forked from OSchip/llvm-project
3758 lines
144 KiB
C++
3758 lines
144 KiB
C++
//===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements the SelectionDAGISel class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ScheduleDAGSDNodes.h"
|
|
#include "SelectionDAGBuilder.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/CodeGen/FastISel.h"
|
|
#include "llvm/CodeGen/FunctionLoweringInfo.h"
|
|
#include "llvm/CodeGen/GCMetadata.h"
|
|
#include "llvm/CodeGen/ISDOpcodes.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachinePassRegistry.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/MachineValueType.h"
|
|
#include "llvm/CodeGen/SchedulerRegistry.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/CodeGen/SelectionDAGNodes.h"
|
|
#include "llvm/CodeGen/StackProtector.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/BranchProbability.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CodeGen.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Support/Timer.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetIntrinsicInfo.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "isel"
|
|
|
|
STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
|
|
STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
|
|
STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
|
|
STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
|
|
STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
|
|
STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
|
|
STATISTIC(NumFastIselFailLowerArguments,
|
|
"Number of entry blocks where fast isel failed to lower arguments");
|
|
|
|
static cl::opt<int> EnableFastISelAbort(
|
|
"fast-isel-abort", cl::Hidden,
|
|
cl::desc("Enable abort calls when \"fast\" instruction selection "
|
|
"fails to lower an instruction: 0 disable the abort, 1 will "
|
|
"abort but for args, calls and terminators, 2 will also "
|
|
"abort for argument lowering, and 3 will never fallback "
|
|
"to SelectionDAG."));
|
|
|
|
static cl::opt<bool> EnableFastISelFallbackReport(
|
|
"fast-isel-report-on-fallback", cl::Hidden,
|
|
cl::desc("Emit a diagnostic when \"fast\" instruction selection "
|
|
"falls back to SelectionDAG."));
|
|
|
|
static cl::opt<bool>
|
|
UseMBPI("use-mbpi",
|
|
cl::desc("use Machine Branch Probability Info"),
|
|
cl::init(true), cl::Hidden);
|
|
|
|
#ifndef NDEBUG
|
|
static cl::opt<std::string>
|
|
FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
|
|
cl::desc("Only display the basic block whose name "
|
|
"matches this for all view-*-dags options"));
|
|
static cl::opt<bool>
|
|
ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show dags before the first "
|
|
"dag combine pass"));
|
|
static cl::opt<bool>
|
|
ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show dags before legalize types"));
|
|
static cl::opt<bool>
|
|
ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show dags before legalize"));
|
|
static cl::opt<bool>
|
|
ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show dags before the second "
|
|
"dag combine pass"));
|
|
static cl::opt<bool>
|
|
ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show dags before the post legalize types"
|
|
" dag combine pass"));
|
|
static cl::opt<bool>
|
|
ViewISelDAGs("view-isel-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show isel dags as they are selected"));
|
|
static cl::opt<bool>
|
|
ViewSchedDAGs("view-sched-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show sched dags as they are processed"));
|
|
static cl::opt<bool>
|
|
ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show SUnit dags after they are processed"));
|
|
#else
|
|
static const bool ViewDAGCombine1 = false,
|
|
ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
|
|
ViewDAGCombine2 = false,
|
|
ViewDAGCombineLT = false,
|
|
ViewISelDAGs = false, ViewSchedDAGs = false,
|
|
ViewSUnitDAGs = false;
|
|
#endif
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
///
|
|
/// RegisterScheduler class - Track the registration of instruction schedulers.
|
|
///
|
|
//===---------------------------------------------------------------------===//
|
|
MachinePassRegistry RegisterScheduler::Registry;
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
///
|
|
/// ISHeuristic command line option for instruction schedulers.
|
|
///
|
|
//===---------------------------------------------------------------------===//
|
|
static cl::opt<RegisterScheduler::FunctionPassCtor, false,
|
|
RegisterPassParser<RegisterScheduler>>
|
|
ISHeuristic("pre-RA-sched",
|
|
cl::init(&createDefaultScheduler), cl::Hidden,
|
|
cl::desc("Instruction schedulers available (before register"
|
|
" allocation):"));
|
|
|
|
static RegisterScheduler
|
|
defaultListDAGScheduler("default", "Best scheduler for the target",
|
|
createDefaultScheduler);
|
|
|
|
namespace llvm {
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// \brief This class is used by SelectionDAGISel to temporarily override
|
|
/// the optimization level on a per-function basis.
|
|
class OptLevelChanger {
|
|
SelectionDAGISel &IS;
|
|
CodeGenOpt::Level SavedOptLevel;
|
|
bool SavedFastISel;
|
|
|
|
public:
|
|
OptLevelChanger(SelectionDAGISel &ISel,
|
|
CodeGenOpt::Level NewOptLevel) : IS(ISel) {
|
|
SavedOptLevel = IS.OptLevel;
|
|
if (NewOptLevel == SavedOptLevel)
|
|
return;
|
|
IS.OptLevel = NewOptLevel;
|
|
IS.TM.setOptLevel(NewOptLevel);
|
|
DEBUG(dbgs() << "\nChanging optimization level for Function "
|
|
<< IS.MF->getFunction()->getName() << "\n");
|
|
DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel
|
|
<< " ; After: -O" << NewOptLevel << "\n");
|
|
SavedFastISel = IS.TM.Options.EnableFastISel;
|
|
if (NewOptLevel == CodeGenOpt::None) {
|
|
IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
|
|
DEBUG(dbgs() << "\tFastISel is "
|
|
<< (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
|
|
<< "\n");
|
|
}
|
|
}
|
|
|
|
~OptLevelChanger() {
|
|
if (IS.OptLevel == SavedOptLevel)
|
|
return;
|
|
DEBUG(dbgs() << "\nRestoring optimization level for Function "
|
|
<< IS.MF->getFunction()->getName() << "\n");
|
|
DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel
|
|
<< " ; After: -O" << SavedOptLevel << "\n");
|
|
IS.OptLevel = SavedOptLevel;
|
|
IS.TM.setOptLevel(SavedOptLevel);
|
|
IS.TM.setFastISel(SavedFastISel);
|
|
}
|
|
};
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// createDefaultScheduler - This creates an instruction scheduler appropriate
|
|
/// for the target.
|
|
ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
|
|
CodeGenOpt::Level OptLevel) {
|
|
const TargetLowering *TLI = IS->TLI;
|
|
const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
|
|
|
|
// Try first to see if the Target has its own way of selecting a scheduler
|
|
if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
|
|
return SchedulerCtor(IS, OptLevel);
|
|
}
|
|
|
|
if (OptLevel == CodeGenOpt::None ||
|
|
(ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
|
|
TLI->getSchedulingPreference() == Sched::Source)
|
|
return createSourceListDAGScheduler(IS, OptLevel);
|
|
if (TLI->getSchedulingPreference() == Sched::RegPressure)
|
|
return createBURRListDAGScheduler(IS, OptLevel);
|
|
if (TLI->getSchedulingPreference() == Sched::Hybrid)
|
|
return createHybridListDAGScheduler(IS, OptLevel);
|
|
if (TLI->getSchedulingPreference() == Sched::VLIW)
|
|
return createVLIWDAGScheduler(IS, OptLevel);
|
|
assert(TLI->getSchedulingPreference() == Sched::ILP &&
|
|
"Unknown sched type!");
|
|
return createILPListDAGScheduler(IS, OptLevel);
|
|
}
|
|
|
|
} // end namespace llvm
|
|
|
|
// EmitInstrWithCustomInserter - This method should be implemented by targets
|
|
// that mark instructions with the 'usesCustomInserter' flag. These
|
|
// instructions are special in various ways, which require special support to
|
|
// insert. The specified MachineInstr is created but not inserted into any
|
|
// basic blocks, and this method is called to expand it into a sequence of
|
|
// instructions, potentially also creating new basic blocks and control flow.
|
|
// When new basic blocks are inserted and the edges from MBB to its successors
|
|
// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
|
|
// DenseMap.
|
|
MachineBasicBlock *
|
|
TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
|
|
MachineBasicBlock *MBB) const {
|
|
#ifndef NDEBUG
|
|
dbgs() << "If a target marks an instruction with "
|
|
"'usesCustomInserter', it must implement "
|
|
"TargetLowering::EmitInstrWithCustomInserter!";
|
|
#endif
|
|
llvm_unreachable(nullptr);
|
|
}
|
|
|
|
void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
|
|
SDNode *Node) const {
|
|
assert(!MI.hasPostISelHook() &&
|
|
"If a target marks an instruction with 'hasPostISelHook', "
|
|
"it must implement TargetLowering::AdjustInstrPostInstrSelection!");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SelectionDAGISel code
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
|
|
CodeGenOpt::Level OL) :
|
|
MachineFunctionPass(ID), TM(tm),
|
|
FuncInfo(new FunctionLoweringInfo()),
|
|
CurDAG(new SelectionDAG(tm, OL)),
|
|
SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
|
|
AA(), GFI(),
|
|
OptLevel(OL),
|
|
DAGSize(0) {
|
|
initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
|
|
initializeBranchProbabilityInfoWrapperPassPass(
|
|
*PassRegistry::getPassRegistry());
|
|
initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
|
|
initializeTargetLibraryInfoWrapperPassPass(
|
|
*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
SelectionDAGISel::~SelectionDAGISel() {
|
|
delete SDB;
|
|
delete CurDAG;
|
|
delete FuncInfo;
|
|
}
|
|
|
|
void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
if (OptLevel != CodeGenOpt::None)
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addRequired<GCModuleInfo>();
|
|
AU.addRequired<StackProtector>();
|
|
AU.addPreserved<StackProtector>();
|
|
AU.addPreserved<GCModuleInfo>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
if (UseMBPI && OptLevel != CodeGenOpt::None)
|
|
AU.addRequired<BranchProbabilityInfoWrapperPass>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
|
|
/// may trap on it. In this case we have to split the edge so that the path
|
|
/// through the predecessor block that doesn't go to the phi block doesn't
|
|
/// execute the possibly trapping instruction. If available, we pass domtree
|
|
/// and loop info to be updated when we split critical edges. This is because
|
|
/// SelectionDAGISel preserves these analyses.
|
|
/// This is required for correctness, so it must be done at -O0.
|
|
///
|
|
static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT,
|
|
LoopInfo *LI) {
|
|
// Loop for blocks with phi nodes.
|
|
for (BasicBlock &BB : Fn) {
|
|
PHINode *PN = dyn_cast<PHINode>(BB.begin());
|
|
if (!PN) continue;
|
|
|
|
ReprocessBlock:
|
|
// For each block with a PHI node, check to see if any of the input values
|
|
// are potentially trapping constant expressions. Constant expressions are
|
|
// the only potentially trapping value that can occur as the argument to a
|
|
// PHI.
|
|
for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
|
|
if (!CE || !CE->canTrap()) continue;
|
|
|
|
// The only case we have to worry about is when the edge is critical.
|
|
// Since this block has a PHI Node, we assume it has multiple input
|
|
// edges: check to see if the pred has multiple successors.
|
|
BasicBlock *Pred = PN->getIncomingBlock(i);
|
|
if (Pred->getTerminator()->getNumSuccessors() == 1)
|
|
continue;
|
|
|
|
// Okay, we have to split this edge.
|
|
SplitCriticalEdge(
|
|
Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
|
|
CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges());
|
|
goto ReprocessBlock;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
|
|
// If we already selected that function, we do not need to run SDISel.
|
|
if (mf.getProperties().hasProperty(
|
|
MachineFunctionProperties::Property::Selected))
|
|
return false;
|
|
// Do some sanity-checking on the command-line options.
|
|
assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
|
|
"-fast-isel-abort > 0 requires -fast-isel");
|
|
|
|
const Function &Fn = *mf.getFunction();
|
|
MF = &mf;
|
|
|
|
// Reset the target options before resetting the optimization
|
|
// level below.
|
|
// FIXME: This is a horrible hack and should be processed via
|
|
// codegen looking at the optimization level explicitly when
|
|
// it wants to look at it.
|
|
TM.resetTargetOptions(Fn);
|
|
// Reset OptLevel to None for optnone functions.
|
|
CodeGenOpt::Level NewOptLevel = OptLevel;
|
|
if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
|
|
NewOptLevel = CodeGenOpt::None;
|
|
OptLevelChanger OLC(*this, NewOptLevel);
|
|
|
|
TII = MF->getSubtarget().getInstrInfo();
|
|
TLI = MF->getSubtarget().getTargetLowering();
|
|
RegInfo = &MF->getRegInfo();
|
|
LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
|
|
GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
|
|
ORE = make_unique<OptimizationRemarkEmitter>(&Fn);
|
|
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
|
|
DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
|
|
auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
|
|
LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
|
|
|
|
DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
|
|
|
|
SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI);
|
|
|
|
CurDAG->init(*MF, *ORE, this);
|
|
FuncInfo->set(Fn, *MF, CurDAG);
|
|
|
|
// Now get the optional analyzes if we want to.
|
|
// This is based on the possibly changed OptLevel (after optnone is taken
|
|
// into account). That's unfortunate but OK because it just means we won't
|
|
// ask for passes that have been required anyway.
|
|
|
|
if (UseMBPI && OptLevel != CodeGenOpt::None)
|
|
FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
|
|
else
|
|
FuncInfo->BPI = nullptr;
|
|
|
|
if (OptLevel != CodeGenOpt::None)
|
|
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
else
|
|
AA = nullptr;
|
|
|
|
SDB->init(GFI, AA, LibInfo);
|
|
|
|
MF->setHasInlineAsm(false);
|
|
|
|
FuncInfo->SplitCSR = false;
|
|
|
|
// We split CSR if the target supports it for the given function
|
|
// and the function has only return exits.
|
|
if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
|
|
FuncInfo->SplitCSR = true;
|
|
|
|
// Collect all the return blocks.
|
|
for (const BasicBlock &BB : Fn) {
|
|
if (!succ_empty(&BB))
|
|
continue;
|
|
|
|
const TerminatorInst *Term = BB.getTerminator();
|
|
if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
|
|
continue;
|
|
|
|
// Bail out if the exit block is not Return nor Unreachable.
|
|
FuncInfo->SplitCSR = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
MachineBasicBlock *EntryMBB = &MF->front();
|
|
if (FuncInfo->SplitCSR)
|
|
// This performs initialization so lowering for SplitCSR will be correct.
|
|
TLI->initializeSplitCSR(EntryMBB);
|
|
|
|
SelectAllBasicBlocks(Fn);
|
|
if (FastISelFailed && EnableFastISelFallbackReport) {
|
|
DiagnosticInfoISelFallback DiagFallback(Fn);
|
|
Fn.getContext().diagnose(DiagFallback);
|
|
}
|
|
|
|
// If the first basic block in the function has live ins that need to be
|
|
// copied into vregs, emit the copies into the top of the block before
|
|
// emitting the code for the block.
|
|
const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
|
|
RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
|
|
|
|
// Insert copies in the entry block and the return blocks.
|
|
if (FuncInfo->SplitCSR) {
|
|
SmallVector<MachineBasicBlock*, 4> Returns;
|
|
// Collect all the return blocks.
|
|
for (MachineBasicBlock &MBB : mf) {
|
|
if (!MBB.succ_empty())
|
|
continue;
|
|
|
|
MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
|
|
if (Term != MBB.end() && Term->isReturn()) {
|
|
Returns.push_back(&MBB);
|
|
continue;
|
|
}
|
|
}
|
|
TLI->insertCopiesSplitCSR(EntryMBB, Returns);
|
|
}
|
|
|
|
DenseMap<unsigned, unsigned> LiveInMap;
|
|
if (!FuncInfo->ArgDbgValues.empty())
|
|
for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
|
|
E = RegInfo->livein_end(); LI != E; ++LI)
|
|
if (LI->second)
|
|
LiveInMap.insert(std::make_pair(LI->first, LI->second));
|
|
|
|
// Insert DBG_VALUE instructions for function arguments to the entry block.
|
|
for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
|
|
MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
|
|
bool hasFI = MI->getOperand(0).isFI();
|
|
unsigned Reg =
|
|
hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg))
|
|
EntryMBB->insert(EntryMBB->begin(), MI);
|
|
else {
|
|
MachineInstr *Def = RegInfo->getVRegDef(Reg);
|
|
if (Def) {
|
|
MachineBasicBlock::iterator InsertPos = Def;
|
|
// FIXME: VR def may not be in entry block.
|
|
Def->getParent()->insert(std::next(InsertPos), MI);
|
|
} else
|
|
DEBUG(dbgs() << "Dropping debug info for dead vreg"
|
|
<< TargetRegisterInfo::virtReg2Index(Reg) << "\n");
|
|
}
|
|
|
|
// If Reg is live-in then update debug info to track its copy in a vreg.
|
|
DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
|
|
if (LDI != LiveInMap.end()) {
|
|
assert(!hasFI && "There's no handling of frame pointer updating here yet "
|
|
"- add if needed");
|
|
MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
|
|
MachineBasicBlock::iterator InsertPos = Def;
|
|
const MDNode *Variable = MI->getDebugVariable();
|
|
const MDNode *Expr = MI->getDebugExpression();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
bool IsIndirect = MI->isIndirectDebugValue();
|
|
if (IsIndirect)
|
|
assert(MI->getOperand(1).getImm() == 0 &&
|
|
"DBG_VALUE with nonzero offset");
|
|
assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
|
|
"Expected inlined-at fields to agree");
|
|
// Def is never a terminator here, so it is ok to increment InsertPos.
|
|
BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
|
|
IsIndirect, LDI->second, Variable, Expr);
|
|
|
|
// If this vreg is directly copied into an exported register then
|
|
// that COPY instructions also need DBG_VALUE, if it is the only
|
|
// user of LDI->second.
|
|
MachineInstr *CopyUseMI = nullptr;
|
|
for (MachineRegisterInfo::use_instr_iterator
|
|
UI = RegInfo->use_instr_begin(LDI->second),
|
|
E = RegInfo->use_instr_end(); UI != E; ) {
|
|
MachineInstr *UseMI = &*(UI++);
|
|
if (UseMI->isDebugValue()) continue;
|
|
if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
|
|
CopyUseMI = UseMI; continue;
|
|
}
|
|
// Otherwise this is another use or second copy use.
|
|
CopyUseMI = nullptr; break;
|
|
}
|
|
if (CopyUseMI) {
|
|
// Use MI's debug location, which describes where Variable was
|
|
// declared, rather than whatever is attached to CopyUseMI.
|
|
MachineInstr *NewMI =
|
|
BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
|
|
CopyUseMI->getOperand(0).getReg(), Variable, Expr);
|
|
MachineBasicBlock::iterator Pos = CopyUseMI;
|
|
EntryMBB->insertAfter(Pos, NewMI);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Determine if there are any calls in this machine function.
|
|
MachineFrameInfo &MFI = MF->getFrameInfo();
|
|
for (const auto &MBB : *MF) {
|
|
if (MFI.hasCalls() && MF->hasInlineAsm())
|
|
break;
|
|
|
|
for (const auto &MI : MBB) {
|
|
const MCInstrDesc &MCID = TII->get(MI.getOpcode());
|
|
if ((MCID.isCall() && !MCID.isReturn()) ||
|
|
MI.isStackAligningInlineAsm()) {
|
|
MFI.setHasCalls(true);
|
|
}
|
|
if (MI.isInlineAsm()) {
|
|
MF->setHasInlineAsm(true);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Determine if there is a call to setjmp in the machine function.
|
|
MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
|
|
|
|
// Replace forward-declared registers with the registers containing
|
|
// the desired value.
