forked from OSchip/llvm-project
679 lines
24 KiB
C++
679 lines
24 KiB
C++
//===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// Armv6 introduced instructions to perform 32-bit SIMD operations. The
|
|
/// purpose of this pass is do some IR pattern matching to create ACLE
|
|
/// DSP intrinsics, which map on these 32-bit SIMD operations.
|
|
/// This pass runs only when unaligned accesses is supported/enabled.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/LoopAccessAnalysis.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/NoFolder.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/PassRegistry.h"
|
|
#include "llvm/PassSupport.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "ARM.h"
|
|
#include "ARMSubtarget.h"
|
|
|
|
using namespace llvm;
|
|
using namespace PatternMatch;
|
|
|
|
#define DEBUG_TYPE "arm-parallel-dsp"
|
|
|
|
STATISTIC(NumSMLAD , "Number of smlad instructions generated");
|
|
|
|
static cl::opt<bool>
|
|
DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false),
|
|
cl::desc("Disable the ARM Parallel DSP pass"));
|
|
|
|
namespace {
|
|
struct OpChain;
|
|
struct BinOpChain;
|
|
struct Reduction;
|
|
|
|
using OpChainList = SmallVector<std::unique_ptr<OpChain>, 8>;
|
|
using ReductionList = SmallVector<Reduction, 8>;
|
|
using ValueList = SmallVector<Value*, 8>;
|
|
using MemInstList = SmallVector<Instruction*, 8>;
|
|
using PMACPair = std::pair<BinOpChain*,BinOpChain*>;
|
|
using PMACPairList = SmallVector<PMACPair, 8>;
|
|
using Instructions = SmallVector<Instruction*,16>;
|
|
using MemLocList = SmallVector<MemoryLocation, 4>;
|
|
|
|
struct OpChain {
|
|
Instruction *Root;
|
|
ValueList AllValues;
|
|
MemInstList VecLd; // List of all load instructions.
|
|
MemLocList MemLocs; // All memory locations read by this tree.
|
|
bool ReadOnly = true;
|
|
|
|
OpChain(Instruction *I, ValueList &vl) : Root(I), AllValues(vl) { }
|
|
virtual ~OpChain() = default;
|
|
|
|
void SetMemoryLocations() {
|
|
const auto Size = MemoryLocation::UnknownSize;
|
|
for (auto *V : AllValues) {
|
|
if (auto *I = dyn_cast<Instruction>(V)) {
|
|
if (I->mayWriteToMemory())
|
|
ReadOnly = false;
|
|
if (auto *Ld = dyn_cast<LoadInst>(V))
|
|
MemLocs.push_back(MemoryLocation(Ld->getPointerOperand(), Size));
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned size() const { return AllValues.size(); }
|
|
};
|
|
|
|
// 'BinOpChain' and 'Reduction' are just some bookkeeping data structures.
|
|
// 'Reduction' contains the phi-node and accumulator statement from where we
|
|
// start pattern matching, and 'BinOpChain' the multiplication
|
|
// instructions that are candidates for parallel execution.
|
|
struct BinOpChain : public OpChain {
|
|
ValueList LHS; // List of all (narrow) left hand operands.
|
|
ValueList RHS; // List of all (narrow) right hand operands.
|
|
|
|
BinOpChain(Instruction *I, ValueList &lhs, ValueList &rhs) :
|
|
OpChain(I, lhs), LHS(lhs), RHS(rhs) {
|
|
for (auto *V : RHS)
|
|
AllValues.push_back(V);
|
|
}
|
|
};
|
|
|
|
struct Reduction {
|
|
PHINode *Phi; // The Phi-node from where we start
|
|
// pattern matching.
|
|
Instruction *AccIntAdd; // The accumulating integer add statement,
|
|
// i.e, the reduction statement.
|
|
|
|
OpChainList MACCandidates; // The MAC candidates associated with
|
|
// this reduction statement.
