forked from OSchip/llvm-project
715 lines
21 KiB
C++
715 lines
21 KiB
C++
//===-- AMDGPUStructurizeCFG.cpp - ------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// The pass implemented in this file transforms the programs control flow
|
|
/// graph into a form that's suitable for code generation on hardware that
|
|
/// implements control flow by execution masking. This currently includes all
|
|
/// AMD GPUs but may as well be useful for other types of hardware.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPU.h"
|
|
#include "llvm/ADT/SCCIterator.h"
|
|
#include "llvm/Analysis/RegionInfo.h"
|
|
#include "llvm/Analysis/RegionIterator.h"
|
|
#include "llvm/Analysis/RegionPass.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Transforms/Utils/SSAUpdater.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
// Definition of the complex types used in this pass.
|
|
|
|
typedef std::pair<BasicBlock *, Value *> BBValuePair;
|
|
typedef ArrayRef<BasicBlock*> BBVecRef;
|
|
|
|
typedef SmallVector<RegionNode*, 8> RNVector;
|
|
typedef SmallVector<BasicBlock*, 8> BBVector;
|
|
typedef SmallVector<BBValuePair, 2> BBValueVector;
|
|
|
|
typedef DenseMap<PHINode *, BBValueVector> PhiMap;
|
|
typedef DenseMap<BasicBlock *, PhiMap> BBPhiMap;
|
|
typedef DenseMap<BasicBlock *, Value *> BBPredicates;
|
|
typedef DenseMap<BasicBlock *, BBPredicates> PredMap;
|
|
typedef DenseMap<BasicBlock *, unsigned> VisitedMap;
|
|
|
|
// The name for newly created blocks.
|
|
|
|
static const char *FlowBlockName = "Flow";
|
|
|
|
/// @brief Transforms the control flow graph on one single entry/exit region
|
|
/// at a time.
|
|
///
|
|
/// After the transform all "If"/"Then"/"Else" style control flow looks like
|
|
/// this:
|
|
///
|
|
/// \verbatim
|
|
/// 1
|
|
/// ||
|
|
/// | |
|
|
/// 2 |
|
|
/// | /
|
|
/// |/
|
|
/// 3
|
|
/// || Where:
|
|
/// | | 1 = "If" block, calculates the condition
|
|
/// 4 | 2 = "Then" subregion, runs if the condition is true
|
|
/// | / 3 = "Flow" blocks, newly inserted flow blocks, rejoins the flow
|
|
/// |/ 4 = "Else" optional subregion, runs if the condition is false
|
|
/// 5 5 = "End" block, also rejoins the control flow
|
|
/// \endverbatim
|
|
///
|
|
/// Control flow is expressed as a branch where the true exit goes into the
|
|
/// "Then"/"Else" region, while the false exit skips the region
|
|
/// The condition for the optional "Else" region is expressed as a PHI node.
|
|
/// The incomming values of the PHI node are true for the "If" edge and false
|
|
/// for the "Then" edge.
|
|
///
|
|
/// Additionally to that even complicated loops look like this:
|
|
///
|
|
/// \verbatim
|
|
/// 1
|
|
/// ||
|
|
/// | |
|
|
/// 2 ^ Where:
|
|
/// | / 1 = "Entry" block
|
|
/// |/ 2 = "Loop" optional subregion, with all exits at "Flow" block
|
|
/// 3 3 = "Flow" block, with back edge to entry block
|
|
/// |
|
|
/// \endverbatim
|
|
///
|
|
/// The back edge of the "Flow" block is always on the false side of the branch
|
|
/// while the true side continues the general flow. So the loop condition
|
|
/// consist of a network of PHI nodes where the true incoming values expresses
|
|
/// breaks and the false values expresses continue states.