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
for (DenseMap<unsigned, unsigned>::iterator
|
|
I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
|
|
I != E; ++I) {
|
|
unsigned From = I->first;
|
|
unsigned To = I->second;
|
|
// If To is also scheduled to be replaced, find what its ultimate
|
|
// replacement is.
|
|
while (true) {
|
|
DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
|
|
if (J == E) break;
|
|
To = J->second;
|
|
}
|
|
// Make sure the new register has a sufficiently constrained register class.
|
|
if (TargetRegisterInfo::isVirtualRegister(From) &&
|
|
TargetRegisterInfo::isVirtualRegister(To))
|
|
MRI.constrainRegClass(To, MRI.getRegClass(From));
|
|
// Replace it.
|
|
|
|
|
|
// Replacing one register with another won't touch the kill flags.
|
|
// We need to conservatively clear the kill flags as a kill on the old
|
|
// register might dominate existing uses of the new register.
|
|
if (!MRI.use_empty(To))
|
|
MRI.clearKillFlags(From);
|
|
MRI.replaceRegWith(From, To);
|
|
}
|
|
|
|
TLI->finalizeLowering(*MF);
|
|
|
|
// Release function-specific state. SDB and CurDAG are already cleared
|
|
// at this point.
|
|
FuncInfo->clear();
|
|
|
|
DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
|
|
DEBUG(MF->print(dbgs()));
|
|
|
|
return true;
|
|
}
|
|
|
|
static void reportFastISelFailure(MachineFunction &MF,
|
|
OptimizationRemarkEmitter &ORE,
|
|
OptimizationRemarkMissed &R,
|
|
bool ShouldAbort) {
|
|
// Print the function name explicitly if we don't have a debug location (which
|
|
// makes the diagnostic less useful) or if we're going to emit a raw error.
|
|
if (!R.getLocation().isValid() || ShouldAbort)
|
|
R << (" (in function: " + MF.getName() + ")").str();
|
|
|
|
if (ShouldAbort)
|
|
report_fatal_error(R.getMsg());
|
|
|
|
ORE.emit(R);
|
|
}
|
|
|
|
void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
|
|
BasicBlock::const_iterator End,
|
|
bool &HadTailCall) {
|
|
// Allow creating illegal types during DAG building for the basic block.
|
|
CurDAG->NewNodesMustHaveLegalTypes = false;
|
|
|
|
// Lower the instructions. If a call is emitted as a tail call, cease emitting
|
|
// nodes for this block.
|
|
for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
|
|
if (!ElidedArgCopyInstrs.count(&*I))
|
|
SDB->visit(*I);
|
|
}
|
|
|
|
// Make sure the root of the DAG is up-to-date.
|
|
CurDAG->setRoot(SDB->getControlRoot());
|
|
HadTailCall = SDB->HasTailCall;
|
|
SDB->clear();
|
|
|
|
// Final step, emit the lowered DAG as machine code.
|
|
CodeGenAndEmitDAG();
|
|
}
|
|
|
|
void SelectionDAGISel::ComputeLiveOutVRegInfo() {
|
|
SmallPtrSet<SDNode*, 16> VisitedNodes;
|
|
SmallVector<SDNode*, 128> Worklist;
|
|
|
|
Worklist.push_back(CurDAG->getRoot().getNode());
|
|
|
|
KnownBits Known;
|
|
|
|
do {
|
|
SDNode *N = Worklist.pop_back_val();
|
|
|
|
// If we've already seen this node, ignore it.
|
|
if (!VisitedNodes.insert(N).second)
|
|
continue;
|
|
|
|
// Otherwise, add all chain operands to the worklist.
|
|
for (const SDValue &Op : N->op_values())
|
|
if (Op.getValueType() == MVT::Other)
|
|
Worklist.push_back(Op.getNode());
|
|
|
|
// If this is a CopyToReg with a vreg dest, process it.
|
|
if (N->getOpcode() != ISD::CopyToReg)
|
|
continue;
|
|
|
|
unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
|
|
if (!TargetRegisterInfo::isVirtualRegister(DestReg))
|
|
continue;
|
|
|
|
// Ignore non-scalar or non-integer values.
|
|
SDValue Src = N->getOperand(2);
|
|
EVT SrcVT = Src.getValueType();
|
|
if (!SrcVT.isInteger() || SrcVT.isVector())
|
|
continue;
|
|
|
|
unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
|
|
CurDAG->computeKnownBits(Src, Known);
|
|
FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
|
|
} while (!Worklist.empty());
|
|
}
|
|
|
|
void SelectionDAGISel::CodeGenAndEmitDAG() {
|
|
StringRef GroupName = "sdag";
|
|
StringRef GroupDescription = "Instruction Selection and Scheduling";
|
|
std::string BlockName;
|
|
int BlockNumber = -1;
|
|
(void)BlockNumber;
|
|
bool MatchFilterBB = false; (void)MatchFilterBB;
|
|
|
|
// Pre-type legalization allow creation of any node types.
|
|
CurDAG->NewNodesMustHaveLegalTypes = false;
|
|
|
|
#ifndef NDEBUG
|
|
MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
|
|
FilterDAGBasicBlockName ==
|
|
FuncInfo->MBB->getBasicBlock()->getName().str());
|
|
#endif
|
|
#ifdef NDEBUG
|
|
if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
|
|
ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
|
|
ViewSUnitDAGs)
|
|
#endif
|
|
{
|
|
BlockNumber = FuncInfo->MBB->getNumber();
|
|
BlockName =
|
|
(MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
|
|
}
|
|
DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
|
|
<< " '" << BlockName << "'\n"; CurDAG->dump());
|
|
|
|
if (ViewDAGCombine1 && MatchFilterBB)
|
|
CurDAG->viewGraph("dag-combine1 input for " + BlockName);
|
|
|
|
// Run the DAG combiner in pre-legalize mode.
|
|
{
|
|
NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
|
|
GroupDescription, TimePassesIsEnabled);
|
|
CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
|
|
}
|
|
|
|
DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
|
|
<< " '" << BlockName << "'\n"; CurDAG->dump());
|
|
|
|
// Second step, hack on the DAG until it only uses operations and types that
|
|
// the target supports.
|
|
if (ViewLegalizeTypesDAGs && MatchFilterBB)
|
|
CurDAG->viewGraph("legalize-types input for " + BlockName);
|
|
|
|
bool Changed;
|
|
{
|
|
NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
|
|
GroupDescription, TimePassesIsEnabled);
|
|
Changed = CurDAG->LegalizeTypes();
|
|
}
|
|
|
|
DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
|
|
<< " '" << BlockName << "'\n"; CurDAG->dump());
|
|
|
|
// Only allow creation of legal node types.
|
|
CurDAG->NewNodesMustHaveLegalTypes = true;
|
|
|
|
if (Changed) {
|
|
if (ViewDAGCombineLT && MatchFilterBB)
|
|
CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
|
|
|
|
// Run the DAG combiner in post-type-legalize mode.
|
|
{
|
|
NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
|
|
GroupName, GroupDescription, TimePassesIsEnabled);
|
|
CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
|
|
}
|
|
|
|
DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
|
|
<< " '" << BlockName << "'\n"; CurDAG->dump());
|
|
}
|
|
|
|
{
|
|
NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
|
|
GroupDescription, TimePassesIsEnabled);
|
|
Changed = CurDAG->LegalizeVectors();
|
|
}
|
|
|
|
if (Changed) {
|
|
DEBUG(dbgs() << "Vector-legalized selection DAG: BB#" << BlockNumber
|
|
<< " '" << BlockName << "'\n"; CurDAG->dump());
|
|
|
|
{
|
|
NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
|
|
GroupDescription, TimePassesIsEnabled);
|
|
CurDAG->LegalizeTypes();
|
|
}
|
|
|
|
DEBUG(dbgs() << "Vector/type-legalized selection DAG: BB#" << BlockNumber
|
|
<< " '" << BlockName << "'\n"; CurDAG->dump());
|
|
|
|
if (ViewDAGCombineLT && MatchFilterBB)
|
|
CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
|
|
|
|
// Run the DAG combiner in post-type-legalize mode.
|
|
{
|
|
NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
|
|
GroupName, GroupDescription, TimePassesIsEnabled);
|
|
CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
|
|
}
|
|
|
|
DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
|
|
<< BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
|
|
}
|
|
|
|
if (ViewLegalizeDAGs && MatchFilterBB)
|
|
CurDAG->viewGraph("legalize input for " + BlockName);
|
|
|
|
{
|
|
NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
|
|
GroupDescription, TimePassesIsEnabled);
|
|
CurDAG->Legalize();
|
|
}
|
|
|
|
DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
|
|
<< " '" << BlockName << "'\n"; CurDAG->dump());
|
|
|
|
if (ViewDAGCombine2 && MatchFilterBB)
|
|
CurDAG->viewGraph("dag-combine2 input for " + BlockName);
|
|
|
|
// Run the DAG combiner in post-legalize mode.
|
|
{
|
|
NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
|
|
GroupDescription, TimePassesIsEnabled);
|
|
CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
|
|
}
|
|
|
|
DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
|
|
<< " '" << BlockName << "'\n"; CurDAG->dump());
|
|
|
|
if (OptLevel != CodeGenOpt::None)
|
|
ComputeLiveOutVRegInfo();
|
|
|
|
if (ViewISelDAGs && MatchFilterBB)
|
|
CurDAG->viewGraph("isel input for " + BlockName);
|
|
|
|
// Third, instruction select all of the operations to machine code, adding the
|
|
// code to the MachineBasicBlock.
|
|
{
|
|
NamedRegionTimer T("isel", "Instruction Selection", GroupName,
|
|
GroupDescription, TimePassesIsEnabled);
|
|
DoInstructionSelection();
|
|
}
|
|
|
|
DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
|
|
<< " '" << BlockName << "'\n"; CurDAG->dump());
|
|
|
|
if (ViewSchedDAGs && MatchFilterBB)
|
|
CurDAG->viewGraph("scheduler input for " + BlockName);
|
|
|
|
// Schedule machine code.
|
|
ScheduleDAGSDNodes *Scheduler = CreateScheduler();
|
|
{
|
|
NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
|
|
GroupDescription, TimePassesIsEnabled);
|
|
Scheduler->Run(CurDAG, FuncInfo->MBB);
|
|
}
|
|
|
|
if (ViewSUnitDAGs && MatchFilterBB)
|
|
Scheduler->viewGraph();
|
|
|
|
// Emit machine code to BB. This can change 'BB' to the last block being
|
|
// inserted into.
|
|
MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
|
|
{
|
|
NamedRegionTimer T("emit", "Instruction Creation", GroupName,
|
|
GroupDescription, TimePassesIsEnabled);
|
|
|
|
// FuncInfo->InsertPt is passed by reference and set to the end of the
|
|
// scheduled instructions.
|
|
LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
|
|
}
|
|
|
|
// If the block was split, make sure we update any references that are used to
|
|
// update PHI nodes later on.
|
|
if (FirstMBB != LastMBB)
|
|
SDB->UpdateSplitBlock(FirstMBB, LastMBB);
|
|
|
|
// Free the scheduler state.
|
|
{
|
|
NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
|
|
GroupDescription, TimePassesIsEnabled);
|
|
delete Scheduler;
|
|
}
|
|
|
|
// Free the SelectionDAG state, now that we're finished with it.
|
|
CurDAG->clear();
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// ISelUpdater - helper class to handle updates of the instruction selection
|
|
/// graph.
|
|
class ISelUpdater : public SelectionDAG::DAGUpdateListener {
|
|
SelectionDAG::allnodes_iterator &ISelPosition;
|
|
|
|
public:
|
|
ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
|
|
: SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
|
|
|
|
/// NodeDeleted - Handle nodes deleted from the graph. If the node being
|
|
/// deleted is the current ISelPosition node, update ISelPosition.
|
|
///
|
|
void NodeDeleted(SDNode *N, SDNode *E) override {
|
|
if (ISelPosition == SelectionDAG::allnodes_iterator(N))
|
|
++ISelPosition;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
void SelectionDAGISel::DoInstructionSelection() {
|
|
DEBUG(dbgs() << "===== Instruction selection begins: BB#"
|
|
<< FuncInfo->MBB->getNumber()
|
|
<< " '" << FuncInfo->MBB->getName() << "'\n");
|
|
|
|
PreprocessISelDAG();
|
|
|
|
// Select target instructions for the DAG.
|
|
{
|
|
// Number all nodes with a topological order and set DAGSize.
|
|
DAGSize = CurDAG->AssignTopologicalOrder();
|
|
|
|
// Create a dummy node (which is not added to allnodes), that adds
|
|
// a reference to the root node, preventing it from being deleted,
|
|
// and tracking any changes of the root.
|
|
HandleSDNode Dummy(CurDAG->getRoot());
|
|
SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
|
|
++ISelPosition;
|
|
|
|
// Make sure that ISelPosition gets properly updated when nodes are deleted
|
|
// in calls made from this function.
|
|
ISelUpdater ISU(*CurDAG, ISelPosition);
|
|
|
|
// The AllNodes list is now topological-sorted. Visit the
|
|
// nodes by starting at the end of the list (the root of the
|
|
// graph) and preceding back toward the beginning (the entry
|
|
// node).
|
|
while (ISelPosition != CurDAG->allnodes_begin()) {
|
|
SDNode *Node = &*--ISelPosition;
|
|
// Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
|
|
// but there are currently some corner cases that it misses. Also, this
|
|
// makes it theoretically possible to disable the DAGCombiner.
|
|
if (Node->use_empty())
|
|
continue;
|
|
|
|
// When we are using non-default rounding modes or FP exception behavior
|
|
// FP operations are represented by StrictFP pseudo-operations. They
|
|
// need to be simplified here so that the target-specific instruction
|
|
// selectors know how to handle them.
|
|
//
|
|
// If the current node is a strict FP pseudo-op, the isStrictFPOp()
|
|
// function will provide the corresponding normal FP opcode to which the
|
|
// node should be mutated.
|
|
//
|
|
// FIXME: The backends need a way to handle FP constraints.
|
|
if (Node->isStrictFPOpcode())
|
|
Node = CurDAG->mutateStrictFPToFP(Node);
|
|
|
|
Select(Node);
|
|
}
|
|
|
|
CurDAG->setRoot(Dummy.getValue());
|
|
}
|
|
|
|
DEBUG(dbgs() << "===== Instruction selection ends:\n");
|
|
|
|
PostprocessISelDAG();
|
|
}
|
|
|
|
static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
|
|
for (const User *U : CPI->users()) {
|
|
if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
|
|
Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
|
|
if (IID == Intrinsic::eh_exceptionpointer ||
|
|
IID == Intrinsic::eh_exceptioncode)
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
|
|
/// do other setup for EH landing-pad blocks.
|
|
bool SelectionDAGISel::PrepareEHLandingPad() {
|
|
MachineBasicBlock *MBB = FuncInfo->MBB;
|
|
const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
|
|
const BasicBlock *LLVMBB = MBB->getBasicBlock();
|
|
const TargetRegisterClass *PtrRC =
|
|
TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
|
|
|
|
// Catchpads have one live-in register, which typically holds the exception
|
|
// pointer or code.
|
|
if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
|
|
if (hasExceptionPointerOrCodeUser(CPI)) {
|
|
// Get or create the virtual register to hold the pointer or code. Mark
|
|
// the live in physreg and copy into the vreg.
|
|
MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
|
|
assert(EHPhysReg && "target lacks exception pointer register");
|
|
MBB->addLiveIn(EHPhysReg);
|
|
unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
|
|
BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
|
|
TII->get(TargetOpcode::COPY), VReg)
|
|
.addReg(EHPhysReg, RegState::Kill);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (!LLVMBB->isLandingPad())
|
|
return true;
|
|
|
|
// Add a label to mark the beginning of the landing pad. Deletion of the
|
|
// landing pad can thus be detected via the MachineModuleInfo.
|
|
MCSymbol *Label = MF->addLandingPad(MBB);
|
|
|
|
// Assign the call site to the landing pad's begin label.
|
|
MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
|
|
|
|
const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
|
|
BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
|
|
.addSym(Label);
|
|
|
|
// Mark exception register as live in.
