forked from OSchip/llvm-project
3130 lines
120 KiB
C++
3130 lines
120 KiB
C++
//=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Sema/SemaDiagnostic.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/Support/CrashRecoveryContext.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
|
|
using namespace clang;
|
|
|
|
namespace {
|
|
|
|
/// BaseSubobjectInfo - Represents a single base subobject in a complete class.
|
|
/// For a class hierarchy like
|
|
///
|
|
/// class A { };
|
|
/// class B : A { };
|
|
/// class C : A, B { };
|
|
///
|
|
/// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
|
|
/// instances, one for B and two for A.
|
|
///
|
|
/// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
|
|
struct BaseSubobjectInfo {
|
|
/// Class - The class for this base info.
|
|
const CXXRecordDecl *Class;
|
|
|
|
/// IsVirtual - Whether the BaseInfo represents a virtual base or not.
|
|
bool IsVirtual;
|
|
|
|
/// Bases - Information about the base subobjects.
|
|
SmallVector<BaseSubobjectInfo*, 4> Bases;
|
|
|
|
/// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
|
|
/// of this base info (if one exists).
|
|
BaseSubobjectInfo *PrimaryVirtualBaseInfo;
|
|
|
|
// FIXME: Document.
|
|
const BaseSubobjectInfo *Derived;
|
|
};
|
|
|
|
/// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
|
|
/// offsets while laying out a C++ class.
|
|
class EmptySubobjectMap {
|
|
const ASTContext &Context;
|
|
uint64_t CharWidth;
|
|
|
|
/// Class - The class whose empty entries we're keeping track of.
|
|
const CXXRecordDecl *Class;
|
|
|
|
/// EmptyClassOffsets - A map from offsets to empty record decls.
|
|
typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
|
|
typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
|
|
EmptyClassOffsetsMapTy EmptyClassOffsets;
|
|
|
|
/// MaxEmptyClassOffset - The highest offset known to contain an empty
|
|
/// base subobject.
|
|
CharUnits MaxEmptyClassOffset;
|
|
|
|
/// ComputeEmptySubobjectSizes - Compute the size of the largest base or
|
|
/// member subobject that is empty.
|
|
void ComputeEmptySubobjectSizes();
|
|
|
|
void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
|
|
|
|
void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
|
|
CharUnits Offset, bool PlacingEmptyBase);
|
|
|
|
void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
|
|
const CXXRecordDecl *Class,
|
|
CharUnits Offset);
|
|
void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset);
|
|
|
|
/// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
|
|
/// subobjects beyond the given offset.
|
|
bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
|
|
return Offset <= MaxEmptyClassOffset;
|
|
}
|
|
|
|
CharUnits
|
|
getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
|
|
uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
|
|
assert(FieldOffset % CharWidth == 0 &&
|
|
"Field offset not at char boundary!");
|
|
|
|
return Context.toCharUnitsFromBits(FieldOffset);
|
|
}
|
|
|
|
protected:
|
|
bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
|
|
CharUnits Offset) const;
|
|
|
|
bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
|
|
CharUnits Offset);
|
|
|
|
bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
|
|
const CXXRecordDecl *Class,
|
|
CharUnits Offset) const;
|
|
bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
|
|
CharUnits Offset) const;
|
|
|
|
public:
|
|
/// This holds the size of the largest empty subobject (either a base
|
|
/// or a member). Will be zero if the record being built doesn't contain
|
|
/// any empty classes.
|
|
CharUnits SizeOfLargestEmptySubobject;
|
|
|
|
EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
|
|
: Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
|
|
ComputeEmptySubobjectSizes();
|
|
}
|
|
|
|
/// CanPlaceBaseAtOffset - Return whether the given base class can be placed
|
|
/// at the given offset.
|
|
/// Returns false if placing the record will result in two components
|
|
/// (direct or indirect) of the same type having the same offset.
|
|
bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
|
|
CharUnits Offset);
|
|
|
|
/// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
|
|
/// offset.
|
|
bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
|
|
};
|
|
|
|
void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
|
|
// Check the bases.
|
|
for (const CXXBaseSpecifier &Base : Class->bases()) {
|
|
const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
|
|
|
|
CharUnits EmptySize;
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
|
|
if (BaseDecl->isEmpty()) {
|
|
// If the class decl is empty, get its size.
