (address2os[i + 1].first.labels[j] > 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (j == core_level) {
|
|
ncores++;
|
|
}
|
|
}
|
|
if (j > core_level) {
|
|
// In case of ( nprocs < __kmp_avail_proc ) we may end too deep and miss one
|
|
// core. May occur when called from __kmp_affinity_find_core().
|
|
ncores++;
|
|
}
|
|
return ncores;
|
|
}
|
|
|
|
// This function finds to which cluster/core given processing unit is bound.
|
|
static int __kmp_affinity_find_core(const AddrUnsPair *address2os, int proc,
|
|
int bottom_level, int core_level) {
|
|
return __kmp_affinity_compute_ncores(address2os, proc + 1, bottom_level,
|
|
core_level) -
|
|
1;
|
|
}
|
|
|
|
// This function finds maximal number of processing units bound to a
|
|
// cluster/core at given level.
|
|
static int __kmp_affinity_max_proc_per_core(const AddrUnsPair *address2os,
|
|
int nprocs, int bottom_level,
|
|
int core_level) {
|
|
int maxprocpercore = 0;
|
|
|
|
if (core_level < bottom_level) {
|
|
for (int i = 0; i < nprocs; i++) {
|
|
int percore = address2os[i].first.labels[core_level + 1] + 1;
|
|
|
|
if (percore > maxprocpercore) {
|
|
maxprocpercore = percore;
|
|
}
|
|
}
|
|
} else {
|
|
maxprocpercore = 1;
|
|
}
|
|
return maxprocpercore;
|
|
}
|
|
|
|
static AddrUnsPair *address2os = NULL;
|
|
static int *procarr = NULL;
|
|
static int __kmp_aff_depth = 0;
|
|
|
|
#if KMP_USE_HIER_SCHED
|
|
#define KMP_EXIT_AFF_NONE \
|
|
KMP_ASSERT(__kmp_affinity_type == affinity_none); \
|
|
KMP_ASSERT(address2os == NULL); \
|
|
__kmp_apply_thread_places(NULL, 0); \
|
|
__kmp_create_affinity_none_places(); \
|
|
__kmp_dispatch_set_hierarchy_values(); \
|
|
return;
|
|
#else
|
|
#define KMP_EXIT_AFF_NONE \
|
|
KMP_ASSERT(__kmp_affinity_type == affinity_none); \
|
|
KMP_ASSERT(address2os == NULL); \
|
|
__kmp_apply_thread_places(NULL, 0); \
|
|
__kmp_create_affinity_none_places(); \
|
|
return;
|
|
#endif
|
|
|
|
// Create a one element mask array (set of places) which only contains the
|
|
// initial process's affinity mask
|
|
static void __kmp_create_affinity_none_places() {
|
|
KMP_ASSERT(__kmp_affin_fullMask != NULL);
|
|
KMP_ASSERT(__kmp_affinity_type == affinity_none);
|
|
__kmp_affinity_num_masks = 1;
|
|
KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
|
|
kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0);
|
|
KMP_CPU_COPY(dest, __kmp_affin_fullMask);
|
|
}
|
|
|
|
static int __kmp_affinity_cmp_Address_child_num(const void *a, const void *b) {
|
|
const Address *aa = &(((const AddrUnsPair *)a)->first);
|
|
const Address *bb = &(((const AddrUnsPair *)b)->first);
|
|
unsigned depth = aa->depth;
|
|
unsigned i;
|
|
KMP_DEBUG_ASSERT(depth == bb->depth);
|
|
KMP_DEBUG_ASSERT((unsigned)__kmp_affinity_compact <= depth);
|
|
KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0);
|
|
for (i = 0; i < (unsigned)__kmp_affinity_compact; i++) {
|
|
int j = depth - i - 1;
|
|
if (aa->childNums[j] < bb->childNums[j])
|
|
return -1;
|
|
if (aa->childNums[j] > bb->childNums[j])
|
|
return 1;
|
|
}
|
|
for (; i < depth; i++) {
|
|
int j = i - __kmp_affinity_compact;
|
|
if (aa->childNums[j] < bb->childNums[j])
|
|
return -1;
|
|
if (aa->childNums[j] > bb->childNums[j])
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void __kmp_aux_affinity_initialize(void) {
|
|
if (__kmp_affinity_masks != NULL) {
|
|
KMP_ASSERT(__kmp_affin_fullMask != NULL);
|
|
return;
|
|
}
|
|
|
|
// Create the "full" mask - this defines all of the processors that we
|
|
// consider to be in the machine model. If respect is set, then it is the
|
|
// initialization thread's affinity mask. Otherwise, it is all processors that
|
|
// we know about on the machine.
|
|
if (__kmp_affin_fullMask == NULL) {
|
|
KMP_CPU_ALLOC(__kmp_affin_fullMask);
|
|
}
|
|
if (KMP_AFFINITY_CAPABLE()) {
|
|
if (__kmp_affinity_respect_mask) {
|
|
__kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
|
|
|
|
// Count the number of available processors.