|
|
Reduction (PHINode *P, Instruction *Acc) : Phi(P), AccIntAdd(Acc) { };
|
|
};
|
|
|
|
class ARMParallelDSP : public LoopPass {
|
|
ScalarEvolution *SE;
|
|
AliasAnalysis *AA;
|
|
TargetLibraryInfo *TLI;
|
|
DominatorTree *DT;
|
|
LoopInfo *LI;
|
|
Loop *L;
|
|
const DataLayout *DL;
|
|
Module *M;
|
|
|
|
bool InsertParallelMACs(Reduction &Reduction, PMACPairList &PMACPairs);
|
|
bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem);
|
|
PMACPairList CreateParallelMACPairs(OpChainList &Candidates);
|
|
Instruction *CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1,
|
|
Instruction *Acc, Instruction *InsertAfter);
|
|
|
|
/// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate
|
|
/// Dual performs two signed 16x16-bit multiplications. It adds the
|
|
/// products to a 32-bit accumulate operand. Optionally, the instruction can
|
|
/// exchange the halfwords of the second operand before performing the
|
|
/// arithmetic.
|
|
bool MatchSMLAD(Function &F);
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
ARMParallelDSP() : LoopPass(ID) { }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
LoopPass::getAnalysisUsage(AU);
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<ScalarEvolutionWrapperPass>();
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<TargetPassConfig>();
|
|
AU.addPreserved<LoopInfoWrapperPass>();
|
|
AU.setPreservesCFG();
|
|
}
|
|
|
|
bool runOnLoop(Loop *TheLoop, LPPassManager &) override {
|
|
if (DisableParallelDSP)
|
|
return false;
|
|
L = TheLoop;
|
|
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
|
|
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
auto &TPC = getAnalysis<TargetPassConfig>();
|
|
|
|
BasicBlock *Header = TheLoop->getHeader();
|
|
if (!Header)
|
|
return false;
|
|
|
|
// TODO: We assume the loop header and latch to be the same block.
|
|
// This is not a fundamental restriction, but lifting this would just
|
|
// require more work to do the transformation and then patch up the CFG.
|
|
if (Header != TheLoop->getLoopLatch()) {
|
|
LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not "
|
|
"running pass ARMParallelDSP\n");
|
|
return false;
|
|
}
|
|
|
|
Function &F = *Header->getParent();
|
|
M = F.getParent();
|
|
DL = &M->getDataLayout();
|
|
|
|
auto &TM = TPC.getTM<TargetMachine>();
|
|
auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
|
|
|
|
if (!ST->allowsUnalignedMem()) {
|
|
LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not "
|
|
"running pass ARMParallelDSP\n");
|
|
return false;
|
|
}
|
|
|
|
if (!ST->hasDSP()) {
|
|
LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass "
|
|
"ARMParallelDSP\n");
|
|
return false;
|
|
}
|
|
|
|
LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI);
|
|
bool Changes = false;
|
|
|
|
LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n\n");
|
|
Changes = MatchSMLAD(F);
|
|
return Changes;
|
|
}
|
|
};
|
|
}
|
|
|
|
// MaxBitwidth: the maximum supported bitwidth of the elements in the DSP
|
|
// instructions, which is set to 16. So here we should collect all i8 and i16
|
|
// narrow operations.
|
|
// TODO: we currently only collect i16, and will support i8 later, so that's
|
|
// why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth.
|
|
template<unsigned MaxBitWidth>
|
|
static bool IsNarrowSequence(Value *V, ValueList &VL) {
|
|
LLVM_DEBUG(dbgs() << "Is narrow sequence? "; V->dump());
|
|
ConstantInt *CInt;
|
|
|
|
if (match(V, m_ConstantInt(CInt))) {
|
|
// TODO: if a constant is used, it needs to fit within the bit width.
|
|
return false;
|
|
}
|
|
|
|
auto *I = dyn_cast<Instruction>(V);
|
|
if (!I)
|
|
return false;
|
|
|
|
Value *Val, *LHS, *RHS;
|
|
if (match(V, m_Trunc(m_Value(Val)))) {
|
|
if (cast<TruncInst>(I)->getDestTy()->getIntegerBitWidth() == MaxBitWidth)
|
|
return IsNarrowSequence<MaxBitWidth>(Val, VL);
|
|
} else if (match(V, m_Add(m_Value(LHS), m_Value(RHS)))) {
|
|
// TODO: we need to implement sadd16/sadd8 for this, which enables to
|
|
// also do the rewrite for smlad8.ll, but it is unsupported for now.