|
|
EmptySize = Layout.getSize();
|
|
} else {
|
|
// Otherwise, we get the largest empty subobject for the decl.
|
|
EmptySize = Layout.getSizeOfLargestEmptySubobject();
|
|
}
|
|
|
|
if (EmptySize > SizeOfLargestEmptySubobject)
|
|
SizeOfLargestEmptySubobject = EmptySize;
|
|
}
|
|
|
|
// Check the fields.
|
|
for (const FieldDecl *FD : Class->fields()) {
|
|
const RecordType *RT =
|
|
Context.getBaseElementType(FD->getType())->getAs<RecordType>();
|
|
|
|
// We only care about record types.
|
|
if (!RT)
|
|
continue;
|
|
|
|
CharUnits EmptySize;
|
|
const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
|
|
if (MemberDecl->isEmpty()) {
|
|
// If the class decl is empty, get its size.
|
|
EmptySize = Layout.getSize();
|
|
} else {
|
|
// Otherwise, we get the largest empty subobject for the decl.
|
|
EmptySize = Layout.getSizeOfLargestEmptySubobject();
|
|
}
|
|
|
|
if (EmptySize > SizeOfLargestEmptySubobject)
|
|
SizeOfLargestEmptySubobject = EmptySize;
|
|
}
|
|
}
|
|
|
|
bool
|
|
EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
|
|
CharUnits Offset) const {
|
|
// We only need to check empty bases.
|
|
if (!RD->isEmpty())
|
|
return true;
|
|
|
|
EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
|
|
if (I == EmptyClassOffsets.end())
|
|
return true;
|
|
|
|
const ClassVectorTy &Classes = I->second;
|
|
if (std::find(Classes.begin(), Classes.end(), RD) == Classes.end())
|
|
return true;
|
|
|
|
// There is already an empty class of the same type at this offset.
|
|
return false;
|
|
}
|
|
|
|
void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
|
|
CharUnits Offset) {
|
|
// We only care about empty bases.
|
|
if (!RD->isEmpty())
|
|
return;
|
|
|
|
// If we have empty structures inside a union, we can assign both
|
|
// the same offset. Just avoid pushing them twice in the list.
|
|
ClassVectorTy &Classes = EmptyClassOffsets[Offset];
|
|
if (std::find(Classes.begin(), Classes.end(), RD) != Classes.end())
|
|
return;
|
|
|
|
Classes.push_back(RD);
|
|
|
|
// Update the empty class offset.
|
|
if (Offset > MaxEmptyClassOffset)
|
|
MaxEmptyClassOffset = Offset;
|
|
}
|
|
|
|
bool
|
|
EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
|
|
CharUnits Offset) {
|
|
// We don't have to keep looking past the maximum offset that's known to
|
|
// contain an empty class.
|
|
if (!AnyEmptySubobjectsBeyondOffset(Offset))
|
|
return true;
|
|
|
|
if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
|
|
return false;
|
|
|
|
// Traverse all non-virtual bases.
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
|
|
for (const BaseSubobjectInfo *Base : Info->Bases) {
|
|
if (Base->IsVirtual)
|
|
continue;
|
|
|
|
CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
|
|
|
|
if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
|
|
return false;
|
|
}
|
|
|
|
if (Info->PrimaryVirtualBaseInfo) {
|
|
BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
|
|
|
|
if (Info == PrimaryVirtualBaseInfo->Derived) {
|
|
if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Traverse all member variables.
|
|
unsigned FieldNo = 0;
|
|
for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
|
|
E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
|
|
if (I->isBitField())
|
|
continue;
|
|
|
|
CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
|
|
if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
|
|
CharUnits Offset,
|
|
bool PlacingEmptyBase) {
|
|
if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
|
|
// We know that the only empty subobjects that can conflict with empty
|
|
// subobject of non-empty bases, are empty bases that can be placed at
|
|
// offset zero. Because of this, we only need to keep track of empty base
|
|
// subobjects with offsets less than the size of the largest empty
|
|
// subobject for our class.
|
|
return;
|
|
}
|
|
|
|
AddSubobjectAtOffset(Info->Class, Offset);
|
|
|
|
// Traverse all non-virtual bases.
