forked from OSchip/llvm-project
1107 lines
39 KiB
C++
1107 lines
39 KiB
C++
//===----- CGCall.h - Encapsulate calling convention details ----*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// These classes wrap the information about a call or function
|
|
// definition used to handle ABI compliancy.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CGCall.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "CodeGenModule.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/Frontend/CodeGenOptions.h"
|
|
#include "llvm/Attributes.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
|
|
#include "ABIInfo.h"
|
|
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
/***/
|
|
|
|
// FIXME: Use iterator and sidestep silly type array creation.
|
|
|
|
static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
|
|
switch (CC) {
|
|
default: return llvm::CallingConv::C;
|
|
case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
|
|
case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
|
|
case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
|
|
}
|
|
}
|
|
|
|
/// Derives the 'this' type for codegen purposes, i.e. ignoring method
|
|
/// qualification.
|
|
/// FIXME: address space qualification?
|
|
static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
|
|
QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
|
|
return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
|
|
}
|
|
|
|
/// Returns the canonical formal type of the given C++ method.
|
|
static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
|
|
return MD->getType()->getCanonicalTypeUnqualified()
|
|
.getAs<FunctionProtoType>();
|
|
}
|
|
|
|
/// Returns the "extra-canonicalized" return type, which discards
|
|
/// qualifiers on the return type. Codegen doesn't care about them,
|
|
/// and it makes ABI code a little easier to be able to assume that
|
|
/// all parameter and return types are top-level unqualified.
|
|
static CanQualType GetReturnType(QualType RetTy) {
|
|
return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
|
|
}
|
|
|
|
const CGFunctionInfo &
|
|
CodeGenTypes::getFunctionInfo(CanQual<FunctionNoProtoType> FTNP) {
|
|
return getFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
|
|
llvm::SmallVector<CanQualType, 16>(),
|
|
FTNP->getExtInfo());
|
|
}
|
|
|
|
/// \param Args - contains any initial parameters besides those
|
|
/// in the formal type
|
|
static const CGFunctionInfo &getFunctionInfo(CodeGenTypes &CGT,
|
|
llvm::SmallVectorImpl<CanQualType> &ArgTys,
|
|
CanQual<FunctionProtoType> FTP) {
|
|
// FIXME: Kill copy.
|
|
for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
|
|
ArgTys.push_back(FTP->getArgType(i));
|
|
CanQualType ResTy = FTP->getResultType().getUnqualifiedType();
|
|
return CGT.getFunctionInfo(ResTy, ArgTys,
|
|
FTP->getExtInfo());
|
|
}
|
|
|
|
const CGFunctionInfo &
|
|
CodeGenTypes::getFunctionInfo(CanQual<FunctionProtoType> FTP) {
|
|
llvm::SmallVector<CanQualType, 16> ArgTys;
|
|
return ::getFunctionInfo(*this, ArgTys, FTP);
|
|
}
|
|
|
|
static CallingConv getCallingConventionForDecl(const Decl *D) {
|
|
// Set the appropriate calling convention for the Function.
|
|
if (D->hasAttr<StdCallAttr>())
|
|
return CC_X86StdCall;
|
|
|
|
if (D->hasAttr<FastCallAttr>())
|
|
return CC_X86FastCall;
|
|
|
|
if (D->hasAttr<ThisCallAttr>())
|
|
return CC_X86ThisCall;
|
|
|
|
return CC_C;
|
|
}
|
|
|
|
const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXRecordDecl *RD,
|
|
const FunctionProtoType *FTP) {
|
|
llvm::SmallVector<CanQualType, 16> ArgTys;
|
|
|
|
// Add the 'this' pointer.
|
|
ArgTys.push_back(GetThisType(Context, RD));
|
|
|
|
return ::getFunctionInfo(*this, ArgTys,
|
|
FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
|
|
}
|
|
|
|
const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXMethodDecl *MD) {
|
|
llvm::SmallVector<CanQualType, 16> ArgTys;
|
|
|
|
// Add the 'this' pointer unless this is a static method.
|
|
if (MD->isInstance())
|
|
ArgTys.push_back(GetThisType(Context, MD->getParent()));
|
|
|
|
return ::getFunctionInfo(*this, ArgTys, GetFormalType(MD));
|
|
}
|
|
|
|
const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXConstructorDecl *D,
|
|
CXXCtorType Type) {
|
|
llvm::SmallVector<CanQualType, 16> ArgTys;
|
|
|
|
// Add the 'this' pointer.
|
|
ArgTys.push_back(GetThisType(Context, D->getParent()));
|
|
|
|
// Check if we need to add a VTT parameter (which has type void **).
|
|
if (Type == Ctor_Base && D->getParent()->getNumVBases() != 0)
|
|
ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
|
|
|
|
return ::getFunctionInfo(*this, ArgTys, GetFormalType(D));
|
|
}
|
|
|
|
const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXDestructorDecl *D,
|
|
CXXDtorType Type) {
|
|
llvm::SmallVector<CanQualType, 16> ArgTys;
|
|
|
|
// Add the 'this' pointer.
|
|
ArgTys.push_back(GetThisType(Context, D->getParent()));
|
|
|
|
// Check if we need to add a VTT parameter (which has type void **).