|
|
if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
|
|
FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
|
|
|
|
// Mark exception selector register as live in.
|
|
if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
|
|
FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isFoldedOrDeadInstruction - Return true if the specified instruction is
|
|
/// side-effect free and is either dead or folded into a generated instruction.
|
|
/// Return false if it needs to be emitted.
|
|
static bool isFoldedOrDeadInstruction(const Instruction *I,
|
|
FunctionLoweringInfo *FuncInfo) {
|
|
return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
|
|
!isa<TerminatorInst>(I) && // Terminators aren't folded.
|
|
!isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
|
|
!I->isEHPad() && // EH pad instructions aren't folded.
|
|
!FuncInfo->isExportedInst(I); // Exported instrs must be computed.
|
|
}
|
|
|
|
/// Set up SwiftErrorVals by going through the function. If the function has
|
|
/// swifterror argument, it will be the first entry.
|
|
static void setupSwiftErrorVals(const Function &Fn, const TargetLowering *TLI,
|
|
FunctionLoweringInfo *FuncInfo) {
|
|
if (!TLI->supportSwiftError())
|
|
return;
|
|
|
|
FuncInfo->SwiftErrorVals.clear();
|
|
FuncInfo->SwiftErrorVRegDefMap.clear();
|
|
FuncInfo->SwiftErrorVRegUpwardsUse.clear();
|
|
FuncInfo->SwiftErrorVRegDefUses.clear();
|
|
FuncInfo->SwiftErrorArg = nullptr;
|
|
|
|
// Check if function has a swifterror argument.
|
|
bool HaveSeenSwiftErrorArg = false;
|
|
for (Function::const_arg_iterator AI = Fn.arg_begin(), AE = Fn.arg_end();
|
|
AI != AE; ++AI)
|
|
if (AI->hasSwiftErrorAttr()) {
|
|
assert(!HaveSeenSwiftErrorArg &&
|
|
"Must have only one swifterror parameter");
|
|
(void)HaveSeenSwiftErrorArg; // silence warning.
|
|
HaveSeenSwiftErrorArg = true;
|
|
FuncInfo->SwiftErrorArg = &*AI;
|
|
FuncInfo->SwiftErrorVals.push_back(&*AI);
|
|
}
|
|
|
|
for (const auto &LLVMBB : Fn)
|
|
for (const auto &Inst : LLVMBB) {
|
|
if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(&Inst))
|
|
if (Alloca->isSwiftError())
|
|
FuncInfo->SwiftErrorVals.push_back(Alloca);
|
|
}
|
|
}
|
|
|
|
static void createSwiftErrorEntriesInEntryBlock(FunctionLoweringInfo *FuncInfo,
|
|
FastISel *FastIS,
|
|
const TargetLowering *TLI,
|
|
const TargetInstrInfo *TII,
|
|
SelectionDAGBuilder *SDB) {
|
|
if (!TLI->supportSwiftError())
|
|
return;
|
|
|
|
// We only need to do this when we have swifterror parameter or swifterror
|
|
// alloc.
|
|
if (FuncInfo->SwiftErrorVals.empty())
|
|
return;
|
|
|
|
assert(FuncInfo->MBB == &*FuncInfo->MF->begin() &&
|
|
"expected to insert into entry block");
|
|
auto &DL = FuncInfo->MF->getDataLayout();
|
|
auto const *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
|
|
for (const auto *SwiftErrorVal : FuncInfo->SwiftErrorVals) {
|
|
// We will always generate a copy from the argument. It is always used at
|
|
// least by the 'return' of the swifterror.
|
|
if (FuncInfo->SwiftErrorArg && FuncInfo->SwiftErrorArg == SwiftErrorVal)
|
|
continue;
|
|
unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
|
|
// Assign Undef to Vreg. We construct MI directly to make sure it works
|
|
// with FastISel.
|
|
BuildMI(*FuncInfo->MBB, FuncInfo->MBB->getFirstNonPHI(),
|
|
SDB->getCurDebugLoc(), TII->get(TargetOpcode::IMPLICIT_DEF),
|
|
VReg);
|
|
|
|
// Keep FastIS informed about the value we just inserted.
|
|
if (FastIS)
|
|
FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
|
|
|
|
FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorVal, VReg);
|
|
}
|
|
}
|
|
|
|
/// Collect llvm.dbg.declare information. This is done after argument lowering
|
|
/// in case the declarations refer to arguments.
|
|
static void processDbgDeclares(FunctionLoweringInfo *FuncInfo) {
|
|
MachineFunction *MF = FuncInfo->MF;
|
|
const DataLayout &DL = MF->getDataLayout();
|
|
for (const BasicBlock &BB : *FuncInfo->Fn) {
|
|
for (const Instruction &I : BB) {
|
|
const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I);
|
|
if (!DI)
|
|
continue;
|
|
|
|
assert(DI->getVariable() && "Missing variable");
|
|
assert(DI->getDebugLoc() && "Missing location");
|
|
const Value *Address = DI->getAddress();
|
|
if (!Address)
|
|
continue;
|
|
|
|
// Look through casts and constant offset GEPs. These mostly come from
|
|
// inalloca.
|
|
APInt Offset(DL.getPointerSizeInBits(0), 0);
|
|
Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
|
|
|
|
// Check if the variable is a static alloca or a byval or inalloca
|
|
// argument passed in memory. If it is not, then we will ignore this
|
|
// intrinsic and handle this during isel like dbg.value.
|
|
int FI = std::numeric_limits<int>::max();
|
|
if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
|
|
auto SI = FuncInfo->StaticAllocaMap.find(AI);
|
|
if (SI != FuncInfo->StaticAllocaMap.end())
|
|
FI = SI->second;
|
|
} else if (const auto *Arg = dyn_cast<Argument>(Address))
|
|
FI = FuncInfo->getArgumentFrameIndex(Arg);
|
|
|
|
if (FI == std::numeric_limits<int>::max())
|
|
continue;
|
|
|
|
DIExpression *Expr = DI->getExpression();
|
|
if (Offset.getBoolValue())
|
|
Expr = DIExpression::prepend(Expr, DIExpression::NoDeref,
|
|
Offset.getZExtValue());
|
|
MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc());
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Propagate swifterror values through the machine function CFG.
|
|
static void propagateSwiftErrorVRegs(FunctionLoweringInfo *FuncInfo) {
|
|
auto *TLI = FuncInfo->TLI;
|
|
if (!TLI->supportSwiftError())
|
|
return;
|
|
|
|
// We only need to do this when we have swifterror parameter or swifterror
|
|
// alloc.
|
|
if (FuncInfo->SwiftErrorVals.empty())
|
|
return;
|
|
|
|
// For each machine basic block in reverse post order.
|
|
ReversePostOrderTraversal<MachineFunction *> RPOT(FuncInfo->MF);
|
|
for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator
|
|
It = RPOT.begin(),
|
|
E = RPOT.end();
|
|
It != E; ++It) {
|
|
MachineBasicBlock *MBB = *It;
|
|
|
|
// For each swifterror value in the function.
|
|
for(const auto *SwiftErrorVal : FuncInfo->SwiftErrorVals) {
|
|
auto Key = std::make_pair(MBB, SwiftErrorVal);
|
|
auto UUseIt = FuncInfo->SwiftErrorVRegUpwardsUse.find(Key);
|
|
auto VRegDefIt = FuncInfo->SwiftErrorVRegDefMap.find(Key);
|
|
bool UpwardsUse = UUseIt != FuncInfo->SwiftErrorVRegUpwardsUse.end();
|
|
unsigned UUseVReg = UpwardsUse ? UUseIt->second : 0;
|
|
bool DownwardDef = VRegDefIt != FuncInfo->SwiftErrorVRegDefMap.end();
|
|
assert(!(UpwardsUse && !DownwardDef) &&
|
|
"We can't have an upwards use but no downwards def");
|
|
|
|
// If there is no upwards exposed use and an entry for the swifterror in
|
|
// the def map for this value we don't need to do anything: We already
|
|
// have a downward def for this basic block.
|
|
if (!UpwardsUse && DownwardDef)
|
|
continue;
|
|
|
|
// Otherwise we either have an upwards exposed use vreg that we need to
|
|
// materialize or need to forward the downward def from predecessors.
|
|
|
|
// Check whether we have a single vreg def from all predecessors.
|
|
// Otherwise we need a phi.
|
|
SmallVector<std::pair<MachineBasicBlock *, unsigned>, 4> VRegs;
|
|
SmallSet<const MachineBasicBlock*, 8> Visited;
|
|
for (auto *Pred : MBB->predecessors()) {
|
|
if (!Visited.insert(Pred).second)
|
|
continue;
|
|
VRegs.push_back(std::make_pair(
|
|
Pred, FuncInfo->getOrCreateSwiftErrorVReg(Pred, SwiftErrorVal)));
|
|
if (Pred != MBB)
|
|
continue;
|
|
// We have a self-edge.
|
|
// If there was no upwards use in this basic block there is now one: the
|
|
// phi needs to use it self.
|
|
if (!UpwardsUse) {
|
|
UpwardsUse = true;
|
|
UUseIt = FuncInfo->SwiftErrorVRegUpwardsUse.find(Key);
|
|
assert(UUseIt != FuncInfo->SwiftErrorVRegUpwardsUse.end());
|
|
UUseVReg = UUseIt->second;
|
|
}
|
|
}
|
|
|
|
// We need a phi node if we have more than one predecessor with different
|
|
// downward defs.
|
|
bool needPHI =
|
|
VRegs.size() >= 1 &&
|
|
std::find_if(
|
|
VRegs.begin(), VRegs.end(),
|
|
[&](const std::pair<const MachineBasicBlock *, unsigned> &V)
|
|
-> bool { return V.second != VRegs[0].second; }) !=
|
|
VRegs.end();
|
|
|
|
// If there is no upwards exposed used and we don't need a phi just
|
|
// forward the swifterror vreg from the predecessor(s).
|
|
if (!UpwardsUse && !needPHI) {
|
|
assert(!VRegs.empty() &&
|
|
"No predecessors? The entry block should bail out earlier");
|
|
// Just forward the swifterror vreg from the predecessor(s).
|
|
FuncInfo->setCurrentSwiftErrorVReg(MBB, SwiftErrorVal, VRegs[0].second);
|
|
continue;
|
|
}
|
|
|
|
auto DLoc = isa<Instruction>(SwiftErrorVal)
|
|
? dyn_cast<Instruction>(SwiftErrorVal)->getDebugLoc()
|
|
: DebugLoc();
|
|
const auto *TII = FuncInfo->MF->getSubtarget().getInstrInfo();
|
|
|
|
// If we don't need a phi create a copy to the upward exposed vreg.
|
|
if (!needPHI) {
|
|
assert(UpwardsUse);
|
|
unsigned DestReg = UUseVReg;
|
|
BuildMI(*MBB, MBB->getFirstNonPHI(), DLoc, TII->get(TargetOpcode::COPY),
|
|
DestReg)
|
|
.addReg(VRegs[0].second);
|
|
continue;
|
|
}
|
|
|
|
// We need a phi: if there is an upwards exposed use we already have a
|
|
// destination virtual register number otherwise we generate a new one.
|
|
auto &DL = FuncInfo->MF->getDataLayout();
|
|
auto const *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
|
|
unsigned PHIVReg =
|
|
UpwardsUse ? UUseVReg
|
|
: FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
|
|
MachineInstrBuilder SwiftErrorPHI =
|
|
BuildMI(*MBB, MBB->getFirstNonPHI(), DLoc,
|
|
TII->get(TargetOpcode::PHI), PHIVReg);
|
|
for (auto BBRegPair : VRegs) {
|
|
SwiftErrorPHI.addReg(BBRegPair.second).addMBB(BBRegPair.first);
|
|
}
|
|
|
|
// We did not have a definition in this block before: store the phi's vreg
|
|
// as this block downward exposed def.
|
|
if (!UpwardsUse)
|
|
FuncInfo->setCurrentSwiftErrorVReg(MBB, SwiftErrorVal, PHIVReg);
|
|
}
|
|
}
|
|
}
|
|
|
|
void preassignSwiftErrorRegs(const TargetLowering *TLI,
|
|
FunctionLoweringInfo *FuncInfo,
|
|
BasicBlock::const_iterator Begin,
|
|
BasicBlock::const_iterator End) {
|
|
if (!TLI->supportSwiftError() || FuncInfo->SwiftErrorVals.empty())
|
|
return;
|
|
|
|
// Iterator over instructions and assign vregs to swifterror defs and uses.
|
|
for (auto It = Begin; It != End; ++It) {
|
|
ImmutableCallSite CS(&*It);
|
|
if (CS) {
|
|
// A call-site with a swifterror argument is both use and def.
|
|
const Value *SwiftErrorAddr = nullptr;
|
|
for (auto &Arg : CS.args()) {
|
|
if (!Arg->isSwiftError())
|
|
continue;
|
|
// Use of swifterror.
|
|
assert(!SwiftErrorAddr && "Cannot have multiple swifterror arguments");
|
|
SwiftErrorAddr = &*Arg;
|
|
assert(SwiftErrorAddr->isSwiftError() &&
|
|
"Must have a swifterror value argument");
|
|
unsigned VReg; bool CreatedReg;
|
|
std::tie(VReg, CreatedReg) = FuncInfo->getOrCreateSwiftErrorVRegUseAt(
|
|
&*It, FuncInfo->MBB, SwiftErrorAddr);
|
|
assert(CreatedReg);
|
|
}
|
|
if (!SwiftErrorAddr)
|
|
continue;
|
|
|
|
// Def of swifterror.
|
|
unsigned VReg; bool CreatedReg;
|
|
std::tie(VReg, CreatedReg) =
|
|
FuncInfo->getOrCreateSwiftErrorVRegDefAt(&*It);
|
|
assert(CreatedReg);
|
|
FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorAddr, VReg);
|
|
|
|
// A load is a use.
|
|
} else if (const LoadInst *LI = dyn_cast<const LoadInst>(&*It)) {
|
|
const Value *V = LI->getOperand(0);
|
|
if (!V->isSwiftError())
|
|
continue;
|
|
|
|
unsigned VReg; bool CreatedReg;
|
|
std::tie(VReg, CreatedReg) =
|
|
FuncInfo->getOrCreateSwiftErrorVRegUseAt(LI, FuncInfo->MBB, V);
|
|
assert(CreatedReg);
|
|
|
|
// A store is a def.
|
|
} else if (const StoreInst *SI = dyn_cast<const StoreInst>(&*It)) {
|
|
const Value *SwiftErrorAddr = SI->getOperand(1);
|
|
if (!SwiftErrorAddr->isSwiftError())
|
|
continue;
|
|
|
|
// Def of swifterror.
|
|
unsigned VReg; bool CreatedReg;
|
|
std::tie(VReg, CreatedReg) =
|
|
FuncInfo->getOrCreateSwiftErrorVRegDefAt(&*It);
|
|
assert(CreatedReg);
|
|
FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorAddr, VReg);
|
|
|
|
// A return in a swiferror returning function is a use.
|
|
} else if (const ReturnInst *R = dyn_cast<const ReturnInst>(&*It)) {
|
|
const Function *F = R->getParent()->getParent();
|
|
if(!F->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
|
|
continue;
|
|
|
|
unsigned VReg; bool CreatedReg;
|
|
std::tie(VReg, CreatedReg) = FuncInfo->getOrCreateSwiftErrorVRegUseAt(
|
|
R, FuncInfo->MBB, FuncInfo->SwiftErrorArg);
|
|
assert(CreatedReg);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
|
|
FastISelFailed = false;
|
|
// Initialize the Fast-ISel state, if needed.
|
|
FastISel *FastIS = nullptr;
|
|
if (TM.Options.EnableFastISel)
|
|
FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
|
|
|
|
setupSwiftErrorVals(Fn, TLI, FuncInfo);
|
|
|
|
ReversePostOrderTraversal<const Function*> RPOT(&Fn);
|
|
|
|
// Lower arguments up front. An RPO iteration always visits the entry block
|
|
// first.
|
|
assert(*RPOT.begin() == &Fn.getEntryBlock());
|
|
++NumEntryBlocks;
|
|
|
|
// Set up FuncInfo for ISel. Entry blocks never have PHIs.
|
|
FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
|
|
FuncInfo->InsertPt = FuncInfo->MBB->begin();
|
|
|
|
if (!FastIS) {
|
|
LowerArguments(Fn);
|
|
} else {
|
|
// See if fast isel can lower the arguments.
|
|
FastIS->startNewBlock();
|
|
if (!FastIS->lowerArguments()) {
|
|
FastISelFailed = true;
|
|
// Fast isel failed to lower these arguments
|
|
++NumFastIselFailLowerArguments;
|
|
|
|
OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
|
|
Fn.getSubprogram(),
|
|
&Fn.getEntryBlock());
|
|
R << "FastISel didn't lower all arguments: "
|
|
<< ore::NV("Prototype", Fn.getType());
|
|
reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
|
|
|
|
// Use SelectionDAG argument lowering
|
|
LowerArguments(Fn);
|
|
CurDAG->setRoot(SDB->getControlRoot());
|
|
SDB->clear();
|
|
CodeGenAndEmitDAG();
|
|
}
|
|
|
|
// If we inserted any instructions at the beginning, make a note of
|
|
// where they are, so we can be sure to emit subsequent instructions
|
|
// after them.
|
|
if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
|
|
FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
|
|
else
|
|
FastIS->setLastLocalValue(nullptr);
|
|
}
|
|
createSwiftErrorEntriesInEntryBlock(FuncInfo, FastIS, TLI, TII, SDB);
|
|
|
|
processDbgDeclares(FuncInfo);
|
|
|
|
// Iterate over all basic blocks in the function.