|
|
unsigned i;
|
|
__kmp_avail_proc = 0;
|
|
KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
|
|
if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
|
|
continue;
|
|
}
|
|
__kmp_avail_proc++;
|
|
}
|
|
if (__kmp_avail_proc > __kmp_xproc) {
|
|
if (__kmp_affinity_verbose ||
|
|
(__kmp_affinity_warnings &&
|
|
(__kmp_affinity_type != affinity_none))) {
|
|
KMP_WARNING(ErrorInitializeAffinity);
|
|
}
|
|
__kmp_affinity_type = affinity_none;
|
|
KMP_AFFINITY_DISABLE();
|
|
return;
|
|
}
|
|
} else {
|
|
__kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
|
|
__kmp_avail_proc = __kmp_xproc;
|
|
}
|
|
}
|
|
|
|
if (__kmp_affinity_gran == affinity_gran_tile &&
|
|
// check if user's request is valid
|
|
__kmp_affinity_dispatch->get_api_type() == KMPAffinity::NATIVE_OS) {
|
|
KMP_WARNING(AffTilesNoHWLOC, "KMP_AFFINITY");
|
|
__kmp_affinity_gran = affinity_gran_package;
|
|
}
|
|
|
|
int depth = -1;
|
|
kmp_i18n_id_t msg_id = kmp_i18n_null;
|
|
|
|
// For backward compatibility, setting KMP_CPUINFO_FILE =>
|
|
// KMP_TOPOLOGY_METHOD=cpuinfo
|
|
if ((__kmp_cpuinfo_file != NULL) &&
|
|
(__kmp_affinity_top_method == affinity_top_method_all)) {
|
|
__kmp_affinity_top_method = affinity_top_method_cpuinfo;
|
|
}
|
|
|
|
if (__kmp_affinity_top_method == affinity_top_method_all) {
|
|
// In the default code path, errors are not fatal - we just try using
|
|
// another method. We only emit a warning message if affinity is on, or the
|
|
// verbose flag is set, an the nowarnings flag was not set.
|
|
const char *file_name = NULL;
|
|
int line = 0;
|
|
#if KMP_USE_HWLOC
|
|
if (depth < 0 &&
|
|
__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
|
|
if (__kmp_affinity_verbose) {
|
|
KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
|
|
}
|
|
if (!__kmp_hwloc_error) {
|
|
depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
|
|
if (depth == 0) {
|
|
KMP_EXIT_AFF_NONE;
|
|
} else if (depth < 0 && __kmp_affinity_verbose) {
|
|
KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
|
|
}
|
|
} else if (__kmp_affinity_verbose) {
|
|
KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
|
|
|
|
if (depth < 0) {
|
|
if (__kmp_affinity_verbose) {
|
|
KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
|
|
}
|
|
|
|
file_name = NULL;
|
|
depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
|
|
if (depth == 0) {
|
|
KMP_EXIT_AFF_NONE;
|
|
}
|
|
|
|
if (depth < 0) {
|
|
if (__kmp_affinity_verbose) {
|
|
if (msg_id != kmp_i18n_null) {
|
|
KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY",
|
|
__kmp_i18n_catgets(msg_id),
|
|
KMP_I18N_STR(DecodingLegacyAPIC));
|
|
} else {
|
|
KMP_INFORM(AffInfoStr, "KMP_AFFINITY",
|
|
KMP_I18N_STR(DecodingLegacyAPIC));
|
|
}
|
|
}
|
|
|
|
file_name = NULL;
|
|
depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
|
|
if (depth == 0) {
|
|
KMP_EXIT_AFF_NONE;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
|
|
|
|
#if KMP_OS_LINUX
|
|
|
|
if (depth < 0) {
|
|
if (__kmp_affinity_verbose) {
|
|
if (msg_id != kmp_i18n_null) {
|
|
KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY",
|
|
__kmp_i18n_catgets(msg_id), "/proc/cpuinfo");
|
|
} else {
|
|
KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo");
|
|
}
|
|
}
|
|
|
|
FILE *f = fopen("/proc/cpuinfo", "r");
|
|
if (f == NULL) {
|
|
msg_id = kmp_i18n_str_CantOpenCpuinfo;
|
|
} else {
|
|
file_name = "/proc/cpuinfo";
|
|
depth =
|
|
__kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
|
|
fclose(f);
|
|
if (depth == 0) {
|
|
KMP_EXIT_AFF_NONE;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* KMP_OS_LINUX */
|
|
|
|
#if KMP_GROUP_AFFINITY
|
|
|
|
if ((depth < 0) && (__kmp_num_proc_groups > 1)) {
|
|
if (__kmp_affinity_verbose) {
|
|
KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
|
|
}
|
|
|
|
depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
|
|
KMP_ASSERT(depth != 0);
|
|
}
|
|
|
|
#endif /* KMP_GROUP_AFFINITY */
|
|
|
|
if (depth < 0) {
|
|
if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) {
|
|
if (file_name == NULL) {
|
|
KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id));
|
|
} else if (line == 0) {
|
|
KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id));
|
|
} else {
|
|
KMP_INFORM(UsingFlatOSFileLine, file_name, line,
|
|
__kmp_i18n_catgets(msg_id));
|
|
}
|
|
}
|
|
// FIXME - print msg if msg_id = kmp_i18n_null ???
|
|
|
|
file_name = "";
|
|
depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
|
|
if (depth == 0) {
|
|
KMP_EXIT_AFF_NONE;
|
|
}
|
|
KMP_ASSERT(depth > 0);
|
|
KMP_ASSERT(address2os != NULL);
|
|
}
|
|
}
|
|
|
|
#if KMP_USE_HWLOC
|
|
else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
|
|
KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
|
|
if (__kmp_affinity_verbose) {
|
|
KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
|
|
}
|
|
depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
|
|
if (depth == 0) {
|
|
KMP_EXIT_AFF_NONE;
|
|
}
|
|
}
|
|
#endif // KMP_USE_HWLOC
|
|
|
|
// If the user has specified that a paricular topology discovery method is to be
|
|
// used, then we abort if that method fails. The exception is group affinity,
|
|
// which might have been implicitly set.
