forked from OSchip/llvm-project
1696 lines
61 KiB
C++
1696 lines
61 KiB
C++
//===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
|
||
//
|
||
// The LLVM Compiler Infrastructure
|
||
//
|
||
// This file is distributed under the University of Illinois Open Source
|
||
// License. See LICENSE.TXT for details.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// This file implements name lookup for C, C++, Objective-C, and
|
||
// Objective-C++.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
#include "Sema.h"
|
||
#include "Lookup.h"
|
||
#include "clang/AST/ASTContext.h"
|
||
#include "clang/AST/CXXInheritance.h"
|
||
#include "clang/AST/Decl.h"
|
||
#include "clang/AST/DeclCXX.h"
|
||
#include "clang/AST/DeclObjC.h"
|
||
#include "clang/AST/DeclTemplate.h"
|
||
#include "clang/AST/Expr.h"
|
||
#include "clang/AST/ExprCXX.h"
|
||
#include "clang/Parse/DeclSpec.h"
|
||
#include "clang/Basic/Builtins.h"
|
||
#include "clang/Basic/LangOptions.h"
|
||
#include "llvm/ADT/STLExtras.h"
|
||
#include "llvm/ADT/SmallPtrSet.h"
|
||
#include "llvm/Support/ErrorHandling.h"
|
||
#include <set>
|
||
#include <vector>
|
||
#include <iterator>
|
||
#include <utility>
|
||
#include <algorithm>
|
||
|
||
using namespace clang;
|
||
|
||
namespace {
|
||
class UnqualUsingEntry {
|
||
const DeclContext *Nominated;
|
||
const DeclContext *CommonAncestor;
|
||
|
||
public:
|
||
UnqualUsingEntry(const DeclContext *Nominated,
|
||
const DeclContext *CommonAncestor)
|
||
: Nominated(Nominated), CommonAncestor(CommonAncestor) {
|
||
}
|
||
|
||
const DeclContext *getCommonAncestor() const {
|
||
return CommonAncestor;
|
||
}
|
||
|
||
const DeclContext *getNominatedNamespace() const {
|
||
return Nominated;
|
||
}
|
||
|
||
// Sort by the pointer value of the common ancestor.
|
||
struct Comparator {
|
||
bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
|
||
return L.getCommonAncestor() < R.getCommonAncestor();
|
||
}
|
||
|
||
bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
|
||
return E.getCommonAncestor() < DC;
|
||
}
|
||
|
||
bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
|
||
return DC < E.getCommonAncestor();
|
||
}
|
||
};
|
||
};
|
||
|
||
/// A collection of using directives, as used by C++ unqualified
|
||
/// lookup.
|
||
class UnqualUsingDirectiveSet {
|
||
typedef llvm::SmallVector<UnqualUsingEntry, 8> ListTy;
|
||
|
||
ListTy list;
|
||
llvm::SmallPtrSet<DeclContext*, 8> visited;
|
||
|
||
public:
|
||
UnqualUsingDirectiveSet() {}
|
||
|
||
void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
|
||
// C++ [namespace.udir]p1:
|
||
// During unqualified name lookup, the names appear as if they
|
||
// were declared in the nearest enclosing namespace which contains
|
||
// both the using-directive and the nominated namespace.
|
||
DeclContext *InnermostFileDC
|
||
= static_cast<DeclContext*>(InnermostFileScope->getEntity());
|
||
assert(InnermostFileDC && InnermostFileDC->isFileContext());
|
||
|
||
for (; S; S = S->getParent()) {
|
||
if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
|
||
DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC);
|
||
visit(Ctx, EffectiveDC);
|
||
} else {
|
||
Scope::udir_iterator I = S->using_directives_begin(),
|
||
End = S->using_directives_end();
|
||
|
||
for (; I != End; ++I)
|
||
visit(I->getAs<UsingDirectiveDecl>(), InnermostFileDC);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Visits a context and collect all of its using directives
|
||
// recursively. Treats all using directives as if they were
|
||
// declared in the context.
|
||
//
|
||
// A given context is only every visited once, so it is important
|
||
// that contexts be visited from the inside out in order to get
|
||
// the effective DCs right.
|
||
void visit(DeclContext *DC, DeclContext *EffectiveDC) {
|
||
if (!visited.insert(DC))
|
||
return;
|
||
|
||
addUsingDirectives(DC, EffectiveDC);
|
||
}
|
||
|
||
// Visits a using directive and collects all of its using
|
||
// directives recursively. Treats all using directives as if they
|
||
// were declared in the effective DC.
|
||
void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
|
||
DeclContext *NS = UD->getNominatedNamespace();
|
||
if (!visited.insert(NS))
|
||
return;
|
||
|
||
addUsingDirective(UD, EffectiveDC);
|
||
addUsingDirectives(NS, EffectiveDC);
|
||
}
|
||
|
||
// Adds all the using directives in a context (and those nominated
|
||
// by its using directives, transitively) as if they appeared in
|
||
// the given effective context.
|
||
void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
|
||
llvm::SmallVector<DeclContext*,4> queue;
|
||
while (true) {
|
||
DeclContext::udir_iterator I, End;
|
||
for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
|
||
UsingDirectiveDecl *UD = *I;
|
||
DeclContext *NS = UD->getNominatedNamespace();
|
||
if (visited.insert(NS)) {
|
||
addUsingDirective(UD, EffectiveDC);
|
||
queue.push_back(NS);
|
||
}
|
||
}
|
||
|
||
if (queue.empty())
|
||
return;
|
||
|
||
DC = queue.back();
|
||
queue.pop_back();
|
||
}
|
||
}
|
||
|
||
// Add a using directive as if it had been declared in the given
|
||
// context. This helps implement C++ [namespace.udir]p3:
|
||
// The using-directive is transitive: if a scope contains a
|
||
// using-directive that nominates a second namespace that itself
|
||
// contains using-directives, the effect is as if the
|
||
// using-directives from the second namespace also appeared in
|
||
// the first.
|
||
void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
|
||
// Find the common ancestor between the effective context and
|
||
// the nominated namespace.
|
||
DeclContext *Common = UD->getNominatedNamespace();
|
||
while (!Common->Encloses(EffectiveDC))
|
||
Common = Common->getParent();
|
||
Common = Common->getPrimaryContext();
|
||
|
||
list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
|
||
}
|
||
|
||
void done() {
|
||
std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
|
||
}
|
||
|
||
typedef ListTy::iterator iterator;
|
||
typedef ListTy::const_iterator const_iterator;
|
||
|
||
iterator begin() { return list.begin(); }
|
||
iterator end() { return list.end(); }
|
||
const_iterator begin() const { return list.begin(); }
|
||
const_iterator end() const { return list.end(); }
|
||
|
||
std::pair<const_iterator,const_iterator>
|
||
getNamespacesFor(DeclContext *DC) const {
|
||
return std::equal_range(begin(), end(), DC->getPrimaryContext(),
|
||
UnqualUsingEntry::Comparator());
|
||
}
|
||
};
|
||
}
|
||
|
||
// Retrieve the set of identifier namespaces that correspond to a
|
||
// specific kind of name lookup.
|
||
inline unsigned
|
||
getIdentifierNamespacesFromLookupNameKind(Sema::LookupNameKind NameKind,
|
||
bool CPlusPlus) {
|
||
unsigned IDNS = 0;
|
||
switch (NameKind) {
|
||
case Sema::LookupOrdinaryName:
|
||
case Sema::LookupOperatorName:
|
||
case Sema::LookupRedeclarationWithLinkage:
|
||
IDNS = Decl::IDNS_Ordinary;
|
||
if (CPlusPlus)
|
||
IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member;
|
||
break;
|
||
|
||
case Sema::LookupTagName:
|
||
IDNS = Decl::IDNS_Tag;
|
||
break;
|
||
|
||
case Sema::LookupMemberName:
|
||
IDNS = Decl::IDNS_Member;
|
||
if (CPlusPlus)
|
||
IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
|
||
break;
|
||
|
||
case Sema::LookupNestedNameSpecifierName:
|
||
case Sema::LookupNamespaceName:
|
||
IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member;
|
||
break;
|
||
|
||
case Sema::LookupUsingDeclName:
|
||
IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
|
||
| Decl::IDNS_Member | Decl::IDNS_Using;
|
||
break;
|
||
|
||
case Sema::LookupObjCProtocolName:
|
||
IDNS = Decl::IDNS_ObjCProtocol;
|
||
break;
|
||
|
||
case Sema::LookupObjCImplementationName:
|
||
IDNS = Decl::IDNS_ObjCImplementation;
|
||
break;
|
||
}
|
||
return IDNS;
|
||
}
|
||
|
||
// Necessary because CXXBasePaths is not complete in Sema.h
|
||
void LookupResult::deletePaths(CXXBasePaths *Paths) {
|
||
delete Paths;
|
||
}
|
||
|
||
/// Resolves the result kind of this lookup.