|
|
if (Type == Dtor_Base && D->getParent()->getNumVBases() != 0)
|
|
ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
|
|
|
|
return ::getFunctionInfo(*this, ArgTys, GetFormalType(D));
|
|
}
|
|
|
|
const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionDecl *FD) {
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
|
|
if (MD->isInstance())
|
|
return getFunctionInfo(MD);
|
|
|
|
CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
|
|
assert(isa<FunctionType>(FTy));
|
|
if (isa<FunctionNoProtoType>(FTy))
|
|
return getFunctionInfo(FTy.getAs<FunctionNoProtoType>());
|
|
assert(isa<FunctionProtoType>(FTy));
|
|
return getFunctionInfo(FTy.getAs<FunctionProtoType>());
|
|
}
|
|
|
|
const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const ObjCMethodDecl *MD) {
|
|
llvm::SmallVector<CanQualType, 16> ArgTys;
|
|
ArgTys.push_back(Context.getCanonicalParamType(MD->getSelfDecl()->getType()));
|
|
ArgTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
|
|
// FIXME: Kill copy?
|
|
for (ObjCMethodDecl::param_iterator i = MD->param_begin(),
|
|
e = MD->param_end(); i != e; ++i) {
|
|
ArgTys.push_back(Context.getCanonicalParamType((*i)->getType()));
|
|
}
|
|
return getFunctionInfo(GetReturnType(MD->getResultType()),
|
|
ArgTys,
|
|
FunctionType::ExtInfo(
|
|
/*NoReturn*/ false,
|
|
/*RegParm*/ 0,
|
|
getCallingConventionForDecl(MD)));
|
|
}
|
|
|
|
const CGFunctionInfo &CodeGenTypes::getFunctionInfo(GlobalDecl GD) {
|
|
// FIXME: Do we need to handle ObjCMethodDecl?
|
|
const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
|
|
|
|
if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
|
|
return getFunctionInfo(CD, GD.getCtorType());
|
|
|
|
if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
|
|
return getFunctionInfo(DD, GD.getDtorType());
|
|
|
|
return getFunctionInfo(FD);
|
|
}
|
|
|
|
const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
|
|
const CallArgList &Args,
|
|
const FunctionType::ExtInfo &Info) {
|
|
// FIXME: Kill copy.
|
|
llvm::SmallVector<CanQualType, 16> ArgTys;
|
|
for (CallArgList::const_iterator i = Args.begin(), e = Args.end();
|
|
i != e; ++i)
|
|
ArgTys.push_back(Context.getCanonicalParamType(i->second));
|
|
return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info);
|
|
}
|
|
|
|
const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
|
|
const FunctionArgList &Args,
|
|
const FunctionType::ExtInfo &Info) {
|
|
// FIXME: Kill copy.
|
|
llvm::SmallVector<CanQualType, 16> ArgTys;
|
|
for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
|
|
i != e; ++i)
|
|
ArgTys.push_back(Context.getCanonicalParamType(i->second));
|
|
return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info);
|
|
}
|
|
|
|
const CGFunctionInfo &CodeGenTypes::getFunctionInfo(CanQualType ResTy,
|
|
const llvm::SmallVectorImpl<CanQualType> &ArgTys,
|
|
const FunctionType::ExtInfo &Info) {
|
|
#ifndef NDEBUG
|
|
for (llvm::SmallVectorImpl<CanQualType>::const_iterator
|
|
I = ArgTys.begin(), E = ArgTys.end(); I != E; ++I)
|
|
assert(I->isCanonicalAsParam());
|
|
#endif
|
|
|
|
unsigned CC = ClangCallConvToLLVMCallConv(Info.getCC());
|
|
|
|
// Lookup or create unique function info.
|
|
llvm::FoldingSetNodeID ID;
|
|
CGFunctionInfo::Profile(ID, Info, ResTy,
|
|
ArgTys.begin(), ArgTys.end());
|
|
|
|
void *InsertPos = 0;
|
|
CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, InsertPos);
|
|
if (FI)
|
|
return *FI;
|
|
|
|
// Construct the function info.
|
|
FI = new CGFunctionInfo(CC, Info.getNoReturn(), Info.getRegParm(), ResTy, ArgTys);
|
|
FunctionInfos.InsertNode(FI, InsertPos);
|
|
|
|
// Compute ABI information.
|
|
getABIInfo().computeInfo(*FI, getContext(), TheModule.getContext());
|
|
|
|
return *FI;
|
|
}
|
|
|
|
CGFunctionInfo::CGFunctionInfo(unsigned _CallingConvention,
|
|
bool _NoReturn,
|
|
unsigned _RegParm,
|
|
CanQualType ResTy,
|
|
const llvm::SmallVectorImpl<CanQualType> &ArgTys)
|
|
: CallingConvention(_CallingConvention),
|
|
EffectiveCallingConvention(_CallingConvention),
|
|
NoReturn(_NoReturn), RegParm(_RegParm)
|
|
{
|
|
NumArgs = ArgTys.size();
|
|
Args = new ArgInfo[1 + NumArgs];
|
|
Args[0].type = ResTy;
|
|
for (unsigned i = 0; i < NumArgs; ++i)
|
|
Args[1 + i].type = ArgTys[i];
|
|
}
|
|
|
|
/***/
|
|
|
|
void CodeGenTypes::GetExpandedTypes(QualType Ty,
|
|
std::vector<const llvm::Type*> &ArgTys) {
|
|
const RecordType *RT = Ty->getAsStructureType();
|
|
assert(RT && "Can only expand structure types.");
|
|
const RecordDecl *RD = RT->getDecl();
|
|
assert(!RD->hasFlexibleArrayMember() &&
|
|
"Cannot expand structure with flexible array.");
|
|
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
i != e; ++i) {
|
|
const FieldDecl *FD = *i;
|
|
assert(!FD->isBitField() &&
|
|
"Cannot expand structure with bit-field members.");
|
|
|
|
QualType FT = FD->getType();
|
|
if (CodeGenFunction::hasAggregateLLVMType(FT)) {
|
|
GetExpandedTypes(FT, ArgTys);
|
|
} else {
|
|
ArgTys.push_back(ConvertType(FT));
|
|
}
|
|
}
|
|
}
|
|
|
|
llvm::Function::arg_iterator
|
|
CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
|
|
llvm::Function::arg_iterator AI) {
|
|
const RecordType *RT = Ty->getAsStructureType();
|
|
assert(RT && "Can only expand structure types.");
|
|
|
|
RecordDecl *RD = RT->getDecl();
|
|
assert(LV.isSimple() &&
|
|
"Unexpected non-simple lvalue during struct expansion.");
|
|
llvm::Value *Addr = LV.getAddress();
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
i != e; ++i) {
|
|
FieldDecl *FD = *i;
|
|
QualType FT = FD->getType();
|
|
|
|
// FIXME: What are the right qualifiers here?