|
|
LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump());
|
|
return false;
|
|
} else if (match(V, m_ZExtOrSExt(m_Value(Val)))) {
|
|
if (cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) {
|
|
LLVM_DEBUG(dbgs() << "No, wrong SrcTy size: " <<
|
|
cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() << "\n");
|
|
return false;
|
|
}
|
|
|
|
if (match(Val, m_Load(m_Value()))) {
|
|
LLVM_DEBUG(dbgs() << "Yes, found narrow Load:\t"; Val->dump());
|
|
VL.push_back(Val);
|
|
VL.push_back(I);
|
|
return true;
|
|
}
|
|
}
|
|
LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump());
|
|
return false;
|
|
}
|
|
|
|
// Element-by-element comparison of Value lists returning true if they are
|
|
// instructions with the same opcode or constants with the same value.
|
|
static bool AreSymmetrical(const ValueList &VL0,
|
|
const ValueList &VL1) {
|
|
if (VL0.size() != VL1.size()) {
|
|
LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: "
|
|
<< VL0.size() << " != " << VL1.size() << "\n");
|
|
return false;
|
|
}
|
|
|
|
const unsigned Pairs = VL0.size();
|
|
LLVM_DEBUG(dbgs() << "Number of operand pairs: " << Pairs << "\n");
|
|
|
|
for (unsigned i = 0; i < Pairs; ++i) {
|
|
const Value *V0 = VL0[i];
|
|
const Value *V1 = VL1[i];
|
|
const auto *Inst0 = dyn_cast<Instruction>(V0);
|
|
const auto *Inst1 = dyn_cast<Instruction>(V1);
|
|
|
|
LLVM_DEBUG(dbgs() << "Pair " << i << ":\n";
|
|
dbgs() << "mul1: "; V0->dump();
|
|
dbgs() << "mul2: "; V1->dump());
|
|
|
|
if (!Inst0 || !Inst1)
|
|
return false;
|
|
|
|
if (Inst0->isSameOperationAs(Inst1)) {
|
|
LLVM_DEBUG(dbgs() << "OK: same operation found!\n");
|
|
continue;
|
|
}
|
|
|
|
const APInt *C0, *C1;
|
|
if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1))
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "OK: found symmetrical operand lists.\n");
|
|
return true;
|
|
}
|
|
|
|
template<typename MemInst>
|
|
static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1,
|
|
MemInstList &VecMem, const DataLayout &DL,
|
|
ScalarEvolution &SE) {
|
|
if (!MemOp0->isSimple() || !MemOp1->isSimple()) {
|
|
LLVM_DEBUG(dbgs() << "No, not touching volatile access\n");
|
|
return false;
|
|
}
|
|
if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) {
|
|
VecMem.push_back(MemOp0);
|
|
VecMem.push_back(MemOp1);
|
|
LLVM_DEBUG(dbgs() << "OK: accesses are consecutive.\n");
|
|
return true;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "No, accesses aren't consecutive.\n");
|
|
return false;
|
|
}
|
|
|
|
bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1,
|
|
MemInstList &VecMem) {
|
|
if (!Ld0 || !Ld1)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "Are consecutive loads:\n";
|
|
dbgs() << "Ld0:"; Ld0->dump();
|
|
dbgs() << "Ld1:"; Ld1->dump();
|
|
);
|
|
|
|
if (!Ld0->hasOneUse() || !Ld1->hasOneUse()) {
|
|
LLVM_DEBUG(dbgs() << "No, load has more than one use.\n");
|
|
return false;
|
|
}
|
|
|
|
return AreSequentialAccesses<LoadInst>(Ld0, Ld1, VecMem, *DL, *SE);
|
|
}
|
|
|
|
PMACPairList
|
|
ARMParallelDSP::CreateParallelMACPairs(OpChainList &Candidates) {
|
|
const unsigned Elems = Candidates.size();
|
|
PMACPairList PMACPairs;
|
|
|
|
if (Elems < 2)
|
|
return PMACPairs;
|
|
|
|
// TODO: for now we simply try to match consecutive pairs i and i+1.
