forked from OSchip/llvm-project
353 lines
13 KiB
C
353 lines
13 KiB
C
#include "blake3_impl.h"
|
|
|
|
#include <arm_neon.h>
|
|
|
|
#ifdef __ARM_BIG_ENDIAN
|
|
#error "This implementation only supports little-endian ARM."
|
|
// It might be that all we need for big-endian support here is to get the loads
|
|
// and stores right, but step zero would be finding a way to test it in CI.
|
|
#endif
|
|
|
|
INLINE uint32x4_t loadu_128(const uint8_t src[16]) {
|
|
// vld1q_u32 has alignment requirements. Don't use it.
|
|
uint32x4_t x;
|
|
memcpy(&x, src, 16);
|
|
return x;
|
|
}
|
|
|
|
INLINE void storeu_128(uint32x4_t src, uint8_t dest[16]) {
|
|
// vst1q_u32 has alignment requirements. Don't use it.
|
|
memcpy(dest, &src, 16);
|
|
}
|
|
|
|
INLINE uint32x4_t add_128(uint32x4_t a, uint32x4_t b) {
|
|
return vaddq_u32(a, b);
|
|
}
|
|
|
|
INLINE uint32x4_t xor_128(uint32x4_t a, uint32x4_t b) {
|
|
return veorq_u32(a, b);
|
|
}
|
|
|
|
INLINE uint32x4_t set1_128(uint32_t x) { return vld1q_dup_u32(&x); }
|
|
|
|
INLINE uint32x4_t set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
|
|
uint32_t array[4] = {a, b, c, d};
|
|
return vld1q_u32(array);
|
|
}
|
|
|
|
INLINE uint32x4_t rot16_128(uint32x4_t x) {
|
|
return vorrq_u32(vshrq_n_u32(x, 16), vshlq_n_u32(x, 32 - 16));
|
|
}
|
|
|
|
INLINE uint32x4_t rot12_128(uint32x4_t x) {
|
|
return vorrq_u32(vshrq_n_u32(x, 12), vshlq_n_u32(x, 32 - 12));
|
|
}
|
|
|
|
INLINE uint32x4_t rot8_128(uint32x4_t x) {
|
|
return vorrq_u32(vshrq_n_u32(x, 8), vshlq_n_u32(x, 32 - 8));
|
|
}
|
|
|
|
INLINE uint32x4_t rot7_128(uint32x4_t x) {
|
|
return vorrq_u32(vshrq_n_u32(x, 7), vshlq_n_u32(x, 32 - 7));
|
|
}
|
|
|
|
// TODO: compress_neon
|
|
|
|
// TODO: hash2_neon
|
|
|
|
/*
|
|
* ----------------------------------------------------------------------------
|
|
* hash4_neon
|
|
* ----------------------------------------------------------------------------
|
|
*/
|
|
|
|
INLINE void round_fn4(uint32x4_t v[16], uint32x4_t m[16], size_t r) {
|
|
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
|
|
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
|
|
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
|
|
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
|
|
v[0] = add_128(v[0], v[4]);
|
|
v[1] = add_128(v[1], v[5]);
|
|
v[2] = add_128(v[2], v[6]);
|
|
v[3] = add_128(v[3], v[7]);
|
|
v[12] = xor_128(v[12], v[0]);
|
|
v[13] = xor_128(v[13], v[1]);
|
|
v[14] = xor_128(v[14], v[2]);
|
|
v[15] = xor_128(v[15], v[3]);
|
|
v[12] = rot16_128(v[12]);
|
|
v[13] = rot16_128(v[13]);
|
|
v[14] = rot16_128(v[14]);
|
|
v[15] = rot16_128(v[15]);
|
|
v[8] = add_128(v[8], v[12]);
|
|
v[9] = add_128(v[9], v[13]);
|
|
v[10] = add_128(v[10], v[14]);
|
|
v[11] = add_128(v[11], v[15]);
|
|
v[4] = xor_128(v[4], v[8]);
|
|
v[5] = xor_128(v[5], v[9]);
|
|
v[6] = xor_128(v[6], v[10]);
|
|
v[7] = xor_128(v[7], v[11]);
|
|
v[4] = rot12_128(v[4]);
|
|
v[5] = rot12_128(v[5]);
|
|
v[6] = rot12_128(v[6]);
|
|
v[7] = rot12_128(v[7]);
|
|
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
|
|
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
|
|
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