|
|
class AMDGPUStructurizeCFG : public RegionPass {
|
|
|
|
static char ID;
|
|
|
|
Type *Boolean;
|
|
ConstantInt *BoolTrue;
|
|
ConstantInt *BoolFalse;
|
|
UndefValue *BoolUndef;
|
|
|
|
Function *Func;
|
|
Region *ParentRegion;
|
|
|
|
DominatorTree *DT;
|
|
|
|
RNVector Order;
|
|
VisitedMap Visited;
|
|
PredMap Predicates;
|
|
BBPhiMap DeletedPhis;
|
|
BBVector FlowsInserted;
|
|
|
|
BasicBlock *LoopStart;
|
|
BasicBlock *LoopEnd;
|
|
BBPredicates LoopPred;
|
|
|
|
void orderNodes();
|
|
|
|
void buildPredicate(BranchInst *Term, unsigned Idx,
|
|
BBPredicates &Pred, bool Invert);
|
|
|
|
void analyzeBlock(BasicBlock *BB);
|
|
|
|
void analyzeLoop(BasicBlock *BB, unsigned &LoopIdx);
|
|
|
|
void collectInfos();
|
|
|
|
bool dominatesPredicates(BasicBlock *A, BasicBlock *B);
|
|
|
|
void killTerminator(BasicBlock *BB);
|
|
|
|
RegionNode *skipChained(RegionNode *Node);
|
|
|
|
void delPhiValues(BasicBlock *From, BasicBlock *To);
|
|
|
|
void addPhiValues(BasicBlock *From, BasicBlock *To);
|
|
|
|
BasicBlock *getNextFlow(BasicBlock *Prev);
|
|
|
|
bool isPredictableTrue(BasicBlock *Prev, BasicBlock *Node);
|
|
|
|
BasicBlock *wireFlowBlock(BasicBlock *Prev, RegionNode *Node);
|
|
|
|
void createFlow();
|
|
|
|
void insertConditions();
|
|
|
|
void rebuildSSA();
|
|
|
|
public:
|
|
AMDGPUStructurizeCFG():
|
|
RegionPass(ID) {
|
|
|
|
initializeRegionInfoPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
virtual bool doInitialization(Region *R, RGPassManager &RGM);
|
|
|
|
virtual bool runOnRegion(Region *R, RGPassManager &RGM);
|
|
|
|
virtual const char *getPassName() const {
|
|
return "AMDGPU simplify control flow";
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
|
|
AU.addRequired<DominatorTree>();
|
|
AU.addPreserved<DominatorTree>();
|
|
RegionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char AMDGPUStructurizeCFG::ID = 0;
|
|
|
|
/// \brief Initialize the types and constants used in the pass
|
|
bool AMDGPUStructurizeCFG::doInitialization(Region *R, RGPassManager &RGM) {
|
|
LLVMContext &Context = R->getEntry()->getContext();
|
|
|
|
Boolean = Type::getInt1Ty(Context);
|
|
BoolTrue = ConstantInt::getTrue(Context);
|
|
BoolFalse = ConstantInt::getFalse(Context);
|
|
BoolUndef = UndefValue::get(Boolean);
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Build up the general order of nodes
|
|
void AMDGPUStructurizeCFG::orderNodes() {
|
|
scc_iterator<Region *> I = scc_begin(ParentRegion),
|
|
E = scc_end(ParentRegion);
|
|
for (Order.clear(); I != E; ++I) {
|
|
std::vector<RegionNode *> &Nodes = *I;
|
|
Order.append(Nodes.begin(), Nodes.end());
|
|
}
|
|
}
|
|
|
|
/// \brief Build blocks and loop predicates
|
|
void AMDGPUStructurizeCFG::buildPredicate(BranchInst *Term, unsigned Idx,
|
|
BBPredicates &Pred, bool Invert) {
|
|
Value *True = Invert ? BoolFalse : BoolTrue;
|
|
Value *False = Invert ? BoolTrue : BoolFalse;
|
|
|
|
RegionInfo *RI = ParentRegion->getRegionInfo();
|
|
BasicBlock *BB = Term->getParent();
|
|
|
|
// Handle the case where multiple regions start at the same block
|
|
Region *R = BB != ParentRegion->getEntry() ?