|
|
for (const BasicBlock *LLVMBB : RPOT) {
|
|
if (OptLevel != CodeGenOpt::None) {
|
|
bool AllPredsVisited = true;
|
|
for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
|
|
PI != PE; ++PI) {
|
|
if (!FuncInfo->VisitedBBs.count(*PI)) {
|
|
AllPredsVisited = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (AllPredsVisited) {
|
|
for (BasicBlock::const_iterator I = LLVMBB->begin();
|
|
const PHINode *PN = dyn_cast<PHINode>(I); ++I)
|
|
FuncInfo->ComputePHILiveOutRegInfo(PN);
|
|
} else {
|
|
for (BasicBlock::const_iterator I = LLVMBB->begin();
|
|
const PHINode *PN = dyn_cast<PHINode>(I); ++I)
|
|
FuncInfo->InvalidatePHILiveOutRegInfo(PN);
|
|
}
|
|
|
|
FuncInfo->VisitedBBs.insert(LLVMBB);
|
|
}
|
|
|
|
BasicBlock::const_iterator const Begin =
|
|
LLVMBB->getFirstNonPHI()->getIterator();
|
|
BasicBlock::const_iterator const End = LLVMBB->end();
|
|
BasicBlock::const_iterator BI = End;
|
|
|
|
FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
|
|
if (!FuncInfo->MBB)
|
|
continue; // Some blocks like catchpads have no code or MBB.
|
|
|
|
// Insert new instructions after any phi or argument setup code.
|
|
FuncInfo->InsertPt = FuncInfo->MBB->end();
|
|
|
|
// Setup an EH landing-pad block.
|
|
FuncInfo->ExceptionPointerVirtReg = 0;
|
|
FuncInfo->ExceptionSelectorVirtReg = 0;
|
|
if (LLVMBB->isEHPad())
|
|
if (!PrepareEHLandingPad())
|
|
continue;
|
|
|
|
// Before doing SelectionDAG ISel, see if FastISel has been requested.
|
|
if (FastIS) {
|
|
if (LLVMBB != &Fn.getEntryBlock())
|
|
FastIS->startNewBlock();
|
|
|
|
unsigned NumFastIselRemaining = std::distance(Begin, End);
|
|
|
|
// Pre-assign swifterror vregs.
|
|
preassignSwiftErrorRegs(TLI, FuncInfo, Begin, End);
|
|
|
|
// Do FastISel on as many instructions as possible.
|
|
for (; BI != Begin; --BI) {
|
|
const Instruction *Inst = &*std::prev(BI);
|
|
|
|
// If we no longer require this instruction, skip it.
|
|
if (isFoldedOrDeadInstruction(Inst, FuncInfo) ||
|
|
ElidedArgCopyInstrs.count(Inst)) {
|
|
--NumFastIselRemaining;
|
|
continue;
|
|
}
|
|
|
|
// Bottom-up: reset the insert pos at the top, after any local-value
|
|
// instructions.
|
|
FastIS->recomputeInsertPt();
|
|
|
|
// Try to select the instruction with FastISel.
|
|
if (FastIS->selectInstruction(Inst)) {
|
|
--NumFastIselRemaining;
|
|
++NumFastIselSuccess;
|
|
// If fast isel succeeded, skip over all the folded instructions, and
|
|
// then see if there is a load right before the selected instructions.
|
|
// Try to fold the load if so.
|
|
const Instruction *BeforeInst = Inst;
|
|
while (BeforeInst != &*Begin) {
|
|
BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
|
|
if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
|
|
break;
|
|
}
|
|
if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
|
|
BeforeInst->hasOneUse() &&
|
|
FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
|
|
// If we succeeded, don't re-select the load.
|
|
BI = std::next(BasicBlock::const_iterator(BeforeInst));
|
|
--NumFastIselRemaining;
|
|
++NumFastIselSuccess;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
FastISelFailed = true;
|
|
|
|
// Then handle certain instructions as single-LLVM-Instruction blocks.
|
|
// We cannot separate out GCrelocates to their own blocks since we need
|
|
// to keep track of gc-relocates for a particular gc-statepoint. This is
|
|
// done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
|
|
// visitGCRelocate.
|
|
if (isa<CallInst>(Inst) && !isStatepoint(Inst) && !isGCRelocate(Inst)) {
|
|
OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
|
|
Inst->getDebugLoc(), LLVMBB);
|
|
|
|
R << "FastISel missed call";
|
|
|
|
if (R.isEnabled() || EnableFastISelAbort) {
|
|
std::string InstStrStorage;
|
|
raw_string_ostream InstStr(InstStrStorage);
|
|
InstStr << *Inst;
|
|
|
|
R << ": " << InstStr.str();
|
|
}
|
|
|
|
reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
|
|
|
|
if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
|
|
!Inst->use_empty()) {
|
|
unsigned &R = FuncInfo->ValueMap[Inst];
|
|
if (!R)
|
|
R = FuncInfo->CreateRegs(Inst->getType());
|
|
}
|
|
|
|
bool HadTailCall = false;
|
|
MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
|
|
SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
|
|
|
|
// If the call was emitted as a tail call, we're done with the block.
|
|
// We also need to delete any previously emitted instructions.
|
|
if (HadTailCall) {
|
|
FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
|
|
--BI;
|
|
break;
|
|
}
|
|
|
|
// Recompute NumFastIselRemaining as Selection DAG instruction
|
|
// selection may have handled the call, input args, etc.
|
|
unsigned RemainingNow = std::distance(Begin, BI);
|
|
NumFastIselFailures += NumFastIselRemaining - RemainingNow;
|
|
NumFastIselRemaining = RemainingNow;
|
|
continue;
|
|
}
|
|
|
|
OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
|
|
Inst->getDebugLoc(), LLVMBB);
|
|
|
|
bool ShouldAbort = EnableFastISelAbort;
|
|
if (isa<TerminatorInst>(Inst)) {
|
|
// Use a different message for terminator misses.
|
|
R << "FastISel missed terminator";
|
|
// Don't abort for terminator unless the level is really high
|
|
ShouldAbort = (EnableFastISelAbort > 2);
|
|
} else {
|
|
R << "FastISel missed";
|
|
}
|
|
|
|
if (R.isEnabled() || EnableFastISelAbort) {
|
|
std::string InstStrStorage;
|
|
raw_string_ostream InstStr(InstStrStorage);
|
|
InstStr << *Inst;
|
|
R << ": " << InstStr.str();
|
|
}
|
|
|
|
reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
|
|
|
|
NumFastIselFailures += NumFastIselRemaining;
|
|
break;
|
|
}
|
|
|
|
FastIS->recomputeInsertPt();
|
|
}
|
|
|
|
if (getAnalysis<StackProtector>().shouldEmitSDCheck(*LLVMBB)) {
|
|
bool FunctionBasedInstrumentation =
|
|
TLI->getSSPStackGuardCheck(*Fn.getParent());
|
|
SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
|
|
FunctionBasedInstrumentation);
|
|
}
|
|
|
|
if (Begin != BI)
|
|
++NumDAGBlocks;
|
|
else
|
|
++NumFastIselBlocks;
|
|
|
|
if (Begin != BI) {
|
|
// Run SelectionDAG instruction selection on the remainder of the block
|
|
// not handled by FastISel. If FastISel is not run, this is the entire
|
|
// block.
|
|
bool HadTailCall;
|
|
SelectBasicBlock(Begin, BI, HadTailCall);
|
|
|
|
// But if FastISel was run, we already selected some of the block.
|
|
// If we emitted a tail-call, we need to delete any previously emitted
|
|
// instruction that follows it.
|
|
if (HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
|
|
FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
|
|
}
|
|
|
|
FinishBasicBlock();
|
|
FuncInfo->PHINodesToUpdate.clear();
|
|
ElidedArgCopyInstrs.clear();
|
|
}
|
|
|
|
propagateSwiftErrorVRegs(FuncInfo);
|
|
|
|
delete FastIS;
|
|
SDB->clearDanglingDebugInfo();
|
|
SDB->SPDescriptor.resetPerFunctionState();
|
|
}
|
|
|
|
/// Given that the input MI is before a partial terminator sequence TSeq, return
|
|
/// true if M + TSeq also a partial terminator sequence.
|
|
///
|
|
/// A Terminator sequence is a sequence of MachineInstrs which at this point in
|
|
/// lowering copy vregs into physical registers, which are then passed into
|
|
/// terminator instructors so we can satisfy ABI constraints. A partial
|
|
/// terminator sequence is an improper subset of a terminator sequence (i.e. it
|
|
/// may be the whole terminator sequence).
|
|
static bool MIIsInTerminatorSequence(const MachineInstr &MI) {
|
|
// If we do not have a copy or an implicit def, we return true if and only if
|
|
// MI is a debug value.
|
|
if (!MI.isCopy() && !MI.isImplicitDef())
|
|
// Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
|
|
// physical registers if there is debug info associated with the terminator
|
|
// of our mbb. We want to include said debug info in our terminator
|
|
// sequence, so we return true in that case.
|
|
return MI.isDebugValue();
|
|
|
|
// We have left the terminator sequence if we are not doing one of the
|
|
// following:
|
|
//
|
|
// 1. Copying a vreg into a physical register.
|
|
// 2. Copying a vreg into a vreg.
|
|
// 3. Defining a register via an implicit def.
|
|
|
|
// OPI should always be a register definition...
|
|
MachineInstr::const_mop_iterator OPI = MI.operands_begin();
|
|
if (!OPI->isReg() || !OPI->isDef())
|
|
return false;
|
|
|
|
// Defining any register via an implicit def is always ok.
|
|
if (MI.isImplicitDef())
|
|
return true;
|
|
|
|
// Grab the copy source...
|
|
MachineInstr::const_mop_iterator OPI2 = OPI;
|
|
++OPI2;
|
|
assert(OPI2 != MI.operands_end()
|
|
&& "Should have a copy implying we should have 2 arguments.");
|
|
|
|
// Make sure that the copy dest is not a vreg when the copy source is a
|
|
// physical register.
|
|
if (!OPI2->isReg() ||
|
|
(!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
|
|
TargetRegisterInfo::isPhysicalRegister(OPI2->getReg())))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Find the split point at which to splice the end of BB into its success stack
|
|
/// protector check machine basic block.
|
|
///
|
|
/// On many platforms, due to ABI constraints, terminators, even before register
|
|
/// allocation, use physical registers. This creates an issue for us since
|
|
/// physical registers at this point can not travel across basic
|
|
/// blocks. Luckily, selectiondag always moves physical registers into vregs
|
|
/// when they enter functions and moves them through a sequence of copies back
|
|
/// into the physical registers right before the terminator creating a
|
|
/// ``Terminator Sequence''. This function is searching for the beginning of the
|
|
/// terminator sequence so that we can ensure that we splice off not just the
|
|
/// terminator, but additionally the copies that move the vregs into the
|
|
/// physical registers.
|
|
static MachineBasicBlock::iterator
|
|
FindSplitPointForStackProtector(MachineBasicBlock *BB) {
|
|
MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
|
|
//
|
|
if (SplitPoint == BB->begin())
|
|
return SplitPoint;
|
|
|
|
MachineBasicBlock::iterator Start = BB->begin();
|
|
MachineBasicBlock::iterator Previous = SplitPoint;
|
|
--Previous;
|
|
|
|
while (MIIsInTerminatorSequence(*Previous)) {
|
|
SplitPoint = Previous;
|
|
if (Previous == Start)
|
|
break;
|
|
--Previous;
|
|
}
|
|
|
|
return SplitPoint;
|
|
}
|
|
|
|
void
|
|
SelectionDAGISel::FinishBasicBlock() {
|
|
DEBUG(dbgs() << "Total amount of phi nodes to update: "
|
|
<< FuncInfo->PHINodesToUpdate.size() << "\n";
|
|
for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
|
|
dbgs() << "Node " << i << " : ("
|
|
<< FuncInfo->PHINodesToUpdate[i].first
|
|
<< ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
|
|
|
|
// Next, now that we know what the last MBB the LLVM BB expanded is, update
|
|
// PHI nodes in successors.
|
|
for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
|
|
MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
|
|
assert(PHI->isPHI() &&
|
|
"This is not a machine PHI node that we are updating!");
|
|
if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
|
|
continue;
|
|
PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
|
|
}
|
|
|
|
// Handle stack protector.
|
|
if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
|
|
// The target provides a guard check function. There is no need to
|
|
// generate error handling code or to split current basic block.
|
|
MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
|
|
|
|
// Add load and check to the basicblock.
|
|
FuncInfo->MBB = ParentMBB;
|
|
FuncInfo->InsertPt =
|
|
FindSplitPointForStackProtector(ParentMBB);
|
|
SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
|
|
CurDAG->setRoot(SDB->getRoot());
|
|
SDB->clear();
|
|
CodeGenAndEmitDAG();
|
|
|
|
// Clear the Per-BB State.
|
|
SDB->SPDescriptor.resetPerBBState();
|
|
} else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
|
|
MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
|
|
MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
|
|
|
|
// Find the split point to split the parent mbb. At the same time copy all
|
|
// physical registers used in the tail of parent mbb into virtual registers
|
|
// before the split point and back into physical registers after the split
|
|
// point. This prevents us needing to deal with Live-ins and many other
|
|
// register allocation issues caused by us splitting the parent mbb. The
|
|
// register allocator will clean up said virtual copies later on.
|
|
MachineBasicBlock::iterator SplitPoint =
|
|
FindSplitPointForStackProtector(ParentMBB);
|
|
|
|
// Splice the terminator of ParentMBB into SuccessMBB.
|
|
SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
|
|
SplitPoint,
|
|
ParentMBB->end());
|
|
|
|
// Add compare/jump on neq/jump to the parent BB.
|
|
FuncInfo->MBB = ParentMBB;
|
|
FuncInfo->InsertPt = ParentMBB->end();
|
|
SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
|
|
CurDAG->setRoot(SDB->getRoot());
|
|
SDB->clear();
|
|
CodeGenAndEmitDAG();
|
|
|
|
// CodeGen Failure MBB if we have not codegened it yet.
|
|
MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
|
|
if (FailureMBB->empty()) {
|
|
FuncInfo->MBB = FailureMBB;
|
|
FuncInfo->InsertPt = FailureMBB->end();
|
|
SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
|
|
CurDAG->setRoot(SDB->getRoot());
|
|
SDB->clear();
|
|
CodeGenAndEmitDAG();
|
|
}
|
|
|
|
// Clear the Per-BB State.
|
|
SDB->SPDescriptor.resetPerBBState();
|
|
}
|
|
|
|
// Lower each BitTestBlock.
|
|
for (auto &BTB : SDB->BitTestCases) {
|
|
// Lower header first, if it wasn't already lowered
|
|
if (!BTB.Emitted) {
|
|
// Set the current basic block to the mbb we wish to insert the code into
|
|
FuncInfo->MBB = BTB.Parent;
|
|
FuncInfo->InsertPt = FuncInfo->MBB->end();
|
|
// Emit the code
|
|
SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
|
|
CurDAG->setRoot(SDB->getRoot());
|
|
SDB->clear();
|
|
CodeGenAndEmitDAG();
|
|
}
|
|
|
|
BranchProbability UnhandledProb = BTB.Prob;
|
|
for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
|
|
UnhandledProb -= BTB.Cases[j].ExtraProb;
|
|
// Set the current basic block to the mbb we wish to insert the code into
|
|
FuncInfo->MBB = BTB.Cases[j].ThisBB;
|
|
FuncInfo->InsertPt = FuncInfo->MBB->end();
|
|
// Emit the code
|
|
|
|
// If all cases cover a contiguous range, it is not necessary to jump to
|
|
// the default block after the last bit test fails. This is because the
|
|
// range check during bit test header creation has guaranteed that every
|
|
// case here doesn't go outside the range. In this case, there is no need
|
|
// to perform the last bit test, as it will always be true. Instead, make
|
|
// the second-to-last bit-test fall through to the target of the last bit
|
|
// test, and delete the last bit test.
|
|
|
|
MachineBasicBlock *NextMBB;
|
|
if (BTB.ContiguousRange && j + 2 == ej) {
|
|
// Second-to-last bit-test with contiguous range: fall through to the
|
|
// target of the final bit test.
|
|
NextMBB = BTB.Cases[j + 1].TargetBB;
|
|
} else if (j + 1 == ej) {
|
|
// For the last bit test, fall through to Default.
|
|
NextMBB = BTB.Default;
|
|
} else {
|
|
// Otherwise, fall through to the next bit test.
|
|
NextMBB = BTB.Cases[j + 1].ThisBB;
|
|
}
|
|
|
|
SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
|
|
FuncInfo->MBB);
|
|
|
|
CurDAG->setRoot(SDB->getRoot());
|
|
SDB->clear();
|
|
CodeGenAndEmitDAG();
|
|
|
|
if (BTB.ContiguousRange && j + 2 == ej) {
|
|
// Since we're not going to use the final bit test, remove it.
|
|
BTB.Cases.pop_back();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Update PHI Nodes
|
|
for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
|
|
pi != pe; ++pi) {
|
|
MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
|
|
MachineBasicBlock *PHIBB = PHI->getParent();
|
|
assert(PHI->isPHI() &&
|
|
"This is not a machine PHI node that we are updating!");
|
|
// This is "default" BB. We have two jumps to it. From "header" BB and
|
|
// from last "case" BB, unless the latter was skipped.
|
|
if (PHIBB == BTB.Default) {
|
|
PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent);
|
|
if (!BTB.ContiguousRange) {
|
|
PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
|
|
.addMBB(BTB.Cases.back().ThisBB);
|
|
}
|
|
}
|
|
// One of "cases" BB.
|
|
for (unsigned j = 0, ej = BTB.Cases.size();
|
|
j != ej; ++j) {
|
|
MachineBasicBlock* cBB = BTB.Cases[j].ThisBB;
|
|
if (cBB->isSuccessor(PHIBB))
|
|
PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
|
|
}
|
|
}
|
|
}
|
|
SDB->BitTestCases.clear();
|
|
|
|
// If the JumpTable record is filled in, then we need to emit a jump table.
