forked from OSchip/llvm-project
567 lines
20 KiB
C
567 lines
20 KiB
C
#include "blake3_impl.h"
|
|
|
|
#include <immintrin.h>
|
|
|
|
#define DEGREE 4
|
|
|
|
#define _mm_shuffle_ps2(a, b, c) \
|
|
(_mm_castps_si128( \
|
|
_mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b), (c))))
|
|
|
|
INLINE __m128i loadu(const uint8_t src[16]) {
|
|
return _mm_loadu_si128((const __m128i *)src);
|
|
}
|
|
|
|
INLINE void storeu(__m128i src, uint8_t dest[16]) {
|
|
_mm_storeu_si128((__m128i *)dest, src);
|
|
}
|
|
|
|
INLINE __m128i addv(__m128i a, __m128i b) { return _mm_add_epi32(a, b); }
|
|
|
|
// Note that clang-format doesn't like the name "xor" for some reason.
|
|
INLINE __m128i xorv(__m128i a, __m128i b) { return _mm_xor_si128(a, b); }
|
|
|
|
INLINE __m128i set1(uint32_t x) { return _mm_set1_epi32((int32_t)x); }
|
|
|
|
INLINE __m128i set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
|
|
return _mm_setr_epi32((int32_t)a, (int32_t)b, (int32_t)c, (int32_t)d);
|
|
}
|
|
|
|
INLINE __m128i rot16(__m128i x) {
|
|
return _mm_shufflehi_epi16(_mm_shufflelo_epi16(x, 0xB1), 0xB1);
|
|
}
|
|
|
|
INLINE __m128i rot12(__m128i x) {
|
|
return xorv(_mm_srli_epi32(x, 12), _mm_slli_epi32(x, 32 - 12));
|
|
}
|
|
|
|
INLINE __m128i rot8(__m128i x) {
|
|
return xorv(_mm_srli_epi32(x, 8), _mm_slli_epi32(x, 32 - 8));
|
|
}
|
|
|
|
INLINE __m128i rot7(__m128i x) {
|
|
return xorv(_mm_srli_epi32(x, 7), _mm_slli_epi32(x, 32 - 7));
|
|
}
|
|
|
|
INLINE void g1(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
|
|
__m128i m) {
|
|
*row0 = addv(addv(*row0, m), *row1);
|
|
*row3 = xorv(*row3, *row0);
|
|
*row3 = rot16(*row3);
|
|
*row2 = addv(*row2, *row3);
|
|
*row1 = xorv(*row1, *row2);
|
|
*row1 = rot12(*row1);
|
|
}
|
|
|
|
INLINE void g2(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
|
|
__m128i m) {
|
|
*row0 = addv(addv(*row0, m), *row1);
|
|
*row3 = xorv(*row3, *row0);
|
|
*row3 = rot8(*row3);
|
|
*row2 = addv(*row2, *row3);
|
|
*row1 = xorv(*row1, *row2);
|
|
*row1 = rot7(*row1);
|
|
}
|
|
|
|
// Note the optimization here of leaving row1 as the unrotated row, rather than
|
|
// row0. All the message loads below are adjusted to compensate for this. See
|
|
// discussion at https://github.com/sneves/blake2-avx2/pull/4
|
|
INLINE void diagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
|
|
*row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(2, 1, 0, 3));
|
|
*row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
|
|
*row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(0, 3, 2, 1));
|
|
}
|
|
|
|
INLINE void undiagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
|
|
*row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(0, 3, 2, 1));
|
|
*row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
|
|
*row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(2, 1, 0, 3));
|
|
}
|
|
|
|
INLINE __m128i blend_epi16(__m128i a, __m128i b, const int16_t imm8) {
|
|
const __m128i bits = _mm_set_epi16(0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01);
|
|
__m128i mask = _mm_set1_epi16(imm8);
|
|
mask = _mm_and_si128(mask, bits);
|
|
mask = _mm_cmpeq_epi16(mask, bits);