|
|
RI->getRegionFor(BB) : ParentRegion;
|
|
|
|
if (R == ParentRegion) {
|
|
// It's a top level block in our region
|
|
Value *Cond = True;
|
|
if (Term->isConditional()) {
|
|
BasicBlock *Other = Term->getSuccessor(!Idx);
|
|
|
|
if (Visited.count(Other)) {
|
|
if (!Pred.count(Other))
|
|
Pred[Other] = False;
|
|
|
|
if (!Pred.count(BB))
|
|
Pred[BB] = True;
|
|
return;
|
|
}
|
|
Cond = Term->getCondition();
|
|
|
|
if (Idx != Invert)
|
|
Cond = BinaryOperator::CreateNot(Cond, "", Term);
|
|
}
|
|
|
|
Pred[BB] = Cond;
|
|
|
|
} else if (ParentRegion->contains(R)) {
|
|
// It's a block in a sub region
|
|
while(R->getParent() != ParentRegion)
|
|
R = R->getParent();
|
|
|
|
Pred[R->getEntry()] = True;
|
|
|
|
} else {
|
|
// It's a branch from outside into our parent region
|
|
Pred[BB] = True;
|
|
}
|
|
}
|
|
|
|
/// \brief Analyze the successors of each block and build up predicates
|
|
void AMDGPUStructurizeCFG::analyzeBlock(BasicBlock *BB) {
|
|
pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
|
|
BBPredicates &Pred = Predicates[BB];
|
|
|
|
for (; PI != PE; ++PI) {
|
|
BranchInst *Term = cast<BranchInst>((*PI)->getTerminator());
|
|
|
|
for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
|
|
BasicBlock *Succ = Term->getSuccessor(i);
|
|
if (Succ != BB)
|
|
continue;
|
|
buildPredicate(Term, i, Pred, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Analyze the conditions leading to loop to a previous block
|
|
void AMDGPUStructurizeCFG::analyzeLoop(BasicBlock *BB, unsigned &LoopIdx) {
|
|
BranchInst *Term = cast<BranchInst>(BB->getTerminator());
|
|
|
|
for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
|
|
BasicBlock *Succ = Term->getSuccessor(i);
|
|
|
|
// Ignore it if it's not a back edge
|
|
if (!Visited.count(Succ))
|
|
continue;
|
|
|
|
buildPredicate(Term, i, LoopPred, true);
|
|
|
|
LoopEnd = BB;
|
|
if (Visited[Succ] < LoopIdx) {
|
|
LoopIdx = Visited[Succ];
|
|
LoopStart = Succ;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Collect various loop and predicate infos
|
|
void AMDGPUStructurizeCFG::collectInfos() {
|
|
unsigned Number = 0, LoopIdx = ~0;
|
|
|
|
// Reset predicate
|
|
Predicates.clear();
|
|
|
|
// and loop infos
|
|
LoopStart = LoopEnd = 0;
|
|
LoopPred.clear();
|
|
|
|
RNVector::reverse_iterator OI = Order.rbegin(), OE = Order.rend();
|
|
for (Visited.clear(); OI != OE; Visited[(*OI++)->getEntry()] = ++Number) {
|
|
|
|
// Analyze all the conditions leading to a node
|
|
analyzeBlock((*OI)->getEntry());
|
|
|
|
if ((*OI)->isSubRegion())
|
|
continue;
|
|
|
|
// Find the first/last loop nodes and loop predicates
|
|
analyzeLoop((*OI)->getNodeAs<BasicBlock>(), LoopIdx);
|
|
}
|
|
}
|
|
|
|
/// \brief Does A dominate all the predicates of B ?
|
|
bool AMDGPUStructurizeCFG::dominatesPredicates(BasicBlock *A, BasicBlock *B) {
|
|
BBPredicates &Preds = Predicates[B];
|
|
for (BBPredicates::iterator PI = Preds.begin(), PE = Preds.end();
|
|
PI != PE; ++PI) {
|
|
|
|
if (!DT->dominates(A, PI->first))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// \brief Remove phi values from all successors and the remove the terminator.