|
|
// We can compare all elements, but then we need to compare and evaluate
|
|
// different solutions.
|
|
for(unsigned i=0; i<Elems-1; i+=2) {
|
|
BinOpChain *PMul0 = static_cast<BinOpChain*>(Candidates[i].get());
|
|
BinOpChain *PMul1 = static_cast<BinOpChain*>(Candidates[i+1].get());
|
|
const Instruction *Mul0 = PMul0->Root;
|
|
const Instruction *Mul1 = PMul1->Root;
|
|
|
|
if (Mul0 == Mul1)
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "\nCheck parallel muls:\n";
|
|
dbgs() << "- "; Mul0->dump();
|
|
dbgs() << "- "; Mul1->dump());
|
|
|
|
const ValueList &Mul0_LHS = PMul0->LHS;
|
|
const ValueList &Mul0_RHS = PMul0->RHS;
|
|
const ValueList &Mul1_LHS = PMul1->LHS;
|
|
const ValueList &Mul1_RHS = PMul1->RHS;
|
|
|
|
if (!AreSymmetrical(Mul0_LHS, Mul1_LHS) ||
|
|
!AreSymmetrical(Mul0_RHS, Mul1_RHS))
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "OK: mul operands list match:\n");
|
|
// The first elements of each vector should be loads with sexts. If we find
|
|
// that its two pairs of consecutive loads, then these can be transformed
|
|
// into two wider loads and the users can be replaced with DSP
|
|
// intrinsics.
|
|
for (unsigned x = 0; x < Mul0_LHS.size(); x += 2) {
|
|
auto *Ld0 = dyn_cast<LoadInst>(Mul0_LHS[x]);
|
|
auto *Ld1 = dyn_cast<LoadInst>(Mul1_LHS[x]);
|
|
auto *Ld2 = dyn_cast<LoadInst>(Mul0_RHS[x]);
|
|
auto *Ld3 = dyn_cast<LoadInst>(Mul1_RHS[x]);
|
|
|
|
LLVM_DEBUG(dbgs() << "Looking at operands " << x << ":\n";
|
|
dbgs() << "\t mul1: "; Mul0_LHS[x]->dump();
|
|
dbgs() << "\t mul2: "; Mul1_LHS[x]->dump();
|
|
dbgs() << "and operands " << x + 2 << ":\n";
|
|
dbgs() << "\t mul1: "; Mul0_RHS[x]->dump();
|
|
dbgs() << "\t mul2: "; Mul1_RHS[x]->dump());
|
|
|
|
if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd) &&
|
|
AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
|
|
LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
|
|
PMACPairs.push_back(std::make_pair(PMul0, PMul1));
|
|
}
|
|
}
|
|
}
|
|
return PMACPairs;
|
|
}
|
|
|
|
bool ARMParallelDSP::InsertParallelMACs(Reduction &Reduction,
|
|
PMACPairList &PMACPairs) {
|
|
Instruction *Acc = Reduction.Phi;
|
|
Instruction *InsertAfter = Reduction.AccIntAdd;
|
|
|
|
for (auto &Pair : PMACPairs) {
|
|
LLVM_DEBUG(dbgs() << "Found parallel MACs!!\n";
|
|
dbgs() << "- "; Pair.first->Root->dump();
|
|
dbgs() << "- "; Pair.second->Root->dump());
|
|
auto *VecLd0 = cast<LoadInst>(Pair.first->VecLd[0]);
|
|
auto *VecLd1 = cast<LoadInst>(Pair.second->VecLd[0]);
|
|
Acc = CreateSMLADCall(VecLd0, VecLd1, Acc, InsertAfter);
|
|
InsertAfter = Acc;
|
|
}
|
|
|
|
if (Acc != Reduction.Phi) {
|
|
LLVM_DEBUG(dbgs() << "Replace Accumulate: "; Acc->dump());
|
|
Reduction.AccIntAdd->replaceAllUsesWith(Acc);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void MatchReductions(Function &F, Loop *TheLoop, BasicBlock *Header,
|
|
ReductionList &Reductions) {
|
|
RecurrenceDescriptor RecDesc;
|
|
const bool HasFnNoNaNAttr =
|
|
F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
|
|
const BasicBlock *Latch = TheLoop->getLoopLatch();
|
|
|
|
// We need a preheader as getIncomingValueForBlock assumes there is one.