|
||
void LookupResult::resolveKind() {
|
||
unsigned N = Decls.size();
|
||
|
||
// Fast case: no possible ambiguity.
|
||
if (N == 0) {
|
||
assert(ResultKind == NotFound);
|
||
return;
|
||
}
|
||
|
||
// If there's a single decl, we need to examine it to decide what
|
||
// kind of lookup this is.
|
||
if (N == 1) {
|
||
if (isa<FunctionTemplateDecl>(Decls[0]))
|
||
ResultKind = FoundOverloaded;
|
||
else if (isa<UnresolvedUsingValueDecl>(Decls[0]))
|
||
ResultKind = FoundUnresolvedValue;
|
||
return;
|
||
}
|
||
|
||
// Don't do any extra resolution if we've already resolved as ambiguous.
|
||
if (ResultKind == Ambiguous) return;
|
||
|
||
llvm::SmallPtrSet<NamedDecl*, 16> Unique;
|
||
|
||
bool Ambiguous = false;
|
||
bool HasTag = false, HasFunction = false, HasNonFunction = false;
|
||
bool HasFunctionTemplate = false, HasUnresolved = false;
|
||
|
||
unsigned UniqueTagIndex = 0;
|
||
|
||
unsigned I = 0;
|
||
while (I < N) {
|
||
NamedDecl *D = Decls[I]->getUnderlyingDecl();
|
||
D = cast<NamedDecl>(D->getCanonicalDecl());
|
||
|
||
if (!Unique.insert(D)) {
|
||
// If it's not unique, pull something off the back (and
|
||
// continue at this index).
|
||
Decls[I] = Decls[--N];
|
||
} else {
|
||
// Otherwise, do some decl type analysis and then continue.
|
||
|
||
if (isa<UnresolvedUsingValueDecl>(D)) {
|
||
HasUnresolved = true;
|
||
} else if (isa<TagDecl>(D)) {
|
||
if (HasTag)
|
||
Ambiguous = true;
|
||
UniqueTagIndex = I;
|
||
HasTag = true;
|
||
} else if (isa<FunctionTemplateDecl>(D)) {
|
||
HasFunction = true;
|
||
HasFunctionTemplate = true;
|
||
} else if (isa<FunctionDecl>(D)) {
|
||
HasFunction = true;
|
||
} else {
|
||
if (HasNonFunction)
|
||
Ambiguous = true;
|
||
HasNonFunction = true;
|
||
}
|
||
I++;
|
||
}
|
||
}
|
||
|
||
// C++ [basic.scope.hiding]p2:
|
||
// A class name or enumeration name can be hidden by the name of
|
||
// an object, function, or enumerator declared in the same
|
||
// scope. If a class or enumeration name and an object, function,
|
||
// or enumerator are declared in the same scope (in any order)
|
||
// with the same name, the class or enumeration name is hidden
|
||
// wherever the object, function, or enumerator name is visible.
|
||
// But it's still an error if there are distinct tag types found,
|
||
// even if they're not visible. (ref?)
|
||
if (HideTags && HasTag && !Ambiguous &&
|
||
(HasFunction || HasNonFunction || HasUnresolved))
|
||
Decls[UniqueTagIndex] = Decls[--N];
|
||
|
||
Decls.set_size(N);
|
||
|
||
if (HasNonFunction && (HasFunction || HasUnresolved))
|
||
Ambiguous = true;
|
||
|
||
if (Ambiguous)
|
||
setAmbiguous(LookupResult::AmbiguousReference);
|
||
else if (HasUnresolved)
|
||
ResultKind = LookupResult::FoundUnresolvedValue;
|
||
else if (N > 1 || HasFunctionTemplate)
|
||
ResultKind = LookupResult::FoundOverloaded;
|
||
else
|
||
ResultKind = LookupResult::Found;
|
||
}
|
||
|
||
void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
|
||
CXXBasePaths::paths_iterator I, E;
|
||
DeclContext::lookup_iterator DI, DE;
|
||
for (I = P.begin(), E = P.end(); I != E; ++I)
|
||
for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
|
||
addDecl(*DI);
|
||
}
|
||
|
||
void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
|
||
Paths = new CXXBasePaths;
|
||
Paths->swap(P);
|
||
addDeclsFromBasePaths(*Paths);
|
||
resolveKind();
|
||
setAmbiguous(AmbiguousBaseSubobjects);
|
||
}
|
||
|
||
void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
|
||
Paths = new CXXBasePaths;
|
||
Paths->swap(P);
|
||
addDeclsFromBasePaths(*Paths);
|
||
resolveKind();
|
||
setAmbiguous(AmbiguousBaseSubobjectTypes);
|
||
}
|
||
|
||
void LookupResult::print(llvm::raw_ostream &Out) {
|
||
Out << Decls.size() << " result(s)";
|
||
if (isAmbiguous()) Out << ", ambiguous";
|
||
if (Paths) Out << ", base paths present";
|
||
|
||
for (iterator I = begin(), E = end(); I != E; ++I) {
|
||
Out << "\n";
|
||
(*I)->print(Out, 2);
|
||
}
|
||
}
|
||
|
||
// Adds all qualifying matches for a name within a decl context to the
|
||
// given lookup result. Returns true if any matches were found.
|
||
static bool LookupDirect(LookupResult &R, const DeclContext *DC) {
|
||
bool Found = false;
|
||
|
||
DeclContext::lookup_const_iterator I, E;
|
||
for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I)
|
||
if (Sema::isAcceptableLookupResult(*I, R.getLookupKind(),
|
||
R.getIdentifierNamespace()))
|
||
R.addDecl(*I), Found = true;
|
||
|
||
return Found;
|
||
}
|
||
|
||
// Performs C++ unqualified lookup into the given file context.
|
||
static bool
|
||
CppNamespaceLookup(LookupResult &R, ASTContext &Context, DeclContext *NS,
|
||
UnqualUsingDirectiveSet &UDirs) {
|
||
|
||
assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
|
||
|
||
// Perform direct name lookup into the LookupCtx.
|
||
bool Found = LookupDirect(R, NS);
|
||
|
||
// Perform direct name lookup into the namespaces nominated by the
|
||
// using directives whose common ancestor is this namespace.
|
||
UnqualUsingDirectiveSet::const_iterator UI, UEnd;
|
||
llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
|
||
|
||
for (; UI != UEnd; ++UI)
|
||
if (LookupDirect(R, UI->getNominatedNamespace()))
|
||
Found = true;
|
||
|
||
R.resolveKind();
|
||
|
||
return Found;
|
||
}
|
||
|
||
static bool isNamespaceOrTranslationUnitScope(Scope *S) {
|
||
if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
|
||
return Ctx->isFileContext();
|
||
return false;
|
||
}
|
||
|
||
// Find the next outer declaration context corresponding to this scope.
|
||
static DeclContext *findOuterContext(Scope *S) {
|
||
for (S = S->getParent(); S; S = S->getParent())
|
||
if (S->getEntity())
|
||
return static_cast<DeclContext *>(S->getEntity())->getPrimaryContext();
|
||
|
||
return 0;
|
||
}
|
||
|
||
bool Sema::CppLookupName(LookupResult &R, Scope *S) {
|
||
assert(getLangOptions().CPlusPlus &&
|
||
"Can perform only C++ lookup");
|
||
LookupNameKind NameKind = R.getLookupKind();
|
||
unsigned IDNS
|
||
= getIdentifierNamespacesFromLookupNameKind(NameKind, /*CPlusPlus*/ true);
|
||
|
||
// If we're testing for redeclarations, also look in the friend namespaces.