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
|
|
for (const BaseSubobjectInfo *Base : Info->Bases) {
|
|
if (Base->IsVirtual)
|
|
continue;
|
|
|
|
CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
|
|
UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
|
|
}
|
|
|
|
if (Info->PrimaryVirtualBaseInfo) {
|
|
BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
|
|
|
|
if (Info == PrimaryVirtualBaseInfo->Derived)
|
|
UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
|
|
PlacingEmptyBase);
|
|
}
|
|
|
|
// Traverse all member variables.
|
|
unsigned FieldNo = 0;
|
|
for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
|
|
E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
|
|
if (I->isBitField())
|
|
continue;
|
|
|
|
CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
|
|
UpdateEmptyFieldSubobjects(*I, FieldOffset);
|
|
}
|
|
}
|
|
|
|
bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
|
|
CharUnits Offset) {
|
|
// If we know this class doesn't have any empty subobjects we don't need to
|
|
// bother checking.
|
|
if (SizeOfLargestEmptySubobject.isZero())
|
|
return true;
|
|
|
|
if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
|
|
return false;
|
|
|
|
// We are able to place the base at this offset. Make sure to update the
|
|
// empty base subobject map.
|
|
UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
|
|
const CXXRecordDecl *Class,
|
|
CharUnits Offset) const {
|
|
// We don't have to keep looking past the maximum offset that's known to
|
|
// contain an empty class.
|
|
if (!AnyEmptySubobjectsBeyondOffset(Offset))
|
|
return true;
|
|
|
|
if (!CanPlaceSubobjectAtOffset(RD, Offset))
|
|
return false;
|
|
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
// Traverse all non-virtual bases.
|
|
for (const CXXBaseSpecifier &Base : RD->bases()) {
|
|
if (Base.isVirtual())
|
|
continue;
|
|
|
|
const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
|
|
|
|
CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
|
|
if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
|
|
return false;
|
|
}
|
|
|
|
if (RD == Class) {
|
|
// This is the most derived class, traverse virtual bases as well.
|
|
for (const CXXBaseSpecifier &Base : RD->vbases()) {
|
|
const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
|
|
|
|
CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
|
|
if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Traverse all member variables.
|
|
unsigned FieldNo = 0;
|
|
for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
|
|
I != E; ++I, ++FieldNo) {
|
|
if (I->isBitField())
|
|
continue;
|
|
|
|
CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
|
|
|
|
if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
|
|
CharUnits Offset) const {
|
|
// We don't have to keep looking past the maximum offset that's known to
|
|
// contain an empty class.
|
|
if (!AnyEmptySubobjectsBeyondOffset(Offset))
|
|
return true;
|
|
|
|
QualType T = FD->getType();
|
|
if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
|
|
return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
|
|
|
|
// If we have an array type we need to look at every element.
|
|
if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
|
|
QualType ElemTy = Context.getBaseElementType(AT);
|
|
const RecordType *RT = ElemTy->getAs<RecordType>();
|
|
if (!RT)
|
|
return true;
|
|
|
|
const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
uint64_t NumElements = Context.getConstantArrayElementCount(AT);
|
|
CharUnits ElementOffset = Offset;
|
|
for (uint64_t I = 0; I != NumElements; ++I) {
|
|
// We don't have to keep looking past the maximum offset that's known to
|
|
// contain an empty class.
|
|
if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
|
|
return true;
|
|
|
|
if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
|
|
return false;
|
|
|
|
ElementOffset += Layout.getSize();
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
|
|
CharUnits Offset) {
|
|
if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
|
|
return false;
|
|
|
|
// We are able to place the member variable at this offset.
|
|
// Make sure to update the empty base subobject map.
|
|
UpdateEmptyFieldSubobjects(FD, Offset);
|
|
return true;
|
|
}
|
|
|
|
void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
|
|
const CXXRecordDecl *Class,
|
|
CharUnits Offset) {
|
|
// We know that the only empty subobjects that can conflict with empty
|
|
// field subobjects are subobjects of empty bases that can be placed at offset
|
|
// zero. Because of this, we only need to keep track of empty field
|
|
// subobjects with offsets less than the size of the largest empty
|
|
// subobject for our class.