|
|
if (!TheLoop->getLoopPreheader()) {
|
|
LLVM_DEBUG(dbgs() << "No preheader found, bailing out\n");
|
|
return;
|
|
}
|
|
|
|
for (PHINode &Phi : Header->phis()) {
|
|
const auto *Ty = Phi.getType();
|
|
if (!Ty->isIntegerTy(32))
|
|
continue;
|
|
|
|
const bool IsReduction =
|
|
RecurrenceDescriptor::AddReductionVar(&Phi,
|
|
RecurrenceDescriptor::RK_IntegerAdd,
|
|
TheLoop, HasFnNoNaNAttr, RecDesc);
|
|
if (!IsReduction)
|
|
continue;
|
|
|
|
Instruction *Acc = dyn_cast<Instruction>(Phi.getIncomingValueForBlock(Latch));
|
|
if (!Acc)
|
|
continue;
|
|
|
|
Reductions.push_back(Reduction(&Phi, Acc));
|
|
}
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "\nAccumulating integer additions (reductions) found:\n";
|
|
for (auto &R : Reductions) {
|
|
dbgs() << "- "; R.Phi->dump();
|
|
dbgs() << "-> "; R.AccIntAdd->dump();
|
|
}
|
|
);
|
|
}
|
|
|
|
static void AddMACCandidate(OpChainList &Candidates,
|
|
const Instruction *Acc,
|
|
Value *MulOp0, Value *MulOp1, int MulOpNum) {
|
|
Instruction *Mul = dyn_cast<Instruction>(Acc->getOperand(MulOpNum));
|
|
LLVM_DEBUG(dbgs() << "OK, found acc mul:\t"; Mul->dump());
|
|
ValueList LHS;
|
|
ValueList RHS;
|
|
if (IsNarrowSequence<16>(MulOp0, LHS) &&
|
|
IsNarrowSequence<16>(MulOp1, RHS)) {
|
|
LLVM_DEBUG(dbgs() << "OK, found narrow mul: "; Mul->dump());
|
|
Candidates.push_back(make_unique<BinOpChain>(Mul, LHS, RHS));
|
|
}
|
|
}
|
|
|
|
static void MatchParallelMACSequences(Reduction &R,
|
|
OpChainList &Candidates) {
|
|
const Instruction *Acc = R.AccIntAdd;
|
|
Value *A, *MulOp0, *MulOp1;
|
|
LLVM_DEBUG(dbgs() << "\n- Analysing:\t"; Acc->dump());
|
|
|
|
// Pattern 1: the accumulator is the RHS of the mul.
|
|
while(match(Acc, m_Add(m_Mul(m_Value(MulOp0), m_Value(MulOp1)),
|
|
m_Value(A)))){
|
|
AddMACCandidate(Candidates, Acc, MulOp0, MulOp1, 0);
|
|
Acc = dyn_cast<Instruction>(A);
|
|
}
|
|
// Pattern 2: the accumulator is the LHS of the mul.
|
|
while(match(Acc, m_Add(m_Value(A),
|
|
m_Mul(m_Value(MulOp0), m_Value(MulOp1))))) {
|
|
AddMACCandidate(Candidates, Acc, MulOp0, MulOp1, 1);
|
|
Acc = dyn_cast<Instruction>(A);
|
|
}
|
|
|
|
// The last mul in the chain has a slightly different pattern:
|
|
// the mul is the first operand
|
|
if (match(Acc, m_Add(m_Mul(m_Value(MulOp0), m_Value(MulOp1)), m_Value(A))))
|
|
AddMACCandidate(Candidates, Acc, MulOp0, MulOp1, 0);
|
|
|
|
// Because we start at the bottom of the chain, and we work our way up,
|
|
// the muls are added in reverse program order to the list.