|
|
return _mm_or_si128(_mm_and_si128(mask, b), _mm_andnot_si128(mask, a));
|
|
}
|
|
|
|
INLINE void compress_pre(__m128i rows[4], const uint32_t cv[8],
|
|
const uint8_t block[BLAKE3_BLOCK_LEN],
|
|
uint8_t block_len, uint64_t counter, uint8_t flags) {
|
|
rows[0] = loadu((uint8_t *)&cv[0]);
|
|
rows[1] = loadu((uint8_t *)&cv[4]);
|
|
rows[2] = set4(IV[0], IV[1], IV[2], IV[3]);
|
|
rows[3] = set4(counter_low(counter), counter_high(counter),
|
|
(uint32_t)block_len, (uint32_t)flags);
|
|
|
|
__m128i m0 = loadu(&block[sizeof(__m128i) * 0]);
|
|
__m128i m1 = loadu(&block[sizeof(__m128i) * 1]);
|
|
__m128i m2 = loadu(&block[sizeof(__m128i) * 2]);
|
|
__m128i m3 = loadu(&block[sizeof(__m128i) * 3]);
|
|
|
|
__m128i t0, t1, t2, t3, tt;
|
|
|
|
// Round 1. The first round permutes the message words from the original
|
|
// input order, into the groups that get mixed in parallel.
|
|
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(2, 0, 2, 0)); // 6 4 2 0
|
|
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
|
|
t1 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 3, 1)); // 7 5 3 1
|
|
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
|
|
diagonalize(&rows[0], &rows[2], &rows[3]);
|
|
t2 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(2, 0, 2, 0)); // 14 12 10 8
|
|
t2 = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 1, 0, 3)); // 12 10 8 14
|
|
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
|
|
t3 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 1, 3, 1)); // 15 13 11 9
|
|
t3 = _mm_shuffle_epi32(t3, _MM_SHUFFLE(2, 1, 0, 3)); // 13 11 9 15
|
|
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
|
|
undiagonalize(&rows[0], &rows[2], &rows[3]);
|
|
m0 = t0;
|
|
m1 = t1;
|
|
m2 = t2;
|
|
m3 = t3;
|
|
|
|
// Round 2. This round and all following rounds apply a fixed permutation
|
|
// to the message words from the round before.
|
|
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
|
|
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
|
|
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
|
|
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
|
|
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
|
|
t1 = blend_epi16(tt, t1, 0xCC);
|
|
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
|
|
diagonalize(&rows[0], &rows[2], &rows[3]);
|
|
t2 = _mm_unpacklo_epi64(m3, m1);
|
|
tt = blend_epi16(t2, m2, 0xC0);
|
|
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
|
|
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
|
|
t3 = _mm_unpackhi_epi32(m1, m3);
|
|
tt = _mm_unpacklo_epi32(m2, t3);
|
|
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
|
|
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
|
|
undiagonalize(&rows[0], &rows[2], &rows[3]);
|
|
m0 = t0;
|
|
m1 = t1;
|
|
m2 = t2;
|
|
m3 = t3;
|
|
|
|
// Round 3
|
|
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
|
|
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
|
|
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
|
|
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
|
|
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
|
|