|
||
if (R.isForRedeclaration()) {
|
||
if (IDNS & Decl::IDNS_Tag) IDNS |= Decl::IDNS_TagFriend;
|
||
if (IDNS & Decl::IDNS_Ordinary) IDNS |= Decl::IDNS_OrdinaryFriend;
|
||
}
|
||
|
||
R.setIdentifierNamespace(IDNS);
|
||
|
||
DeclarationName Name = R.getLookupName();
|
||
|
||
Scope *Initial = S;
|
||
IdentifierResolver::iterator
|
||
I = IdResolver.begin(Name),
|
||
IEnd = IdResolver.end();
|
||
|
||
// First we lookup local scope.
|
||
// We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
|
||
// ...During unqualified name lookup (3.4.1), the names appear as if
|
||
// they were declared in the nearest enclosing namespace which contains
|
||
// both the using-directive and the nominated namespace.
|
||
// [Note: in this context, "contains" means "contains directly or
|
||
// indirectly".
|
||
//
|
||
// For example:
|
||
// namespace A { int i; }
|
||
// void foo() {
|
||
// int i;
|
||
// {
|
||
// using namespace A;
|
||
// ++i; // finds local 'i', A::i appears at global scope
|
||
// }
|
||
// }
|
||
//
|
||
for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
|
||
// Check whether the IdResolver has anything in this scope.
|
||
bool Found = false;
|
||
for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
|
||
if (isAcceptableLookupResult(*I, NameKind, IDNS)) {
|
||
Found = true;
|
||
R.addDecl(*I);
|
||
}
|
||
}
|
||
if (Found) {
|
||
R.resolveKind();
|
||
return true;
|
||
}
|
||
|
||
if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
|
||
DeclContext *OuterCtx = findOuterContext(S);
|
||
for (; Ctx && Ctx->getPrimaryContext() != OuterCtx;
|
||
Ctx = Ctx->getLookupParent()) {
|
||
// We do not directly look into function or method contexts
|
||
// (since all local variables are found via the identifier
|
||
// changes) or in transparent contexts (since those entities
|
||
// will be found in the nearest enclosing non-transparent
|
||
// context).
|
||
if (Ctx->isFunctionOrMethod() || Ctx->isTransparentContext())
|
||
continue;
|
||
|
||
// Perform qualified name lookup into this context.
|
||
// FIXME: In some cases, we know that every name that could be found by
|
||
// this qualified name lookup will also be on the identifier chain. For
|
||
// example, inside a class without any base classes, we never need to
|
||
// perform qualified lookup because all of the members are on top of the
|
||
// identifier chain.
|
||
if (LookupQualifiedName(R, Ctx))
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Stop if we ran out of scopes.
|
||
// FIXME: This really, really shouldn't be happening.
|
||
if (!S) return false;
|
||
|
||
// Collect UsingDirectiveDecls in all scopes, and recursively all
|
||
// nominated namespaces by those using-directives.
|
||
//
|
||
// FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
|
||
// don't build it for each lookup!
|
||
|
||
UnqualUsingDirectiveSet UDirs;
|
||
UDirs.visitScopeChain(Initial, S);
|
||
UDirs.done();
|
||
|
||
// Lookup namespace scope, and global scope.
|
||
// Unqualified name lookup in C++ requires looking into scopes
|
||
// that aren't strictly lexical, and therefore we walk through the
|
||
// context as well as walking through the scopes.
|
||
|
||
for (; S; S = S->getParent()) {
|
||
DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
|
||
if (Ctx->isTransparentContext())
|
||
continue;
|
||
|
||
assert(Ctx && Ctx->isFileContext() &&
|
||
"We should have been looking only at file context here already.");
|
||
|
||
// Check whether the IdResolver has anything in this scope.
|
||
bool Found = false;
|
||
for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
|
||
if (isAcceptableLookupResult(*I, NameKind, IDNS)) {
|
||
// We found something. Look for anything else in our scope
|
||
// with this same name and in an acceptable identifier
|
||
// namespace, so that we can construct an overload set if we
|
||
// need to.
|
||
Found = true;
|
||
R.addDecl(*I);
|
||
}
|
||
}
|
||
|
||
// Look into context considering using-directives.
|
||
if (CppNamespaceLookup(R, Context, Ctx, UDirs))
|
||
Found = true;
|
||
|
||
if (Found) {
|
||
R.resolveKind();
|
||
return true;
|
||
}
|
||
|
||
if (R.isForRedeclaration() && !Ctx->isTransparentContext())
|
||
return false;
|
||
}
|
||
|
||
return !R.empty();
|
||
}
|
||
|
||
/// @brief Perform unqualified name lookup starting from a given
|
||
/// scope.
|
||
///
|
||
/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
|
||
/// used to find names within the current scope. For example, 'x' in
|
||
/// @code
|
||
/// int x;
|
||
/// int f() {
|
||
/// return x; // unqualified name look finds 'x' in the global scope
|
||
/// }
|
||
/// @endcode
|
||
///
|
||
/// Different lookup criteria can find different names. For example, a
|
||
/// particular scope can have both a struct and a function of the same
|
||
/// name, and each can be found by certain lookup criteria. For more
|
||
/// information about lookup criteria, see the documentation for the
|
||
/// class LookupCriteria.
|
||
///
|
||
/// @param S The scope from which unqualified name lookup will
|
||
/// begin. If the lookup criteria permits, name lookup may also search
|
||
/// in the parent scopes.
|
||
///
|
||
/// @param Name The name of the entity that we are searching for.
|
||
///
|
||
/// @param Loc If provided, the source location where we're performing
|
||
/// name lookup. At present, this is only used to produce diagnostics when
|
||
/// C library functions (like "malloc") are implicitly declared.
|
||
///
|
||
/// @returns The result of name lookup, which includes zero or more
|
||
/// declarations and possibly additional information used to diagnose
|
||
/// ambiguities.
|
||
bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
|
||
DeclarationName Name = R.getLookupName();
|
||
if (!Name) return false;
|
||
|
||
LookupNameKind NameKind = R.getLookupKind();
|
||
|
||
if (!getLangOptions().CPlusPlus) {
|
||
// Unqualified name lookup in C/Objective-C is purely lexical, so
|
||
// search in the declarations attached to the name.
|
||
unsigned IDNS = 0;
|
||
switch (NameKind) {
|
||
case Sema::LookupOrdinaryName:
|
||
IDNS = Decl::IDNS_Ordinary;
|
||
break;
|
||
|
||
case Sema::LookupTagName:
|
||
IDNS = Decl::IDNS_Tag;
|
||
break;
|
||
|
||
case Sema::LookupMemberName:
|
||
IDNS = Decl::IDNS_Member;
|
||
break;
|
||
|
||
case Sema::LookupOperatorName:
|
||
case Sema::LookupNestedNameSpecifierName:
|
||
case Sema::LookupNamespaceName:
|
||
case Sema::LookupUsingDeclName:
|
||
assert(false && "C does not perform these kinds of name lookup");
|
||
break;
|
||
|
||
case Sema::LookupRedeclarationWithLinkage:
|
||
// Find the nearest non-transparent declaration scope.
|
||
while (!(S->getFlags() & Scope::DeclScope) ||
|
||
(S->getEntity() &&
|
||
static_cast<DeclContext *>(S->getEntity())
|
||
->isTransparentContext()))
|
||
S = S->getParent();
|
||
IDNS = Decl::IDNS_Ordinary;
|
||
break;
|
||
|
||
case Sema::LookupObjCProtocolName:
|
||
IDNS = Decl::IDNS_ObjCProtocol;
|
||
break;
|
||
|
||
case Sema::LookupObjCImplementationName:
|
||
IDNS = Decl::IDNS_ObjCImplementation;
|
||
break;
|
||
|
||
}
|
||
|
||
// Scan up the scope chain looking for a decl that matches this
|
||
// identifier that is in the appropriate namespace. This search
|
||
// should not take long, as shadowing of names is uncommon, and
|
||
// deep shadowing is extremely uncommon.
|
||
bool LeftStartingScope = false;
|
||
|
||
for (IdentifierResolver::iterator I = IdResolver.begin(Name),
|
||
IEnd = IdResolver.end();
|
||
I != IEnd; ++I)
|
||
if ((*I)->isInIdentifierNamespace(IDNS)) {
|
||
if (NameKind == LookupRedeclarationWithLinkage) {
|
||
// Determine whether this (or a previous) declaration is
|
||
// out-of-scope.
|
||
if (!LeftStartingScope && !S->isDeclScope(DeclPtrTy::make(*I)))
|
||
LeftStartingScope = true;
|
||
|
||
// If we found something outside of our starting scope that
|
||
// does not have linkage, skip it.