|
|
void AMDGPUStructurizeCFG::killTerminator(BasicBlock *BB) {
|
|
TerminatorInst *Term = BB->getTerminator();
|
|
if (!Term)
|
|
return;
|
|
|
|
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
|
|
SI != SE; ++SI) {
|
|
|
|
delPhiValues(BB, *SI);
|
|
}
|
|
|
|
Term->eraseFromParent();
|
|
}
|
|
|
|
/// First: Skip forward to the first region node that either isn't a subregion or not
|
|
/// dominating it's exit, remove all the skipped nodes from the node order.
|
|
///
|
|
/// Second: Handle the first successor directly if the resulting nodes successor
|
|
/// predicates are still dominated by the original entry
|
|
RegionNode *AMDGPUStructurizeCFG::skipChained(RegionNode *Node) {
|
|
BasicBlock *Entry = Node->getEntry();
|
|
|
|
// Skip forward as long as it is just a linear flow
|
|
while (true) {
|
|
BasicBlock *Entry = Node->getEntry();
|
|
BasicBlock *Exit;
|
|
|
|
if (Node->isSubRegion()) {
|
|
Exit = Node->getNodeAs<Region>()->getExit();
|
|
} else {
|
|
TerminatorInst *Term = Entry->getTerminator();
|
|
if (Term->getNumSuccessors() != 1)
|
|
break;
|
|
Exit = Term->getSuccessor(0);
|
|
}
|
|
|
|
// It's a back edge, break here so we can insert a loop node
|
|
if (!Visited.count(Exit))
|
|
return Node;
|
|
|
|
// More than node edges are pointing to exit
|
|
if (!DT->dominates(Entry, Exit))
|
|
return Node;
|
|
|
|
RegionNode *Next = ParentRegion->getNode(Exit);
|
|
RNVector::iterator I = std::find(Order.begin(), Order.end(), Next);
|
|
assert(I != Order.end());
|
|
|
|
Visited.erase(Next->getEntry());
|
|
Order.erase(I);
|
|
Node = Next;
|
|
}
|
|
|
|
BasicBlock *BB = Node->getEntry();
|
|
TerminatorInst *Term = BB->getTerminator();
|
|
if (Term->getNumSuccessors() != 2)
|
|
return Node;
|
|
|
|
// Our node has exactly two succesors, check if we can handle
|
|
// any of them directly
|
|
BasicBlock *Succ = Term->getSuccessor(0);
|
|
if (!Visited.count(Succ) || !dominatesPredicates(Entry, Succ)) {
|
|
Succ = Term->getSuccessor(1);
|
|
if (!Visited.count(Succ) || !dominatesPredicates(Entry, Succ))
|
|
return Node;
|
|
} else {
|
|
BasicBlock *Succ2 = Term->getSuccessor(1);
|
|
if (Visited.count(Succ2) && Visited[Succ] > Visited[Succ2] &&
|
|
dominatesPredicates(Entry, Succ2))
|
|
Succ = Succ2;
|
|
}
|
|
|
|
RegionNode *Next = ParentRegion->getNode(Succ);
|
|
RNVector::iterator E = Order.end();
|
|
RNVector::iterator I = std::find(Order.begin(), E, Next);
|
|
assert(I != E);
|
|
|
|
killTerminator(BB);
|
|
FlowsInserted.push_back(BB);
|
|
Visited.erase(Succ);
|
|
Order.erase(I);
|
|
return ParentRegion->getNode(wireFlowBlock(BB, Next));
|
|
}
|
|
|
|
/// \brief Remove all PHI values coming from "From" into "To" and remember
|
|
/// them in DeletedPhis
|
|
void AMDGPUStructurizeCFG::delPhiValues(BasicBlock *From, BasicBlock *To) {
|
|
PhiMap &Map = DeletedPhis[To];
|
|
for (BasicBlock::iterator I = To->begin(), E = To->end();
|
|
I != E && isa<PHINode>(*I);) {
|
|
|
|
PHINode &Phi = cast<PHINode>(*I++);
|
|
while (Phi.getBasicBlockIndex(From) != -1) {
|
|