|
|
LValue LV = EmitLValueForField(Addr, FD, 0);
|
|
if (CodeGenFunction::hasAggregateLLVMType(FT)) {
|
|
AI = ExpandTypeFromArgs(FT, LV, AI);
|
|
} else {
|
|
EmitStoreThroughLValue(RValue::get(AI), LV, FT);
|
|
++AI;
|
|
}
|
|
}
|
|
|
|
return AI;
|
|
}
|
|
|
|
void
|
|
CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
|
|
llvm::SmallVector<llvm::Value*, 16> &Args) {
|
|
const RecordType *RT = Ty->getAsStructureType();
|
|
assert(RT && "Can only expand structure types.");
|
|
|
|
RecordDecl *RD = RT->getDecl();
|
|
assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
|
|
llvm::Value *Addr = RV.getAggregateAddr();
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
i != e; ++i) {
|
|
FieldDecl *FD = *i;
|
|
QualType FT = FD->getType();
|
|
|
|
// FIXME: What are the right qualifiers here?
|
|
LValue LV = EmitLValueForField(Addr, FD, 0);
|
|
if (CodeGenFunction::hasAggregateLLVMType(FT)) {
|
|
ExpandTypeToArgs(FT, RValue::getAggregate(LV.getAddress()), Args);
|
|
} else {
|
|
RValue RV = EmitLoadOfLValue(LV, FT);
|
|
assert(RV.isScalar() &&
|
|
"Unexpected non-scalar rvalue during struct expansion.");
|
|
Args.push_back(RV.getScalarVal());
|
|
}
|
|
}
|
|
}
|
|
|
|
/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
|
|
/// a pointer to an object of type \arg Ty.
|
|
///
|
|
/// This safely handles the case when the src type is smaller than the
|
|
/// destination type; in this situation the values of bits which not
|
|
/// present in the src are undefined.
|
|
static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
|
|
const llvm::Type *Ty,
|
|
CodeGenFunction &CGF) {
|
|
const llvm::Type *SrcTy =
|
|
cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
|
|
uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
|
|
uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty);
|
|
|
|
// If load is legal, just bitcast the src pointer.
|
|
if (SrcSize >= DstSize) {
|
|
// Generally SrcSize is never greater than DstSize, since this means we are
|
|
// losing bits. However, this can happen in cases where the structure has
|
|
// additional padding, for example due to a user specified alignment.
|
|
//
|
|
// FIXME: Assert that we aren't truncating non-padding bits when have access
|
|
// to that information.
|
|
llvm::Value *Casted =
|
|
CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
|
|
llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
|
|
// FIXME: Use better alignment / avoid requiring aligned load.
|
|
Load->setAlignment(1);
|
|
return Load;
|
|
} else {
|
|
// Otherwise do coercion through memory. This is stupid, but
|
|
// simple.
|
|
llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
|
|
llvm::Value *Casted =
|
|
CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy));
|
|
llvm::StoreInst *Store =
|
|
CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted);
|
|
// FIXME: Use better alignment / avoid requiring aligned store.
|
|
Store->setAlignment(1);
|
|
return CGF.Builder.CreateLoad(Tmp);
|
|
}
|
|
}
|
|
|
|
/// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
|
|
/// where the source and destination may have different types.
|
|
///
|
|
/// This safely handles the case when the src type is larger than the
|
|
/// destination type; the upper bits of the src will be lost.
|
|
static void CreateCoercedStore(llvm::Value *Src,
|
|
llvm::Value *DstPtr,
|
|
bool DstIsVolatile,
|
|
CodeGenFunction &CGF) {
|
|
const llvm::Type *SrcTy = Src->getType();
|
|
const llvm::Type *DstTy =
|
|
cast<llvm::PointerType>(DstPtr->getType())->getElementType();
|
|
|
|
uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
|
|
uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy);
|
|
|
|
// If store is legal, just bitcast the src pointer.
|
|
if (SrcSize <= DstSize) {
|
|
llvm::Value *Casted =
|
|
CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
|
|
// FIXME: Use better alignment / avoid requiring aligned store.
|
|
CGF.Builder.CreateStore(Src, Casted, DstIsVolatile)->setAlignment(1);
|
|
} else {
|
|
// Otherwise do coercion through memory. This is stupid, but
|
|
// simple.
|
|
|
|
// Generally SrcSize is never greater than DstSize, since this means we are
|
|
// losing bits. However, this can happen in cases where the structure has
|
|
// additional padding, for example due to a user specified alignment.
|
|
//
|
|
// FIXME: Assert that we aren't truncating non-padding bits when have access
|
|
// to that information.