|
|
|
|
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
|
|
|
|
else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
|
|
if (__kmp_affinity_verbose) {
|
|
KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
|
|
}
|
|
|
|
depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
|
|
if (depth == 0) {
|
|
KMP_EXIT_AFF_NONE;
|
|
}
|
|
if (depth < 0) {
|
|
KMP_ASSERT(msg_id != kmp_i18n_null);
|
|
KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
|
|
}
|
|
} else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
|
|
if (__kmp_affinity_verbose) {
|
|
KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
|
|
}
|
|
|
|
depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
|
|
if (depth == 0) {
|
|
KMP_EXIT_AFF_NONE;
|
|
}
|
|
if (depth < 0) {
|
|
KMP_ASSERT(msg_id != kmp_i18n_null);
|
|
KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
|
|
}
|
|
}
|
|
|
|
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
|
|
|
|
else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
|
|
const char *filename;
|
|
if (__kmp_cpuinfo_file != NULL) {
|
|
filename = __kmp_cpuinfo_file;
|
|
} else {
|
|
filename = "/proc/cpuinfo";
|
|
}
|
|
|
|
if (__kmp_affinity_verbose) {
|
|
KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
|
|
}
|
|
|
|
FILE *f = fopen(filename, "r");
|
|
if (f == NULL) {
|
|
int code = errno;
|
|
if (__kmp_cpuinfo_file != NULL) {
|
|
__kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
|
|
KMP_HNT(NameComesFrom_CPUINFO_FILE), __kmp_msg_null);
|
|
} else {
|
|
__kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
|
|
__kmp_msg_null);
|
|
}
|
|
}
|
|
int line = 0;
|
|
depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
|
|
fclose(f);
|
|
if (depth < 0) {
|
|
KMP_ASSERT(msg_id != kmp_i18n_null);
|
|
if (line > 0) {
|
|
KMP_FATAL(FileLineMsgExiting, filename, line,
|
|
__kmp_i18n_catgets(msg_id));
|
|
} else {
|
|
KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
|
|
}
|
|
}
|
|
if (__kmp_affinity_type == affinity_none) {
|
|
KMP_ASSERT(depth == 0);
|
|
KMP_EXIT_AFF_NONE;
|
|
}
|
|
}
|
|
|
|
#if KMP_GROUP_AFFINITY
|
|
|
|
else if (__kmp_affinity_top_method == affinity_top_method_group) {
|
|
if (__kmp_affinity_verbose) {
|
|
KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
|
|
}
|
|
|
|
depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
|
|
KMP_ASSERT(depth != 0);
|
|
if (depth < 0) {
|
|
KMP_ASSERT(msg_id != kmp_i18n_null);
|
|
KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
|
|
}
|
|
}
|
|
|
|
#endif /* KMP_GROUP_AFFINITY */
|
|
|
|
else if (__kmp_affinity_top_method == affinity_top_method_flat) {
|
|
if (__kmp_affinity_verbose) {
|
|
KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY");
|
|
}
|
|
|
|
depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
|
|
if (depth == 0) {
|
|
KMP_EXIT_AFF_NONE;
|
|
}
|
|
// should not fail
|
|
KMP_ASSERT(depth > 0);
|
|
KMP_ASSERT(address2os != NULL);
|
|
}
|
|
|
|
#if KMP_USE_HIER_SCHED
|
|
__kmp_dispatch_set_hierarchy_values();
|
|
#endif
|
|
|
|
if (address2os == NULL) {
|
|
if (KMP_AFFINITY_CAPABLE() &&
|
|
(__kmp_affinity_verbose ||
|
|
(__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) {
|
|
KMP_WARNING(ErrorInitializeAffinity);
|
|
}
|
|
__kmp_affinity_type = affinity_none;
|
|
__kmp_create_affinity_none_places();
|
|
KMP_AFFINITY_DISABLE();
|
|
return;
|
|
}
|
|
|
|
if (__kmp_affinity_gran == affinity_gran_tile
|
|
#if KMP_USE_HWLOC
|
|
&& __kmp_tile_depth == 0
|
|
#endif
|
|
) {
|
|
// tiles requested but not detected, warn user on this
|
|
KMP_WARNING(AffTilesNoTiles, "KMP_AFFINITY");
|
|
}
|
|
|
|
__kmp_apply_thread_places(&address2os, depth);
|
|
|
|
// Create the table of masks, indexed by thread Id.
|
|
unsigned maxIndex;
|
|
unsigned numUnique;
|
|
kmp_affin_mask_t *osId2Mask =
|
|
__kmp_create_masks(&maxIndex, &numUnique, address2os, __kmp_avail_proc);
|
|
if (__kmp_affinity_gran_levels == 0) {
|
|
KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
|
|
}
|
|
|
|
// Set the childNums vector in all Address objects. This must be done before
|
|
// we can sort using __kmp_affinity_cmp_Address_child_num(), which takes into
|
|
// account the setting of __kmp_affinity_compact.
|
|
__kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc);
|
|
|
|
switch (__kmp_affinity_type) {
|
|
|
|
case affinity_explicit:
|
|
KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL);
|
|
#if OMP_40_ENABLED
|
|
if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel)
|
|
#endif
|
|
{
|
|
__kmp_affinity_process_proclist(
|
|
&__kmp_affinity_masks, &__kmp_affinity_num_masks,
|
|
__kmp_affinity_proclist, osId2Mask, maxIndex);
|
|
}
|
|
#if OMP_40_ENABLED
|
|
else {
|
|
__kmp_affinity_process_placelist(
|
|
&__kmp_affinity_masks, &__kmp_affinity_num_masks,
|
|
__kmp_affinity_proclist, osId2Mask, maxIndex);
|
|
}
|
|
#endif
|
|
if (__kmp_affinity_num_masks == 0) {
|
|
if (__kmp_affinity_verbose ||
|
|
(__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
|
|
KMP_WARNING(AffNoValidProcID);
|
|
}
|
|
__kmp_affinity_type = affinity_none;
|
|
return;
|
|
}
|
|
break;
|
|
|
|
// The other affinity types rely on sorting the Addresses according to some
|
|
// permutation of the machine topology tree. Set __kmp_affinity_compact and
|
|
// __kmp_affinity_offset appropriately, then jump to a common code fragment
|
|
// to do the sort and create the array of affinity masks.