|
|
std::reverse(Candidates.begin(), Candidates.end());
|
|
}
|
|
|
|
// Collects all instructions that are not part of the MAC chains, which is the
|
|
// set of instructions that can potentially alias with the MAC operands.
|
|
static void AliasCandidates(BasicBlock *Header, Instructions &Reads,
|
|
Instructions &Writes) {
|
|
for (auto &I : *Header) {
|
|
if (I.mayReadFromMemory())
|
|
Reads.push_back(&I);
|
|
if (I.mayWriteToMemory())
|
|
Writes.push_back(&I);
|
|
}
|
|
}
|
|
|
|
// Check whether statements in the basic block that write to memory alias with
|
|
// the memory locations accessed by the MAC-chains.
|
|
// TODO: we need the read statements when we accept more complicated chains.
|
|
static bool AreAliased(AliasAnalysis *AA, Instructions &Reads,
|
|
Instructions &Writes, OpChainList &MACCandidates) {
|
|
LLVM_DEBUG(dbgs() << "Alias checks:\n");
|
|
for (auto &MAC : MACCandidates) {
|
|
LLVM_DEBUG(dbgs() << "mul: "; MAC->Root->dump());
|
|
|
|
// At the moment, we allow only simple chains that only consist of reads,
|
|
// accumulate their result with an integer add, and thus that don't write
|
|
// memory, and simply bail if they do.
|
|
if (!MAC->ReadOnly)
|
|
return true;
|
|
|
|
// Now for all writes in the basic block, check that they don't alias with
|
|
// the memory locations accessed by our MAC-chain:
|
|
for (auto *I : Writes) {
|
|
LLVM_DEBUG(dbgs() << "- "; I->dump());
|
|
assert(MAC->MemLocs.size() >= 2 && "expecting at least 2 memlocs");
|
|
for (auto &MemLoc : MAC->MemLocs) {
|
|
if (isModOrRefSet(intersectModRef(AA->getModRefInfo(I, MemLoc),
|
|
ModRefInfo::ModRef))) {
|
|
LLVM_DEBUG(dbgs() << "Yes, aliases found\n");
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "OK: no aliases found!\n");
|
|
return false;
|
|
}
|
|
|
|
static bool CheckMACMemory(OpChainList &Candidates) {
|
|
for (auto &C : Candidates) {
|
|
// A mul has 2 operands, and a narrow op consist of sext and a load; thus
|
|
// we expect at least 4 items in this operand value list.
|
|
if (C->size() < 4) {
|
|
LLVM_DEBUG(dbgs() << "Operand list too short.\n");
|
|
return false;
|
|
}
|
|
C->SetMemoryLocations();
|
|
ValueList &LHS = static_cast<BinOpChain*>(C.get())->LHS;
|
|
ValueList &RHS = static_cast<BinOpChain*>(C.get())->RHS;
|
|
|
|
// Use +=2 to skip over the expected extend instructions.
|
|
for (unsigned i = 0, e = LHS.size(); i < e; i += 2) {
|
|
if (!isa<LoadInst>(LHS[i]) || !isa<LoadInst>(RHS[i]))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Loop Pass that needs to identify integer add/sub reductions of 16-bit vector
|
|
// multiplications.
|
|
// To use SMLAD:
|
|
// 1) we first need to find integer add reduction PHIs,
|
|
// 2) then from the PHI, look for this pattern:
|
|
//
|
|
// acc0 = phi i32 [0, %entry], [%acc1, %loop.body]
|
|
// ld0 = load i16
|
|
// sext0 = sext i16 %ld0 to i32
|
|
// ld1 = load i16
|
|
// sext1 = sext i16 %ld1 to i32
|
|
// mul0 = mul %sext0, %sext1
|
|
// ld2 = load i16
|
|
// sext2 = sext i16 %ld2 to i32
|
|
// ld3 = load i16
|
|
// sext3 = sext i16 %ld3 to i32
|
|
// mul1 = mul i32 %sext2, %sext3
|
|
// add0 = add i32 %mul0, %acc0
|
|
// acc1 = add i32 %add0, %mul1
|
|
//
|
|
// Which can be selected to:
|
|
//
|
|
// ldr.h r0
|
|
// ldr.h r1
|
|
// smlad r2, r0, r1, r2
|
|
//
|
|
// If constants are used instead of loads, these will need to be hoisted
|
|
// out and into a register.