|
|
// Updating the PHI nodes is tricky in this case, since we need to determine
|
|
// whether the PHI is a successor of the range check MBB or the jump table MBB
|
|
for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
|
|
// Lower header first, if it wasn't already lowered
|
|
if (!SDB->JTCases[i].first.Emitted) {
|
|
// Set the current basic block to the mbb we wish to insert the code into
|
|
FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
|
|
FuncInfo->InsertPt = FuncInfo->MBB->end();
|
|
// Emit the code
|
|
SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
|
|
FuncInfo->MBB);
|
|
CurDAG->setRoot(SDB->getRoot());
|
|
SDB->clear();
|
|
CodeGenAndEmitDAG();
|
|
}
|
|
|
|
// Set the current basic block to the mbb we wish to insert the code into
|
|
FuncInfo->MBB = SDB->JTCases[i].second.MBB;
|
|
FuncInfo->InsertPt = FuncInfo->MBB->end();
|
|
// Emit the code
|
|
SDB->visitJumpTable(SDB->JTCases[i].second);
|
|
CurDAG->setRoot(SDB->getRoot());
|
|
SDB->clear();
|
|
CodeGenAndEmitDAG();
|
|
|
|
// Update PHI Nodes
|
|
for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
|
|
pi != pe; ++pi) {
|
|
MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
|
|
MachineBasicBlock *PHIBB = PHI->getParent();
|
|
assert(PHI->isPHI() &&
|
|
"This is not a machine PHI node that we are updating!");
|
|
// "default" BB. We can go there only from header BB.
|
|
if (PHIBB == SDB->JTCases[i].second.Default)
|
|
PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
|
|
.addMBB(SDB->JTCases[i].first.HeaderBB);
|
|
// JT BB. Just iterate over successors here
|
|
if (FuncInfo->MBB->isSuccessor(PHIBB))
|
|
PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
|
|
}
|
|
}
|
|
SDB->JTCases.clear();
|
|
|
|
// If we generated any switch lowering information, build and codegen any
|
|
// additional DAGs necessary.
|
|
for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
|
|
// Set the current basic block to the mbb we wish to insert the code into
|
|
FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
|
|
FuncInfo->InsertPt = FuncInfo->MBB->end();
|
|
|
|
// Determine the unique successors.
|
|
SmallVector<MachineBasicBlock *, 2> Succs;
|
|
Succs.push_back(SDB->SwitchCases[i].TrueBB);
|
|
if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
|
|
Succs.push_back(SDB->SwitchCases[i].FalseBB);
|
|
|
|
// Emit the code. Note that this could result in FuncInfo->MBB being split.
|
|
SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
|
|
CurDAG->setRoot(SDB->getRoot());
|
|
SDB->clear();
|
|
CodeGenAndEmitDAG();
|
|
|
|
// Remember the last block, now that any splitting is done, for use in
|
|
// populating PHI nodes in successors.
|
|
MachineBasicBlock *ThisBB = FuncInfo->MBB;
|
|
|
|
// Handle any PHI nodes in successors of this chunk, as if we were coming
|
|
// from the original BB before switch expansion. Note that PHI nodes can
|
|
// occur multiple times in PHINodesToUpdate. We have to be very careful to
|
|
// handle them the right number of times.
|
|
for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
|
|
FuncInfo->MBB = Succs[i];
|
|
FuncInfo->InsertPt = FuncInfo->MBB->end();
|
|
// FuncInfo->MBB may have been removed from the CFG if a branch was
|
|
// constant folded.
|
|
if (ThisBB->isSuccessor(FuncInfo->MBB)) {
|
|
for (MachineBasicBlock::iterator
|
|
MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
|
|
MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
|
|
MachineInstrBuilder PHI(*MF, MBBI);
|
|
// This value for this PHI node is recorded in PHINodesToUpdate.
|
|
for (unsigned pn = 0; ; ++pn) {
|
|
assert(pn != FuncInfo->PHINodesToUpdate.size() &&
|
|
"Didn't find PHI entry!");
|
|
if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
|
|
PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
SDB->SwitchCases.clear();
|
|
}
|
|
|
|
/// Create the scheduler. If a specific scheduler was specified
|
|
/// via the SchedulerRegistry, use it, otherwise select the
|
|
/// one preferred by the target.
|
|
///
|
|
ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
|
|
return ISHeuristic(this, OptLevel);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper functions used by the generated instruction selector.
|
|
//===----------------------------------------------------------------------===//
|
|
// Calls to these methods are generated by tblgen.
|
|
|
|
/// CheckAndMask - The isel is trying to match something like (and X, 255). If
|
|
/// the dag combiner simplified the 255, we still want to match. RHS is the
|
|
/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
|
|
/// specified in the .td file (e.g. 255).
|
|
bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
|
|
int64_t DesiredMaskS) const {
|
|
const APInt &ActualMask = RHS->getAPIntValue();
|
|
const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
|
|
|
|
// If the actual mask exactly matches, success!
|
|
if (ActualMask == DesiredMask)
|
|
return true;
|
|
|
|
// If the actual AND mask is allowing unallowed bits, this doesn't match.
|
|
if (ActualMask.intersects(~DesiredMask))
|
|
return false;
|
|
|
|
// Otherwise, the DAG Combiner may have proven that the value coming in is
|
|
// either already zero or is not demanded. Check for known zero input bits.
|
|
APInt NeededMask = DesiredMask & ~ActualMask;
|
|
if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
|
|
return true;
|
|
|
|
// TODO: check to see if missing bits are just not demanded.
|
|
|
|
// Otherwise, this pattern doesn't match.
|
|
return false;
|
|
}
|
|
|
|
/// CheckOrMask - The isel is trying to match something like (or X, 255). If
|
|
/// the dag combiner simplified the 255, we still want to match. RHS is the
|
|
/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
|
|
/// specified in the .td file (e.g. 255).
|
|
bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
|
|
int64_t DesiredMaskS) const {
|
|
const APInt &ActualMask = RHS->getAPIntValue();
|
|
const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
|
|
|
|
// If the actual mask exactly matches, success!
|
|
if (ActualMask == DesiredMask)
|
|
return true;
|
|
|
|
// If the actual AND mask is allowing unallowed bits, this doesn't match.
|
|
if (ActualMask.intersects(~DesiredMask))
|
|
return false;
|
|
|
|
// Otherwise, the DAG Combiner may have proven that the value coming in is
|
|
// either already zero or is not demanded. Check for known zero input bits.
|
|
APInt NeededMask = DesiredMask & ~ActualMask;
|
|
|
|
KnownBits Known;
|
|
CurDAG->computeKnownBits(LHS, Known);
|
|
|
|
// If all the missing bits in the or are already known to be set, match!
|
|
if (NeededMask.isSubsetOf(Known.One))
|
|
return true;
|
|
|
|
// TODO: check to see if missing bits are just not demanded.
|
|
|
|
// Otherwise, this pattern doesn't match.
|
|
return false;
|
|
}
|
|
|
|
/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
|
|
/// by tblgen. Others should not call it.
|
|
void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
|
|
const SDLoc &DL) {
|
|
std::vector<SDValue> InOps;
|
|
std::swap(InOps, Ops);
|
|
|
|
Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
|
|
Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1
|
|
Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc
|
|
Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack)
|
|
|
|
unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
|
|
if (InOps[e-1].getValueType() == MVT::Glue)
|
|
--e; // Don't process a glue operand if it is here.
|
|
|
|
while (i != e) {
|
|
unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
|
|
if (!InlineAsm::isMemKind(Flags)) {
|
|
// Just skip over this operand, copying the operands verbatim.
|
|
Ops.insert(Ops.end(), InOps.begin()+i,
|
|
InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
|
|
i += InlineAsm::getNumOperandRegisters(Flags) + 1;
|
|
} else {
|
|
assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
|
|
"Memory operand with multiple values?");
|
|
|
|
unsigned TiedToOperand;
|
|
if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
|
|
// We need the constraint ID from the operand this is tied to.
|
|
unsigned CurOp = InlineAsm::Op_FirstOperand;
|
|
Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
|
|
for (; TiedToOperand; --TiedToOperand) {
|
|
CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
|
|
Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
|
|
}
|
|
}
|
|
|
|
// Otherwise, this is a memory operand. Ask the target to select it.
|
|
std::vector<SDValue> SelOps;
|
|
unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
|
|
if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
|
|
report_fatal_error("Could not match memory address. Inline asm"
|
|
" failure!");
|
|
|
|
// Add this to the output node.
|
|
unsigned NewFlags =
|
|
InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
|
|
NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
|
|
Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
|
|
Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
|
|
i += 2;
|
|
}
|
|
}
|
|
|
|
// Add the glue input back if present.
|
|
if (e != InOps.size())
|
|
Ops.push_back(InOps.back());
|
|
}
|
|
|
|
/// findGlueUse - Return use of MVT::Glue value produced by the specified
|
|
/// SDNode.
|
|
///
|
|
static SDNode *findGlueUse(SDNode *N) {
|
|
unsigned FlagResNo = N->getNumValues()-1;
|
|
for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
|
|
SDUse &Use = I.getUse();
|
|
if (Use.getResNo() == FlagResNo)
|
|
return Use.getUser();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
|
|
/// This function iteratively traverses up the operand chain, ignoring
|
|
/// certain nodes.
|
|
static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
|
|
SDNode *Root, SmallPtrSetImpl<SDNode*> &Visited,
|
|
bool IgnoreChains) {
|
|
// The NodeID's are given uniques ID's where a node ID is guaranteed to be
|
|
// greater than all of its (recursive) operands. If we scan to a point where
|
|
// 'use' is smaller than the node we're scanning for, then we know we will
|
|
// never find it.
|
|
//
|
|
// The Use may be -1 (unassigned) if it is a newly allocated node. This can
|
|
// happen because we scan down to newly selected nodes in the case of glue
|
|
// uses.
|
|
std::vector<SDNode *> WorkList;
|
|
WorkList.push_back(Use);
|
|
|
|
while (!WorkList.empty()) {
|
|
Use = WorkList.back();
|
|
WorkList.pop_back();
|
|
if (Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1)
|
|
continue;
|
|
|
|
// Don't revisit nodes if we already scanned it and didn't fail, we know we
|
|
// won't fail if we scan it again.
|
|
if (!Visited.insert(Use).second)
|
|
continue;
|
|
|
|
for (const SDValue &Op : Use->op_values()) {
|
|
// Ignore chain uses, they are validated by HandleMergeInputChains.
|
|
if (Op.getValueType() == MVT::Other && IgnoreChains)
|
|
continue;
|
|
|
|
SDNode *N = Op.getNode();
|
|
if (N == Def) {
|
|
if (Use == ImmedUse || Use == Root)
|
|
continue; // We are not looking for immediate use.
|
|
assert(N != Root);
|
|
return true;
|
|
}
|
|
|
|
// Traverse up the operand chain.
|
|
WorkList.push_back(N);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// IsProfitableToFold - Returns true if it's profitable to fold the specific
|
|
/// operand node N of U during instruction selection that starts at Root.
|
|
bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
|
|
SDNode *Root) const {
|
|
if (OptLevel == CodeGenOpt::None) return false;
|
|
return N.hasOneUse();
|
|
}
|
|
|
|
/// IsLegalToFold - Returns true if the specific operand node N of
|
|
/// U can be folded during instruction selection that starts at Root.
|
|
bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
|
|
CodeGenOpt::Level OptLevel,
|
|
bool IgnoreChains) {
|
|
if (OptLevel == CodeGenOpt::None) return false;
|
|
|
|
// If Root use can somehow reach N through a path that that doesn't contain
|
|
// U then folding N would create a cycle. e.g. In the following
|
|
// diagram, Root can reach N through X. If N is folded into into Root, then
|
|
// X is both a predecessor and a successor of U.
|
|
//
|
|
// [N*] //
|
|
// ^ ^ //
|
|
// / \ //
|
|
// [U*] [X]? //
|
|
// ^ ^ //
|
|
// \ / //
|
|
// \ / //
|
|
// [Root*] //
|
|
//
|
|
// * indicates nodes to be folded together.
|
|
//
|
|
// If Root produces glue, then it gets (even more) interesting. Since it
|
|
// will be "glued" together with its glue use in the scheduler, we need to
|
|
// check if it might reach N.
|
|
//
|
|
// [N*] //
|
|
// ^ ^ //
|
|
// / \ //
|
|
// [U*] [X]? //
|
|
// ^ ^ //
|
|
// \ \ //
|
|
// \ | //
|
|
// [Root*] | //
|
|
// ^ | //
|
|
// f | //
|
|
// | / //
|
|
// [Y] / //
|
|
// ^ / //
|
|
// f / //
|
|
// | / //
|
|
// [GU] //
|
|
//
|
|
// If GU (glue use) indirectly reaches N (the load), and Root folds N
|
|
// (call it Fold), then X is a predecessor of GU and a successor of
|
|
// Fold. But since Fold and GU are glued together, this will create
|
|
// a cycle in the scheduling graph.
|
|
|
|
// If the node has glue, walk down the graph to the "lowest" node in the
|
|
// glueged set.
|
|
EVT VT = Root->getValueType(Root->getNumValues()-1);
|
|
while (VT == MVT::Glue) {
|
|
SDNode *GU = findGlueUse(Root);
|
|
if (!GU)
|
|
break;
|
|
Root = GU;
|
|
VT = Root->getValueType(Root->getNumValues()-1);
|
|
|
|
// If our query node has a glue result with a use, we've walked up it. If
|
|
// the user (which has already been selected) has a chain or indirectly uses
|
|
// the chain, our WalkChainUsers predicate will not consider it. Because of
|
|
// this, we cannot ignore chains in this predicate.
|
|
IgnoreChains = false;
|
|
}
|
|
|
|
SmallPtrSet<SDNode*, 16> Visited;
|
|
return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
|
|
}
|
|
|
|
void SelectionDAGISel::Select_INLINEASM(SDNode *N) {
|
|
SDLoc DL(N);
|
|
|
|
std::vector<SDValue> Ops(N->op_begin(), N->op_end());
|
|
SelectInlineAsmMemoryOperands(Ops, DL);
|
|
|
|
const EVT VTs[] = {MVT::Other, MVT::Glue};
|
|
SDValue New = CurDAG->getNode(ISD::INLINEASM, DL, VTs, Ops);
|
|
New->setNodeId(-1);
|
|
ReplaceUses(N, New.getNode());
|
|
CurDAG->RemoveDeadNode(N);
|
|
}
|
|
|
|
void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
|
|
SDLoc dl(Op);
|
|
MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
|
|
const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
|
|
unsigned Reg =
|
|
TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0),
|
|
*CurDAG);
|
|
SDValue New = CurDAG->getCopyFromReg(
|
|
Op->getOperand(0), dl, Reg, Op->getValueType(0));
|
|
New->setNodeId(-1);
|
|
ReplaceUses(Op, New.getNode());
|
|
CurDAG->RemoveDeadNode(Op);
|
|
}
|
|
|
|
void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
|
|
SDLoc dl(Op);
|
|
MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
|
|
const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
|
|
unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(),
|
|
Op->getOperand(2).getValueType(),
|
|
*CurDAG);
|
|
SDValue New = CurDAG->getCopyToReg(
|
|
Op->getOperand(0), dl, Reg, Op->getOperand(2));
|
|
New->setNodeId(-1);
|
|
ReplaceUses(Op, New.getNode());
|
|
CurDAG->RemoveDeadNode(Op);
|
|
}
|
|
|
|
void SelectionDAGISel::Select_UNDEF(SDNode *N) {
|
|
CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
|
|
}
|
|
|
|
/// GetVBR - decode a vbr encoding whose top bit is set.