|
|
|
|
case affinity_logical:
|
|
__kmp_affinity_compact = 0;
|
|
if (__kmp_affinity_offset) {
|
|
__kmp_affinity_offset =
|
|
__kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
|
|
}
|
|
goto sortAddresses;
|
|
|
|
case affinity_physical:
|
|
if (__kmp_nThreadsPerCore > 1) {
|
|
__kmp_affinity_compact = 1;
|
|
if (__kmp_affinity_compact >= depth) {
|
|
__kmp_affinity_compact = 0;
|
|
}
|
|
} else {
|
|
__kmp_affinity_compact = 0;
|
|
}
|
|
if (__kmp_affinity_offset) {
|
|
__kmp_affinity_offset =
|
|
__kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
|
|
}
|
|
goto sortAddresses;
|
|
|
|
case affinity_scatter:
|
|
if (__kmp_affinity_compact >= depth) {
|
|
__kmp_affinity_compact = 0;
|
|
} else {
|
|
__kmp_affinity_compact = depth - 1 - __kmp_affinity_compact;
|
|
}
|
|
goto sortAddresses;
|
|
|
|
case affinity_compact:
|
|
if (__kmp_affinity_compact >= depth) {
|
|
__kmp_affinity_compact = depth - 1;
|
|
}
|
|
goto sortAddresses;
|
|
|
|
case affinity_balanced:
|
|
if (depth <= 1) {
|
|
if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
|
|
KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
|
|
}
|
|
__kmp_affinity_type = affinity_none;
|
|
return;
|
|
} else if (__kmp_affinity_uniform_topology()) {
|
|
break;
|
|
} else { // Non-uniform topology
|
|
|
|
// Save the depth for further usage
|
|
__kmp_aff_depth = depth;
|
|
|
|
int core_level = __kmp_affinity_find_core_level(
|
|
address2os, __kmp_avail_proc, depth - 1);
|
|
int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc,
|
|
depth - 1, core_level);
|
|
int maxprocpercore = __kmp_affinity_max_proc_per_core(
|
|
address2os, __kmp_avail_proc, depth - 1, core_level);
|
|
|
|
int nproc = ncores * maxprocpercore;
|
|
if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
|
|
if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
|
|
KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
|
|
}
|
|
__kmp_affinity_type = affinity_none;
|
|
return;
|
|
}
|
|
|
|
procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
|
|
for (int i = 0; i < nproc; i++) {
|
|
procarr[i] = -1;
|
|
}
|
|
|
|
int lastcore = -1;
|
|
int inlastcore = 0;
|
|
for (int i = 0; i < __kmp_avail_proc; i++) {
|
|
int proc = address2os[i].second;
|
|
int core =
|
|
__kmp_affinity_find_core(address2os, i, depth - 1, core_level);
|
|
|
|
if (core == lastcore) {
|
|
inlastcore++;
|
|
} else {
|
|
inlastcore = 0;
|
|
}
|
|
lastcore = core;
|
|
|
|
procarr[core * maxprocpercore + inlastcore] = proc;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
sortAddresses:
|
|
// Allocate the gtid->affinity mask table.
|
|
if (__kmp_affinity_dups) {
|
|
__kmp_affinity_num_masks = __kmp_avail_proc;
|
|
} else {
|
|
__kmp_affinity_num_masks = numUnique;
|
|
}
|
|
|
|
#if OMP_40_ENABLED
|
|
if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
|
|
(__kmp_affinity_num_places > 0) &&
|
|
((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) {
|
|
__kmp_affinity_num_masks = __kmp_affinity_num_places;
|
|
}
|
|
#endif
|
|
|
|
KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
|
|
|
|
// Sort the address2os table according to the current setting of
|
|
// __kmp_affinity_compact, then fill out __kmp_affinity_masks.
|
|
qsort(address2os, __kmp_avail_proc, sizeof(*address2os),
|
|
__kmp_affinity_cmp_Address_child_num);
|
|
{
|
|
int i;
|
|
unsigned j;
|
|
for (i = 0, j = 0; i < __kmp_avail_proc; i++) {
|
|
if ((!__kmp_affinity_dups) && (!address2os[i].first.leader)) {
|
|
continue;
|
|
}
|
|
unsigned osId = address2os[i].second;
|
|
kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId);
|
|
kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j);
|
|
KMP_ASSERT(KMP_CPU_ISSET(osId, src));
|
|
KMP_CPU_COPY(dest, src);
|
|
if (++j >= __kmp_affinity_num_masks) {
|
|
break;
|
|
}
|
|
}
|
|
KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
KMP_ASSERT2(0, "Unexpected affinity setting");
|
|
}
|
|
|
|
KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1);
|
|
machine_hierarchy.init(address2os, __kmp_avail_proc);
|
|
}
|
|
#undef KMP_EXIT_AFF_NONE
|
|
|
|
void __kmp_affinity_initialize(void) {
|
|
// Much of the code above was written assumming that if a machine was not
|
|
// affinity capable, then __kmp_affinity_type == affinity_none. We now
|
|
// explicitly represent this as __kmp_affinity_type == affinity_disabled.