|
|
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
|
|
v[0] = add_128(v[0], v[4]);
|
|
v[1] = add_128(v[1], v[5]);
|
|
v[2] = add_128(v[2], v[6]);
|
|
v[3] = add_128(v[3], v[7]);
|
|
v[12] = xor_128(v[12], v[0]);
|
|
v[13] = xor_128(v[13], v[1]);
|
|
v[14] = xor_128(v[14], v[2]);
|
|
v[15] = xor_128(v[15], v[3]);
|
|
v[12] = rot8_128(v[12]);
|
|
v[13] = rot8_128(v[13]);
|
|
v[14] = rot8_128(v[14]);
|
|
v[15] = rot8_128(v[15]);
|
|
v[8] = add_128(v[8], v[12]);
|
|
v[9] = add_128(v[9], v[13]);
|
|
v[10] = add_128(v[10], v[14]);
|
|
v[11] = add_128(v[11], v[15]);
|
|
v[4] = xor_128(v[4], v[8]);
|
|
v[5] = xor_128(v[5], v[9]);
|
|
v[6] = xor_128(v[6], v[10]);
|
|
v[7] = xor_128(v[7], v[11]);
|
|
v[4] = rot7_128(v[4]);
|
|
v[5] = rot7_128(v[5]);
|
|
v[6] = rot7_128(v[6]);
|
|
v[7] = rot7_128(v[7]);
|
|
|
|
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
|
|
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
|
|
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
|
|
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
|
|
v[0] = add_128(v[0], v[5]);
|
|
v[1] = add_128(v[1], v[6]);
|
|
v[2] = add_128(v[2], v[7]);
|
|
v[3] = add_128(v[3], v[4]);
|
|
v[15] = xor_128(v[15], v[0]);
|
|
v[12] = xor_128(v[12], v[1]);
|
|
v[13] = xor_128(v[13], v[2]);
|
|
v[14] = xor_128(v[14], v[3]);
|
|
v[15] = rot16_128(v[15]);
|
|
v[12] = rot16_128(v[12]);
|
|
v[13] = rot16_128(v[13]);
|
|
v[14] = rot16_128(v[14]);
|
|
v[10] = add_128(v[10], v[15]);
|
|
v[11] = add_128(v[11], v[12]);
|
|
v[8] = add_128(v[8], v[13]);
|
|
v[9] = add_128(v[9], v[14]);
|
|
v[5] = xor_128(v[5], v[10]);
|
|
v[6] = xor_128(v[6], v[11]);
|
|
v[7] = xor_128(v[7], v[8]);
|
|
v[4] = xor_128(v[4], v[9]);
|
|
v[5] = rot12_128(v[5]);
|
|
v[6] = rot12_128(v[6]);
|
|
v[7] = rot12_128(v[7]);
|
|
v[4] = rot12_128(v[4]);
|
|
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
|
|
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
|
|
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
|
|
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
|
|
v[0] = add_128(v[0], v[5]);
|
|
v[1] = add_128(v[1], v[6]);
|
|
v[2] = add_128(v[2], v[7]);
|
|
v[3] = add_128(v[3], v[4]);
|
|
v[15] = xor_128(v[15], v[0]);
|
|
v[12] = xor_128(v[12], v[1]);
|
|
v[13] = xor_128(v[13], v[2]);
|
|
v[14] = xor_128(v[14], v[3]);
|
|
v[15] = rot8_128(v[15]);
|
|
v[12] = rot8_128(v[12]);
|
|
v[13] = rot8_128(v[13]);
|
|
v[14] = rot8_128(v[14]);
|
|
v[10] = add_128(v[10], v[15]);
|
|
v[11] = add_128(v[11], v[12]);
|
|
v[8] = add_128(v[8], v[13]);
|
|
v[9] = add_128(v[9], v[14]);
|
|
v[5] = xor_128(v[5], v[10]);
|
|
v[6] = xor_128(v[6], v[11]);
|
|
v[7] = xor_128(v[7], v[8]);
|
|
v[4] = xor_128(v[4], v[9]);
|
|
v[5] = rot7_128(v[5]);
|
|
v[6] = rot7_128(v[6]);
|
|
v[7] = rot7_128(v[7]);
|
|
v[4] = rot7_128(v[4]);
|
|
}
|
|
|
|
INLINE void transpose_vecs_128(uint32x4_t vecs[4]) {
|
|
// Individually transpose the four 2x2 sub-matrices in each corner.
|
|
uint32x4x2_t rows01 = vtrnq_u32(vecs[0], vecs[1]);
|
|
uint32x4x2_t rows23 = vtrnq_u32(vecs[2], vecs[3]);
|
|
|
|
// Swap the top-right and bottom-left 2x2s (which just got transposed).