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t
|
|
GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
|
|
assert(Val >= 128 && "Not a VBR");
|
|
Val &= 127; // Remove first vbr bit.
|
|
|
|
unsigned Shift = 7;
|
|
uint64_t NextBits;
|
|
do {
|
|
NextBits = MatcherTable[Idx++];
|
|
Val |= (NextBits&127) << Shift;
|
|
Shift += 7;
|
|
} while (NextBits & 128);
|
|
|
|
return Val;
|
|
}
|
|
|
|
/// When a match is complete, this method updates uses of interior chain results
|
|
/// to use the new results.
|
|
void SelectionDAGISel::UpdateChains(
|
|
SDNode *NodeToMatch, SDValue InputChain,
|
|
SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
|
|
SmallVector<SDNode*, 4> NowDeadNodes;
|
|
|
|
// Now that all the normal results are replaced, we replace the chain and
|
|
// glue results if present.
|
|
if (!ChainNodesMatched.empty()) {
|
|
assert(InputChain.getNode() &&
|
|
"Matched input chains but didn't produce a chain");
|
|
// Loop over all of the nodes we matched that produced a chain result.
|
|
// Replace all the chain results with the final chain we ended up with.
|
|
for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
|
|
SDNode *ChainNode = ChainNodesMatched[i];
|
|
// If ChainNode is null, it's because we replaced it on a previous
|
|
// iteration and we cleared it out of the map. Just skip it.
|
|
if (!ChainNode)
|
|
continue;
|
|
|
|
assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
|
|
"Deleted node left in chain");
|
|
|
|
// Don't replace the results of the root node if we're doing a
|
|
// MorphNodeTo.
|
|
if (ChainNode == NodeToMatch && isMorphNodeTo)
|
|
continue;
|
|
|
|
SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
|
|
if (ChainVal.getValueType() == MVT::Glue)
|
|
ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
|
|
assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
|
|
SelectionDAG::DAGNodeDeletedListener NDL(
|
|
*CurDAG, [&](SDNode *N, SDNode *E) {
|
|
std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
|
|
static_cast<SDNode *>(nullptr));
|
|
});
|
|
CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
|
|
|
|
// If the node became dead and we haven't already seen it, delete it.
|
|
if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
|
|
!std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
|
|
NowDeadNodes.push_back(ChainNode);
|
|
}
|
|
}
|
|
|
|
if (!NowDeadNodes.empty())
|
|
CurDAG->RemoveDeadNodes(NowDeadNodes);
|
|
|
|
DEBUG(dbgs() << "ISEL: Match complete!\n");
|
|
}
|
|
|
|
enum ChainResult {
|
|
CR_Simple,
|
|
CR_InducesCycle,
|
|
CR_LeadsToInteriorNode
|
|
};
|
|
|
|
/// WalkChainUsers - Walk down the users of the specified chained node that is
|
|
/// part of the pattern we're matching, looking at all of the users we find.
|
|
/// This determines whether something is an interior node, whether we have a
|
|
/// non-pattern node in between two pattern nodes (which prevent folding because
|
|
/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
|
|
/// between pattern nodes (in which case the TF becomes part of the pattern).
|
|
///
|
|
/// The walk we do here is guaranteed to be small because we quickly get down to
|
|
/// already selected nodes "below" us.
|
|
static ChainResult
|
|
WalkChainUsers(const SDNode *ChainedNode,
|
|
SmallVectorImpl<SDNode *> &ChainedNodesInPattern,
|
|
DenseMap<const SDNode *, ChainResult> &TokenFactorResult,
|
|
SmallVectorImpl<SDNode *> &InteriorChainedNodes) {
|
|
ChainResult Result = CR_Simple;
|
|
|
|
for (SDNode::use_iterator UI = ChainedNode->use_begin(),
|
|
E = ChainedNode->use_end(); UI != E; ++UI) {
|
|
// Make sure the use is of the chain, not some other value we produce.
|
|
if (UI.getUse().getValueType() != MVT::Other) continue;
|
|
|
|
SDNode *User = *UI;
|
|
|
|
if (User->getOpcode() == ISD::HANDLENODE) // Root of the graph.
|
|
continue;
|
|
|
|
// If we see an already-selected machine node, then we've gone beyond the
|
|
// pattern that we're selecting down into the already selected chunk of the
|
|
// DAG.
|
|
unsigned UserOpcode = User->getOpcode();
|
|
if (User->isMachineOpcode() ||
|
|
UserOpcode == ISD::CopyToReg ||
|
|
UserOpcode == ISD::CopyFromReg ||
|
|
UserOpcode == ISD::INLINEASM ||
|
|
UserOpcode == ISD::EH_LABEL ||
|
|
UserOpcode == ISD::LIFETIME_START ||
|
|
UserOpcode == ISD::LIFETIME_END) {
|
|
// If their node ID got reset to -1 then they've already been selected.
|
|
// Treat them like a MachineOpcode.
|
|
if (User->getNodeId() == -1)
|
|
continue;
|
|
}
|
|
|
|
// If we have a TokenFactor, we handle it specially.
|
|
if (User->getOpcode() != ISD::TokenFactor) {
|
|
// If the node isn't a token factor and isn't part of our pattern, then it
|
|
// must be a random chained node in between two nodes we're selecting.
|
|
// This happens when we have something like:
|
|
// x = load ptr
|
|
// call
|
|
// y = x+4
|
|
// store y -> ptr
|
|
// Because we structurally match the load/store as a read/modify/write,
|
|
// but the call is chained between them. We cannot fold in this case
|
|
// because it would induce a cycle in the graph.
|
|
if (!std::count(ChainedNodesInPattern.begin(),
|
|
ChainedNodesInPattern.end(), User))
|
|
return CR_InducesCycle;
|
|
|
|
// Otherwise we found a node that is part of our pattern. For example in:
|
|
// x = load ptr
|
|
// y = x+4
|
|
// store y -> ptr
|
|
// This would happen when we're scanning down from the load and see the
|
|
// store as a user. Record that there is a use of ChainedNode that is
|
|
// part of the pattern and keep scanning uses.
|
|
Result = CR_LeadsToInteriorNode;
|
|
InteriorChainedNodes.push_back(User);
|
|
continue;
|
|
}
|
|
|
|
// If we found a TokenFactor, there are two cases to consider: first if the
|
|
// TokenFactor is just hanging "below" the pattern we're matching (i.e. no
|
|
// uses of the TF are in our pattern) we just want to ignore it. Second,
|
|
// the TokenFactor can be sandwiched in between two chained nodes, like so:
|
|
// [Load chain]
|
|
// ^
|
|
// |
|
|
// [Load]
|
|
// ^ ^
|
|
// | \ DAG's like cheese
|
|
// / \ do you?
|
|
// / |
|
|
// [TokenFactor] [Op]
|
|
// ^ ^
|
|
// | |
|
|
// \ /
|
|
// \ /
|
|
// [Store]
|
|
//
|
|
// In this case, the TokenFactor becomes part of our match and we rewrite it
|
|
// as a new TokenFactor.
|
|
//
|
|
// To distinguish these two cases, do a recursive walk down the uses.
|
|
auto MemoizeResult = TokenFactorResult.find(User);
|
|
bool Visited = MemoizeResult != TokenFactorResult.end();
|
|
// Recursively walk chain users only if the result is not memoized.
|
|
if (!Visited) {
|
|
auto Res = WalkChainUsers(User, ChainedNodesInPattern, TokenFactorResult,
|
|
InteriorChainedNodes);
|
|
MemoizeResult = TokenFactorResult.insert(std::make_pair(User, Res)).first;
|
|
}
|
|
switch (MemoizeResult->second) {
|
|
case CR_Simple:
|
|
// If the uses of the TokenFactor are just already-selected nodes, ignore
|
|
// it, it is "below" our pattern.
|
|
continue;
|
|
case CR_InducesCycle:
|
|
// If the uses of the TokenFactor lead to nodes that are not part of our
|
|
// pattern that are not selected, folding would turn this into a cycle,
|
|
// bail out now.
|
|
return CR_InducesCycle;
|
|
case CR_LeadsToInteriorNode:
|
|
break; // Otherwise, keep processing.
|
|
}
|
|
|
|
// Okay, we know we're in the interesting interior case. The TokenFactor
|
|
// is now going to be considered part of the pattern so that we rewrite its
|
|
// uses (it may have uses that are not part of the pattern) with the
|
|
// ultimate chain result of the generated code. We will also add its chain
|
|
// inputs as inputs to the ultimate TokenFactor we create.
|
|
Result = CR_LeadsToInteriorNode;
|
|
if (!Visited) {
|
|
ChainedNodesInPattern.push_back(User);
|
|
InteriorChainedNodes.push_back(User);
|
|
}
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
|
|
/// operation for when the pattern matched at least one node with a chains. The
|
|
/// input vector contains a list of all of the chained nodes that we match. We
|
|
/// must determine if this is a valid thing to cover (i.e. matching it won't
|
|
/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
|
|
/// be used as the input node chain for the generated nodes.
|
|
static SDValue
|
|
HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
|
|
SelectionDAG *CurDAG) {
|
|
// Used for memoization. Without it WalkChainUsers could take exponential
|
|
// time to run.
|
|
DenseMap<const SDNode *, ChainResult> TokenFactorResult;
|
|
// Walk all of the chained nodes we've matched, recursively scanning down the
|
|
// users of the chain result. This adds any TokenFactor nodes that are caught
|
|
// in between chained nodes to the chained and interior nodes list.
|
|
SmallVector<SDNode*, 3> InteriorChainedNodes;
|
|
for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
|
|
if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
|
|
TokenFactorResult,
|
|
InteriorChainedNodes) == CR_InducesCycle)
|
|
return SDValue(); // Would induce a cycle.
|
|
}
|
|
|
|
// Okay, we have walked all the matched nodes and collected TokenFactor nodes
|
|
// that we are interested in. Form our input TokenFactor node.
|
|
SmallVector<SDValue, 3> InputChains;
|
|
for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
|
|
// Add the input chain of this node to the InputChains list (which will be
|
|
// the operands of the generated TokenFactor) if it's not an interior node.
|
|
SDNode *N = ChainNodesMatched[i];
|
|
if (N->getOpcode() != ISD::TokenFactor) {
|
|
if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
|
|
continue;
|
|
|
|
// Otherwise, add the input chain.
|
|
SDValue InChain = ChainNodesMatched[i]->getOperand(0);
|
|
assert(InChain.getValueType() == MVT::Other && "Not a chain");
|
|
InputChains.push_back(InChain);
|
|
continue;
|
|
}
|
|
|
|
// If we have a token factor, we want to add all inputs of the token factor
|
|
// that are not part of the pattern we're matching.
|
|
for (const SDValue &Op : N->op_values()) {
|
|
if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
|
|
Op.getNode()))
|
|
InputChains.push_back(Op);
|
|
}
|
|
}
|
|
|
|
if (InputChains.size() == 1)
|
|
return InputChains[0];
|
|
return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
|
|
MVT::Other, InputChains);
|
|
}
|
|
|
|
/// MorphNode - Handle morphing a node in place for the selector.
|
|
SDNode *SelectionDAGISel::
|
|
MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
|
|
ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
|
|
// It is possible we're using MorphNodeTo to replace a node with no
|
|
// normal results with one that has a normal result (or we could be
|
|
// adding a chain) and the input could have glue and chains as well.
|
|
// In this case we need to shift the operands down.
|
|
// FIXME: This is a horrible hack and broken in obscure cases, no worse
|
|
// than the old isel though.
|
|
int OldGlueResultNo = -1, OldChainResultNo = -1;
|
|
|
|
unsigned NTMNumResults = Node->getNumValues();
|
|
if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
|
|
OldGlueResultNo = NTMNumResults-1;
|
|
if (NTMNumResults != 1 &&
|
|
Node->getValueType(NTMNumResults-2) == MVT::Other)
|
|
OldChainResultNo = NTMNumResults-2;
|
|
} else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
|
|
OldChainResultNo = NTMNumResults-1;
|
|
|
|
// Call the underlying SelectionDAG routine to do the transmogrification. Note
|
|
// that this deletes operands of the old node that become dead.
|
|
SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
|
|
|
|
// MorphNodeTo can operate in two ways: if an existing node with the
|
|
// specified operands exists, it can just return it. Otherwise, it
|
|
// updates the node in place to have the requested operands.
|
|
if (Res == Node) {
|
|
// If we updated the node in place, reset the node ID. To the isel,
|
|
// this should be just like a newly allocated machine node.
|
|
Res->setNodeId(-1);
|
|
}
|
|
|
|
unsigned ResNumResults = Res->getNumValues();
|
|
// Move the glue if needed.
|
|
if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
|
|
(unsigned)OldGlueResultNo != ResNumResults-1)
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
|
|
SDValue(Res, ResNumResults-1));
|
|
|
|
if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
|
|
--ResNumResults;
|
|
|
|
// Move the chain reference if needed.
|
|
if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
|
|
(unsigned)OldChainResultNo != ResNumResults-1)
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
|
|
SDValue(Res, ResNumResults-1));
|
|
|
|
// Otherwise, no replacement happened because the node already exists. Replace
|
|
// Uses of the old node with the new one.
|
|
if (Res != Node) {
|
|
CurDAG->ReplaceAllUsesWith(Node, Res);
|
|
CurDAG->RemoveDeadNode(Node);
|
|
}
|
|
|
|
return Res;
|
|
}
|
|
|
|
/// CheckSame - Implements OP_CheckSame.
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
|
|
CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
|
|
SDValue N,
|
|
const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
|
|
// Accept if it is exactly the same as a previously recorded node.
|
|
unsigned RecNo = MatcherTable[MatcherIndex++];
|
|
assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
|
|
return N == RecordedNodes[RecNo].first;
|
|
}
|
|
|
|
/// CheckChildSame - Implements OP_CheckChildXSame.
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
|
|
CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
|
|
SDValue N,
|
|
const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes,
|
|
unsigned ChildNo) {
|
|
if (ChildNo >= N.getNumOperands())
|
|
return false; // Match fails if out of range child #.
|
|
return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
|
|
RecordedNodes);
|
|
}
|
|
|
|
/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
|
|
CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
|
|
const SelectionDAGISel &SDISel) {
|
|
return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
|
|
}
|
|
|
|
/// CheckNodePredicate - Implements OP_CheckNodePredicate.
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
|
|
CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
|
|
const SelectionDAGISel &SDISel, SDNode *N) {
|
|
return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
|
|
CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
|
|
SDNode *N) {
|
|
uint16_t Opc = MatcherTable[MatcherIndex++];
|
|
Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
|
|
return N->getOpcode() == Opc;
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
|
|
CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
|
|
const TargetLowering *TLI, const DataLayout &DL) {
|
|
MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
|
|
if (N.getValueType() == VT) return true;
|
|
|
|
// Handle the case when VT is iPTR.
|
|
return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
|
|
CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
|
|
SDValue N, const TargetLowering *TLI, const DataLayout &DL,
|
|
unsigned ChildNo) {
|
|
if (ChildNo >= N.getNumOperands())
|
|
return false; // Match fails if out of range child #.
|
|
return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
|
|
DL);
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
|
|
CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
|
|
SDValue N) {
|
|
return cast<CondCodeSDNode>(N)->get() ==
|
|
(ISD::CondCode)MatcherTable[MatcherIndex++];
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
|
|
CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
|
|
SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
|
|
MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
|
|
if (cast<VTSDNode>(N)->getVT() == VT)
|
|
return true;
|
|
|
|
// Handle the case when VT is iPTR.
|
|
return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
|
|
CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
|
|
SDValue N) {
|
|
int64_t Val = MatcherTable[MatcherIndex++];
|
|
if (Val & 128)
|
|
Val = GetVBR(Val, MatcherTable, MatcherIndex);
|
|
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
|
|
return C && C->getSExtValue() == Val;
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
|
|
CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
|
|
SDValue N, unsigned ChildNo) {
|
|
if (ChildNo >= N.getNumOperands())
|
|
return false; // Match fails if out of range child #.
|
|
return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
|
|
CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
|
|
SDValue N, const SelectionDAGISel &SDISel) {
|
|
int64_t Val = MatcherTable[MatcherIndex++];
|
|
if (Val & 128)
|
|
Val = GetVBR(Val, MatcherTable, MatcherIndex);
|
|
|
|
if (N->getOpcode() != ISD::AND) return false;
|
|
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
|
|
CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
|
|
SDValue N, const SelectionDAGISel &SDISel) {
|
|
int64_t Val = MatcherTable[MatcherIndex++];
|
|
if (Val & 128)
|
|
Val = GetVBR(Val, MatcherTable, MatcherIndex);
|
|
|
|
if (N->getOpcode() != ISD::OR) return false;
|
|
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
|
|
}
|
|
|
|
/// IsPredicateKnownToFail - If we know how and can do so without pushing a
|
|
/// scope, evaluate the current node. If the current predicate is known to
|
|
/// fail, set Result=true and return anything. If the current predicate is
|
|
/// known to pass, set Result=false and return the MatcherIndex to continue
|
|
/// with. If the current predicate is unknown, set Result=false and return the
|
|
/// MatcherIndex to continue with.
|
|
static unsigned IsPredicateKnownToFail(const unsigned char *Table,
|
|
unsigned Index, SDValue N,
|
|
bool &Result,
|
|
const SelectionDAGISel &SDISel,
|
|
SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
|
|
switch (Table[Index++]) {
|
|
default:
|
|
Result = false;
|
|
return Index-1; // Could not evaluate this predicate.
|
|
case SelectionDAGISel::OPC_CheckSame:
|
|
Result = !::CheckSame(Table, Index, N, RecordedNodes);
|
|
return Index;
|
|
case SelectionDAGISel::OPC_CheckChild0Same:
|
|
case SelectionDAGISel::OPC_CheckChild1Same:
|
|
case SelectionDAGISel::OPC_CheckChild2Same:
|
|
case SelectionDAGISel::OPC_CheckChild3Same:
|
|
Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
|
|
Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
|
|
return Index;
|
|
case SelectionDAGISel::OPC_CheckPatternPredicate:
|
|
Result = !::CheckPatternPredicate(Table, Index, SDISel);
|
|
return Index;
|
|
case SelectionDAGISel::OPC_CheckPredicate:
|
|
Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
|
|
return Index;
|
|
case SelectionDAGISel::OPC_CheckOpcode:
|
|
Result = !::CheckOpcode(Table, Index, N.getNode());
|
|
return Index;
|
|
case SelectionDAGISel::OPC_CheckType:
|
|
Result = !::CheckType(Table, Index, N, SDISel.TLI,
|
|
SDISel.CurDAG->getDataLayout());
|
|
return Index;
|
|
case SelectionDAGISel::OPC_CheckChild0Type:
|
|
case SelectionDAGISel::OPC_CheckChild1Type:
|
|
case SelectionDAGISel::OPC_CheckChild2Type:
|
|
case SelectionDAGISel::OPC_CheckChild3Type:
|
|
case SelectionDAGISel::OPC_CheckChild4Type:
|
|
case SelectionDAGISel::OPC_CheckChild5Type:
|
|
case SelectionDAGISel::OPC_CheckChild6Type:
|
|
case SelectionDAGISel::OPC_CheckChild7Type:
|
|
Result = !::CheckChildType(
|
|
Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
|
|
Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
|
|
return Index;
|
|
case SelectionDAGISel::OPC_CheckCondCode:
|
|
Result = !::CheckCondCode(Table, Index, N);
|
|
return Index;
|
|
case SelectionDAGISel::OPC_CheckValueType:
|
|
Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
|
|
SDISel.CurDAG->getDataLayout());
|
|
return Index;
|
|
case SelectionDAGISel::OPC_CheckInteger:
|
|
Result = !::CheckInteger(Table, Index, N);
|
|
return Index;
|
|
case SelectionDAGISel::OPC_CheckChild0Integer:
|
|
case SelectionDAGISel::OPC_CheckChild1Integer:
|
|
case SelectionDAGISel::OPC_CheckChild2Integer:
|
|
case SelectionDAGISel::OPC_CheckChild3Integer:
|
|
case SelectionDAGISel::OPC_CheckChild4Integer:
|
|
Result = !::CheckChildInteger(Table, Index, N,
|
|
Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
|
|
return Index;
|
|
case SelectionDAGISel::OPC_CheckAndImm:
|
|
Result = !::CheckAndImm(Table, Index, N, SDISel);
|
|
return Index;
|
|
case SelectionDAGISel::OPC_CheckOrImm:
|
|
Result = !::CheckOrImm(Table, Index, N, SDISel);
|
|
return Index;
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct MatchScope {
|
|
/// FailIndex - If this match fails, this is the index to continue with.