|
|
if (Offset >= SizeOfLargestEmptySubobject)
|
|
return;
|
|
|
|
AddSubobjectAtOffset(RD, Offset);
|
|
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
// Traverse all non-virtual bases.
|
|
for (const CXXBaseSpecifier &Base : RD->bases()) {
|
|
if (Base.isVirtual())
|
|
continue;
|
|
|
|
const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
|
|
|
|
CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
|
|
UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset);
|
|
}
|
|
|
|
if (RD == Class) {
|
|
// This is the most derived class, traverse virtual bases as well.
|
|
for (const CXXBaseSpecifier &Base : RD->vbases()) {
|
|
const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
|
|
|
|
CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
|
|
UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset);
|
|
}
|
|
}
|
|
|
|
// Traverse all member variables.
|
|
unsigned FieldNo = 0;
|
|
for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
|
|
I != E; ++I, ++FieldNo) {
|
|
if (I->isBitField())
|
|
continue;
|
|
|
|
CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
|
|
|
|
UpdateEmptyFieldSubobjects(*I, FieldOffset);
|
|
}
|
|
}
|
|
|
|
void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const FieldDecl *FD,
|
|
CharUnits Offset) {
|
|
QualType T = FD->getType();
|
|
if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
|
|
UpdateEmptyFieldSubobjects(RD, RD, Offset);
|
|
return;
|
|
}
|
|
|
|
// If we have an array type we need to update every element.
|
|
if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
|
|
QualType ElemTy = Context.getBaseElementType(AT);
|
|
const RecordType *RT = ElemTy->getAs<RecordType>();
|
|
if (!RT)
|
|
return;
|
|
|
|
const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
uint64_t NumElements = Context.getConstantArrayElementCount(AT);
|
|
CharUnits ElementOffset = Offset;
|
|
|
|
for (uint64_t I = 0; I != NumElements; ++I) {
|
|
// We know that the only empty subobjects that can conflict with empty
|
|
// field subobjects are subobjects of empty bases that can be placed at
|
|
// offset zero. Because of this, we only need to keep track of empty field
|
|
// subobjects with offsets less than the size of the largest empty
|
|
// subobject for our class.
|
|
if (ElementOffset >= SizeOfLargestEmptySubobject)
|
|
return;
|
|
|
|
UpdateEmptyFieldSubobjects(RD, RD, ElementOffset);
|
|
ElementOffset += Layout.getSize();
|
|
}
|
|
}
|
|
}
|
|
|
|
typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
|
|
|
|
class RecordLayoutBuilder {
|
|
protected:
|
|
// FIXME: Remove this and make the appropriate fields public.
|
|
friend class clang::ASTContext;
|
|
|
|
const ASTContext &Context;
|
|
|
|
EmptySubobjectMap *EmptySubobjects;
|
|
|
|
/// Size - The current size of the record layout.
|
|
uint64_t Size;
|
|
|
|
/// Alignment - The current alignment of the record layout.
|
|
CharUnits Alignment;
|
|
|
|
/// \brief The alignment if attribute packed is not used.
|
|
CharUnits UnpackedAlignment;
|
|
|
|
SmallVector<uint64_t, 16> FieldOffsets;
|
|
|
|
/// \brief Whether the external AST source has provided a layout for this
|
|
/// record.
|
|
unsigned ExternalLayout : 1;
|
|
|
|
/// \brief Whether we need to infer alignment, even when we have an
|
|
/// externally-provided layout.
|
|
unsigned InferAlignment : 1;
|
|
|
|
/// Packed - Whether the record is packed or not.
|
|
unsigned Packed : 1;
|
|
|
|
unsigned IsUnion : 1;
|
|
|
|
unsigned IsMac68kAlign : 1;
|
|
|
|
unsigned IsMsStruct : 1;
|
|
|
|
/// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
|
|
/// this contains the number of bits in the last unit that can be used for
|
|
/// an adjacent bitfield if necessary. The unit in question is usually
|
|
/// a byte, but larger units are used if IsMsStruct.
|
|
unsigned char UnfilledBitsInLastUnit;
|
|
/// LastBitfieldTypeSize - If IsMsStruct, represents the size of the type
|
|
/// of the previous field if it was a bitfield.