Value *Deleted = Phi.removeIncomingValue(From, false);
|
|
Map[&Phi].push_back(std::make_pair(From, Deleted));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Add the PHI values back once we knew the new predecessor
|
|
void AMDGPUStructurizeCFG::addPhiValues(BasicBlock *From, BasicBlock *To) {
|
|
if (!DeletedPhis.count(To))
|
|
return;
|
|
|
|
PhiMap &Map = DeletedPhis[To];
|
|
SSAUpdater Updater;
|
|
|
|
for (PhiMap::iterator I = Map.begin(), E = Map.end(); I != E; ++I) {
|
|
|
|
PHINode *Phi = I->first;
|
|
Updater.Initialize(Phi->getType(), "");
|
|
BasicBlock *Fallback = To;
|
|
bool HaveFallback = false;
|
|
|
|
for (BBValueVector::iterator VI = I->second.begin(), VE = I->second.end();
|
|
VI != VE; ++VI) {
|
|
|
|
Updater.AddAvailableValue(VI->first, VI->second);
|
|
BasicBlock *Dom = DT->findNearestCommonDominator(Fallback, VI->first);
|
|
if (Dom == VI->first)
|
|
HaveFallback = true;
|
|
else if (Dom != Fallback)
|
|
HaveFallback = false;
|
|
Fallback = Dom;
|
|
}
|
|
if (!HaveFallback) {
|
|
Value *Undef = UndefValue::get(Phi->getType());
|
|
Updater.AddAvailableValue(Fallback, Undef);
|
|
}
|
|
|
|
Phi->addIncoming(Updater.GetValueAtEndOfBlock(From), From);
|
|
}
|
|
DeletedPhis.erase(To);
|
|
}
|
|
|
|
/// \brief Create a new flow node and update dominator tree and region info
|
|
BasicBlock *AMDGPUStructurizeCFG::getNextFlow(BasicBlock *Prev) {
|
|
LLVMContext &Context = Func->getContext();
|
|
BasicBlock *Insert = Order.empty() ? ParentRegion->getExit() :
|
|
Order.back()->getEntry();
|
|
BasicBlock *Flow = BasicBlock::Create(Context, FlowBlockName,
|
|
Func, Insert);
|
|
DT->addNewBlock(Flow, Prev);
|
|
ParentRegion->getRegionInfo()->setRegionFor(Flow, ParentRegion);
|
|
FlowsInserted.push_back(Flow);
|
|
return Flow;
|
|
}
|
|
|
|
/// \brief Can we predict that this node will always be called?
|
|
bool AMDGPUStructurizeCFG::isPredictableTrue(BasicBlock *Prev,
|
|
BasicBlock *Node) {
|
|
BBPredicates &Preds = Predicates[Node];
|
|
bool Dominated = false;
|
|
|
|
for (BBPredicates::iterator I = Preds.begin(), E = Preds.end();
|
|
I != E; ++I) {
|
|
|
|
if (I->second != BoolTrue)
|
|
return false;
|
|
|
|
if (!Dominated && DT->dominates(I->first, Prev))
|
|
Dominated = true;
|
|
}
|
|
return Dominated;
|
|
}
|
|
|
|
/// \brief Wire up the new control flow by inserting or updating the branch
|
|
/// instructions at node exits
|
|
BasicBlock *AMDGPUStructurizeCFG::wireFlowBlock(BasicBlock *Prev,
|
|
RegionNode *Node) {
|
|
BasicBlock *Entry = Node->getEntry();
|
|
|
|
if (LoopStart == Entry) {
|
|
LoopStart = Prev;
|
|
LoopPred[Prev] = BoolTrue;
|
|
}
|
|
|
|
// Wire it up temporary, skipChained may recurse into us
|
|
BranchInst::Create(Entry, Prev);
|
|
DT->changeImmediateDominator(Entry, Prev);
|
|
addPhiValues(Prev, Entry);
|
|
|
|
Node = skipChained(Node);
|
|
|
|
BasicBlock *Next = getNextFlow(Prev);
|
|
if (!isPredictableTrue(Prev, Entry)) {
|
|
// Let Prev point to entry and next block
|
|
Prev->getTerminator()->eraseFromParent();
|
|