|
||
if (LeftStartingScope && !((*I)->hasLinkage()))
|
||
continue;
|
||
}
|
||
|
||
R.addDecl(*I);
|
||
|
||
if ((*I)->getAttr<OverloadableAttr>()) {
|
||
// If this declaration has the "overloadable" attribute, we
|
||
// might have a set of overloaded functions.
|
||
|
||
// Figure out what scope the identifier is in.
|
||
while (!(S->getFlags() & Scope::DeclScope) ||
|
||
!S->isDeclScope(DeclPtrTy::make(*I)))
|
||
S = S->getParent();
|
||
|
||
// Find the last declaration in this scope (with the same
|
||
// name, naturally).
|
||
IdentifierResolver::iterator LastI = I;
|
||
for (++LastI; LastI != IEnd; ++LastI) {
|
||
if (!S->isDeclScope(DeclPtrTy::make(*LastI)))
|
||
break;
|
||
R.addDecl(*LastI);
|
||
}
|
||
}
|
||
|
||
R.resolveKind();
|
||
|
||
return true;
|
||
}
|
||
} else {
|
||
// Perform C++ unqualified name lookup.
|
||
if (CppLookupName(R, S))
|
||
return true;
|
||
}
|
||
|
||
// If we didn't find a use of this identifier, and if the identifier
|
||
// corresponds to a compiler builtin, create the decl object for the builtin
|
||
// now, injecting it into translation unit scope, and return it.
|
||
if (NameKind == LookupOrdinaryName ||
|
||
NameKind == LookupRedeclarationWithLinkage) {
|
||
IdentifierInfo *II = Name.getAsIdentifierInfo();
|
||
if (II && AllowBuiltinCreation) {
|
||
// If this is a builtin on this (or all) targets, create the decl.
|
||
if (unsigned BuiltinID = II->getBuiltinID()) {
|
||
// In C++, we don't have any predefined library functions like
|
||
// 'malloc'. Instead, we'll just error.
|
||
if (getLangOptions().CPlusPlus &&
|
||
Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
|
||
return false;
|
||
|
||
NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
|
||
S, R.isForRedeclaration(),
|
||
R.getNameLoc());
|
||
if (D) R.addDecl(D);
|
||
return (D != NULL);
|
||
}
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/// @brief Perform qualified name lookup in the namespaces nominated by
|
||
/// using directives by the given context.
|
||
///
|
||
/// C++98 [namespace.qual]p2:
|
||
/// Given X::m (where X is a user-declared namespace), or given ::m
|
||
/// (where X is the global namespace), let S be the set of all
|
||
/// declarations of m in X and in the transitive closure of all
|
||
/// namespaces nominated by using-directives in X and its used
|
||
/// namespaces, except that using-directives are ignored in any
|
||
/// namespace, including X, directly containing one or more
|
||
/// declarations of m. No namespace is searched more than once in
|
||
/// the lookup of a name. If S is the empty set, the program is
|
||
/// ill-formed. Otherwise, if S has exactly one member, or if the
|
||
/// context of the reference is a using-declaration
|
||
/// (namespace.udecl), S is the required set of declarations of
|
||
/// m. Otherwise if the use of m is not one that allows a unique
|
||
/// declaration to be chosen from S, the program is ill-formed.
|
||
/// C++98 [namespace.qual]p5:
|
||
/// During the lookup of a qualified namespace member name, if the
|
||
/// lookup finds more than one declaration of the member, and if one
|
||
/// declaration introduces a class name or enumeration name and the
|
||
/// other declarations either introduce the same object, the same
|
||
/// enumerator or a set of functions, the non-type name hides the
|
||
/// class or enumeration name if and only if the declarations are
|
||
/// from the same namespace; otherwise (the declarations are from
|
||
/// different namespaces), the program is ill-formed.
|
||
static bool LookupQualifiedNameInUsingDirectives(LookupResult &R,
|
||
DeclContext *StartDC) {
|
||
assert(StartDC->isFileContext() && "start context is not a file context");
|
||
|
||
DeclContext::udir_iterator I = StartDC->using_directives_begin();
|
||
DeclContext::udir_iterator E = StartDC->using_directives_end();
|
||
|
||
if (I == E) return false;
|
||
|
||
// We have at least added all these contexts to the queue.
|
||
llvm::DenseSet<DeclContext*> Visited;
|
||
Visited.insert(StartDC);
|
||
|
||
// We have not yet looked into these namespaces, much less added
|
||
// their "using-children" to the queue.
|
||
llvm::SmallVector<NamespaceDecl*, 8> Queue;
|
||
|
||
// We have already looked into the initial namespace; seed the queue
|
||
// with its using-children.
|
||
for (; I != E; ++I) {
|
||
NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
|
||
if (Visited.insert(ND).second)
|
||
Queue.push_back(ND);
|
||
}
|
||
|
||
// The easiest way to implement the restriction in [namespace.qual]p5
|
||
// is to check whether any of the individual results found a tag
|
||
// and, if so, to declare an ambiguity if the final result is not
|
||
// a tag.
|
||
bool FoundTag = false;
|
||
bool FoundNonTag = false;
|
||
|
||
LookupResult LocalR(LookupResult::Temporary, R);
|
||
|
||
bool Found = false;
|
||
while (!Queue.empty()) {
|
||
NamespaceDecl *ND = Queue.back();
|
||
Queue.pop_back();
|
||
|
||
// We go through some convolutions here to avoid copying results
|
||
// between LookupResults.
|
||
bool UseLocal = !R.empty();
|
||
LookupResult &DirectR = UseLocal ? LocalR : R;
|
||
bool FoundDirect = LookupDirect(DirectR, ND);
|
||
|
||
if (FoundDirect) {
|
||
// First do any local hiding.
|
||
DirectR.resolveKind();
|
||
|
||
// If the local result is a tag, remember that.
|
||
if (DirectR.isSingleTagDecl())
|
||
FoundTag = true;
|
||
else
|
||
FoundNonTag = true;
|
||
|
||
// Append the local results to the total results if necessary.
|
||
if (UseLocal) {
|
||
R.addAllDecls(LocalR);
|
||
LocalR.clear();
|
||
}
|
||
}
|
||
|
||
// If we find names in this namespace, ignore its using directives.
|
||
if (FoundDirect) {
|
||
Found = true;
|
||
continue;
|
||
}
|
||
|
||
for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
|
||
NamespaceDecl *Nom = (*I)->getNominatedNamespace();
|
||
if (Visited.insert(Nom).second)
|
||
Queue.push_back(Nom);
|
||
}
|
||
}
|
||
|
||
if (Found) {
|
||
if (FoundTag && FoundNonTag)
|
||
R.setAmbiguousQualifiedTagHiding();
|
||
else
|
||
R.resolveKind();
|
||
}
|
||
|
||
return Found;
|
||
}
|
||
|
||
/// @brief Perform qualified name lookup into a given context.
|
||
///
|
||
/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
|
||
/// names when the context of those names is explicit specified, e.g.,
|
||
/// "std::vector" or "x->member".
|
||
///
|
||
/// Different lookup criteria can find different names. For example, a
|
||
/// particular scope can have both a struct and a function of the same
|
||
/// name, and each can be found by certain lookup criteria. For more
|
||
/// information about lookup criteria, see the documentation for the
|
||
/// class LookupCriteria.
|
||
///
|
||
/// @param LookupCtx The context in which qualified name lookup will
|
||
/// search. If the lookup criteria permits, name lookup may also search
|
||
/// in the parent contexts or (for C++ classes) base classes.
|
||
///
|
||
/// @param Name The name of the entity that we are searching for.
|
||
///
|
||
/// @param Criteria The criteria that this routine will use to
|
||
/// determine which names are visible and which names will be
|
||
/// found. Note that name lookup will find a name that is visible by
|
||
/// the given criteria, but the entity itself may not be semantically
|
||
/// correct or even the kind of entity expected based on the
|
||
/// lookup. For example, searching for a nested-name-specifier name
|
||
/// might result in an EnumDecl, which is visible but is not permitted
|
||
/// as a nested-name-specifier in C++03.
|
||
///
|
||
/// @returns The result of name lookup, which includes zero or more
|
||
/// declarations and possibly additional information used to diagnose
|
||
/// ambiguities.
|
||
bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx) {
|
||
assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
|
||
|
||
if (!R.getLookupName())
|
||
return false;
|
||
|
||
// If we're performing qualified name lookup (e.g., lookup into a
|
||
// struct), find fields as part of ordinary name lookup.