|
|
unsigned char LastBitfieldTypeSize;
|
|
|
|
/// MaxFieldAlignment - The maximum allowed field alignment. This is set by
|
|
/// #pragma pack.
|
|
CharUnits MaxFieldAlignment;
|
|
|
|
/// DataSize - The data size of the record being laid out.
|
|
uint64_t DataSize;
|
|
|
|
CharUnits NonVirtualSize;
|
|
CharUnits NonVirtualAlignment;
|
|
|
|
/// PrimaryBase - the primary base class (if one exists) of the class
|
|
/// we're laying out.
|
|
const CXXRecordDecl *PrimaryBase;
|
|
|
|
/// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
|
|
/// out is virtual.
|
|
bool PrimaryBaseIsVirtual;
|
|
|
|
/// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
|
|
/// pointer, as opposed to inheriting one from a primary base class.
|
|
bool HasOwnVFPtr;
|
|
|
|
typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
|
|
|
|
/// Bases - base classes and their offsets in the record.
|
|
BaseOffsetsMapTy Bases;
|
|
|
|
// VBases - virtual base classes and their offsets in the record.
|
|
ASTRecordLayout::VBaseOffsetsMapTy VBases;
|
|
|
|
/// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
|
|
/// primary base classes for some other direct or indirect base class.
|
|
CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
|
|
|
|
/// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
|
|
/// inheritance graph order. Used for determining the primary base class.
|
|
const CXXRecordDecl *FirstNearlyEmptyVBase;
|
|
|
|
/// VisitedVirtualBases - A set of all the visited virtual bases, used to
|
|
/// avoid visiting virtual bases more than once.
|
|
llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
|
|
|
|
/// \brief Externally-provided size.
|
|
uint64_t ExternalSize;
|
|
|
|
/// \brief Externally-provided alignment.
|
|
uint64_t ExternalAlign;
|
|
|
|
/// \brief Externally-provided field offsets.
|
|
llvm::DenseMap<const FieldDecl *, uint64_t> ExternalFieldOffsets;
|
|
|
|
/// \brief Externally-provided direct, non-virtual base offsets.
|
|
llvm::DenseMap<const CXXRecordDecl *, CharUnits> ExternalBaseOffsets;
|
|
|
|
/// \brief Externally-provided virtual base offsets.
|
|
llvm::DenseMap<const CXXRecordDecl *, CharUnits> ExternalVirtualBaseOffsets;
|
|
|
|
RecordLayoutBuilder(const ASTContext &Context,
|
|
EmptySubobjectMap *EmptySubobjects)
|
|
: Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
|
|
Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()),
|
|
ExternalLayout(false), InferAlignment(false),
|
|
Packed(false), IsUnion(false), IsMac68kAlign(false), IsMsStruct(false),
|
|
UnfilledBitsInLastUnit(0), LastBitfieldTypeSize(0),
|
|
MaxFieldAlignment(CharUnits::Zero()),
|
|
DataSize(0), NonVirtualSize(CharUnits::Zero()),
|
|
NonVirtualAlignment(CharUnits::One()),
|
|
PrimaryBase(nullptr), PrimaryBaseIsVirtual(false),
|
|
HasOwnVFPtr(false),
|
|
FirstNearlyEmptyVBase(nullptr) {}
|
|
|
|
/// Reset this RecordLayoutBuilder to a fresh state, using the given
|
|
/// alignment as the initial alignment. This is used for the
|
|
/// correct layout of vb-table pointers in MSVC.
|
|
void resetWithTargetAlignment(CharUnits TargetAlignment) {
|
|
const ASTContext &Context = this->Context;
|
|
EmptySubobjectMap *EmptySubobjects = this->EmptySubobjects;
|
|
this->~RecordLayoutBuilder();
|
|
new (this) RecordLayoutBuilder(Context, EmptySubobjects);
|
|
Alignment = UnpackedAlignment = TargetAlignment;
|
|
}
|
|
|
|
void Layout(const RecordDecl *D);
|
|
void Layout(const CXXRecordDecl *D);
|
|
void Layout(const ObjCInterfaceDecl *D);
|
|
|
|
void LayoutFields(const RecordDecl *D);
|
|
void LayoutField(const FieldDecl *D);
|
|
void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize,
|
|
bool FieldPacked, const FieldDecl *D);
|
|
void LayoutBitField(const FieldDecl *D);
|
|
|
|
TargetCXXABI getCXXABI() const {
|
|
return Context.getTargetInfo().getCXXABI();
|
|
}
|
|
|
|
/// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
|
|
llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
|
|
|
|
typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
|
|
BaseSubobjectInfoMapTy;
|
|
|
|
/// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
|
|
/// of the class we're laying out to their base subobject info.