BranchInst::Create(Entry, Next, BoolUndef, Prev);
|
|
} else {
|
|
DT->changeImmediateDominator(Next, Entry);
|
|
}
|
|
|
|
// Let node exit(s) point to next block
|
|
if (Node->isSubRegion()) {
|
|
Region *SubRegion = Node->getNodeAs<Region>();
|
|
BasicBlock *Exit = SubRegion->getExit();
|
|
|
|
// Find all the edges from the sub region to the exit
|
|
BBVector ToDo;
|
|
for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
|
|
if (SubRegion->contains(*I))
|
|
ToDo.push_back(*I);
|
|
}
|
|
|
|
// Modify the edges to point to the new flow block
|
|
for (BBVector::iterator I = ToDo.begin(), E = ToDo.end(); I != E; ++I) {
|
|
delPhiValues(*I, Exit);
|
|
TerminatorInst *Term = (*I)->getTerminator();
|
|
Term->replaceUsesOfWith(Exit, Next);
|
|
}
|
|
|
|
// Update the region info
|
|
SubRegion->replaceExit(Next);
|
|
|
|
} else {
|
|
BasicBlock *BB = Node->getNodeAs<BasicBlock>();
|
|
killTerminator(BB);
|
|
BranchInst::Create(Next, BB);
|
|
|
|
if (BB == LoopEnd)
|
|
LoopEnd = 0;
|
|
}
|
|
|
|
return Next;
|
|
}
|
|
|
|
/// Destroy node order and visited map, build up flow order instead.
|
|
/// After this function control flow looks like it should be, but
|
|
/// branches only have undefined conditions.
|
|
void AMDGPUStructurizeCFG::createFlow() {
|
|
DeletedPhis.clear();
|
|
|
|
BasicBlock *Prev = Order.pop_back_val()->getEntry();
|
|
assert(Prev == ParentRegion->getEntry() && "Incorrect node order!");
|
|
Visited.erase(Prev);
|
|
|
|
if (LoopStart == Prev) {
|
|
// Loop starts at entry, split entry so that we can predicate it
|
|
BasicBlock::iterator Insert = Prev->getFirstInsertionPt();
|
|
BasicBlock *Split = Prev->splitBasicBlock(Insert, FlowBlockName);
|
|
DT->addNewBlock(Split, Prev);
|
|
ParentRegion->getRegionInfo()->setRegionFor(Split, ParentRegion);
|
|
Predicates[Split] = Predicates[Prev];
|
|
Order.push_back(ParentRegion->getBBNode(Split));
|
|
LoopPred[Prev] = BoolTrue;
|
|
|
|
} else if (LoopStart == Order.back()->getEntry()) {
|
|
// Loop starts behind entry, split entry so that we can jump to it
|
|
Instruction *Term = Prev->getTerminator();
|
|
BasicBlock *Split = Prev->splitBasicBlock(Term, FlowBlockName);
|
|
DT->addNewBlock(Split, Prev);
|
|
ParentRegion->getRegionInfo()->setRegionFor(Split, ParentRegion);
|
|
Prev = Split;
|
|
}
|
|
|
|
killTerminator(Prev);
|
|
FlowsInserted.clear();
|
|
FlowsInserted.push_back(Prev);
|
|
|
|
while (!Order.empty()) {
|
|
RegionNode *Node = Order.pop_back_val();
|
|
Visited.erase(Node->getEntry());
|
|
Prev = wireFlowBlock(Prev, Node);
|
|
if (LoopStart && !LoopEnd) {
|
|
// Create an extra loop end node
|
|
LoopEnd = Prev;
|
|
Prev = getNextFlow(LoopEnd);
|
|
BranchInst::Create(Prev, LoopStart, BoolUndef, LoopEnd);
|
|
addPhiValues(LoopEnd, LoopStart);
|
|
}
|
|
}
|
|
|
|
BasicBlock *Exit = ParentRegion->getExit();
|
|
BranchInst::Create(Exit, Prev);
|
|
addPhiValues(Prev, Exit);
|
|
if (DT->dominates(ParentRegion->getEntry(), Exit))
|
|
DT->changeImmediateDominator(Exit, Prev);
|
|
|
|
if (LoopStart && LoopEnd) {
|
|