|
|
llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
|
|
CGF.Builder.CreateStore(Src, Tmp);
|
|
llvm::Value *Casted =
|
|
CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy));
|
|
llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
|
|
// FIXME: Use better alignment / avoid requiring aligned load.
|
|
Load->setAlignment(1);
|
|
CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile);
|
|
}
|
|
}
|
|
|
|
/***/
|
|
|
|
bool CodeGenModule::ReturnTypeUsesSret(const CGFunctionInfo &FI) {
|
|
return FI.getReturnInfo().isIndirect();
|
|
}
|
|
|
|
const llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
|
|
const CGFunctionInfo &FI = getFunctionInfo(GD);
|
|
|
|
// For definition purposes, don't consider a K&R function variadic.
|
|
bool Variadic = false;
|
|
if (const FunctionProtoType *FPT =
|
|
cast<FunctionDecl>(GD.getDecl())->getType()->getAs<FunctionProtoType>())
|
|
Variadic = FPT->isVariadic();
|
|
|
|
return GetFunctionType(FI, Variadic);
|
|
}
|
|
|
|
const llvm::FunctionType *
|
|
CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool IsVariadic) {
|
|
std::vector<const llvm::Type*> ArgTys;
|
|
|
|
const llvm::Type *ResultType = 0;
|
|
|
|
QualType RetTy = FI.getReturnType();
|
|
const ABIArgInfo &RetAI = FI.getReturnInfo();
|
|
switch (RetAI.getKind()) {
|
|
case ABIArgInfo::Expand:
|
|
assert(0 && "Invalid ABI kind for return argument");
|
|
|
|
case ABIArgInfo::Extend:
|
|
case ABIArgInfo::Direct:
|
|
ResultType = ConvertType(RetTy);
|
|
break;
|
|
|
|
case ABIArgInfo::Indirect: {
|
|
assert(!RetAI.getIndirectAlign() && "Align unused on indirect return.");
|
|
ResultType = llvm::Type::getVoidTy(getLLVMContext());
|
|
const llvm::Type *STy = ConvertType(RetTy);
|
|
ArgTys.push_back(llvm::PointerType::get(STy, RetTy.getAddressSpace()));
|
|
break;
|
|
}
|
|
|
|
case ABIArgInfo::Ignore:
|
|
ResultType = llvm::Type::getVoidTy(getLLVMContext());
|
|
break;
|
|
|
|
case ABIArgInfo::Coerce:
|
|
ResultType = RetAI.getCoerceToType();
|
|
break;
|
|
}
|
|
|
|
for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
|
|
ie = FI.arg_end(); it != ie; ++it) {
|
|
const ABIArgInfo &AI = it->info;
|
|
|
|
switch (AI.getKind()) {
|
|
case ABIArgInfo::Ignore:
|
|
break;
|
|
|
|
case ABIArgInfo::Coerce:
|
|
ArgTys.push_back(AI.getCoerceToType());
|
|
break;
|
|
|
|
case ABIArgInfo::Indirect: {
|
|
// indirect arguments are always on the stack, which is addr space #0.
|
|
const llvm::Type *LTy = ConvertTypeForMem(it->type);
|
|
ArgTys.push_back(llvm::PointerType::getUnqual(LTy));
|
|
break;
|
|
}
|
|
|
|
case ABIArgInfo::Extend:
|
|
case ABIArgInfo::Direct:
|
|
ArgTys.push_back(ConvertType(it->type));
|
|
break;
|
|
|
|
case ABIArgInfo::Expand:
|
|
GetExpandedTypes(it->type, ArgTys);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return llvm::FunctionType::get(ResultType, ArgTys, IsVariadic);
|
|
}
|
|
|
|
const llvm::Type *
|
|
CodeGenTypes::GetFunctionTypeForVTable(const CXXMethodDecl *MD) {
|
|
const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
|
|
|
|
if (!VerifyFuncTypeComplete(FPT))
|
|
return GetFunctionType(getFunctionInfo(MD), FPT->isVariadic());
|
|
|
|
return llvm::OpaqueType::get(getLLVMContext());
|
|
}
|
|
|
|
void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
|
|
const Decl *TargetDecl,
|
|
AttributeListType &PAL,
|
|
unsigned &CallingConv) {
|
|
unsigned FuncAttrs = 0;
|
|
unsigned RetAttrs = 0;
|
|
|
|
CallingConv = FI.getEffectiveCallingConvention();
|
|
|
|
if (FI.isNoReturn())
|
|
FuncAttrs |= llvm::Attribute::NoReturn;
|
|
|
|
// FIXME: handle sseregparm someday...