t1 = blend_epi16(tt, t1, 0xCC);
|
|
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
|
|
diagonalize(&rows[0], &rows[2], &rows[3]);
|
|
t2 = _mm_unpacklo_epi64(m3, m1);
|
|
tt = blend_epi16(t2, m2, 0xC0);
|
|
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
|
|
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
|
|
t3 = _mm_unpackhi_epi32(m1, m3);
|
|
tt = _mm_unpacklo_epi32(m2, t3);
|
|
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
|
|
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
|
|
undiagonalize(&rows[0], &rows[2], &rows[3]);
|
|
m0 = t0;
|
|
m1 = t1;
|
|
m2 = t2;
|
|
m3 = t3;
|
|
|
|
// Round 4
|
|
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
|
|
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
|
|
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
|
|
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
|
|
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
|
|
t1 = blend_epi16(tt, t1, 0xCC);
|
|
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
|
|
diagonalize(&rows[0], &rows[2], &rows[3]);
|
|
t2 = _mm_unpacklo_epi64(m3, m1);
|
|
tt = blend_epi16(t2, m2, 0xC0);
|
|
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
|
|
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
|
|
t3 = _mm_unpackhi_epi32(m1, m3);
|
|
tt = _mm_unpacklo_epi32(m2, t3);
|
|
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
|
|
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
|
|
undiagonalize(&rows[0], &rows[2], &rows[3]);
|
|
m0 = t0;
|
|
m1 = t1;
|
|
m2 = t2;
|
|
m3 = t3;
|
|
|
|
// Round 5
|
|
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
|
|
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
|
|
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
|
|
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
|
|
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
|
|
t1 = blend_epi16(tt, t1, 0xCC);
|
|
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
|
|
diagonalize(&rows[0], &rows[2], &rows[3]);
|
|
t2 = _mm_unpacklo_epi64(m3, m1);
|
|
tt = blend_epi16(t2, m2, 0xC0);
|
|
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
|
|
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
|
|
t3 = _mm_unpackhi_epi32(m1, m3);
|
|
tt = _mm_unpacklo_epi32(m2, t3);
|
|
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
|
|
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
|
|
undiagonalize(&rows[0], &rows[2], &rows[3]);
|
|
m0 = t0;
|
|
m1 = t1;
|
|
m2 = t2;
|
|
m3 = t3;
|
|
|
|
// Round 6
|
|
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
|
|
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
|
|
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
|
|
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
|
|
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
|
|
t1 = blend_epi16(tt, t1, 0xCC);
|
|
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
|
|
diagonalize(&rows[0], &rows[2], &rows[3]);
|
|
t2 = _mm_unpacklo_epi64(m3, m1);
|
|
tt = blend_epi16(t2, m2, 0xC0);
|
|
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
|
|
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
|
|
t3 = _mm_unpackhi_epi32(m1, m3);
|