|
|
vecs[0] =
|
|
vcombine_u32(vget_low_u32(rows01.val[0]), vget_low_u32(rows23.val[0]));
|
|
vecs[1] =
|
|
vcombine_u32(vget_low_u32(rows01.val[1]), vget_low_u32(rows23.val[1]));
|
|
vecs[2] =
|
|
vcombine_u32(vget_high_u32(rows01.val[0]), vget_high_u32(rows23.val[0]));
|
|
vecs[3] =
|
|
vcombine_u32(vget_high_u32(rows01.val[1]), vget_high_u32(rows23.val[1]));
|
|
}
|
|
|
|
INLINE void transpose_msg_vecs4(const uint8_t *const *inputs,
|
|
size_t block_offset, uint32x4_t out[16]) {
|
|
out[0] = loadu_128(&inputs[0][block_offset + 0 * sizeof(uint32x4_t)]);
|
|
out[1] = loadu_128(&inputs[1][block_offset + 0 * sizeof(uint32x4_t)]);
|
|
out[2] = loadu_128(&inputs[2][block_offset + 0 * sizeof(uint32x4_t)]);
|
|
out[3] = loadu_128(&inputs[3][block_offset + 0 * sizeof(uint32x4_t)]);
|
|
out[4] = loadu_128(&inputs[0][block_offset + 1 * sizeof(uint32x4_t)]);
|
|
out[5] = loadu_128(&inputs[1][block_offset + 1 * sizeof(uint32x4_t)]);
|
|
out[6] = loadu_128(&inputs[2][block_offset + 1 * sizeof(uint32x4_t)]);
|
|
out[7] = loadu_128(&inputs[3][block_offset + 1 * sizeof(uint32x4_t)]);
|
|
out[8] = loadu_128(&inputs[0][block_offset + 2 * sizeof(uint32x4_t)]);
|
|
out[9] = loadu_128(&inputs[1][block_offset + 2 * sizeof(uint32x4_t)]);
|
|
out[10] = loadu_128(&inputs[2][block_offset + 2 * sizeof(uint32x4_t)]);
|
|
out[11] = loadu_128(&inputs[3][block_offset + 2 * sizeof(uint32x4_t)]);
|
|
out[12] = loadu_128(&inputs[0][block_offset + 3 * sizeof(uint32x4_t)]);
|
|
out[13] = loadu_128(&inputs[1][block_offset + 3 * sizeof(uint32x4_t)]);
|
|
out[14] = loadu_128(&inputs[2][block_offset + 3 * sizeof(uint32x4_t)]);
|
|
out[15] = loadu_128(&inputs[3][block_offset + 3 * sizeof(uint32x4_t)]);
|
|
transpose_vecs_128(&out[0]);
|
|
transpose_vecs_128(&out[4]);
|
|
transpose_vecs_128(&out[8]);
|
|
transpose_vecs_128(&out[12]);
|
|
}
|
|
|
|
INLINE void load_counters4(uint64_t counter, bool increment_counter,
|
|
uint32x4_t *out_low, uint32x4_t *out_high) {
|
|
uint64_t mask = (increment_counter ? ~0 : 0);
|
|
*out_low = set4(
|
|
counter_low(counter + (mask & 0)), counter_low(counter + (mask & 1)),
|
|
counter_low(counter + (mask & 2)), counter_low(counter + (mask & 3)));
|
|
*out_high = set4(
|
|
counter_high(counter + (mask & 0)), counter_high(counter + (mask & 1)),
|
|
counter_high(counter + (mask & 2)), counter_high(counter + (mask & 3)));
|
|
}
|
|
|
|
static
|
|
void blake3_hash4_neon(const uint8_t *const *inputs, size_t blocks,
|
|
const uint32_t key[8], uint64_t counter,
|
|
bool increment_counter, uint8_t flags,
|
|
uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
|
|
uint32x4_t h_vecs[8] = {
|
|
set1_128(key[0]), set1_128(key[1]), set1_128(key[2]), set1_128(key[3]),
|
|
set1_128(key[4]), set1_128(key[5]), set1_128(key[6]), set1_128(key[7]),
|
|
};
|
|
uint32x4_t counter_low_vec, counter_high_vec;
|
|
load_counters4(counter, increment_counter, &counter_low_vec,
|
|
&counter_high_vec);
|
|
uint8_t block_flags = flags | flags_start;
|
|
|
|
for (size_t block = 0; block < blocks; block++) {
|
|
if (block + 1 == blocks) {
|
|
block_flags |= flags_end;
|
|
}
|
|
uint32x4_t block_len_vec = set1_128(BLAKE3_BLOCK_LEN);
|
|
uint32x4_t block_flags_vec = set1_128(block_flags);
|
|
uint32x4_t msg_vecs[16];
|
|
transpose_msg_vecs4(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
|
|
|
|
uint32x4_t v[16] = {
|
|
h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
|
|
h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
|
|
set1_128(IV[0]), set1_128(IV[1]), set1_128(IV[2]), set1_128(IV[3]),
|
|
counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
|
|
};
|
|
round_fn4(v, msg_vecs, 0);
|
|
round_fn4(v, msg_vecs, 1);
|
|
round_fn4(v, msg_vecs, 2);
|
|
round_fn4(v, msg_vecs, 3);
|
|
round_fn4(v, msg_vecs, 4);
|
|
round_fn4(v, msg_vecs, 5);
|
|
round_fn4(v, msg_vecs, 6);
|
|
h_vecs[0] = xor_128(v[0], v[8]);
|
|
h_vecs[1] = xor_128(v[1], v[9]);
|
|
h_vecs[2] = xor_128(v[2], v[10]);
|
|
h_vecs[3] = xor_128(v[3], v[11]);
|
|
h_vecs[4] = xor_128(v[4], v[12]);
|
|
h_vecs[5] = xor_128(v[5], v[13]);
|
|
h_vecs[6] = xor_128(v[6], v[14]);
|
|
h_vecs[7] = xor_128(v[7], v[15]);
|
|
|
|
block_flags = flags;
|
|
}
|
|
|
|
transpose_vecs_128(&h_vecs[0]);
|
|
transpose_vecs_128(&h_vecs[4]);
|
|
// The first four vecs now contain the first half of each output, and the
|
|
// second four vecs contain the second half of each output.