|
|
// There are too many checks for __kmp_affinity_type == affinity_none
|
|
// in this code. Instead of trying to change them all, check if
|
|
// __kmp_affinity_type == affinity_disabled, and if so, slam it with
|
|
// affinity_none, call the real initialization routine, then restore
|
|
// __kmp_affinity_type to affinity_disabled.
|
|
int disabled = (__kmp_affinity_type == affinity_disabled);
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
KMP_ASSERT(disabled);
|
|
}
|
|
if (disabled) {
|
|
__kmp_affinity_type = affinity_none;
|
|
}
|
|
__kmp_aux_affinity_initialize();
|
|
if (disabled) {
|
|
__kmp_affinity_type = affinity_disabled;
|
|
}
|
|
}
|
|
|
|
void __kmp_affinity_uninitialize(void) {
|
|
if (__kmp_affinity_masks != NULL) {
|
|
KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
|
|
__kmp_affinity_masks = NULL;
|
|
}
|
|
if (__kmp_affin_fullMask != NULL) {
|
|
KMP_CPU_FREE(__kmp_affin_fullMask);
|
|
__kmp_affin_fullMask = NULL;
|
|
}
|
|
__kmp_affinity_num_masks = 0;
|
|
__kmp_affinity_type = affinity_default;
|
|
#if OMP_40_ENABLED
|
|
__kmp_affinity_num_places = 0;
|
|
#endif
|
|
if (__kmp_affinity_proclist != NULL) {
|
|
__kmp_free(__kmp_affinity_proclist);
|
|
__kmp_affinity_proclist = NULL;
|
|
}
|
|
if (address2os != NULL) {
|
|
__kmp_free(address2os);
|
|
address2os = NULL;
|
|
}
|
|
if (procarr != NULL) {
|
|
__kmp_free(procarr);
|
|
procarr = NULL;
|
|
}
|
|
#if KMP_USE_HWLOC
|
|
if (__kmp_hwloc_topology != NULL) {
|
|
hwloc_topology_destroy(__kmp_hwloc_topology);
|
|
__kmp_hwloc_topology = NULL;
|
|
}
|
|
#endif
|
|
KMPAffinity::destroy_api();
|
|
}
|
|
|
|
void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
return;
|
|
}
|
|
|
|
kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
|
|
if (th->th.th_affin_mask == NULL) {
|
|
KMP_CPU_ALLOC(th->th.th_affin_mask);
|
|
} else {
|
|
KMP_CPU_ZERO(th->th.th_affin_mask);
|
|
}
|
|
|
|
// Copy the thread mask to the kmp_info_t strucuture. If
|
|
// __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that
|
|
// has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set,
|
|
// then the full mask is the same as the mask of the initialization thread.
|
|
kmp_affin_mask_t *mask;
|
|
int i;
|
|
|
|
#if OMP_40_ENABLED
|
|
if (KMP_AFFINITY_NON_PROC_BIND)
|
|
#endif
|
|
{
|
|
if ((__kmp_affinity_type == affinity_none) ||
|
|
(__kmp_affinity_type == affinity_balanced)) {
|
|
#if KMP_GROUP_AFFINITY
|
|
if (__kmp_num_proc_groups > 1) {
|
|
return;
|
|
}
|
|
#endif
|
|
KMP_ASSERT(__kmp_affin_fullMask != NULL);
|
|
i = 0;
|
|
mask = __kmp_affin_fullMask;
|
|
} else {
|
|
KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
|
|
i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
|
|
mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
|
|
}
|
|
}
|
|
#if OMP_40_ENABLED
|
|
else {
|
|
if ((!isa_root) ||
|
|
(__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) {
|
|
#if KMP_GROUP_AFFINITY
|
|
if (__kmp_num_proc_groups > 1) {
|
|
return;
|
|
}
|
|
#endif
|
|
KMP_ASSERT(__kmp_affin_fullMask != NULL);
|
|
i = KMP_PLACE_ALL;
|
|
mask = __kmp_affin_fullMask;
|
|
} else {
|
|
// int i = some hash function or just a counter that doesn't
|
|
// always start at 0. Use gtid for now.
|
|
KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
|
|
i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
|
|
mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if OMP_40_ENABLED
|
|
th->th.th_current_place = i;
|
|
if (isa_root) {
|
|
th->th.th_new_place = i;
|
|
th->th.th_first_place = 0;
|
|
th->th.th_last_place = __kmp_affinity_num_masks - 1;
|
|
}
|
|
|
|
if (i == KMP_PLACE_ALL) {
|
|
KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
|
|
gtid));
|
|
} else {
|
|
KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
|
|
gtid, i));
|
|
}
|
|
#else
|
|
if (i == -1) {
|
|
KA_TRACE(
|
|
100,
|
|
("__kmp_affinity_set_init_mask: binding T#%d to __kmp_affin_fullMask\n",
|
|
gtid));
|
|
} else {
|
|
KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to mask %d\n",
|
|
gtid, i));
|
|
}
|
|
#endif /* OMP_40_ENABLED */
|
|
|
|
KMP_CPU_COPY(th->th.th_affin_mask, mask);
|
|
|
|
if (__kmp_affinity_verbose
|
|
/* to avoid duplicate printing (will be correctly printed on barrier) */
|
|
&& (__kmp_affinity_type == affinity_none ||
|
|
(i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) {
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
|
|
th->th.th_affin_mask);
|
|
KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
|
|
__kmp_gettid(), gtid, buf);
|
|
}
|
|
|
|
#if KMP_OS_WINDOWS
|
|
// On Windows* OS, the process affinity mask might have changed. If the user
|
|
// didn't request affinity and this call fails, just continue silently.
|
|
// See CQ171393.