|
tt = _mm_unpacklo_epi32(m2, t3);
|
|
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
|
|
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
|
|
undiagonalize(&rows[0], &rows[2], &rows[3]);
|
|
m0 = t0;
|
|
m1 = t1;
|
|
m2 = t2;
|
|
m3 = t3;
|
|
|
|
// Round 7
|
|
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
|
|
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
|
|
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
|
|
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
|
|
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
|
|
t1 = blend_epi16(tt, t1, 0xCC);
|
|
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
|
|
diagonalize(&rows[0], &rows[2], &rows[3]);
|
|
t2 = _mm_unpacklo_epi64(m3, m1);
|
|
tt = blend_epi16(t2, m2, 0xC0);
|
|
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
|
|
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
|
|
t3 = _mm_unpackhi_epi32(m1, m3);
|
|
tt = _mm_unpacklo_epi32(m2, t3);
|
|
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
|
|
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
|
|
undiagonalize(&rows[0], &rows[2], &rows[3]);
|
|
}
|
|
|
|
void blake3_compress_in_place_sse2(uint32_t cv[8],
|
|
const uint8_t block[BLAKE3_BLOCK_LEN],
|
|
uint8_t block_len, uint64_t counter,
|
|
uint8_t flags) {
|
|
__m128i rows[4];
|
|
compress_pre(rows, cv, block, block_len, counter, flags);
|
|
storeu(xorv(rows[0], rows[2]), (uint8_t *)&cv[0]);
|
|
storeu(xorv(rows[1], rows[3]), (uint8_t *)&cv[4]);
|
|
}
|
|
|
|
void blake3_compress_xof_sse2(const uint32_t cv[8],
|
|
const uint8_t block[BLAKE3_BLOCK_LEN],
|
|
uint8_t block_len, uint64_t counter,
|
|
uint8_t flags, uint8_t out[64]) {
|
|
__m128i rows[4];
|
|
compress_pre(rows, cv, block, block_len, counter, flags);
|
|
storeu(xorv(rows[0], rows[2]), &out[0]);
|
|
storeu(xorv(rows[1], rows[3]), &out[16]);
|
|
storeu(xorv(rows[2], loadu((uint8_t *)&cv[0])), &out[32]);
|
|
storeu(xorv(rows[3], loadu((uint8_t *)&cv[4])), &out[48]);
|
|
}
|
|
|
|
INLINE void round_fn(__m128i v[16], __m128i m[16], size_t r) {
|
|
v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
|
|
v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
|
|
v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
|
|
v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
|
|
v[0] = addv(v[0], v[4]);
|
|
v[1] = addv(v[1], v[5]);
|
|
v[2] = addv(v[2], v[6]);
|
|
v[3] = addv(v[3], v[7]);
|
|
v[12] = xorv(v[12], v[0]);
|
|
v[13] = xorv(v[13], v[1]);
|
|
v[14] = xorv(v[14], v[2]);
|
|
v[15] = xorv(v[15], v[3]);
|
|
v[12] = rot16(v[12]);
|
|
v[13] = rot16(v[13]);
|
|
v[14] = rot16(v[14]);
|
|
v[15] = rot16(v[15]);
|
|
v[8] = addv(v[8], v[12]);
|
|
v[9] = addv(v[9], v[13]);
|
|
v[10] = addv(v[10], v[14]);
|
|
v[11] = addv(v[11], v[15]);
|
|
v[4] = xorv(v[4], v[8]);
|
|
v[5] = xorv(v[5], v[9]);
|
|
v[6] = xorv(v[6], v[10]);
|
|
v[7] = xorv(v[7], v[11]);
|
|
v[4] = rot12(v[4]);
|
|
v[5] = rot12(v[5]);
|
|
v[6] = rot12(v[6]);
|
|
v[7] = rot12(v[7]);
|
|
v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
|
|
v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
|
|
v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