|
||
LookupNameKind NameKind = R.getLookupKind();
|
||
unsigned IDNS
|
||
= getIdentifierNamespacesFromLookupNameKind(NameKind,
|
||
getLangOptions().CPlusPlus);
|
||
if (NameKind == LookupOrdinaryName)
|
||
IDNS |= Decl::IDNS_Member;
|
||
|
||
R.setIdentifierNamespace(IDNS);
|
||
|
||
// Make sure that the declaration context is complete.
|
||
assert((!isa<TagDecl>(LookupCtx) ||
|
||
LookupCtx->isDependentContext() ||
|
||
cast<TagDecl>(LookupCtx)->isDefinition() ||
|
||
Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>()
|
||
->isBeingDefined()) &&
|
||
"Declaration context must already be complete!");
|
||
|
||
// Perform qualified name lookup into the LookupCtx.
|
||
if (LookupDirect(R, LookupCtx)) {
|
||
R.resolveKind();
|
||
return true;
|
||
}
|
||
|
||
// Don't descend into implied contexts for redeclarations.
|
||
// C++98 [namespace.qual]p6:
|
||
// In a declaration for a namespace member in which the
|
||
// declarator-id is a qualified-id, given that the qualified-id
|
||
// for the namespace member has the form
|
||
// nested-name-specifier unqualified-id
|
||
// the unqualified-id shall name a member of the namespace
|
||
// designated by the nested-name-specifier.
|
||
// See also [class.mfct]p5 and [class.static.data]p2.
|
||
if (R.isForRedeclaration())
|
||
return false;
|
||
|
||
// If this is a namespace, look it up in the implied namespaces.
|
||
if (LookupCtx->isFileContext())
|
||
return LookupQualifiedNameInUsingDirectives(R, LookupCtx);
|
||
|
||
// If this isn't a C++ class, we aren't allowed to look into base
|
||
// classes, we're done.
|
||
if (!isa<CXXRecordDecl>(LookupCtx))
|
||
return false;
|
||
|
||
// Perform lookup into our base classes.
|
||
CXXRecordDecl *LookupRec = cast<CXXRecordDecl>(LookupCtx);
|
||
CXXBasePaths Paths;
|
||
Paths.setOrigin(LookupRec);
|
||
|
||
// Look for this member in our base classes
|
||
CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
|
||
switch (R.getLookupKind()) {
|
||
case LookupOrdinaryName:
|
||
case LookupMemberName:
|
||
case LookupRedeclarationWithLinkage:
|
||
BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
|
||
break;
|
||
|
||
case LookupTagName:
|
||
BaseCallback = &CXXRecordDecl::FindTagMember;
|
||
break;
|
||
|
||
case LookupUsingDeclName:
|
||
// This lookup is for redeclarations only.
|
||
|
||
case LookupOperatorName:
|
||
case LookupNamespaceName:
|
||
case LookupObjCProtocolName:
|
||
case LookupObjCImplementationName:
|
||
// These lookups will never find a member in a C++ class (or base class).
|
||
return false;
|
||
|
||
case LookupNestedNameSpecifierName:
|
||
BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
|
||
break;
|
||
}
|
||
|
||
if (!LookupRec->lookupInBases(BaseCallback,
|
||
R.getLookupName().getAsOpaquePtr(), Paths))
|
||
return false;
|
||
|
||
// C++ [class.member.lookup]p2:
|
||
// [...] If the resulting set of declarations are not all from
|
||
// sub-objects of the same type, or the set has a nonstatic member
|
||
// and includes members from distinct sub-objects, there is an
|
||
// ambiguity and the program is ill-formed. Otherwise that set is
|
||
// the result of the lookup.
|
||
// FIXME: support using declarations!
|
||
QualType SubobjectType;
|
||
int SubobjectNumber = 0;
|
||
for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
|
||
Path != PathEnd; ++Path) {
|
||
const CXXBasePathElement &PathElement = Path->back();
|
||
|
||
// Determine whether we're looking at a distinct sub-object or not.
|
||
if (SubobjectType.isNull()) {
|
||
// This is the first subobject we've looked at. Record its type.
|
||
SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
|
||
SubobjectNumber = PathElement.SubobjectNumber;
|
||
} else if (SubobjectType
|
||
!= Context.getCanonicalType(PathElement.Base->getType())) {
|
||
// We found members of the given name in two subobjects of
|
||
// different types. This lookup is ambiguous.
|
||
R.setAmbiguousBaseSubobjectTypes(Paths);
|
||
return true;
|
||
} else if (SubobjectNumber != PathElement.SubobjectNumber) {
|
||
// We have a different subobject of the same type.
|
||
|
||
// C++ [class.member.lookup]p5:
|
||
// A static member, a nested type or an enumerator defined in
|
||
// a base class T can unambiguously be found even if an object
|
||
// has more than one base class subobject of type T.
|
||
Decl *FirstDecl = *Path->Decls.first;
|
||
if (isa<VarDecl>(FirstDecl) ||
|
||
isa<TypeDecl>(FirstDecl) ||
|
||
isa<EnumConstantDecl>(FirstDecl))
|
||
continue;
|
||
|
||
if (isa<CXXMethodDecl>(FirstDecl)) {
|
||
// Determine whether all of the methods are static.
|
||
bool AllMethodsAreStatic = true;
|
||
for (DeclContext::lookup_iterator Func = Path->Decls.first;
|
||
Func != Path->Decls.second; ++Func) {
|
||
if (!isa<CXXMethodDecl>(*Func)) {
|
||
assert(isa<TagDecl>(*Func) && "Non-function must be a tag decl");
|
||
break;
|
||
}
|
||
|
||
if (!cast<CXXMethodDecl>(*Func)->isStatic()) {
|
||
AllMethodsAreStatic = false;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (AllMethodsAreStatic)
|
||
continue;
|
||
}
|
||
|
||
// We have found a nonstatic member name in multiple, distinct
|
||
// subobjects. Name lookup is ambiguous.
|
||
R.setAmbiguousBaseSubobjects(Paths);
|
||
return true;
|
||
}
|
||
}
|
||
|
||
// Lookup in a base class succeeded; return these results.
|
||
|
||
DeclContext::lookup_iterator I, E;
|
||
for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I)
|
||
R.addDecl(*I);
|
||
R.resolveKind();
|
||
return true;
|
||
}
|
||
|
||
/// @brief Performs name lookup for a name that was parsed in the
|
||
/// source code, and may contain a C++ scope specifier.
|
||
///
|
||
/// This routine is a convenience routine meant to be called from
|
||
/// contexts that receive a name and an optional C++ scope specifier
|
||
/// (e.g., "N::M::x"). It will then perform either qualified or
|
||
/// unqualified name lookup (with LookupQualifiedName or LookupName,
|
||
/// respectively) on the given name and return those results.
|
||
///
|
||
/// @param S The scope from which unqualified name lookup will
|
||
/// begin.
|
||
///
|
||
/// @param SS An optional C++ scope-specifier, e.g., "::N::M".
|
||
///
|
||
/// @param Name The name of the entity that name lookup will
|
||
/// search for.
|
||
///
|
||
/// @param Loc If provided, the source location where we're performing
|
||
/// name lookup. At present, this is only used to produce diagnostics when
|
||
/// C library functions (like "malloc") are implicitly declared.
|
||
///
|
||
/// @param EnteringContext Indicates whether we are going to enter the
|
||
/// context of the scope-specifier SS (if present).
|
||
///
|
||
/// @returns True if any decls were found (but possibly ambiguous)
|
||
bool Sema::LookupParsedName(LookupResult &R, Scope *S, const CXXScopeSpec *SS,
|
||
bool AllowBuiltinCreation, bool EnteringContext) {
|
||
if (SS && SS->isInvalid()) {
|
||
// When the scope specifier is invalid, don't even look for
|
||
// anything.
|
||
return false;
|
||
}
|
||
|
||
if (SS && SS->isSet()) {
|
||
if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
|
||
// We have resolved the scope specifier to a particular declaration
|
||
// contex, and will perform name lookup in that context.
|
||
if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS))
|
||
return false;
|
||
|
||
R.setContextRange(SS->getRange());
|
||
|
||
return LookupQualifiedName(R, DC);
|
||
}
|
||
|
||
// We could not resolve the scope specified to a specific declaration
|
||
// context, which means that SS refers to an unknown specialization.