|
|
if (TargetDecl) {
|
|
if (TargetDecl->hasAttr<NoThrowAttr>())
|
|
FuncAttrs |= llvm::Attribute::NoUnwind;
|
|
if (TargetDecl->hasAttr<NoReturnAttr>())
|
|
FuncAttrs |= llvm::Attribute::NoReturn;
|
|
if (TargetDecl->hasAttr<ConstAttr>())
|
|
FuncAttrs |= llvm::Attribute::ReadNone;
|
|
else if (TargetDecl->hasAttr<PureAttr>())
|
|
FuncAttrs |= llvm::Attribute::ReadOnly;
|
|
if (TargetDecl->hasAttr<MallocAttr>())
|
|
RetAttrs |= llvm::Attribute::NoAlias;
|
|
}
|
|
|
|
if (CodeGenOpts.OptimizeSize)
|
|
FuncAttrs |= llvm::Attribute::OptimizeForSize;
|
|
if (CodeGenOpts.DisableRedZone)
|
|
FuncAttrs |= llvm::Attribute::NoRedZone;
|
|
if (CodeGenOpts.NoImplicitFloat)
|
|
FuncAttrs |= llvm::Attribute::NoImplicitFloat;
|
|
|
|
QualType RetTy = FI.getReturnType();
|
|
unsigned Index = 1;
|
|
const ABIArgInfo &RetAI = FI.getReturnInfo();
|
|
switch (RetAI.getKind()) {
|
|
case ABIArgInfo::Extend:
|
|
if (RetTy->isSignedIntegerType()) {
|
|
RetAttrs |= llvm::Attribute::SExt;
|
|
} else if (RetTy->isUnsignedIntegerType()) {
|
|
RetAttrs |= llvm::Attribute::ZExt;
|
|
}
|
|
// FALLTHROUGH
|
|
case ABIArgInfo::Direct:
|
|
break;
|
|
|
|
case ABIArgInfo::Indirect:
|
|
PAL.push_back(llvm::AttributeWithIndex::get(Index,
|
|
llvm::Attribute::StructRet));
|
|
++Index;
|
|
// sret disables readnone and readonly
|
|
FuncAttrs &= ~(llvm::Attribute::ReadOnly |
|
|
llvm::Attribute::ReadNone);
|
|
break;
|
|
|
|
case ABIArgInfo::Ignore:
|
|
case ABIArgInfo::Coerce:
|
|
break;
|
|
|
|
case ABIArgInfo::Expand:
|
|
assert(0 && "Invalid ABI kind for return argument");
|
|
}
|
|
|
|
if (RetAttrs)
|
|
PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs));
|
|
|
|
// FIXME: we need to honour command line settings also...
|
|
// FIXME: RegParm should be reduced in case of nested functions and/or global
|
|
// register variable.
|
|
signed RegParm = FI.getRegParm();
|
|
|
|
unsigned PointerWidth = getContext().Target.getPointerWidth(0);
|
|
for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
|
|
ie = FI.arg_end(); it != ie; ++it) {
|
|
QualType ParamType = it->type;
|
|
const ABIArgInfo &AI = it->info;
|
|
unsigned Attributes = 0;
|
|
|
|
// 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
|
|
// have the corresponding parameter variable. It doesn't make
|
|
// sense to do it here because parameters are so fucked up.
|
|
|
|
switch (AI.getKind()) {
|
|
case ABIArgInfo::Coerce:
|
|
break;
|
|
|
|
case ABIArgInfo::Indirect:
|
|
if (AI.getIndirectByVal())
|
|
Attributes |= llvm::Attribute::ByVal;
|
|
|
|
Attributes |=
|
|
llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign());
|
|
// byval disables readnone and readonly.
|
|
FuncAttrs &= ~(llvm::Attribute::ReadOnly |
|
|
llvm::Attribute::ReadNone);
|
|
break;
|
|
|
|
case ABIArgInfo::Extend:
|
|
if (ParamType->isSignedIntegerType()) {
|
|
Attributes |= llvm::Attribute::SExt;
|
|
} else if (ParamType->isUnsignedIntegerType()) {
|
|
Attributes |= llvm::Attribute::ZExt;
|
|
}
|
|
// FALLS THROUGH
|
|
case ABIArgInfo::Direct:
|
|
if (RegParm > 0 &&
|
|
(ParamType->isIntegerType() || ParamType->isPointerType())) {
|
|
RegParm -=
|
|
(Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth;
|
|
if (RegParm >= 0)
|
|
Attributes |= llvm::Attribute::InReg;
|
|
}
|
|
// FIXME: handle sseregparm someday...
|
|
break;
|
|
|
|
case ABIArgInfo::Ignore:
|
|
// Skip increment, no matching LLVM parameter.
|
|
continue;
|
|
|
|
case ABIArgInfo::Expand: {
|
|
std::vector<const llvm::Type*> Tys;
|
|
// FIXME: This is rather inefficient. Do we ever actually need to do
|
|
// anything here? The result should be just reconstructed on the other
|
|
// side, so extension should be a non-issue.
|
|
getTypes().GetExpandedTypes(ParamType, Tys);
|
|
Index += Tys.size();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (Attributes)
|
|
PAL.push_back(llvm::AttributeWithIndex::get(Index, Attributes));
|
|
++Index;
|
|
}
|
|
if (FuncAttrs)
|
|
PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs));
|
|
}
|
|
|
|
void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
|
|
llvm::Function *Fn,
|
|
const FunctionArgList &Args) {
|
|
// If this is an implicit-return-zero function, go ahead and
|
|
// initialize the return value. TODO: it might be nice to have
|
|
// a more general mechanism for this that didn't require synthesized
|
|
// return statements.
|
|
if (const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
|
|
if (FD->hasImplicitReturnZero()) {
|
|
QualType RetTy = FD->getResultType().getUnqualifiedType();
|
|
const llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
|
|
llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
|
|
Builder.CreateStore(Zero, ReturnValue);
|
|
}
|
|
}
|
|
|
|
// FIXME: We no longer need the types from FunctionArgList; lift up and
|
|
// simplify.
|
|
|
|
// Emit allocs for param decls. Give the LLVM Argument nodes names.
|
|
llvm::Function::arg_iterator AI = Fn->arg_begin();
|
|
|
|
// Name the struct return argument.