|
|
v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
|
|
v[0] = addv(v[0], v[4]);
|
|
v[1] = addv(v[1], v[5]);
|
|
v[2] = addv(v[2], v[6]);
|
|
v[3] = addv(v[3], v[7]);
|
|
v[12] = xorv(v[12], v[0]);
|
|
v[13] = xorv(v[13], v[1]);
|
|
v[14] = xorv(v[14], v[2]);
|
|
v[15] = xorv(v[15], v[3]);
|
|
v[12] = rot8(v[12]);
|
|
v[13] = rot8(v[13]);
|
|
v[14] = rot8(v[14]);
|
|
v[15] = rot8(v[15]);
|
|
v[8] = addv(v[8], v[12]);
|
|
v[9] = addv(v[9], v[13]);
|
|
v[10] = addv(v[10], v[14]);
|
|
v[11] = addv(v[11], v[15]);
|
|
v[4] = xorv(v[4], v[8]);
|
|
v[5] = xorv(v[5], v[9]);
|
|
v[6] = xorv(v[6], v[10]);
|
|
v[7] = xorv(v[7], v[11]);
|
|
v[4] = rot7(v[4]);
|
|
v[5] = rot7(v[5]);
|
|
v[6] = rot7(v[6]);
|
|
v[7] = rot7(v[7]);
|
|
|
|
v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
|
|
v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
|
|
v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
|
|
v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
|
|
v[0] = addv(v[0], v[5]);
|
|
v[1] = addv(v[1], v[6]);
|
|
v[2] = addv(v[2], v[7]);
|
|
v[3] = addv(v[3], v[4]);
|
|
v[15] = xorv(v[15], v[0]);
|
|
v[12] = xorv(v[12], v[1]);
|
|
v[13] = xorv(v[13], v[2]);
|
|
v[14] = xorv(v[14], v[3]);
|
|
v[15] = rot16(v[15]);
|
|
v[12] = rot16(v[12]);
|
|
v[13] = rot16(v[13]);
|
|
v[14] = rot16(v[14]);
|
|
v[10] = addv(v[10], v[15]);
|
|
v[11] = addv(v[11], v[12]);
|
|
v[8] = addv(v[8], v[13]);
|
|
v[9] = addv(v[9], v[14]);
|
|
v[5] = xorv(v[5], v[10]);
|
|
v[6] = xorv(v[6], v[11]);
|
|
v[7] = xorv(v[7], v[8]);
|
|
v[4] = xorv(v[4], v[9]);
|
|
v[5] = rot12(v[5]);
|
|
v[6] = rot12(v[6]);
|
|
v[7] = rot12(v[7]);
|
|
v[4] = rot12(v[4]);
|
|
v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
|
|
v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
|
|
v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
|
|
v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
|
|
v[0] = addv(v[0], v[5]);
|
|
v[1] = addv(v[1], v[6]);
|
|
v[2] = addv(v[2], v[7]);
|
|
v[3] = addv(v[3], v[4]);
|
|
v[15] = xorv(v[15], v[0]);
|
|
v[12] = xorv(v[12], v[1]);
|
|
v[13] = xorv(v[13], v[2]);
|
|
v[14] = xorv(v[14], v[3]);
|
|
v[15] = rot8(v[15]);
|
|
v[12] = rot8(v[12]);
|
|
v[13] = rot8(v[13]);
|
|
v[14] = rot8(v[14]);
|
|
v[10] = addv(v[10], v[15]);
|
|
v[11] = addv(v[11], v[12]);
|
|
v[8] = addv(v[8], v[13]);
|
|
v[9] = addv(v[9], v[14]);
|
|
v[5] = xorv(v[5], v[10]);
|
|
v[6] = xorv(v[6], v[11]);
|
|
v[7] = xorv(v[7], v[8]);
|
|
v[4] = xorv(v[4], v[9]);
|
|
v[5] = rot7(v[5]);
|
|
v[6] = rot7(v[6]);
|
|
v[7] = rot7(v[7]);
|
|
v[4] = rot7(v[4]);
|
|
}
|
|
|
|
INLINE void transpose_vecs(__m128i vecs[DEGREE]) {
|
|
// Interleave 32-bit lates. The low unpack is lanes 00/11 and the high is
|
|
// 22/33. Note that this doesn't split the vector into two lanes, as the
|
|
// AVX2 counterparts do.
|
|
__m128i ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]);
|
|
__m128i ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]);
|
|
__m128i cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]);
|
|
__m128i cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]);
|
|
|
|
// Interleave 64-bit lanes.