|
|
//
|
|
// If loop invariants are used instead of loads, these need to be packed
|
|
// before the loop begins.
|
|
//
|
|
bool ARMParallelDSP::MatchSMLAD(Function &F) {
|
|
BasicBlock *Header = L->getHeader();
|
|
LLVM_DEBUG(dbgs() << "= Matching SMLAD =\n";
|
|
dbgs() << "Header block:\n"; Header->dump();
|
|
dbgs() << "Loop info:\n\n"; L->dump());
|
|
|
|
bool Changed = false;
|
|
ReductionList Reductions;
|
|
MatchReductions(F, L, Header, Reductions);
|
|
|
|
for (auto &R : Reductions) {
|
|
OpChainList MACCandidates;
|
|
MatchParallelMACSequences(R, MACCandidates);
|
|
if (!CheckMACMemory(MACCandidates))
|
|
continue;
|
|
|
|
R.MACCandidates = std::move(MACCandidates);
|
|
|
|
LLVM_DEBUG(dbgs() << "MAC candidates:\n";
|
|
for (auto &M : R.MACCandidates)
|
|
M->Root->dump();
|
|
dbgs() << "\n";);
|
|
}
|
|
|
|
// Collect all instructions that may read or write memory. Our alias
|
|
// analysis checks bail out if any of these instructions aliases with an
|
|
// instruction from the MAC-chain.
|
|
Instructions Reads, Writes;
|
|
AliasCandidates(Header, Reads, Writes);
|
|
|
|
for (auto &R : Reductions) {
|
|
if (AreAliased(AA, Reads, Writes, R.MACCandidates))
|
|
return false;
|
|
PMACPairList PMACPairs = CreateParallelMACPairs(R.MACCandidates);
|
|
Changed |= InsertParallelMACs(R, PMACPairs);
|
|
}
|
|
|
|
LLVM_DEBUG(if (Changed) dbgs() << "Header block:\n"; Header->dump(););
|
|
return Changed;
|
|
}
|
|
|
|
static void CreateLoadIns(IRBuilder<NoFolder> &IRB, Instruction *Acc,
|
|
LoadInst **VecLd) {
|
|
const Type *AccTy = Acc->getType();
|
|
const unsigned AddrSpace = (*VecLd)->getPointerAddressSpace();
|
|
|
|
Value *VecPtr = IRB.CreateBitCast((*VecLd)->getPointerOperand(),
|
|
AccTy->getPointerTo(AddrSpace));
|
|
*VecLd = IRB.CreateAlignedLoad(VecPtr, (*VecLd)->getAlignment());
|
|
}
|
|
|
|
Instruction *ARMParallelDSP::CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1,
|
|
Instruction *Acc,
|
|
Instruction *InsertAfter) {
|
|
LLVM_DEBUG(dbgs() << "Create SMLAD intrinsic using:\n";
|
|
dbgs() << "- "; VecLd0->dump();
|
|
dbgs() << "- "; VecLd1->dump();
|
|
dbgs() << "- "; Acc->dump());
|
|
|
|
IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
|
|
++BasicBlock::iterator(InsertAfter));
|
|
|
|
// Replace the reduction chain with an intrinsic call
|
|
CreateLoadIns(Builder, Acc, &VecLd0);
|
|
CreateLoadIns(Builder, Acc, &VecLd1);
|
|
Value* Args[] = { VecLd0, VecLd1, Acc };
|
|
Function *SMLAD = Intrinsic::getDeclaration(M, Intrinsic::arm_smlad);
|
|
CallInst *Call = Builder.CreateCall(SMLAD, Args);
|
|
NumSMLAD++;
|
|
return Call;
|
|
}
|
|
|
|
Pass *llvm::createARMParallelDSPPass() {
|
|
return new ARMParallelDSP();
|
|
}
|
|
|
|
char ARMParallelDSP::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp",
|
|
"Transform loops to use DSP intrinsics", false, false)
|
|
INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp",
|
|
"Transform loops to use DSP intrinsics", false, false)
|