|
||
// Name lookup can't find anything in this case.
|
||
return false;
|
||
}
|
||
|
||
// Perform unqualified name lookup starting in the given scope.
|
||
return LookupName(R, S, AllowBuiltinCreation);
|
||
}
|
||
|
||
|
||
/// @brief Produce a diagnostic describing the ambiguity that resulted
|
||
/// from name lookup.
|
||
///
|
||
/// @param Result The ambiguous name lookup result.
|
||
///
|
||
/// @param Name The name of the entity that name lookup was
|
||
/// searching for.
|
||
///
|
||
/// @param NameLoc The location of the name within the source code.
|
||
///
|
||
/// @param LookupRange A source range that provides more
|
||
/// source-location information concerning the lookup itself. For
|
||
/// example, this range might highlight a nested-name-specifier that
|
||
/// precedes the name.
|
||
///
|
||
/// @returns true
|
||
bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
|
||
assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
|
||
|
||
DeclarationName Name = Result.getLookupName();
|
||
SourceLocation NameLoc = Result.getNameLoc();
|
||
SourceRange LookupRange = Result.getContextRange();
|
||
|
||
switch (Result.getAmbiguityKind()) {
|
||
case LookupResult::AmbiguousBaseSubobjects: {
|
||
CXXBasePaths *Paths = Result.getBasePaths();
|
||
QualType SubobjectType = Paths->front().back().Base->getType();
|
||
Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
|
||
<< Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
|
||
<< LookupRange;
|
||
|
||
DeclContext::lookup_iterator Found = Paths->front().Decls.first;
|
||
while (isa<CXXMethodDecl>(*Found) &&
|
||
cast<CXXMethodDecl>(*Found)->isStatic())
|
||
++Found;
|
||
|
||
Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
|
||
|
||
return true;
|
||
}
|
||
|
||
case LookupResult::AmbiguousBaseSubobjectTypes: {
|
||
Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
|
||
<< Name << LookupRange;
|
||
|
||
CXXBasePaths *Paths = Result.getBasePaths();
|
||
std::set<Decl *> DeclsPrinted;
|
||
for (CXXBasePaths::paths_iterator Path = Paths->begin(),
|
||
PathEnd = Paths->end();
|
||
Path != PathEnd; ++Path) {
|
||
Decl *D = *Path->Decls.first;
|
||
if (DeclsPrinted.insert(D).second)
|
||
Diag(D->getLocation(), diag::note_ambiguous_member_found);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
case LookupResult::AmbiguousTagHiding: {
|
||
Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
|
||
|
||
llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
|
||
|
||
LookupResult::iterator DI, DE = Result.end();
|
||
for (DI = Result.begin(); DI != DE; ++DI)
|
||
if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
|
||
TagDecls.insert(TD);
|
||
Diag(TD->getLocation(), diag::note_hidden_tag);
|
||
}
|
||
|
||
for (DI = Result.begin(); DI != DE; ++DI)
|
||
if (!isa<TagDecl>(*DI))
|
||
Diag((*DI)->getLocation(), diag::note_hiding_object);
|
||
|
||
// For recovery purposes, go ahead and implement the hiding.
|
||
Result.hideDecls(TagDecls);
|
||
|
||
return true;
|
||
}
|
||
|
||
case LookupResult::AmbiguousReference: {
|
||
Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
|
||
|
||
LookupResult::iterator DI = Result.begin(), DE = Result.end();
|
||
for (; DI != DE; ++DI)
|
||
Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
|
||
|
||
return true;
|
||
}
|
||
}
|
||
|
||
llvm::llvm_unreachable("unknown ambiguity kind");
|
||
return true;
|
||
}
|
||
|
||
static void
|
||
addAssociatedClassesAndNamespaces(QualType T,
|
||
ASTContext &Context,
|
||
Sema::AssociatedNamespaceSet &AssociatedNamespaces,
|
||
Sema::AssociatedClassSet &AssociatedClasses);
|
||
|
||
static void CollectNamespace(Sema::AssociatedNamespaceSet &Namespaces,
|
||
DeclContext *Ctx) {
|
||
if (Ctx->isFileContext())
|
||
Namespaces.insert(Ctx);
|
||
}
|
||
|
||
// \brief Add the associated classes and namespaces for argument-dependent
|
||
// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
|
||
static void
|
||
addAssociatedClassesAndNamespaces(const TemplateArgument &Arg,
|
||
ASTContext &Context,
|
||
Sema::AssociatedNamespaceSet &AssociatedNamespaces,
|
||
Sema::AssociatedClassSet &AssociatedClasses) {
|
||
// C++ [basic.lookup.koenig]p2, last bullet:
|
||
// -- [...] ;
|
||
switch (Arg.getKind()) {
|
||
case TemplateArgument::Null:
|
||
break;
|
||
|
||
case TemplateArgument::Type:
|
||
// [...] the namespaces and classes associated with the types of the
|
||
// template arguments provided for template type parameters (excluding
|
||
// template template parameters)
|
||
addAssociatedClassesAndNamespaces(Arg.getAsType(), Context,
|
||
AssociatedNamespaces,
|
||
AssociatedClasses);
|
||
break;
|
||
|
||
case TemplateArgument::Template: {
|
||
// [...] the namespaces in which any template template arguments are
|
||
// defined; and the classes in which any member templates used as
|
||
// template template arguments are defined.
|
||
TemplateName Template = Arg.getAsTemplate();
|
||
if (ClassTemplateDecl *ClassTemplate
|
||
= dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
|
||
DeclContext *Ctx = ClassTemplate->getDeclContext();
|
||
if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
|
||
AssociatedClasses.insert(EnclosingClass);
|
||
// Add the associated namespace for this class.
|
||
while (Ctx->isRecord())
|
||
Ctx = Ctx->getParent();
|
||
CollectNamespace(AssociatedNamespaces, Ctx);
|
||
}
|
||
break;
|
||
}
|
||
|
||
case TemplateArgument::Declaration:
|
||
case TemplateArgument::Integral:
|
||
case TemplateArgument::Expression:
|
||
// [Note: non-type template arguments do not contribute to the set of
|
||
// associated namespaces. ]
|
||
break;
|
||
|
||
case TemplateArgument::Pack:
|
||
for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
|
||
PEnd = Arg.pack_end();
|
||
P != PEnd; ++P)
|
||
addAssociatedClassesAndNamespaces(*P, Context,
|
||
AssociatedNamespaces,
|
||
AssociatedClasses);
|
||
break;
|
||
}
|
||
}
|
||
|
||
// \brief Add the associated classes and namespaces for
|
||
// argument-dependent lookup with an argument of class type
|
||
// (C++ [basic.lookup.koenig]p2).
|
||
static void
|
||
addAssociatedClassesAndNamespaces(CXXRecordDecl *Class,
|
||
ASTContext &Context,
|
||
Sema::AssociatedNamespaceSet &AssociatedNamespaces,
|
||
Sema::AssociatedClassSet &AssociatedClasses) {
|
||
// C++ [basic.lookup.koenig]p2:
|
||
// [...]
|
||
// -- If T is a class type (including unions), its associated
|
||
// classes are: the class itself; the class of which it is a
|
||
// member, if any; and its direct and indirect base
|
||
// classes. Its associated namespaces are the namespaces in
|
||
// which its associated classes are defined.
|
||
|
||
// Add the class of which it is a member, if any.
|
||
DeclContext *Ctx = Class->getDeclContext();
|
||
if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
|
||
AssociatedClasses.insert(EnclosingClass);
|
||
// Add the associated namespace for this class.
|
||
while (Ctx->isRecord())
|
||
Ctx = Ctx->getParent();
|
||
CollectNamespace(AssociatedNamespaces, Ctx);
|
||
|
||
// Add the class itself. If we've already seen this class, we don't
|
||
// need to visit base classes.
|
||
if (!AssociatedClasses.insert(Class))
|
||
return;
|
||
|
||
// -- If T is a template-id, its associated namespaces and classes are
|
||
// the namespace in which the template is defined; for member
|
||
// templates, the member template’s class; the namespaces and classes
|
||
// associated with the types of the template arguments provided for
|
||
// template type parameters (excluding template template parameters); the
|
||
// namespaces in which any template template arguments are defined; and
|
||
// the classes in which any member templates used as template template
|
||
// arguments are defined. [Note: non-type template arguments do not
|
||
// contribute to the set of associated namespaces. ]
|
||
if (ClassTemplateSpecializationDecl *Spec
|
||
= dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
|
||
DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
|
||
if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
|
||
AssociatedClasses.insert(EnclosingClass);
|
||
// Add the associated namespace for this class.