|
|
storeu_128(h_vecs[0], &out[0 * sizeof(uint32x4_t)]);
|
|
storeu_128(h_vecs[4], &out[1 * sizeof(uint32x4_t)]);
|
|
storeu_128(h_vecs[1], &out[2 * sizeof(uint32x4_t)]);
|
|
storeu_128(h_vecs[5], &out[3 * sizeof(uint32x4_t)]);
|
|
storeu_128(h_vecs[2], &out[4 * sizeof(uint32x4_t)]);
|
|
storeu_128(h_vecs[6], &out[5 * sizeof(uint32x4_t)]);
|
|
storeu_128(h_vecs[3], &out[6 * sizeof(uint32x4_t)]);
|
|
storeu_128(h_vecs[7], &out[7 * sizeof(uint32x4_t)]);
|
|
}
|
|
|
|
/*
|
|
* ----------------------------------------------------------------------------
|
|
* hash_many_neon
|
|
* ----------------------------------------------------------------------------
|
|
*/
|
|
|
|
void blake3_compress_in_place_portable(uint32_t cv[8],
|
|
const uint8_t block[BLAKE3_BLOCK_LEN],
|
|
uint8_t block_len, uint64_t counter,
|
|
uint8_t flags);
|
|
|
|
INLINE void hash_one_neon(const uint8_t *input, size_t blocks,
|
|
const uint32_t key[8], uint64_t counter,
|
|
uint8_t flags, uint8_t flags_start, uint8_t flags_end,
|
|
uint8_t out[BLAKE3_OUT_LEN]) {
|
|
uint32_t cv[8];
|
|
memcpy(cv, key, BLAKE3_KEY_LEN);
|
|
uint8_t block_flags = flags | flags_start;
|
|
while (blocks > 0) {
|
|
if (blocks == 1) {
|
|
block_flags |= flags_end;
|
|
}
|
|
// TODO: Implement compress_neon. However note that according to
|
|
// https://github.com/BLAKE2/BLAKE2/commit/7965d3e6e1b4193438b8d3a656787587d2579227,
|
|
// compress_neon might not be any faster than compress_portable.
|
|
blake3_compress_in_place_portable(cv, input, BLAKE3_BLOCK_LEN, counter,
|
|
block_flags);
|
|
input = &input[BLAKE3_BLOCK_LEN];
|
|
blocks -= 1;
|
|
block_flags = flags;
|
|
}
|
|
memcpy(out, cv, BLAKE3_OUT_LEN);
|
|
}
|
|
|
|
void blake3_hash_many_neon(const uint8_t *const *inputs, size_t num_inputs,
|
|
size_t blocks, const uint32_t key[8],
|
|
uint64_t counter, bool increment_counter,
|
|
uint8_t flags, uint8_t flags_start,
|
|
uint8_t flags_end, uint8_t *out) {
|
|
while (num_inputs >= 4) {
|
|
blake3_hash4_neon(inputs, blocks, key, counter, increment_counter, flags,
|
|
flags_start, flags_end, out);
|
|
if (increment_counter) {
|
|
counter += 4;
|
|
}
|
|
inputs += 4;
|
|
num_inputs -= 4;
|
|
out = &out[4 * BLAKE3_OUT_LEN];
|
|
}
|
|
while (num_inputs > 0) {
|
|
hash_one_neon(inputs[0], blocks, key, counter, flags, flags_start,
|
|
flags_end, out);
|
|
if (increment_counter) {
|
|
counter += 1;
|
|
}
|
|
inputs += 1;
|
|
num_inputs -= 1;
|
|
out = &out[BLAKE3_OUT_LEN];
|
|
}
|
|
}
|