BBVector::iterator FI = std::find(FlowsInserted.begin(),
|
|
FlowsInserted.end(),
|
|
LoopStart);
|
|
for (; *FI != LoopEnd; ++FI) {
|
|
addPhiValues(*FI, (*FI)->getTerminator()->getSuccessor(0));
|
|
}
|
|
}
|
|
|
|
assert(Order.empty());
|
|
assert(Visited.empty());
|
|
assert(DeletedPhis.empty());
|
|
}
|
|
|
|
/// \brief Insert the missing branch conditions
|
|
void AMDGPUStructurizeCFG::insertConditions() {
|
|
SSAUpdater PhiInserter;
|
|
|
|
for (BBVector::iterator FI = FlowsInserted.begin(), FE = FlowsInserted.end();
|
|
FI != FE; ++FI) {
|
|
|
|
BranchInst *Term = cast<BranchInst>((*FI)->getTerminator());
|
|
if (Term->isUnconditional())
|
|
continue;
|
|
|
|
PhiInserter.Initialize(Boolean, "");
|
|
PhiInserter.AddAvailableValue(&Func->getEntryBlock(), BoolFalse);
|
|
|
|
BasicBlock *Succ = Term->getSuccessor(0);
|
|
BBPredicates &Preds = (*FI == LoopEnd) ? LoopPred : Predicates[Succ];
|
|
for (BBPredicates::iterator PI = Preds.begin(), PE = Preds.end();
|
|
PI != PE; ++PI) {
|
|
|
|
PhiInserter.AddAvailableValue(PI->first, PI->second);
|
|
}
|
|
|
|
Term->setCondition(PhiInserter.GetValueAtEndOfBlock(*FI));
|
|
}
|
|
}
|
|
|
|
/// Handle a rare case where the disintegrated nodes instructions
|
|
/// no longer dominate all their uses. Not sure if this is really nessasary
|
|
void AMDGPUStructurizeCFG::rebuildSSA() {
|
|
SSAUpdater Updater;
|
|
for (Region::block_iterator I = ParentRegion->block_begin(),
|
|
E = ParentRegion->block_end();
|
|
I != E; ++I) {
|
|
|
|
BasicBlock *BB = *I;
|
|
for (BasicBlock::iterator II = BB->begin(), IE = BB->end();
|
|
II != IE; ++II) {
|
|
|
|
bool Initialized = false;
|
|
for (Use *I = &II->use_begin().getUse(), *Next; I; I = Next) {
|
|
|
|
Next = I->getNext();
|
|
|
|
Instruction *User = cast<Instruction>(I->getUser());
|
|
if (User->getParent() == BB) {
|
|
continue;
|
|
|
|
} else if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
|
|
if (UserPN->getIncomingBlock(*I) == BB)
|
|
continue;
|
|
}
|
|
|
|
if (DT->dominates(II, User))
|
|
continue;
|
|
|
|
if (!Initialized) {
|
|
Value *Undef = UndefValue::get(II->getType());
|
|
Updater.Initialize(II->getType(), "");
|
|
Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
|
|
Updater.AddAvailableValue(BB, II);
|
|
Initialized = true;
|
|
}
|
|
Updater.RewriteUseAfterInsertions(*I);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Run the transformation for each region found
|
|
bool AMDGPUStructurizeCFG::runOnRegion(Region *R, RGPassManager &RGM) {
|
|
if (R->isTopLevelRegion())
|
|
return false;
|
|
|
|
Func = R->getEntry()->getParent();
|
|
ParentRegion = R;
|
|
|
|
DT = &getAnalysis<DominatorTree>();
|
|
|
|
orderNodes();
|
|
collectInfos();
|
|
createFlow();
|
|
insertConditions();
|
|
rebuildSSA();
|
|
|
|
Order.clear();
|
|
Visited.clear();
|
|
Predicates.clear();
|
|
DeletedPhis.clear();
|
|
FlowsInserted.clear();
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Create the pass
|
|
Pass *llvm::createAMDGPUStructurizeCFGPass() {
|
|
return new AMDGPUStructurizeCFG();
|
|
}
|