|
||
while (Ctx->isRecord())
|
||
Ctx = Ctx->getParent();
|
||
CollectNamespace(AssociatedNamespaces, Ctx);
|
||
|
||
const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
|
||
for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
|
||
addAssociatedClassesAndNamespaces(TemplateArgs[I], Context,
|
||
AssociatedNamespaces,
|
||
AssociatedClasses);
|
||
}
|
||
|
||
// Add direct and indirect base classes along with their associated
|
||
// namespaces.
|
||
llvm::SmallVector<CXXRecordDecl *, 32> Bases;
|
||
Bases.push_back(Class);
|
||
while (!Bases.empty()) {
|
||
// Pop this class off the stack.
|
||
Class = Bases.back();
|
||
Bases.pop_back();
|
||
|
||
// Visit the base classes.
|
||
for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
|
||
BaseEnd = Class->bases_end();
|
||
Base != BaseEnd; ++Base) {
|
||
const RecordType *BaseType = Base->getType()->getAs<RecordType>();
|
||
// In dependent contexts, we do ADL twice, and the first time around,
|
||
// the base type might be a dependent TemplateSpecializationType, or a
|
||
// TemplateTypeParmType. If that happens, simply ignore it.
|
||
// FIXME: If we want to support export, we probably need to add the
|
||
// namespace of the template in a TemplateSpecializationType, or even
|
||
// the classes and namespaces of known non-dependent arguments.
|
||
if (!BaseType)
|
||
continue;
|
||
CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
|
||
if (AssociatedClasses.insert(BaseDecl)) {
|
||
// Find the associated namespace for this base class.
|
||
DeclContext *BaseCtx = BaseDecl->getDeclContext();
|
||
while (BaseCtx->isRecord())
|
||
BaseCtx = BaseCtx->getParent();
|
||
CollectNamespace(AssociatedNamespaces, BaseCtx);
|
||
|
||
// Make sure we visit the bases of this base class.
|
||
if (BaseDecl->bases_begin() != BaseDecl->bases_end())
|
||
Bases.push_back(BaseDecl);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// \brief Add the associated classes and namespaces for
|
||
// argument-dependent lookup with an argument of type T
|
||
// (C++ [basic.lookup.koenig]p2).
|
||
static void
|
||
addAssociatedClassesAndNamespaces(QualType T,
|
||
ASTContext &Context,
|
||
Sema::AssociatedNamespaceSet &AssociatedNamespaces,
|
||
Sema::AssociatedClassSet &AssociatedClasses) {
|
||
// C++ [basic.lookup.koenig]p2:
|
||
//
|
||
// For each argument type T in the function call, there is a set
|
||
// of zero or more associated namespaces and a set of zero or more
|
||
// associated classes to be considered. The sets of namespaces and
|
||
// classes is determined entirely by the types of the function
|
||
// arguments (and the namespace of any template template
|
||
// argument). Typedef names and using-declarations used to specify
|
||
// the types do not contribute to this set. The sets of namespaces
|
||
// and classes are determined in the following way:
|
||
T = Context.getCanonicalType(T).getUnqualifiedType();
|
||
|
||
// -- If T is a pointer to U or an array of U, its associated
|
||
// namespaces and classes are those associated with U.
|
||
//
|
||
// We handle this by unwrapping pointer and array types immediately,
|
||
// to avoid unnecessary recursion.
|
||
while (true) {
|
||
if (const PointerType *Ptr = T->getAs<PointerType>())
|
||
T = Ptr->getPointeeType();
|
||
else if (const ArrayType *Ptr = Context.getAsArrayType(T))
|
||
T = Ptr->getElementType();
|
||
else
|
||
break;
|
||
}
|
||
|
||
// -- If T is a fundamental type, its associated sets of
|
||
// namespaces and classes are both empty.
|
||
if (T->getAs<BuiltinType>())
|
||
return;
|
||
|
||
// -- If T is a class type (including unions), its associated
|
||
// classes are: the class itself; the class of which it is a
|
||
// member, if any; and its direct and indirect base
|
||
// classes. Its associated namespaces are the namespaces in
|
||
// which its associated classes are defined.
|
||
if (const RecordType *ClassType = T->getAs<RecordType>())
|
||
if (CXXRecordDecl *ClassDecl
|
||
= dyn_cast<CXXRecordDecl>(ClassType->getDecl())) {
|
||
addAssociatedClassesAndNamespaces(ClassDecl, Context,
|
||
AssociatedNamespaces,
|
||
AssociatedClasses);
|
||
return;
|
||
}
|
||
|
||
// -- If T is an enumeration type, its associated namespace is
|
||
// the namespace in which it is defined. If it is class
|
||
// member, its associated class is the member’s class; else
|
||
// it has no associated class.
|
||
if (const EnumType *EnumT = T->getAs<EnumType>()) {
|
||
EnumDecl *Enum = EnumT->getDecl();
|
||
|
||
DeclContext *Ctx = Enum->getDeclContext();
|
||
if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
|
||
AssociatedClasses.insert(EnclosingClass);
|
||
|
||
// Add the associated namespace for this class.
|
||
while (Ctx->isRecord())
|
||
Ctx = Ctx->getParent();
|
||
CollectNamespace(AssociatedNamespaces, Ctx);
|
||
|
||
return;
|
||
}
|
||
|
||
// -- If T is a function type, its associated namespaces and
|
||
// classes are those associated with the function parameter
|
||
// types and those associated with the return type.
|
||
if (const FunctionType *FnType = T->getAs<FunctionType>()) {
|
||
// Return type
|
||
addAssociatedClassesAndNamespaces(FnType->getResultType(),
|
||
Context,
|
||
AssociatedNamespaces, AssociatedClasses);
|
||
|
||
const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
|
||
if (!Proto)
|
||
return;
|
||
|
||
// Argument types
|
||
for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
|
||
ArgEnd = Proto->arg_type_end();
|
||
Arg != ArgEnd; ++Arg)
|
||
addAssociatedClassesAndNamespaces(*Arg, Context,
|
||
AssociatedNamespaces, AssociatedClasses);
|
||
|
||
return;
|
||
}
|
||
|
||
// -- If T is a pointer to a member function of a class X, its
|
||
// associated namespaces and classes are those associated
|
||
// with the function parameter types and return type,
|
||
// together with those associated with X.
|
||
//
|
||
// -- If T is a pointer to a data member of class X, its
|
||
// associated namespaces and classes are those associated
|
||
// with the member type together with those associated with
|
||
// X.
|
||
if (const MemberPointerType *MemberPtr = T->getAs<MemberPointerType>()) {
|
||
// Handle the type that the pointer to member points to.
|
||
addAssociatedClassesAndNamespaces(MemberPtr->getPointeeType(),
|
||
Context,
|
||
AssociatedNamespaces,
|
||
AssociatedClasses);
|
||
|
||
// Handle the class type into which this points.
|
||
if (const RecordType *Class = MemberPtr->getClass()->getAs<RecordType>())
|
||
addAssociatedClassesAndNamespaces(cast<CXXRecordDecl>(Class->getDecl()),
|
||
Context,
|
||
AssociatedNamespaces,
|
||
AssociatedClasses);
|
||
|
||
return;
|
||
}
|
||
|
||
// FIXME: What about block pointers?
|
||
// FIXME: What about Objective-C message sends?
|
||
}
|
||
|
||
/// \brief Find the associated classes and namespaces for
|
||
/// argument-dependent lookup for a call with the given set of
|
||
/// arguments.
|
||
///
|
||
/// This routine computes the sets of associated classes and associated
|
||
/// namespaces searched by argument-dependent lookup
|
||
/// (C++ [basic.lookup.argdep]) for a given set of arguments.
|
||
void
|
||
Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
|
||
AssociatedNamespaceSet &AssociatedNamespaces,
|
||
AssociatedClassSet &AssociatedClasses) {
|
||
AssociatedNamespaces.clear();
|
||
AssociatedClasses.clear();
|
||
|
||
// C++ [basic.lookup.koenig]p2:
|
||
// For each argument type T in the function call, there is a set
|
||
// of zero or more associated namespaces and a set of zero or more
|
||
// associated classes to be considered. The sets of namespaces and
|
||
// classes is determined entirely by the types of the function
|
||
// arguments (and the namespace of any template template
|
||
// argument).