|
|
if (CGM.ReturnTypeUsesSret(FI)) {
|
|
AI->setName("agg.result");
|
|
++AI;
|
|
}
|
|
|
|
assert(FI.arg_size() == Args.size() &&
|
|
"Mismatch between function signature & arguments.");
|
|
CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
|
|
for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
|
|
i != e; ++i, ++info_it) {
|
|
const VarDecl *Arg = i->first;
|
|
QualType Ty = info_it->type;
|
|
const ABIArgInfo &ArgI = info_it->info;
|
|
|
|
switch (ArgI.getKind()) {
|
|
case ABIArgInfo::Indirect: {
|
|
llvm::Value* V = AI;
|
|
if (hasAggregateLLVMType(Ty)) {
|
|
// Do nothing, aggregates and complex variables are accessed by
|
|
// reference.
|
|
} else {
|
|
// Load scalar value from indirect argument.
|
|
V = EmitLoadOfScalar(V, false, Ty);
|
|
if (!getContext().typesAreCompatible(Ty, Arg->getType())) {
|
|
// This must be a promotion, for something like
|
|
// "void a(x) short x; {..."
|
|
V = EmitScalarConversion(V, Ty, Arg->getType());
|
|
}
|
|
}
|
|
EmitParmDecl(*Arg, V);
|
|
break;
|
|
}
|
|
|
|
case ABIArgInfo::Extend:
|
|
case ABIArgInfo::Direct: {
|
|
assert(AI != Fn->arg_end() && "Argument mismatch!");
|
|
llvm::Value* V = AI;
|
|
if (hasAggregateLLVMType(Ty)) {
|
|
// Create a temporary alloca to hold the argument; the rest of
|
|
// codegen expects to access aggregates & complex values by
|
|
// reference.
|
|
V = CreateMemTemp(Ty);
|
|
Builder.CreateStore(AI, V);
|
|
} else {
|
|
if (Arg->getType().isRestrictQualified())
|
|
AI->addAttr(llvm::Attribute::NoAlias);
|
|
|
|
if (!getContext().typesAreCompatible(Ty, Arg->getType())) {
|
|
// This must be a promotion, for something like
|
|
// "void a(x) short x; {..."
|
|
V = EmitScalarConversion(V, Ty, Arg->getType());
|
|
}
|
|
}
|
|
EmitParmDecl(*Arg, V);
|
|
break;
|
|
}
|
|
|
|
case ABIArgInfo::Expand: {
|
|
// If this structure was expanded into multiple arguments then
|
|
// we need to create a temporary and reconstruct it from the
|
|
// arguments.
|
|
llvm::Value *Temp = CreateMemTemp(Ty, Arg->getName() + ".addr");
|
|
// FIXME: What are the right qualifiers here?
|
|
llvm::Function::arg_iterator End =
|
|
ExpandTypeFromArgs(Ty, LValue::MakeAddr(Temp, Qualifiers()), AI);
|
|
EmitParmDecl(*Arg, Temp);
|
|
|
|
// Name the arguments used in expansion and increment AI.
|
|
unsigned Index = 0;
|
|
for (; AI != End; ++AI, ++Index)
|
|
AI->setName(Arg->getName() + "." + llvm::Twine(Index));
|
|
continue;
|
|
}
|
|
|
|
case ABIArgInfo::Ignore:
|
|
// Initialize the local variable appropriately.
|
|
if (hasAggregateLLVMType(Ty)) {
|
|
EmitParmDecl(*Arg, CreateMemTemp(Ty));
|
|
} else {
|
|
EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())));
|
|
}
|
|
|
|
// Skip increment, no matching LLVM parameter.
|
|
continue;
|
|
|
|
case ABIArgInfo::Coerce: {
|
|
assert(AI != Fn->arg_end() && "Argument mismatch!");
|
|
// FIXME: This is very wasteful; EmitParmDecl is just going to drop the
|
|
// result in a new alloca anyway, so we could just store into that
|
|
// directly if we broke the abstraction down more.
|
|
llvm::Value *V = CreateMemTemp(Ty, "coerce");
|
|
CreateCoercedStore(AI, V, /*DestIsVolatile=*/false, *this);
|
|
// Match to what EmitParmDecl is expecting for this type.
|
|
if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
|
|
V = EmitLoadOfScalar(V, false, Ty);
|
|
if (!getContext().typesAreCompatible(Ty, Arg->getType())) {
|
|
// This must be a promotion, for something like
|
|
// "void a(x) short x; {..."
|
|
V = EmitScalarConversion(V, Ty, Arg->getType());
|
|
}
|
|
}
|
|
EmitParmDecl(*Arg, V);
|
|
break;
|
|
}
|
|
}
|
|
|
|
++AI;
|
|
}
|
|
assert(AI == Fn->arg_end() && "Argument mismatch!");
|
|
}
|
|
|
|
void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
|
|
llvm::Value *ReturnValue) {
|
|
llvm::Value *RV = 0;
|
|
|
|
// Functions with no result always return void.
|
|
if (ReturnValue) {
|
|
QualType RetTy = FI.getReturnType();
|
|
const ABIArgInfo &RetAI = FI.getReturnInfo();
|
|
|
|
switch (RetAI.getKind()) {
|
|
case ABIArgInfo::Indirect:
|
|
if (RetTy->isAnyComplexType()) {
|
|
ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false);
|
|
StoreComplexToAddr(RT, CurFn->arg_begin(), false);
|
|
} else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
|
|
// Do nothing; aggregrates get evaluated directly into the destination.
|
|
} else {
|
|
EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(),
|
|
false, RetTy);
|
|
}
|
|
break;
|
|
|
|
case ABIArgInfo::Extend:
|
|
case ABIArgInfo::Direct:
|
|
// The internal return value temp always will have
|
|
// pointer-to-return-type type.