|
|
if (__kmp_affinity_type == affinity_none) {
|
|
__kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
|
|
} else
|
|
#endif
|
|
__kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
|
|
}
|
|
|
|
#if OMP_40_ENABLED
|
|
|
|
void __kmp_affinity_set_place(int gtid) {
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
return;
|
|
}
|
|
|
|
kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
|
|
|
|
KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current "
|
|
"place = %d)\n",
|
|
gtid, th->th.th_new_place, th->th.th_current_place));
|
|
|
|
// Check that the new place is within this thread's partition.
|
|
KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
|
|
KMP_ASSERT(th->th.th_new_place >= 0);
|
|
KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks);
|
|
if (th->th.th_first_place <= th->th.th_last_place) {
|
|
KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
|
|
(th->th.th_new_place <= th->th.th_last_place));
|
|
} else {
|
|
KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
|
|
(th->th.th_new_place >= th->th.th_last_place));
|
|
}
|
|
|
|
// Copy the thread mask to the kmp_info_t strucuture,
|
|
// and set this thread's affinity.
|
|
kmp_affin_mask_t *mask =
|
|
KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place);
|
|
KMP_CPU_COPY(th->th.th_affin_mask, mask);
|
|
th->th.th_current_place = th->th.th_new_place;
|
|
|
|
if (__kmp_affinity_verbose) {
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
|
|
th->th.th_affin_mask);
|
|
KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
|
|
__kmp_gettid(), gtid, buf);
|
|
}
|
|
__kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
|
|
}
|
|
|
|
#endif /* OMP_40_ENABLED */
|
|
|
|
int __kmp_aux_set_affinity(void **mask) {
|
|
int gtid;
|
|
kmp_info_t *th;
|
|
int retval;
|
|
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
return -1;
|
|
}
|
|
|
|
gtid = __kmp_entry_gtid();
|
|
KA_TRACE(1000, ; {
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
|
|
(kmp_affin_mask_t *)(*mask));
|
|
__kmp_debug_printf(
|
|
"kmp_set_affinity: setting affinity mask for thread %d = %s\n", gtid,
|
|
buf);
|
|
});
|
|
|
|
if (__kmp_env_consistency_check) {
|
|
if ((mask == NULL) || (*mask == NULL)) {
|
|
KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
|
|
} else {
|
|
unsigned proc;
|
|
int num_procs = 0;
|
|
|
|
KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
|
|
if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
|
|
KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
|
|
}
|
|
if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
|
|
continue;
|
|
}
|
|
num_procs++;
|
|
}
|
|
if (num_procs == 0) {
|
|
KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
|
|
}
|
|
|
|
#if KMP_GROUP_AFFINITY
|
|
if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
|
|
KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
|
|
}
|
|
#endif /* KMP_GROUP_AFFINITY */
|
|
}
|
|
}
|
|
|
|
th = __kmp_threads[gtid];
|
|
KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
|
|
retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
|
|
if (retval == 0) {
|
|
KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
|
|
}
|
|
|
|
#if OMP_40_ENABLED
|
|
th->th.th_current_place = KMP_PLACE_UNDEFINED;
|
|
th->th.th_new_place = KMP_PLACE_UNDEFINED;
|
|
th->th.th_first_place = 0;
|
|
th->th.th_last_place = __kmp_affinity_num_masks - 1;
|
|
|
|
// Turn off 4.0 affinity for the current tread at this parallel level.
|
|
th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
|
|
#endif
|
|
|
|
return retval;
|
|
}
|
|
|
|
int __kmp_aux_get_affinity(void **mask) {
|
|
int gtid;
|
|
int retval;
|
|
kmp_info_t *th;
|
|
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
return -1;
|
|
}
|
|
|
|
gtid = __kmp_entry_gtid();
|
|
th = __kmp_threads[gtid];
|
|
KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
|
|
|
|
KA_TRACE(1000, ; {
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
|
|
th->th.th_affin_mask);
|
|
__kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n",
|
|
gtid, buf);
|
|
});
|
|
|
|
if (__kmp_env_consistency_check) {
|
|
if ((mask == NULL) || (*mask == NULL)) {
|
|
KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
|
|
}
|
|
}
|
|
|
|
#if !KMP_OS_WINDOWS
|
|
|
|
retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
|
|
KA_TRACE(1000, ; {
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
|
|
(kmp_affin_mask_t *)(*mask));
|
|
__kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n",
|
|
gtid, buf);
|
|
});
|
|
return retval;
|
|
|
|
#else
|
|
|
|
KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
|
|
return 0;
|
|
|
|
#endif /* KMP_OS_WINDOWS */
|
|
}
|
|
|
|
int __kmp_aux_get_affinity_max_proc() {
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
return 0;
|
|
}
|
|
#if KMP_GROUP_AFFINITY
|
|
if (__kmp_num_proc_groups > 1) {
|
|
return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
|
|
}
|
|
#endif
|
|
return __kmp_xproc;
|
|
}
|
|
|
|
int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
return -1;
|
|
}
|
|
|
|
KA_TRACE(1000, ; {
|
|
int gtid = __kmp_entry_gtid();
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