|
||
for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
|
||
Expr *Arg = Args[ArgIdx];
|
||
|
||
if (Arg->getType() != Context.OverloadTy) {
|
||
addAssociatedClassesAndNamespaces(Arg->getType(), Context,
|
||
AssociatedNamespaces,
|
||
AssociatedClasses);
|
||
continue;
|
||
}
|
||
|
||
// [...] In addition, if the argument is the name or address of a
|
||
// set of overloaded functions and/or function templates, its
|
||
// associated classes and namespaces are the union of those
|
||
// associated with each of the members of the set: the namespace
|
||
// in which the function or function template is defined and the
|
||
// classes and namespaces associated with its (non-dependent)
|
||
// parameter types and return type.
|
||
Arg = Arg->IgnoreParens();
|
||
if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
|
||
if (unaryOp->getOpcode() == UnaryOperator::AddrOf)
|
||
Arg = unaryOp->getSubExpr();
|
||
|
||
// TODO: avoid the copies. This should be easy when the cases
|
||
// share a storage implementation.
|
||
llvm::SmallVector<NamedDecl*, 8> Functions;
|
||
|
||
if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg))
|
||
Functions.append(ULE->decls_begin(), ULE->decls_end());
|
||
else
|
||
continue;
|
||
|
||
for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Functions.begin(),
|
||
E = Functions.end(); I != E; ++I) {
|
||
FunctionDecl *FDecl = dyn_cast<FunctionDecl>(*I);
|
||
if (!FDecl)
|
||
FDecl = cast<FunctionTemplateDecl>(*I)->getTemplatedDecl();
|
||
|
||
// Add the namespace in which this function was defined. Note
|
||
// that, if this is a member function, we do *not* consider the
|
||
// enclosing namespace of its class.
|
||
DeclContext *Ctx = FDecl->getDeclContext();
|
||
CollectNamespace(AssociatedNamespaces, Ctx);
|
||
|
||
// Add the classes and namespaces associated with the parameter
|
||
// types and return type of this function.
|
||
addAssociatedClassesAndNamespaces(FDecl->getType(), Context,
|
||
AssociatedNamespaces,
|
||
AssociatedClasses);
|
||
}
|
||
}
|
||
}
|
||
|
||
/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
|
||
/// an acceptable non-member overloaded operator for a call whose
|
||
/// arguments have types T1 (and, if non-empty, T2). This routine
|
||
/// implements the check in C++ [over.match.oper]p3b2 concerning
|
||
/// enumeration types.
|
||
static bool
|
||
IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
|
||
QualType T1, QualType T2,
|
||
ASTContext &Context) {
|
||
if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
|
||
return true;
|
||
|
||
if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
|
||
return true;
|
||
|
||
const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
|
||
if (Proto->getNumArgs() < 1)
|
||
return false;
|
||
|
||
if (T1->isEnumeralType()) {
|
||
QualType ArgType = Proto->getArgType(0).getNonReferenceType();
|
||
if (Context.hasSameUnqualifiedType(T1, ArgType))
|
||
return true;
|
||
}
|
||
|
||
if (Proto->getNumArgs() < 2)
|
||
return false;
|
||
|
||
if (!T2.isNull() && T2->isEnumeralType()) {
|
||
QualType ArgType = Proto->getArgType(1).getNonReferenceType();
|
||
if (Context.hasSameUnqualifiedType(T2, ArgType))
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
|
||
LookupNameKind NameKind,
|
||
RedeclarationKind Redecl) {
|
||
LookupResult R(*this, Name, SourceLocation(), NameKind, Redecl);
|
||
LookupName(R, S);
|
||
return R.getAsSingle<NamedDecl>();
|
||
}
|
||
|
||
/// \brief Find the protocol with the given name, if any.
|
||
ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II) {
|
||
Decl *D = LookupSingleName(TUScope, II, LookupObjCProtocolName);
|
||
return cast_or_null<ObjCProtocolDecl>(D);
|
||
}
|
||
|
||
void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
|
||
QualType T1, QualType T2,
|
||
FunctionSet &Functions) {
|
||
// C++ [over.match.oper]p3:
|
||
// -- The set of non-member candidates is the result of the
|
||
// unqualified lookup of operator@ in the context of the
|
||
// expression according to the usual rules for name lookup in
|
||
// unqualified function calls (3.4.2) except that all member
|
||
// functions are ignored. However, if no operand has a class
|
||
// type, only those non-member functions in the lookup set
|
||
// that have a first parameter of type T1 or "reference to
|
||
// (possibly cv-qualified) T1", when T1 is an enumeration
|
||
// type, or (if there is a right operand) a second parameter
|
||
// of type T2 or "reference to (possibly cv-qualified) T2",
|
||
// when T2 is an enumeration type, are candidate functions.
|
||
DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
|
||
LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
|
||
LookupName(Operators, S);
|
||
|
||
assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
|
||
|
||
if (Operators.empty())
|
||
return;
|
||
|
||
for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
|
||
Op != OpEnd; ++Op) {
|
||
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Op)) {
|
||
if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
|
||
Functions.insert(FD); // FIXME: canonical FD
|
||
} else if (FunctionTemplateDecl *FunTmpl
|
||
= dyn_cast<FunctionTemplateDecl>(*Op)) {
|
||
// FIXME: friend operators?
|
||
// FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
|
||
// later?
|
||
if (!FunTmpl->getDeclContext()->isRecord())
|
||
Functions.insert(FunTmpl);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void CollectFunctionDecl(Sema::FunctionSet &Functions,
|
||
Decl *D) {
|
||
if (FunctionDecl *Func = dyn_cast<FunctionDecl>(D))
|
||
Functions.insert(Func);
|
||
else if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
|
||
Functions.insert(FunTmpl);
|
||
}
|
||
|
||
void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
|
||
Expr **Args, unsigned NumArgs,
|
||
FunctionSet &Functions) {
|
||
// Find all of the associated namespaces and classes based on the
|
||
// arguments we have.
|
||
AssociatedNamespaceSet AssociatedNamespaces;
|
||
AssociatedClassSet AssociatedClasses;
|
||
FindAssociatedClassesAndNamespaces(Args, NumArgs,
|
||
AssociatedNamespaces,
|
||
AssociatedClasses);
|
||
|
||
QualType T1, T2;
|
||
if (Operator) {
|
||
T1 = Args[0]->getType();
|
||
if (NumArgs >= 2)
|
||
T2 = Args[1]->getType();
|
||
}
|
||
|
||
// C++ [basic.lookup.argdep]p3:
|
||
// Let X be the lookup set produced by unqualified lookup (3.4.1)
|
||
// and let Y be the lookup set produced by argument dependent
|
||
// lookup (defined as follows). If X contains [...] then Y is
|
||
// empty. Otherwise Y is the set of declarations found in the
|
||
// namespaces associated with the argument types as described
|
||
// below. The set of declarations found by the lookup of the name
|
||
// is the union of X and Y.
|
||
//
|
||
// Here, we compute Y and add its members to the overloaded
|
||
// candidate set.
|
||
for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
|
||
NSEnd = AssociatedNamespaces.end();
|
||
NS != NSEnd; ++NS) {
|
||
// When considering an associated namespace, the lookup is the
|
||
// same as the lookup performed when the associated namespace is
|
||
// used as a qualifier (3.4.3.2) except that:
|
||
//
|
||
// -- Any using-directives in the associated namespace are
|
||
// ignored.
|
||
//
|
||
// -- Any namespace-scope friend functions declared in
|
||
// associated classes are visible within their respective
|
||
// namespaces even if they are not visible during an ordinary
|
||
// lookup (11.4).
|
||
DeclContext::lookup_iterator I, E;
|
||
for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
|
||
Decl *D = *I;
|
||
// If the only declaration here is an ordinary friend, consider
|
||
// it only if it was declared in an associated classes.
|
||
if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
|
||
DeclContext *LexDC = D->getLexicalDeclContext();
|
||
if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
|
||
continue;
|
||
}
|
||
|
||
FunctionDecl *Fn;
|
||
if (!Operator || !(Fn = dyn_cast<FunctionDecl>(D)) ||
|
||
IsAcceptableNonMemberOperatorCandidate(Fn, T1, T2, Context))
|
||
CollectFunctionDecl(Functions, D);
|
||
}
|
||
}
|
||
}
|