|
|
BaseSubobjectInfoMapTy VirtualBaseInfo;
|
|
|
|
/// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
|
|
/// class we're laying out to their base subobject info.
|
|
BaseSubobjectInfoMapTy NonVirtualBaseInfo;
|
|
|
|
/// ComputeBaseSubobjectInfo - Compute the base subobject information for the
|
|
/// bases of the given class.
|
|
void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
|
|
|
|
/// ComputeBaseSubobjectInfo - Compute the base subobject information for a
|
|
/// single class and all of its base classes.
|
|
BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
|
|
bool IsVirtual,
|
|
BaseSubobjectInfo *Derived);
|
|
|
|
/// DeterminePrimaryBase - Determine the primary base of the given class.
|
|
void DeterminePrimaryBase(const CXXRecordDecl *RD);
|
|
|
|
void SelectPrimaryVBase(const CXXRecordDecl *RD);
|
|
|
|
void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
|
|
|
|
/// LayoutNonVirtualBases - Determines the primary base class (if any) and
|
|
/// lays it out. Will then proceed to lay out all non-virtual base clasess.
|
|
void LayoutNonVirtualBases(const CXXRecordDecl *RD);
|
|
|
|
/// LayoutNonVirtualBase - Lays out a single non-virtual base.
|
|
void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
|
|
|
|
void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
|
|
CharUnits Offset);
|
|
|
|
/// LayoutVirtualBases - Lays out all the virtual bases.
|
|
void LayoutVirtualBases(const CXXRecordDecl *RD,
|
|
const CXXRecordDecl *MostDerivedClass);
|
|
|
|
/// LayoutVirtualBase - Lays out a single virtual base.
|
|
void LayoutVirtualBase(const BaseSubobjectInfo *Base);
|
|
|
|
/// LayoutBase - Will lay out a base and return the offset where it was
|
|
/// placed, in chars.
|
|
CharUnits LayoutBase(const BaseSubobjectInfo *Base);
|
|
|
|
/// InitializeLayout - Initialize record layout for the given record decl.
|
|
void InitializeLayout(const Decl *D);
|
|
|
|
/// FinishLayout - Finalize record layout. Adjust record size based on the
|
|
/// alignment.
|
|
void FinishLayout(const NamedDecl *D);
|
|
|
|
void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment);
|
|
void UpdateAlignment(CharUnits NewAlignment) {
|
|
UpdateAlignment(NewAlignment, NewAlignment);
|
|
}
|
|
|
|
/// \brief Retrieve the externally-supplied field offset for the given
|
|
/// field.
|
|
///
|
|
/// \param Field The field whose offset is being queried.
|
|
/// \param ComputedOffset The offset that we've computed for this field.
|
|
uint64_t updateExternalFieldOffset(const FieldDecl *Field,
|
|
uint64_t ComputedOffset);
|
|
|
|
void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
|
|
uint64_t UnpackedOffset, unsigned UnpackedAlign,
|
|
bool isPacked, const FieldDecl *D);
|
|
|
|
DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
|
|
|
|
CharUnits getSize() const {
|
|
assert(Size % Context.getCharWidth() == 0);
|
|
return Context.toCharUnitsFromBits(Size);
|
|
}
|
|
uint64_t getSizeInBits() const { return Size; }
|
|
|
|
void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
|
|
void setSize(uint64_t NewSize) { Size = NewSize; }
|
|
|
|
CharUnits getAligment() const { return Alignment; }
|
|
|
|
CharUnits getDataSize() const {
|
|
assert(DataSize % Context.getCharWidth() == 0);
|
|
return Context.toCharUnitsFromBits(DataSize);
|
|
}
|
|
uint64_t getDataSizeInBits() const { return DataSize; }
|
|
|
|
void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
|
|
void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
|
|
|
|
RecordLayoutBuilder(const RecordLayoutBuilder &) LLVM_DELETED_FUNCTION;
|
|
void operator=(const RecordLayoutBuilder &) LLVM_DELETED_FUNCTION;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
void
|
|
RecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
|
|
for (const auto &I : RD->bases()) {
|
|
assert(!I.getType()->isDependentType() &&
|
|
"Cannot layout class with dependent bases.");
|
|
|
|
const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
|
|
|
|
// Check if this is a nearly empty virtual base.