|
|
(kmp_affin_mask_t *)(*mask));
|
|
__kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
|
|
"affinity mask for thread %d = %s\n",
|
|
proc, gtid, buf);
|
|
});
|
|
|
|
if (__kmp_env_consistency_check) {
|
|
if ((mask == NULL) || (*mask == NULL)) {
|
|
KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
|
|
}
|
|
}
|
|
|
|
if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
|
|
return -1;
|
|
}
|
|
if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
|
|
return -2;
|
|
}
|
|
|
|
KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
|
|
return 0;
|
|
}
|
|
|
|
int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
return -1;
|
|
}
|
|
|
|
KA_TRACE(1000, ; {
|
|
int gtid = __kmp_entry_gtid();
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
|
|
(kmp_affin_mask_t *)(*mask));
|
|
__kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
|
|
"affinity mask for thread %d = %s\n",
|
|
proc, gtid, buf);
|
|
});
|
|
|
|
if (__kmp_env_consistency_check) {
|
|
if ((mask == NULL) || (*mask == NULL)) {
|
|
KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
|
|
}
|
|
}
|
|
|
|
if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
|
|
return -1;
|
|
}
|
|
if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
|
|
return -2;
|
|
}
|
|
|
|
KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
|
|
return 0;
|
|
}
|
|
|
|
int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
|
|
if (!KMP_AFFINITY_CAPABLE()) {
|
|
return -1;
|
|
}
|
|
|
|
KA_TRACE(1000, ; {
|
|
int gtid = __kmp_entry_gtid();
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
|
|
(kmp_affin_mask_t *)(*mask));
|
|
__kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
|
|
"affinity mask for thread %d = %s\n",
|
|
proc, gtid, buf);
|
|
});
|
|
|
|
if (__kmp_env_consistency_check) {
|
|
if ((mask == NULL) || (*mask == NULL)) {
|
|
KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
|
|
}
|
|
}
|
|
|
|
if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
|
|
return -1;
|
|
}
|
|
if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
|
|
return 0;
|
|
}
|
|
|
|
return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
|
|
}
|
|
|
|
// Dynamic affinity settings - Affinity balanced
|
|
void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) {
|
|
KMP_DEBUG_ASSERT(th);
|
|
bool fine_gran = true;
|
|
int tid = th->th.th_info.ds.ds_tid;
|
|
|
|
switch (__kmp_affinity_gran) {
|
|
case affinity_gran_fine:
|
|
case affinity_gran_thread:
|
|
break;
|
|
case affinity_gran_core:
|
|
if (__kmp_nThreadsPerCore > 1) {
|
|
fine_gran = false;
|
|
}
|
|
break;
|
|
case affinity_gran_package:
|
|
if (nCoresPerPkg > 1) {
|
|
fine_gran = false;
|
|
}
|
|
break;
|
|
default:
|
|
fine_gran = false;
|
|
}
|
|
|
|
if (__kmp_affinity_uniform_topology()) {
|
|
int coreID;
|
|
int threadID;
|
|
// Number of hyper threads per core in HT machine
|
|
int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
|
|
// Number of cores
|
|
int ncores = __kmp_ncores;
|
|
if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
|
|
__kmp_nth_per_core = __kmp_avail_proc / nPackages;
|
|
ncores = nPackages;
|
|
}
|
|
// How many threads will be bound to each core
|
|
int chunk = nthreads / ncores;
|
|
// How many cores will have an additional thread bound to it - "big cores"
|
|
int big_cores = nthreads % ncores;
|
|
// Number of threads on the big cores
|
|
int big_nth = (chunk + 1) * big_cores;
|
|
if (tid < big_nth) {
|
|
coreID = tid / (chunk + 1);
|
|
threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
|
|
} else { // tid >= big_nth
|
|
coreID = (tid - big_cores) / chunk;
|
|
threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
|
|
}
|
|
|
|
KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
|
|
"Illegal set affinity operation when not capable");
|
|
|
|
kmp_affin_mask_t *mask = th->th.th_affin_mask;
|
|
KMP_CPU_ZERO(mask);
|
|
|
|
if (fine_gran) {
|
|
int osID = address2os[coreID * __kmp_nth_per_core + threadID].second;
|
|
KMP_CPU_SET(osID, mask);
|
|
} else {
|
|
for (int i = 0; i < __kmp_nth_per_core; i++) {
|
|
int osID;
|
|
osID = address2os[coreID * __kmp_nth_per_core + i].second;
|
|
KMP_CPU_SET(osID, mask);
|
|
}
|
|
}
|
|
if (__kmp_affinity_verbose) {
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
|
|
KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
|
|
__kmp_gettid(), tid, buf);
|
|
}
|
|
__kmp_set_system_affinity(mask, TRUE);
|
|
} else { // Non-uniform topology
|
|
|
|
kmp_affin_mask_t *mask = th->th.th_affin_mask;
|
|
KMP_CPU_ZERO(mask);
|
|
|
|
int core_level = __kmp_affinity_find_core_level(
|
|
address2os, __kmp_avail_proc, __kmp_aff_depth - 1);
|
|
int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc,
|
|
__kmp_aff_depth - 1, core_level);
|
|
int nth_per_core = __kmp_affinity_max_proc_per_core(
|
|
address2os, __kmp_avail_proc, __kmp_aff_depth - 1, core_level);
|
|
|
|
// For performance gain consider the special case nthreads ==
|
|
// __kmp_avail_proc
|
|
if (nthreads == __kmp_avail_proc) {
|
|
if (fine_gran) {
|
|
int osID = address2os[tid].second;
|
|
KMP_CPU_SET(osID, mask);
|
|
} else {
|
|
int core = __kmp_affinity_find_core(address2os, tid,