|
|
RV = Builder.CreateLoad(ReturnValue);
|
|
break;
|
|
|
|
case ABIArgInfo::Ignore:
|
|
break;
|
|
|
|
case ABIArgInfo::Coerce:
|
|
RV = CreateCoercedLoad(ReturnValue, RetAI.getCoerceToType(), *this);
|
|
break;
|
|
|
|
case ABIArgInfo::Expand:
|
|
assert(0 && "Invalid ABI kind for return argument");
|
|
}
|
|
}
|
|
|
|
if (RV) {
|
|
Builder.CreateRet(RV);
|
|
} else {
|
|
Builder.CreateRetVoid();
|
|
}
|
|
}
|
|
|
|
RValue CodeGenFunction::EmitDelegateCallArg(const VarDecl *Param) {
|
|
// StartFunction converted the ABI-lowered parameter(s) into a
|
|
// local alloca. We need to turn that into an r-value suitable
|
|
// for EmitCall.
|
|
llvm::Value *Local = GetAddrOfLocalVar(Param);
|
|
|
|
QualType ArgType = Param->getType();
|
|
|
|
// For the most part, we just need to load the alloca, except:
|
|
// 1) aggregate r-values are actually pointers to temporaries, and
|
|
// 2) references to aggregates are pointers directly to the aggregate.
|
|
// I don't know why references to non-aggregates are different here.
|
|
if (const ReferenceType *RefType = ArgType->getAs<ReferenceType>()) {
|
|
if (hasAggregateLLVMType(RefType->getPointeeType()))
|
|
return RValue::getAggregate(Local);
|
|
|
|
// Locals which are references to scalars are represented
|
|
// with allocas holding the pointer.
|
|
return RValue::get(Builder.CreateLoad(Local));
|
|
}
|
|
|
|
if (ArgType->isAnyComplexType())
|
|
return RValue::getComplex(LoadComplexFromAddr(Local, /*volatile*/ false));
|
|
|
|
if (hasAggregateLLVMType(ArgType))
|
|
return RValue::getAggregate(Local);
|
|
|
|
return RValue::get(EmitLoadOfScalar(Local, false, ArgType));
|
|
}
|
|
|
|
RValue CodeGenFunction::EmitCallArg(const Expr *E, QualType ArgType) {
|
|
if (ArgType->isReferenceType())
|
|
return EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
|
|
|
|
return EmitAnyExprToTemp(E);
|
|
}
|
|
|
|
RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
|
|
llvm::Value *Callee,
|
|
ReturnValueSlot ReturnValue,
|
|
const CallArgList &CallArgs,
|
|
const Decl *TargetDecl,
|
|
llvm::Instruction **callOrInvoke) {
|
|
// FIXME: We no longer need the types from CallArgs; lift up and simplify.
|
|
llvm::SmallVector<llvm::Value*, 16> Args;
|
|
|
|
// Handle struct-return functions by passing a pointer to the
|
|
// location that we would like to return into.
|
|
QualType RetTy = CallInfo.getReturnType();
|
|
const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
|
|
|
|
|
|
// If the call returns a temporary with struct return, create a temporary
|
|
// alloca to hold the result, unless one is given to us.
|
|
if (CGM.ReturnTypeUsesSret(CallInfo)) {
|
|
llvm::Value *Value = ReturnValue.getValue();
|
|
if (!Value)
|
|
Value = CreateMemTemp(RetTy);
|
|
Args.push_back(Value);
|
|
}
|
|
|
|
assert(CallInfo.arg_size() == CallArgs.size() &&
|
|
"Mismatch between function signature & arguments.");
|
|
CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
|
|
for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
|
|
I != E; ++I, ++info_it) {
|
|
const ABIArgInfo &ArgInfo = info_it->info;
|
|
RValue RV = I->first;
|
|
|
|
switch (ArgInfo.getKind()) {
|
|
case ABIArgInfo::Indirect:
|
|
if (RV.isScalar() || RV.isComplex()) {
|
|
// Make a temporary alloca to pass the argument.
|
|
Args.push_back(CreateMemTemp(I->second));
|
|
if (RV.isScalar())
|
|
EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false, I->second);
|
|
else
|
|
StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
|
|
} else {
|
|
Args.push_back(RV.getAggregateAddr());
|
|
}
|
|
break;
|
|
|
|
case ABIArgInfo::Extend:
|
|
case ABIArgInfo::Direct:
|
|
if (RV.isScalar()) {
|
|
Args.push_back(RV.getScalarVal());
|
|
} else if (RV.isComplex()) {
|
|
llvm::Value *Tmp = llvm::UndefValue::get(ConvertType(I->second));
|
|
Tmp = Builder.CreateInsertValue(Tmp, RV.getComplexVal().first, 0);
|
|
Tmp = Builder.CreateInsertValue(Tmp, RV.getComplexVal().second, 1);
|
|
Args.push_back(Tmp);
|
|
} else {
|
|
Args.push_back(Builder.CreateLoad(RV.getAggregateAddr()));
|
|
}
|
|
break;
|
|
|
|
case ABIArgInfo::Ignore:
|
|
break;
|
|
|
|
case ABIArgInfo::Coerce: {
|
|
// FIXME: Avoid the conversion through memory if possible.
|
|
llvm::Value *SrcPtr;
|
|
if (RV.isScalar()) {
|
|
SrcPtr = CreateMemTemp(I->second, "coerce");
|
|
EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, I->second);
|
|
} else if (RV.isComplex()) {
|
|
SrcPtr = CreateMemTemp(I->second, "coerce");
|
|
StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false);
|
|
} else
|
|
SrcPtr = RV.getAggregateAddr();
|
|
Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
|
|
*this));
|
|
break;
|
|
}
|
|
|
|
case ABIArgInfo::Expand:
|
|
ExpandTypeToArgs(I->second, RV, Args);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If the callee is a bitcast of a function to a varargs pointer to function
|
|
// type, check to see if we can remove the bitcast. This handles some cases
|
|
// with unprototyped functions.