|
|
unsigned FailIndex;
|
|
|
|
/// NodeStack - The node stack when the scope was formed.
|
|
SmallVector<SDValue, 4> NodeStack;
|
|
|
|
/// NumRecordedNodes - The number of recorded nodes when the scope was formed.
|
|
unsigned NumRecordedNodes;
|
|
|
|
/// NumMatchedMemRefs - The number of matched memref entries.
|
|
unsigned NumMatchedMemRefs;
|
|
|
|
/// InputChain/InputGlue - The current chain/glue
|
|
SDValue InputChain, InputGlue;
|
|
|
|
/// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
|
|
bool HasChainNodesMatched;
|
|
};
|
|
|
|
/// \\brief A DAG update listener to keep the matching state
|
|
/// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
|
|
/// change the DAG while matching. X86 addressing mode matcher is an example
|
|
/// for this.
|
|
class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
|
|
{
|
|
SDNode **NodeToMatch;
|
|
SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
|
|
SmallVectorImpl<MatchScope> &MatchScopes;
|
|
|
|
public:
|
|
MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
|
|
SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
|
|
SmallVectorImpl<MatchScope> &MS)
|
|
: SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
|
|
RecordedNodes(RN), MatchScopes(MS) {}
|
|
|
|
void NodeDeleted(SDNode *N, SDNode *E) override {
|
|
// Some early-returns here to avoid the search if we deleted the node or
|
|
// if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
|
|
// do, so it's unnecessary to update matching state at that point).
|
|
// Neither of these can occur currently because we only install this
|
|
// update listener during matching a complex patterns.
|
|
if (!E || E->isMachineOpcode())
|
|
return;
|
|
// Check if NodeToMatch was updated.
|
|
if (N == *NodeToMatch)
|
|
*NodeToMatch = E;
|
|
// Performing linear search here does not matter because we almost never
|
|
// run this code. You'd have to have a CSE during complex pattern
|
|
// matching.
|
|
for (auto &I : RecordedNodes)
|
|
if (I.first.getNode() == N)
|
|
I.first.setNode(E);
|
|
|
|
for (auto &I : MatchScopes)
|
|
for (auto &J : I.NodeStack)
|
|
if (J.getNode() == N)
|
|
J.setNode(E);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
|
|
const unsigned char *MatcherTable,
|
|
unsigned TableSize) {
|
|
// FIXME: Should these even be selected? Handle these cases in the caller?
|
|
switch (NodeToMatch->getOpcode()) {
|
|
default:
|
|
break;
|
|
case ISD::EntryToken: // These nodes remain the same.
|
|
case ISD::BasicBlock:
|
|
case ISD::Register:
|
|
case ISD::RegisterMask:
|
|
case ISD::HANDLENODE:
|
|
case ISD::MDNODE_SDNODE:
|
|
case ISD::TargetConstant:
|
|
case ISD::TargetConstantFP:
|
|
case ISD::TargetConstantPool:
|
|
case ISD::TargetFrameIndex:
|
|
case ISD::TargetExternalSymbol:
|
|
case ISD::MCSymbol:
|
|
case ISD::TargetBlockAddress:
|
|
case ISD::TargetJumpTable:
|
|
case ISD::TargetGlobalTLSAddress:
|
|
case ISD::TargetGlobalAddress:
|
|
case ISD::TokenFactor:
|
|
case ISD::CopyFromReg:
|
|
case ISD::CopyToReg:
|
|
case ISD::EH_LABEL:
|
|
case ISD::LIFETIME_START:
|
|
case ISD::LIFETIME_END:
|
|
NodeToMatch->setNodeId(-1); // Mark selected.
|
|
return;
|
|
case ISD::AssertSext:
|
|
case ISD::AssertZext:
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
|
|
NodeToMatch->getOperand(0));
|
|
CurDAG->RemoveDeadNode(NodeToMatch);
|
|
return;
|
|
case ISD::INLINEASM:
|
|
Select_INLINEASM(NodeToMatch);
|
|
return;
|
|
case ISD::READ_REGISTER:
|
|
Select_READ_REGISTER(NodeToMatch);
|
|
return;
|
|
case ISD::WRITE_REGISTER:
|
|
Select_WRITE_REGISTER(NodeToMatch);
|
|
return;
|
|
case ISD::UNDEF:
|
|
Select_UNDEF(NodeToMatch);
|
|
return;
|
|
}
|
|
|
|
assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
|
|
|
|
// Set up the node stack with NodeToMatch as the only node on the stack.
|
|
SmallVector<SDValue, 8> NodeStack;
|
|
SDValue N = SDValue(NodeToMatch, 0);
|
|
NodeStack.push_back(N);
|
|
|
|
// MatchScopes - Scopes used when matching, if a match failure happens, this
|
|
// indicates where to continue checking.
|
|
SmallVector<MatchScope, 8> MatchScopes;
|
|
|
|
// RecordedNodes - This is the set of nodes that have been recorded by the
|
|
// state machine. The second value is the parent of the node, or null if the
|
|
// root is recorded.
|
|
SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
|
|
|
|
// MatchedMemRefs - This is the set of MemRef's we've seen in the input
|
|
// pattern.
|
|
SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
|
|
|
|
// These are the current input chain and glue for use when generating nodes.
|
|
// Various Emit operations change these. For example, emitting a copytoreg
|
|
// uses and updates these.
|
|
SDValue InputChain, InputGlue;
|
|
|
|
// ChainNodesMatched - If a pattern matches nodes that have input/output
|
|
// chains, the OPC_EmitMergeInputChains operation is emitted which indicates
|
|
// which ones they are. The result is captured into this list so that we can
|
|
// update the chain results when the pattern is complete.
|
|
SmallVector<SDNode*, 3> ChainNodesMatched;
|
|
|
|
DEBUG(dbgs() << "ISEL: Starting pattern match on root node: ";
|
|
NodeToMatch->dump(CurDAG);
|
|
dbgs() << '\n');
|
|
|
|
// Determine where to start the interpreter. Normally we start at opcode #0,
|
|
// but if the state machine starts with an OPC_SwitchOpcode, then we
|
|
// accelerate the first lookup (which is guaranteed to be hot) with the
|
|
// OpcodeOffset table.
|
|
unsigned MatcherIndex = 0;
|
|
|
|
if (!OpcodeOffset.empty()) {
|
|
// Already computed the OpcodeOffset table, just index into it.
|
|
if (N.getOpcode() < OpcodeOffset.size())
|
|
MatcherIndex = OpcodeOffset[N.getOpcode()];
|
|
DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n");
|
|
|
|
} else if (MatcherTable[0] == OPC_SwitchOpcode) {
|
|
// Otherwise, the table isn't computed, but the state machine does start
|
|
// with an OPC_SwitchOpcode instruction. Populate the table now, since this
|
|
// is the first time we're selecting an instruction.
|
|
unsigned Idx = 1;
|
|
while (true) {
|
|
// Get the size of this case.
|
|
unsigned CaseSize = MatcherTable[Idx++];
|
|
if (CaseSize & 128)
|
|
CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
|
|
if (CaseSize == 0) break;
|
|
|
|
// Get the opcode, add the index to the table.
|
|
uint16_t Opc = MatcherTable[Idx++];
|
|
Opc |= (unsigned short)MatcherTable[Idx++] << 8;
|
|
if (Opc >= OpcodeOffset.size())
|
|
OpcodeOffset.resize((Opc+1)*2);
|
|
OpcodeOffset[Opc] = Idx;
|
|
Idx += CaseSize;
|
|
}
|
|
|
|
// Okay, do the lookup for the first opcode.
|
|
if (N.getOpcode() < OpcodeOffset.size())
|
|
MatcherIndex = OpcodeOffset[N.getOpcode()];
|
|
}
|
|
|
|
while (true) {
|
|
assert(MatcherIndex < TableSize && "Invalid index");
|
|
#ifndef NDEBUG
|
|
unsigned CurrentOpcodeIndex = MatcherIndex;
|
|
#endif
|
|
BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
|
|
switch (Opcode) {
|
|
case OPC_Scope: {
|
|
// Okay, the semantics of this operation are that we should push a scope
|
|
// then evaluate the first child. However, pushing a scope only to have
|
|
// the first check fail (which then pops it) is inefficient. If we can
|
|
// determine immediately that the first check (or first several) will
|
|
// immediately fail, don't even bother pushing a scope for them.
|
|
unsigned FailIndex;
|
|
|
|
while (true) {
|
|
unsigned NumToSkip = MatcherTable[MatcherIndex++];
|
|
if (NumToSkip & 128)
|
|
NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
|
|
// Found the end of the scope with no match.
|
|
if (NumToSkip == 0) {
|
|
FailIndex = 0;
|
|
break;
|
|
}
|
|
|
|
FailIndex = MatcherIndex+NumToSkip;
|
|
|
|
unsigned MatcherIndexOfPredicate = MatcherIndex;
|
|
(void)MatcherIndexOfPredicate; // silence warning.
|
|
|
|
// If we can't evaluate this predicate without pushing a scope (e.g. if
|
|
// it is a 'MoveParent') or if the predicate succeeds on this node, we
|
|
// push the scope and evaluate the full predicate chain.
|
|
bool Result;
|
|
MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
|
|
Result, *this, RecordedNodes);
|
|
if (!Result)
|
|
break;
|
|
|
|
DEBUG(dbgs() << " Skipped scope entry (due to false predicate) at "
|
|
<< "index " << MatcherIndexOfPredicate
|
|
<< ", continuing at " << FailIndex << "\n");
|
|
++NumDAGIselRetries;
|
|
|
|
// Otherwise, we know that this case of the Scope is guaranteed to fail,
|
|
// move to the next case.
|
|
MatcherIndex = FailIndex;
|
|
}
|
|
|
|
// If the whole scope failed to match, bail.
|
|
if (FailIndex == 0) break;
|
|
|
|
// Push a MatchScope which indicates where to go if the first child fails
|
|
// to match.
|
|
MatchScope NewEntry;
|
|
NewEntry.FailIndex = FailIndex;
|
|
NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
|
|
NewEntry.NumRecordedNodes = RecordedNodes.size();
|
|
NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
|
|
NewEntry.InputChain = InputChain;
|
|
NewEntry.InputGlue = InputGlue;
|
|
NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
|
|
MatchScopes.push_back(NewEntry);
|
|
continue;
|
|
}
|
|
case OPC_RecordNode: {
|
|
// Remember this node, it may end up being an operand in the pattern.
|
|
SDNode *Parent = nullptr;
|
|
if (NodeStack.size() > 1)
|
|
Parent = NodeStack[NodeStack.size()-2].getNode();
|
|
RecordedNodes.push_back(std::make_pair(N, Parent));
|
|
continue;
|
|
}
|
|
|
|
case OPC_RecordChild0: case OPC_RecordChild1:
|
|
case OPC_RecordChild2: case OPC_RecordChild3:
|
|
case OPC_RecordChild4: case OPC_RecordChild5:
|
|
case OPC_RecordChild6: case OPC_RecordChild7: {
|
|
unsigned ChildNo = Opcode-OPC_RecordChild0;
|
|
if (ChildNo >= N.getNumOperands())
|
|
break; // Match fails if out of range child #.
|
|
|
|
RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
|
|
N.getNode()));
|
|
continue;
|
|
}
|
|
case OPC_RecordMemRef:
|
|
MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
|
|
continue;
|
|
|
|
case OPC_CaptureGlueInput:
|
|
// If the current node has an input glue, capture it in InputGlue.
|
|
if (N->getNumOperands() != 0 &&
|
|
N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
|
|
InputGlue = N->getOperand(N->getNumOperands()-1);
|
|
continue;
|
|
|
|
case OPC_MoveChild: {
|
|
unsigned ChildNo = MatcherTable[MatcherIndex++];
|
|
if (ChildNo >= N.getNumOperands())
|
|
break; // Match fails if out of range child #.
|
|
N = N.getOperand(ChildNo);
|
|
NodeStack.push_back(N);
|
|
continue;
|
|
}
|
|
|
|
case OPC_MoveChild0: case OPC_MoveChild1:
|
|
case OPC_MoveChild2: case OPC_MoveChild3:
|
|
case OPC_MoveChild4: case OPC_MoveChild5:
|
|
case OPC_MoveChild6: case OPC_MoveChild7: {
|
|
unsigned ChildNo = Opcode-OPC_MoveChild0;
|
|
if (ChildNo >= N.getNumOperands())
|
|
break; // Match fails if out of range child #.
|
|
N = N.getOperand(ChildNo);
|
|
NodeStack.push_back(N);
|
|
continue;
|
|
}
|
|
|
|
case OPC_MoveParent:
|
|
// Pop the current node off the NodeStack.
|
|
NodeStack.pop_back();
|
|
assert(!NodeStack.empty() && "Node stack imbalance!");
|
|
N = NodeStack.back();
|
|
continue;
|
|
|
|
case OPC_CheckSame:
|
|
if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
|
|
continue;
|
|
|
|
case OPC_CheckChild0Same: case OPC_CheckChild1Same:
|
|
case OPC_CheckChild2Same: case OPC_CheckChild3Same:
|
|
if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
|
|
Opcode-OPC_CheckChild0Same))
|
|
break;
|
|
continue;
|
|
|
|
case OPC_CheckPatternPredicate:
|
|
if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
|
|
continue;
|
|
case OPC_CheckPredicate:
|
|
if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
|
|
N.getNode()))
|
|
break;
|
|
continue;
|
|
case OPC_CheckComplexPat: {
|
|
unsigned CPNum = MatcherTable[MatcherIndex++];
|
|
unsigned RecNo = MatcherTable[MatcherIndex++];
|
|
assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
|
|
|
|
// If target can modify DAG during matching, keep the matching state
|
|
// consistent.
|
|
std::unique_ptr<MatchStateUpdater> MSU;
|
|
if (ComplexPatternFuncMutatesDAG())
|
|
MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
|
|
MatchScopes));
|
|
|
|
if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
|
|
RecordedNodes[RecNo].first, CPNum,
|
|
RecordedNodes))
|
|
break;
|
|
continue;
|
|
}
|
|
case OPC_CheckOpcode:
|
|
if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
|
|
continue;
|
|
|
|
case OPC_CheckType:
|
|
if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
|
|
CurDAG->getDataLayout()))
|
|
break;
|
|
continue;
|
|
|
|
case OPC_SwitchOpcode: {
|
|
unsigned CurNodeOpcode = N.getOpcode();
|
|
unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
|
|
unsigned CaseSize;
|
|
while (true) {
|
|
// Get the size of this case.
|
|
CaseSize = MatcherTable[MatcherIndex++];
|
|
if (CaseSize & 128)
|
|
CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
|
|
if (CaseSize == 0) break;
|
|
|
|
uint16_t Opc = MatcherTable[MatcherIndex++];
|
|
Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
|
|
|
|
// If the opcode matches, then we will execute this case.
|
|
if (CurNodeOpcode == Opc)
|
|
break;
|
|
|
|
// Otherwise, skip over this case.
|
|
MatcherIndex += CaseSize;
|
|
}
|
|
|
|
// If no cases matched, bail out.
|
|
if (CaseSize == 0) break;
|
|
|
|
// Otherwise, execute the case we found.
|
|
DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart
|
|
<< " to " << MatcherIndex << "\n");
|
|
continue;
|
|
}
|
|
|
|
case OPC_SwitchType: {
|
|
MVT CurNodeVT = N.getSimpleValueType();
|
|
unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
|
|
unsigned CaseSize;
|
|
while (true) {
|
|
// Get the size of this case.
|
|
CaseSize = MatcherTable[MatcherIndex++];
|
|
if (CaseSize & 128)
|
|
CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
|
|
if (CaseSize == 0) break;
|
|
|
|
MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
|
|
if (CaseVT == MVT::iPTR)
|
|
CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
|
|
|
|
// If the VT matches, then we will execute this case.
|
|
if (CurNodeVT == CaseVT)
|
|
break;
|
|
|
|
// Otherwise, skip over this case.
|
|
MatcherIndex += CaseSize;
|
|
}
|
|
|
|
// If no cases matched, bail out.
|
|
if (CaseSize == 0) break;
|
|
|
|
// Otherwise, execute the case we found.
|
|
DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString()
|
|
<< "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
|
|
continue;
|
|
}
|
|
case OPC_CheckChild0Type: case OPC_CheckChild1Type:
|
|
case OPC_CheckChild2Type: case OPC_CheckChild3Type:
|
|
case OPC_CheckChild4Type: case OPC_CheckChild5Type:
|
|
case OPC_CheckChild6Type: case OPC_CheckChild7Type:
|
|
if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
|
|
CurDAG->getDataLayout(),
|
|
Opcode - OPC_CheckChild0Type))
|
|
break;
|
|
continue;
|
|
case OPC_CheckCondCode:
|
|
if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
|
|
continue;
|
|
case OPC_CheckValueType:
|
|
if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
|
|
CurDAG->getDataLayout()))
|
|
break;
|
|
continue;
|
|
case OPC_CheckInteger:
|
|
if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
|
|
continue;
|
|
case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
|
|
case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
|
|
case OPC_CheckChild4Integer:
|
|
if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
|
|
Opcode-OPC_CheckChild0Integer)) break;
|
|
continue;
|
|
case OPC_CheckAndImm:
|
|
if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
|
|
continue;
|
|
case OPC_CheckOrImm:
|
|
if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
|
|
continue;
|
|
|
|
case OPC_CheckFoldableChainNode: {
|
|
assert(NodeStack.size() != 1 && "No parent node");
|
|
// Verify that all intermediate nodes between the root and this one have
|
|
// a single use.