|
|
__m128i abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01);
|
|
__m128i abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01);
|
|
__m128i abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23);
|
|
__m128i abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23);
|
|
|
|
vecs[0] = abcd_0;
|
|
vecs[1] = abcd_1;
|
|
vecs[2] = abcd_2;
|
|
vecs[3] = abcd_3;
|
|
}
|
|
|
|
INLINE void transpose_msg_vecs(const uint8_t *const *inputs,
|
|
size_t block_offset, __m128i out[16]) {
|
|
out[0] = loadu(&inputs[0][block_offset + 0 * sizeof(__m128i)]);
|
|
out[1] = loadu(&inputs[1][block_offset + 0 * sizeof(__m128i)]);
|
|
out[2] = loadu(&inputs[2][block_offset + 0 * sizeof(__m128i)]);
|
|
out[3] = loadu(&inputs[3][block_offset + 0 * sizeof(__m128i)]);
|
|
out[4] = loadu(&inputs[0][block_offset + 1 * sizeof(__m128i)]);
|
|
out[5] = loadu(&inputs[1][block_offset + 1 * sizeof(__m128i)]);
|
|
out[6] = loadu(&inputs[2][block_offset + 1 * sizeof(__m128i)]);
|
|
out[7] = loadu(&inputs[3][block_offset + 1 * sizeof(__m128i)]);
|
|
out[8] = loadu(&inputs[0][block_offset + 2 * sizeof(__m128i)]);
|
|
out[9] = loadu(&inputs[1][block_offset + 2 * sizeof(__m128i)]);
|
|
out[10] = loadu(&inputs[2][block_offset + 2 * sizeof(__m128i)]);
|
|
out[11] = loadu(&inputs[3][block_offset + 2 * sizeof(__m128i)]);
|
|
out[12] = loadu(&inputs[0][block_offset + 3 * sizeof(__m128i)]);
|
|
out[13] = loadu(&inputs[1][block_offset + 3 * sizeof(__m128i)]);
|
|
out[14] = loadu(&inputs[2][block_offset + 3 * sizeof(__m128i)]);
|
|
out[15] = loadu(&inputs[3][block_offset + 3 * sizeof(__m128i)]);
|
|
for (size_t i = 0; i < 4; ++i) {
|
|
_mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0);
|
|
}
|
|
transpose_vecs(&out[0]);
|
|
transpose_vecs(&out[4]);
|
|
transpose_vecs(&out[8]);
|
|
transpose_vecs(&out[12]);
|
|
}
|
|
|
|
INLINE void load_counters(uint64_t counter, bool increment_counter,
|
|
__m128i *out_lo, __m128i *out_hi) {
|
|
const __m128i mask = _mm_set1_epi32(-(int32_t)increment_counter);
|
|
const __m128i add0 = _mm_set_epi32(3, 2, 1, 0);
|
|
const __m128i add1 = _mm_and_si128(mask, add0);
|
|
__m128i l = _mm_add_epi32(_mm_set1_epi32((int32_t)counter), add1);
|
|
__m128i carry = _mm_cmpgt_epi32(_mm_xor_si128(add1, _mm_set1_epi32(0x80000000)),
|
|
_mm_xor_si128( l, _mm_set1_epi32(0x80000000)));
|
|
__m128i h = _mm_sub_epi32(_mm_set1_epi32((int32_t)(counter >> 32)), carry);
|
|
*out_lo = l;
|
|
*out_hi = h;
|
|
}
|
|
|
|
static
|
|
void blake3_hash4_sse2(const uint8_t *const *inputs, size_t blocks,
|
|
const uint32_t key[8], uint64_t counter,
|
|
bool increment_counter, uint8_t flags,
|
|
uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
|
|
__m128i h_vecs[8] = {
|
|
set1(key[0]), set1(key[1]), set1(key[2]), set1(key[3]),
|
|
set1(key[4]), set1(key[5]), set1(key[6]), set1(key[7]),
|
|
};
|
|
__m128i counter_low_vec, counter_high_vec;
|
|
load_counters(counter, increment_counter, &counter_low_vec,
|
|
&counter_high_vec);
|
|
uint8_t block_flags = flags | flags_start;
|
|
|
|
for (size_t block = 0; block < blocks; block++) {
|
|
if (block + 1 == blocks) {
|
|
block_flags |= flags_end;
|
|
}
|
|
__m128i block_len_vec = set1(BLAKE3_BLOCK_LEN);
|
|
__m128i block_flags_vec = set1(block_flags);
|
|
__m128i msg_vecs[16];
|
|
transpose_msg_vecs(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
|
|
|
|
__m128i v[16] = {
|
|
h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
|
|
h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
|
|
set1(IV[0]), set1(IV[1]), set1(IV[2]), set1(IV[3]),
|
|
counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
|
|
};
|
|
round_fn(v, msg_vecs, 0);
|
|
round_fn(v, msg_vecs, 1);
|
|
round_fn(v, msg_vecs, 2);
|
|
round_fn(v, msg_vecs, 3);
|
|
round_fn(v, msg_vecs, 4);
|
|
round_fn(v, msg_vecs, 5);
|
|
round_fn(v, msg_vecs, 6);
|
|
h_vecs[0] = xorv(v[0], v[8]);
|
|
h_vecs[1] = xorv(v[1], v[9]);
|
|
h_vecs[2] = xorv(v[2], v[10]);
|
|
h_vecs[3] = xorv(v[3], v[11]);
|
|
h_vecs[4] = xorv(v[4], v[12]);
|
|
h_vecs[5] = xorv(v[5], v[13]);
|
|
h_vecs[6] = xorv(v[6], v[14]);
|
|
h_vecs[7] = xorv(v[7], v[15]);
|
|
|
|
block_flags = flags;
|
|
}
|
|
|
|
transpose_vecs(&h_vecs[0]);
|
|
transpose_vecs(&h_vecs[4]);
|
|
// The first four vecs now contain the first half of each output, and the
|
|
// second four vecs contain the second half of each output.