|
|
if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
|
|
// If it's not an indirect primary base, then we've found our primary
|
|
// base.
|
|
if (!IndirectPrimaryBases.count(Base)) {
|
|
PrimaryBase = Base;
|
|
PrimaryBaseIsVirtual = true;
|
|
return;
|
|
}
|
|
|
|
// Is this the first nearly empty virtual base?
|
|
if (!FirstNearlyEmptyVBase)
|
|
FirstNearlyEmptyVBase = Base;
|
|
}
|
|
|
|
SelectPrimaryVBase(Base);
|
|
if (PrimaryBase)
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// DeterminePrimaryBase - Determine the primary base of the given class.
|
|
void RecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
|
|
// If the class isn't dynamic, it won't have a primary base.
|
|
if (!RD->isDynamicClass())
|
|
return;
|
|
|
|
// Compute all the primary virtual bases for all of our direct and
|
|
// indirect bases, and record all their primary virtual base classes.
|
|
RD->getIndirectPrimaryBases(IndirectPrimaryBases);
|
|
|
|
// If the record has a dynamic base class, attempt to choose a primary base
|
|
// class. It is the first (in direct base class order) non-virtual dynamic
|
|
// base class, if one exists.
|
|
for (const auto &I : RD->bases()) {
|
|
// Ignore virtual bases.
|
|
if (I.isVirtual())
|
|
continue;
|
|
|
|
const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
|
|
|
|
if (Base->isDynamicClass()) {
|
|
// We found it.
|
|
PrimaryBase = Base;
|
|
PrimaryBaseIsVirtual = false;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Under the Itanium ABI, if there is no non-virtual primary base class,
|
|
// try to compute the primary virtual base. The primary virtual base is
|
|
// the first nearly empty virtual base that is not an indirect primary
|
|
// virtual base class, if one exists.
|
|
if (RD->getNumVBases() != 0) {
|
|
SelectPrimaryVBase(RD);
|
|
if (PrimaryBase)
|
|
return;
|
|
}
|
|
|
|
// Otherwise, it is the first indirect primary base class, if one exists.
|
|
if (FirstNearlyEmptyVBase) {
|
|
PrimaryBase = FirstNearlyEmptyVBase;
|
|
PrimaryBaseIsVirtual = true;
|
|
return;
|
|
}
|
|
|
|
assert(!PrimaryBase && "Should not get here with a primary base!");
|
|
}
|
|
|
|
BaseSubobjectInfo *
|
|
RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
|
|
bool IsVirtual,
|
|
BaseSubobjectInfo *Derived) {
|
|
BaseSubobjectInfo *Info;
|
|
|
|
if (IsVirtual) {
|
|
// Check if we already have info about this virtual base.
|
|
BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
|
|
if (InfoSlot) {
|
|
assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
|
|
return InfoSlot;
|
|
}
|
|
|
|
// We don't, create it.
|
|
InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
|
|
Info = InfoSlot;
|
|
} else {
|
|
Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
|
|
}
|
|
|
|
Info->Class = RD;
|
|
Info->IsVirtual = IsVirtual;
|
|
Info->Derived = nullptr;
|
|
Info->PrimaryVirtualBaseInfo = nullptr;
|
|
|
|
const CXXRecordDecl *PrimaryVirtualBase = nullptr;
|
|
BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
|
|
|
|
// Check if this base has a primary virtual base.
|
|
if (RD->getNumVBases()) {
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
if (Layout.isPrimaryBaseVirtual()) {
|
|
// This base does have a primary virtual base.
|
|
PrimaryVirtualBase = Layout.getPrimaryBase();
|
|
assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
|
|
|
|
// Now check if we have base subobject info about this primary base.