|
|
bool HasMultipleUses = false;
|
|
for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
|
|
if (!NodeStack[i].getNode()->hasOneUse()) {
|
|
HasMultipleUses = true;
|
|
break;
|
|
}
|
|
if (HasMultipleUses) break;
|
|
|
|
// Check to see that the target thinks this is profitable to fold and that
|
|
// we can fold it without inducing cycles in the graph.
|
|
if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
|
|
NodeToMatch) ||
|
|
!IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
|
|
NodeToMatch, OptLevel,
|
|
true/*We validate our own chains*/))
|
|
break;
|
|
|
|
continue;
|
|
}
|
|
case OPC_EmitInteger: {
|
|
MVT::SimpleValueType VT =
|
|
(MVT::SimpleValueType)MatcherTable[MatcherIndex++];
|
|
int64_t Val = MatcherTable[MatcherIndex++];
|
|
if (Val & 128)
|
|
Val = GetVBR(Val, MatcherTable, MatcherIndex);
|
|
RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
|
|
CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
|
|
VT), nullptr));
|
|
continue;
|
|
}
|
|
case OPC_EmitRegister: {
|
|
MVT::SimpleValueType VT =
|
|
(MVT::SimpleValueType)MatcherTable[MatcherIndex++];
|
|
unsigned RegNo = MatcherTable[MatcherIndex++];
|
|
RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
|
|
CurDAG->getRegister(RegNo, VT), nullptr));
|
|
continue;
|
|
}
|
|
case OPC_EmitRegister2: {
|
|
// For targets w/ more than 256 register names, the register enum
|
|
// values are stored in two bytes in the matcher table (just like
|
|
// opcodes).
|
|
MVT::SimpleValueType VT =
|
|
(MVT::SimpleValueType)MatcherTable[MatcherIndex++];
|
|
unsigned RegNo = MatcherTable[MatcherIndex++];
|
|
RegNo |= MatcherTable[MatcherIndex++] << 8;
|
|
RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
|
|
CurDAG->getRegister(RegNo, VT), nullptr));
|
|
continue;
|
|
}
|
|
|
|
case OPC_EmitConvertToTarget: {
|
|
// Convert from IMM/FPIMM to target version.
|
|
unsigned RecNo = MatcherTable[MatcherIndex++];
|
|
assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
|
|
SDValue Imm = RecordedNodes[RecNo].first;
|
|
|
|
if (Imm->getOpcode() == ISD::Constant) {
|
|
const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
|
|
Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
|
|
Imm.getValueType());
|
|
} else if (Imm->getOpcode() == ISD::ConstantFP) {
|
|
const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
|
|
Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
|
|
Imm.getValueType());
|
|
}
|
|
|
|
RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
|
|
continue;
|
|
}
|
|
|
|
case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0
|
|
case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1
|
|
case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2
|
|
// These are space-optimized forms of OPC_EmitMergeInputChains.
|
|
assert(!InputChain.getNode() &&
|
|
"EmitMergeInputChains should be the first chain producing node");
|
|
assert(ChainNodesMatched.empty() &&
|
|
"Should only have one EmitMergeInputChains per match");
|
|
|
|
// Read all of the chained nodes.
|
|
unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
|
|
assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
|
|
ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
|
|
|
|
// FIXME: What if other value results of the node have uses not matched
|
|
// by this pattern?
|
|
if (ChainNodesMatched.back() != NodeToMatch &&
|
|
!RecordedNodes[RecNo].first.hasOneUse()) {
|
|
ChainNodesMatched.clear();
|
|
break;
|
|
}
|
|
|
|
// Merge the input chains if they are not intra-pattern references.
|
|
InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
|
|
|
|
if (!InputChain.getNode())
|
|
break; // Failed to merge.
|
|
continue;
|
|
}
|
|
|
|
case OPC_EmitMergeInputChains: {
|
|
assert(!InputChain.getNode() &&
|
|
"EmitMergeInputChains should be the first chain producing node");
|
|
// This node gets a list of nodes we matched in the input that have
|
|
// chains. We want to token factor all of the input chains to these nodes
|
|
// together. However, if any of the input chains is actually one of the
|
|
// nodes matched in this pattern, then we have an intra-match reference.
|
|
// Ignore these because the newly token factored chain should not refer to
|
|
// the old nodes.
|
|
unsigned NumChains = MatcherTable[MatcherIndex++];
|
|
assert(NumChains != 0 && "Can't TF zero chains");
|
|
|
|
assert(ChainNodesMatched.empty() &&
|
|
"Should only have one EmitMergeInputChains per match");
|
|
|
|
// Read all of the chained nodes.
|
|
for (unsigned i = 0; i != NumChains; ++i) {
|
|
unsigned RecNo = MatcherTable[MatcherIndex++];
|
|
assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
|
|
ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
|
|
|
|
// FIXME: What if other value results of the node have uses not matched
|
|
// by this pattern?
|
|
if (ChainNodesMatched.back() != NodeToMatch &&
|
|
!RecordedNodes[RecNo].first.hasOneUse()) {
|
|
ChainNodesMatched.clear();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If the inner loop broke out, the match fails.
|
|
if (ChainNodesMatched.empty())
|
|
break;
|
|
|
|
// Merge the input chains if they are not intra-pattern references.
|
|
InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
|
|
|
|
if (!InputChain.getNode())
|
|
break; // Failed to merge.
|
|
|
|
continue;
|
|
}
|
|
|
|
case OPC_EmitCopyToReg: {
|
|
unsigned RecNo = MatcherTable[MatcherIndex++];
|
|
assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
|
|
unsigned DestPhysReg = MatcherTable[MatcherIndex++];
|
|
|
|
if (!InputChain.getNode())
|
|
InputChain = CurDAG->getEntryNode();
|
|
|
|
InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
|
|
DestPhysReg, RecordedNodes[RecNo].first,
|
|
InputGlue);
|
|
|
|
InputGlue = InputChain.getValue(1);
|
|
continue;
|
|
}
|
|
|
|
case OPC_EmitNodeXForm: {
|
|
unsigned XFormNo = MatcherTable[MatcherIndex++];
|
|
unsigned RecNo = MatcherTable[MatcherIndex++];
|
|
assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
|
|
SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
|
|
RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
|
|
continue;
|
|
}
|
|
case OPC_Coverage: {
|
|
// This is emitted right before MorphNode/EmitNode.
|
|
// So it should be safe to assume that this node has been selected
|
|
unsigned index = MatcherTable[MatcherIndex++];
|
|
index |= (MatcherTable[MatcherIndex++] << 8);
|
|
dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
|
|
dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
|
|
continue;
|
|
}
|
|
|
|
case OPC_EmitNode: case OPC_MorphNodeTo:
|
|
case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2:
|
|
case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
|
|
uint16_t TargetOpc = MatcherTable[MatcherIndex++];
|
|
TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
|
|
unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
|
|
// Get the result VT list.
|
|
unsigned NumVTs;
|
|
// If this is one of the compressed forms, get the number of VTs based
|
|
// on the Opcode. Otherwise read the next byte from the table.
|
|
if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
|
|
NumVTs = Opcode - OPC_MorphNodeTo0;
|
|
else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
|
|
NumVTs = Opcode - OPC_EmitNode0;
|
|
else
|
|
NumVTs = MatcherTable[MatcherIndex++];
|
|
SmallVector<EVT, 4> VTs;
|
|
for (unsigned i = 0; i != NumVTs; ++i) {
|
|
MVT::SimpleValueType VT =
|
|
(MVT::SimpleValueType)MatcherTable[MatcherIndex++];
|
|
if (VT == MVT::iPTR)
|
|
VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
|
|
VTs.push_back(VT);
|
|
}
|
|
|
|
if (EmitNodeInfo & OPFL_Chain)
|
|
VTs.push_back(MVT::Other);
|
|
if (EmitNodeInfo & OPFL_GlueOutput)
|
|
VTs.push_back(MVT::Glue);
|
|
|
|
// This is hot code, so optimize the two most common cases of 1 and 2
|
|
// results.
|
|
SDVTList VTList;
|
|
if (VTs.size() == 1)
|
|
VTList = CurDAG->getVTList(VTs[0]);
|
|
else if (VTs.size() == 2)
|
|
VTList = CurDAG->getVTList(VTs[0], VTs[1]);
|
|
else
|
|
VTList = CurDAG->getVTList(VTs);
|
|
|
|
// Get the operand list.
|
|
unsigned NumOps = MatcherTable[MatcherIndex++];
|
|
SmallVector<SDValue, 8> Ops;
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
unsigned RecNo = MatcherTable[MatcherIndex++];
|
|
if (RecNo & 128)
|
|
RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
|
|
|
|
assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
|
|
Ops.push_back(RecordedNodes[RecNo].first);
|
|
}
|
|
|
|
// If there are variadic operands to add, handle them now.
|
|
if (EmitNodeInfo & OPFL_VariadicInfo) {
|
|
// Determine the start index to copy from.
|
|
unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
|
|
FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
|
|
assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
|
|
"Invalid variadic node");
|
|
// Copy all of the variadic operands, not including a potential glue
|
|
// input.
|
|
for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
|
|
i != e; ++i) {
|
|
SDValue V = NodeToMatch->getOperand(i);
|
|
if (V.getValueType() == MVT::Glue) break;
|
|
Ops.push_back(V);
|
|
}
|
|
}
|
|
|
|
// If this has chain/glue inputs, add them.
|
|
if (EmitNodeInfo & OPFL_Chain)
|
|
Ops.push_back(InputChain);
|
|
if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
|
|
Ops.push_back(InputGlue);
|
|
|
|
// Create the node.
|
|
SDNode *Res = nullptr;
|
|
bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
|
|
(Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
|
|
if (!IsMorphNodeTo) {
|
|
// If this is a normal EmitNode command, just create the new node and
|
|
// add the results to the RecordedNodes list.
|
|
Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
|
|
VTList, Ops);
|
|
|
|
// Add all the non-glue/non-chain results to the RecordedNodes list.
|
|
for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
|
|
if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
|
|
RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
|
|
nullptr));
|
|
}
|
|
} else {
|
|
assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
|
|
"NodeToMatch was removed partway through selection");
|
|
SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
|
|
SDNode *E) {
|
|
auto &Chain = ChainNodesMatched;
|
|
assert((!E || !is_contained(Chain, N)) &&
|
|
"Chain node replaced during MorphNode");
|
|
Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end());
|
|
});
|
|
Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops, EmitNodeInfo);
|
|
}
|
|
|
|
// If the node had chain/glue results, update our notion of the current
|
|
// chain and glue.
|
|
if (EmitNodeInfo & OPFL_GlueOutput) {
|
|
InputGlue = SDValue(Res, VTs.size()-1);
|
|
if (EmitNodeInfo & OPFL_Chain)
|
|
InputChain = SDValue(Res, VTs.size()-2);
|
|
} else if (EmitNodeInfo & OPFL_Chain)
|
|
InputChain = SDValue(Res, VTs.size()-1);
|
|
|
|
// If the OPFL_MemRefs glue is set on this node, slap all of the
|
|
// accumulated memrefs onto it.
|
|
//
|
|
// FIXME: This is vastly incorrect for patterns with multiple outputs
|
|
// instructions that access memory and for ComplexPatterns that match
|
|
// loads.
|
|
if (EmitNodeInfo & OPFL_MemRefs) {
|
|
// Only attach load or store memory operands if the generated
|
|
// instruction may load or store.
|
|
const MCInstrDesc &MCID = TII->get(TargetOpc);
|
|
bool mayLoad = MCID.mayLoad();
|
|
bool mayStore = MCID.mayStore();
|
|
|
|
unsigned NumMemRefs = 0;
|
|
for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
|
|
MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
|
|
if ((*I)->isLoad()) {
|
|
if (mayLoad)
|
|
++NumMemRefs;
|
|
} else if ((*I)->isStore()) {
|
|
if (mayStore)
|
|
++NumMemRefs;
|
|
} else {
|
|
++NumMemRefs;
|
|
}
|
|
}
|
|
|
|
MachineSDNode::mmo_iterator MemRefs =
|
|
MF->allocateMemRefsArray(NumMemRefs);
|
|
|
|
MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
|
|
for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
|
|
MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
|
|
if ((*I)->isLoad()) {
|
|
if (mayLoad)
|
|
*MemRefsPos++ = *I;
|
|
} else if ((*I)->isStore()) {
|
|
if (mayStore)
|
|
*MemRefsPos++ = *I;
|
|
} else {
|
|
*MemRefsPos++ = *I;
|
|
}
|
|
}
|
|
|
|
cast<MachineSDNode>(Res)
|
|
->setMemRefs(MemRefs, MemRefs + NumMemRefs);
|
|
}
|
|
|
|
DEBUG(dbgs() << " "
|
|
<< (IsMorphNodeTo ? "Morphed" : "Created")
|
|
<< " node: "; Res->dump(CurDAG); dbgs() << "\n");
|
|
|
|
// If this was a MorphNodeTo then we're completely done!
|
|
if (IsMorphNodeTo) {
|
|
// Update chain uses.
|
|
UpdateChains(Res, InputChain, ChainNodesMatched, true);
|
|
return;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
case OPC_CompleteMatch: {
|
|
// The match has been completed, and any new nodes (if any) have been
|
|
// created. Patch up references to the matched dag to use the newly
|
|
// created nodes.
|
|
unsigned NumResults = MatcherTable[MatcherIndex++];
|
|
|
|
for (unsigned i = 0; i != NumResults; ++i) {
|
|
unsigned ResSlot = MatcherTable[MatcherIndex++];
|
|
if (ResSlot & 128)
|
|
ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
|
|
|
|
assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
|
|
SDValue Res = RecordedNodes[ResSlot].first;
|
|
|
|
assert(i < NodeToMatch->getNumValues() &&
|
|
NodeToMatch->getValueType(i) != MVT::Other &&
|
|
NodeToMatch->getValueType(i) != MVT::Glue &&
|
|
"Invalid number of results to complete!");
|
|
assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
|
|
NodeToMatch->getValueType(i) == MVT::iPTR ||
|
|
Res.getValueType() == MVT::iPTR ||
|
|
NodeToMatch->getValueType(i).getSizeInBits() ==
|
|
Res.getValueSizeInBits()) &&
|
|
"invalid replacement");
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
|
|
}
|
|
|
|
// Update chain uses.
|
|
UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
|
|
|
|
// If the root node defines glue, we need to update it to the glue result.
|
|
// TODO: This never happens in our tests and I think it can be removed /
|
|
// replaced with an assert, but if we do it this the way the change is
|
|
// NFC.
|
|
if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
|
|
MVT::Glue &&
|
|
InputGlue.getNode())
|
|
CurDAG->ReplaceAllUsesOfValueWith(
|
|
SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1), InputGlue);
|
|
|
|
assert(NodeToMatch->use_empty() &&
|
|
"Didn't replace all uses of the node?");
|
|
CurDAG->RemoveDeadNode(NodeToMatch);
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If the code reached this point, then the match failed. See if there is
|
|
// another child to try in the current 'Scope', otherwise pop it until we
|
|
// find a case to check.
|
|
DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex << "\n");
|
|
++NumDAGIselRetries;
|
|
while (true) {
|
|
if (MatchScopes.empty()) {
|
|
CannotYetSelect(NodeToMatch);
|
|
return;
|
|
}
|
|
|
|
// Restore the interpreter state back to the point where the scope was
|
|
// formed.
|
|
MatchScope &LastScope = MatchScopes.back();
|
|
RecordedNodes.resize(LastScope.NumRecordedNodes);
|
|
NodeStack.clear();
|
|
NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
|
|
N = NodeStack.back();
|
|
|
|
if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
|
|
MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
|
|
MatcherIndex = LastScope.FailIndex;
|
|
|
|
DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n");
|
|
|
|
InputChain = LastScope.InputChain;
|
|
InputGlue = LastScope.InputGlue;
|
|
if (!LastScope.HasChainNodesMatched)
|
|
ChainNodesMatched.clear();
|
|
|
|
// Check to see what the offset is at the new MatcherIndex. If it is zero
|
|
// we have reached the end of this scope, otherwise we have another child
|
|
// in the current scope to try.
|
|
unsigned NumToSkip = MatcherTable[MatcherIndex++];
|
|
if (NumToSkip & 128)
|
|
NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
|
|
|
|
// If we have another child in this scope to match, update FailIndex and
|
|
// try it.
|
|
if (NumToSkip != 0) {
|
|
LastScope.FailIndex = MatcherIndex+NumToSkip;
|
|
break;
|
|
}
|
|
|
|
// End of this scope, pop it and try the next child in the containing
|
|
// scope.
|
|
MatchScopes.pop_back();
|
|
}
|
|
}
|
|
}
|
|
|
|
void SelectionDAGISel::CannotYetSelect(SDNode *N) {
|
|
std::string msg;
|
|
raw_string_ostream Msg(msg);
|
|
Msg << "Cannot select: ";
|
|
|
|
if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
|
|
N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
|
|
N->getOpcode() != ISD::INTRINSIC_VOID) {
|
|
N->printrFull(Msg, CurDAG);
|
|
Msg << "\nIn function: " << MF->getName();
|
|
} else {
|
|
bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
|
|
unsigned iid =
|
|
cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
|
|
if (iid < Intrinsic::num_intrinsics)
|
|
Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None);
|
|
else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
|
|
Msg << "target intrinsic %" << TII->getName(iid);
|
|
else
|
|
Msg << "unknown intrinsic #" << iid;
|
|
}
|
|
report_fatal_error(Msg.str());
|
|
}
|
|
|
|
char SelectionDAGISel::ID = 0;
|