|
|
if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
|
|
if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
|
|
const llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
|
|
const llvm::FunctionType *CurFT =
|
|
cast<llvm::FunctionType>(CurPT->getElementType());
|
|
const llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
|
|
|
|
if (CE->getOpcode() == llvm::Instruction::BitCast &&
|
|
ActualFT->getReturnType() == CurFT->getReturnType() &&
|
|
ActualFT->getNumParams() == CurFT->getNumParams() &&
|
|
ActualFT->getNumParams() == Args.size()) {
|
|
bool ArgsMatch = true;
|
|
for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
|
|
if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
|
|
ArgsMatch = false;
|
|
break;
|
|
}
|
|
|
|
// Strip the cast if we can get away with it. This is a nice cleanup,
|
|
// but also allows us to inline the function at -O0 if it is marked
|
|
// always_inline.
|
|
if (ArgsMatch)
|
|
Callee = CalleeF;
|
|
}
|
|
}
|
|
|
|
|
|
llvm::BasicBlock *InvokeDest = getInvokeDest();
|
|
unsigned CallingConv;
|
|
CodeGen::AttributeListType AttributeList;
|
|
CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv);
|
|
llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(),
|
|
AttributeList.end());
|
|
|
|
llvm::CallSite CS;
|
|
if (!InvokeDest || (Attrs.getFnAttributes() & llvm::Attribute::NoUnwind)) {
|
|
CS = Builder.CreateCall(Callee, Args.data(), Args.data()+Args.size());
|
|
} else {
|
|
llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
|
|
CS = Builder.CreateInvoke(Callee, Cont, InvokeDest,
|
|
Args.data(), Args.data()+Args.size());
|
|
EmitBlock(Cont);
|
|
}
|
|
if (callOrInvoke) {
|
|
*callOrInvoke = CS.getInstruction();
|
|
}
|
|
|
|
CS.setAttributes(Attrs);
|
|
CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
|
|
|
|
// If the call doesn't return, finish the basic block and clear the
|
|
// insertion point; this allows the rest of IRgen to discard
|
|
// unreachable code.
|
|
if (CS.doesNotReturn()) {
|
|
Builder.CreateUnreachable();
|
|
Builder.ClearInsertionPoint();
|
|
|
|
// FIXME: For now, emit a dummy basic block because expr emitters in
|
|
// generally are not ready to handle emitting expressions at unreachable
|
|
// points.
|
|
EnsureInsertPoint();
|
|
|
|
// Return a reasonable RValue.
|
|
return GetUndefRValue(RetTy);
|
|
}
|
|
|
|
llvm::Instruction *CI = CS.getInstruction();
|
|
if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
|
|
CI->setName("call");
|
|
|
|
switch (RetAI.getKind()) {
|
|
case ABIArgInfo::Indirect:
|
|
if (RetTy->isAnyComplexType())
|
|
return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
|
|
if (CodeGenFunction::hasAggregateLLVMType(RetTy))
|
|
return RValue::getAggregate(Args[0]);
|
|
return RValue::get(EmitLoadOfScalar(Args[0], false, RetTy));
|
|
|
|
case ABIArgInfo::Extend:
|
|
case ABIArgInfo::Direct:
|
|
if (RetTy->isAnyComplexType()) {
|
|
llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
|
|
llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
|
|
return RValue::getComplex(std::make_pair(Real, Imag));
|
|
}
|
|
if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
|
|
llvm::Value *DestPtr = ReturnValue.getValue();
|
|
bool DestIsVolatile = ReturnValue.isVolatile();
|
|
|
|
if (!DestPtr) {
|
|
DestPtr = CreateMemTemp(RetTy, "agg.tmp");
|
|
DestIsVolatile = false;
|
|
}
|
|
Builder.CreateStore(CI, DestPtr, DestIsVolatile);
|
|
return RValue::getAggregate(DestPtr);
|
|
}
|
|
return RValue::get(CI);
|
|
|
|
case ABIArgInfo::Ignore:
|
|
// If we are ignoring an argument that had a result, make sure to
|
|
// construct the appropriate return value for our caller.
|
|
return GetUndefRValue(RetTy);
|
|
|
|
case ABIArgInfo::Coerce: {
|
|
llvm::Value *DestPtr = ReturnValue.getValue();
|
|
bool DestIsVolatile = ReturnValue.isVolatile();
|
|
|
|
if (!DestPtr) {
|
|
DestPtr = CreateMemTemp(RetTy, "coerce");
|
|
DestIsVolatile = false;
|
|
}
|
|
|
|
CreateCoercedStore(CI, DestPtr, DestIsVolatile, *this);
|
|
if (RetTy->isAnyComplexType())
|
|
return RValue::getComplex(LoadComplexFromAddr(DestPtr, false));
|
|
if (CodeGenFunction::hasAggregateLLVMType(RetTy))
|
|
return RValue::getAggregate(DestPtr);
|
|
return RValue::get(EmitLoadOfScalar(DestPtr, false, RetTy));
|
|
}
|
|
|
|
case ABIArgInfo::Expand:
|
|
assert(0 && "Invalid ABI kind for return argument");
|
|
}
|
|
|
|
assert(0 && "Unhandled ABIArgInfo::Kind");
|
|
return RValue::get(0);
|
|
}
|
|
|
|
/* VarArg handling */
|
|
|
|
llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
|
|
return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
|
|
}
|