|
|
__kmp_aff_depth - 1, core_level);
|
|
for (int i = 0; i < __kmp_avail_proc; i++) {
|
|
int osID = address2os[i].second;
|
|
if (__kmp_affinity_find_core(address2os, i, __kmp_aff_depth - 1,
|
|
core_level) == core) {
|
|
KMP_CPU_SET(osID, mask);
|
|
}
|
|
}
|
|
}
|
|
} else if (nthreads <= ncores) {
|
|
|
|
int core = 0;
|
|
for (int i = 0; i < ncores; i++) {
|
|
// Check if this core from procarr[] is in the mask
|
|
int in_mask = 0;
|
|
for (int j = 0; j < nth_per_core; j++) {
|
|
if (procarr[i * nth_per_core + j] != -1) {
|
|
in_mask = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (in_mask) {
|
|
if (tid == core) {
|
|
for (int j = 0; j < nth_per_core; j++) {
|
|
int osID = procarr[i * nth_per_core + j];
|
|
if (osID != -1) {
|
|
KMP_CPU_SET(osID, mask);
|
|
// For fine granularity it is enough to set the first available
|
|
// osID for this core
|
|
if (fine_gran) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
} else {
|
|
core++;
|
|
}
|
|
}
|
|
}
|
|
} else { // nthreads > ncores
|
|
// Array to save the number of processors at each core
|
|
int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
|
|
// Array to save the number of cores with "x" available processors;
|
|
int *ncores_with_x_procs =
|
|
(int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
|
|
// Array to save the number of cores with # procs from x to nth_per_core
|
|
int *ncores_with_x_to_max_procs =
|
|
(int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
|
|
|
|
for (int i = 0; i <= nth_per_core; i++) {
|
|
ncores_with_x_procs[i] = 0;
|
|
ncores_with_x_to_max_procs[i] = 0;
|
|
}
|
|
|
|
for (int i = 0; i < ncores; i++) {
|
|
int cnt = 0;
|
|
for (int j = 0; j < nth_per_core; j++) {
|
|
if (procarr[i * nth_per_core + j] != -1) {
|
|
cnt++;
|
|
}
|
|
}
|
|
nproc_at_core[i] = cnt;
|
|
ncores_with_x_procs[cnt]++;
|
|
}
|
|
|
|
for (int i = 0; i <= nth_per_core; i++) {
|
|
for (int j = i; j <= nth_per_core; j++) {
|
|
ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
|
|
}
|
|
}
|
|
|
|
// Max number of processors
|
|
int nproc = nth_per_core * ncores;
|
|
// An array to keep number of threads per each context
|
|
int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
|
|
for (int i = 0; i < nproc; i++) {
|
|
newarr[i] = 0;
|
|
}
|
|
|
|
int nth = nthreads;
|
|
int flag = 0;
|
|
while (nth > 0) {
|
|
for (int j = 1; j <= nth_per_core; j++) {
|
|
int cnt = ncores_with_x_to_max_procs[j];
|
|
for (int i = 0; i < ncores; i++) {
|
|
// Skip the core with 0 processors
|
|
if (nproc_at_core[i] == 0) {
|
|
continue;
|
|
}
|
|
for (int k = 0; k < nth_per_core; k++) {
|
|
if (procarr[i * nth_per_core + k] != -1) {
|
|
if (newarr[i * nth_per_core + k] == 0) {
|
|
newarr[i * nth_per_core + k] = 1;
|
|
cnt--;
|
|
nth--;
|
|
break;
|
|
} else {
|
|
if (flag != 0) {
|
|
newarr[i * nth_per_core + k]++;
|
|
cnt--;
|
|
nth--;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (cnt == 0 || nth == 0) {
|
|
break;
|
|
}
|
|
}
|
|
if (nth == 0) {
|
|
break;
|
|
}
|
|
}
|
|
flag = 1;
|
|
}
|
|
int sum = 0;
|
|
for (int i = 0; i < nproc; i++) {
|
|
sum += newarr[i];
|
|
if (sum > tid) {
|
|
if (fine_gran) {
|
|
int osID = procarr[i];
|
|
KMP_CPU_SET(osID, mask);
|
|
} else {
|
|
int coreID = i / nth_per_core;
|
|
for (int ii = 0; ii < nth_per_core; ii++) {
|
|
int osID = procarr[coreID * nth_per_core + ii];
|
|
if (osID != -1) {
|
|
KMP_CPU_SET(osID, mask);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
__kmp_free(newarr);
|
|
}
|
|
|
|
if (__kmp_affinity_verbose) {
|
|
char buf[KMP_AFFIN_MASK_PRINT_LEN];
|
|
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
|
|
KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
|
|
__kmp_gettid(), tid, buf);
|
|
}
|
|
__kmp_set_system_affinity(mask, TRUE);
|
|
}
|
|
}
|
|
|
|
#if KMP_OS_LINUX
|
|
// We don't need this entry for Windows because
|
|
// there is GetProcessAffinityMask() api
|
|
//
|
|
// The intended usage is indicated by these steps:
|
|
// 1) The user gets the current affinity mask
|
|
// 2) Then sets the affinity by calling this function
|
|
// 3) Error check the return value
|
|
// 4) Use non-OpenMP parallelization
|
|
// 5) Reset the affinity to what was stored in step 1)
|
|
#ifdef __cplusplus
|
|
extern "C"
|
|
#endif
|
|
int
|
|
kmp_set_thread_affinity_mask_initial()
|
|
// the function returns 0 on success,
|
|
// -1 if we cannot bind thread
|
|
// >0 (errno) if an error happened during binding
|
|
{
|
|
int gtid = __kmp_get_gtid();
|
|
if (gtid < 0) {
|
|
// Do not touch non-omp threads
|
|
KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
|
|
"non-omp thread, returning\n"));
|
|
return -1;
|
|
}
|
|
if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
|
|
KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
|
|
"affinity not initialized, returning\n"));
|
|
return -1;
|
|
}
|
|
KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
|
|
"set full mask for thread %d\n",
|
|
gtid));
|
|
KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
|
|
return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
|
|
}
|
|
#endif
|
|
|
|
#endif // KMP_AFFINITY_SUPPORTED
|