|
|
storeu(h_vecs[0], &out[0 * sizeof(__m128i)]);
|
|
storeu(h_vecs[4], &out[1 * sizeof(__m128i)]);
|
|
storeu(h_vecs[1], &out[2 * sizeof(__m128i)]);
|
|
storeu(h_vecs[5], &out[3 * sizeof(__m128i)]);
|
|
storeu(h_vecs[2], &out[4 * sizeof(__m128i)]);
|
|
storeu(h_vecs[6], &out[5 * sizeof(__m128i)]);
|
|
storeu(h_vecs[3], &out[6 * sizeof(__m128i)]);
|
|
storeu(h_vecs[7], &out[7 * sizeof(__m128i)]);
|
|
}
|
|
|
|
INLINE void hash_one_sse2(const uint8_t *input, size_t blocks,
|
|
const uint32_t key[8], uint64_t counter,
|
|
uint8_t flags, uint8_t flags_start,
|
|
uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN]) {
|
|
uint32_t cv[8];
|
|
memcpy(cv, key, BLAKE3_KEY_LEN);
|
|
uint8_t block_flags = flags | flags_start;
|
|
while (blocks > 0) {
|
|
if (blocks == 1) {
|
|
block_flags |= flags_end;
|
|
}
|
|
blake3_compress_in_place_sse2(cv, input, BLAKE3_BLOCK_LEN, counter,
|
|
block_flags);
|
|
input = &input[BLAKE3_BLOCK_LEN];
|
|
blocks -= 1;
|
|
block_flags = flags;
|
|
}
|
|
memcpy(out, cv, BLAKE3_OUT_LEN);
|
|
}
|
|
|
|
void blake3_hash_many_sse2(const uint8_t *const *inputs, size_t num_inputs,
|
|
size_t blocks, const uint32_t key[8],
|
|
uint64_t counter, bool increment_counter,
|
|
uint8_t flags, uint8_t flags_start,
|
|
uint8_t flags_end, uint8_t *out) {
|
|
while (num_inputs >= DEGREE) {
|
|
blake3_hash4_sse2(inputs, blocks, key, counter, increment_counter, flags,
|
|
flags_start, flags_end, out);
|
|
if (increment_counter) {
|
|
counter += DEGREE;
|
|
}
|
|
inputs += DEGREE;
|
|
num_inputs -= DEGREE;
|
|
out = &out[DEGREE * BLAKE3_OUT_LEN];
|
|
}
|
|
while (num_inputs > 0) {
|
|
hash_one_sse2(inputs[0], blocks, key, counter, flags, flags_start,
|
|
flags_end, out);
|
|
if (increment_counter) {
|
|
counter += 1;
|
|
}
|
|
inputs += 1;
|
|
num_inputs -= 1;
|
|
out = &out[BLAKE3_OUT_LEN];
|
|
}
|
|
}
|