|
|
PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
|
|
|
|
if (PrimaryVirtualBaseInfo) {
|
|
if (PrimaryVirtualBaseInfo->Derived) {
|
|
// We did have info about this primary base, and it turns out that it
|
|
// has already been claimed as a primary virtual base for another
|
|
// base.
|
|
PrimaryVirtualBase = nullptr;
|
|
} else {
|
|
// We can claim this base as our primary base.
|
|
Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
|
|
PrimaryVirtualBaseInfo->Derived = Info;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now go through all direct bases.
|
|
for (const auto &I : RD->bases()) {
|
|
bool IsVirtual = I.isVirtual();
|
|
|
|
const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
|
|
|
|
Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
|
|
}
|
|
|
|
if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
|
|
// Traversing the bases must have created the base info for our primary
|
|
// virtual base.
|
|
PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
|
|
assert(PrimaryVirtualBaseInfo &&
|
|
"Did not create a primary virtual base!");
|
|
|
|
// Claim the primary virtual base as our primary virtual base.
|
|
Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
|
|
PrimaryVirtualBaseInfo->Derived = Info;
|
|
}
|
|
|
|
return Info;
|
|
}
|
|
|
|
void RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD) {
|
|
for (const auto &I : RD->bases()) {
|
|
bool IsVirtual = I.isVirtual();
|
|
|
|
const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
|
|
|
|
// Compute the base subobject info for this base.
|
|
BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
|
|
nullptr);
|
|
|
|
if (IsVirtual) {
|
|
// ComputeBaseInfo has already added this base for us.
|
|
assert(VirtualBaseInfo.count(BaseDecl) &&
|
|
"Did not add virtual base!");
|
|
} else {
|
|
// Add the base info to the map of non-virtual bases.
|
|
assert(!NonVirtualBaseInfo.count(BaseDecl) &&
|
|
"Non-virtual base already exists!");
|
|
NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
RecordLayoutBuilder::EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign) {
|
|
CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
|
|
|
|
// The maximum field alignment overrides base align.
|
|
if (!MaxFieldAlignment.isZero()) {
|
|
BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
|
|
UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
|
|
}
|
|
|
|
// Round up the current record size to pointer alignment.
|
|
setSize(getSize().RoundUpToAlignment(BaseAlign));
|
|
setDataSize(getSize());
|
|
|
|
// Update the alignment.
|
|
UpdateAlignment(BaseAlign, UnpackedBaseAlign);
|
|
}
|
|
|
|
void
|
|
RecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD) {
|
|
// Then, determine the primary base class.
|
|
DeterminePrimaryBase(RD);
|
|
|
|
// Compute base subobject info.
|
|
ComputeBaseSubobjectInfo(RD);
|
|
|
|
// If we have a primary base class, lay it out.
|
|
if (PrimaryBase) {
|
|
if (PrimaryBaseIsVirtual) {
|
|
// If the primary virtual base was a primary virtual base of some other
|
|
// base class we'll have to steal it.
|
|
BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
|
|
PrimaryBaseInfo->Derived = nullptr;
|
|
|
|
// We have a virtual primary base, insert it as an indirect primary base.
|
|
IndirectPrimaryBases.insert(PrimaryBase);
|
|
|
|
assert(!VisitedVirtualBases.count(PrimaryBase) &&
|
|
"vbase already visited!");
|
|
VisitedVirtualBases.insert(PrimaryBase);
|
|
|
|
LayoutVirtualBase(PrimaryBaseInfo);
|
|
} else {
|
|
BaseSubobjectInfo *PrimaryBaseInfo =
|
|
NonVirtualBaseInfo.lookup(PrimaryBase);
|
|
assert(PrimaryBaseInfo &&
|
|
"Did not find base info for non-virtual primary base!");
|
|
|
|
LayoutNonVirtualBase(PrimaryBaseInfo);
|
|
}
|
|
|
|
// If this class needs a vtable/vf-table and didn't get one from a
|
|
// primary base, add it in now.
|
|
} else if (RD->isDynamicClass()) {
|
|
assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
|
|
CharUnits PtrWidth =
|
|
Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
|
|
CharUnits PtrAlign =
|
|
Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
|
|
EnsureVTablePointerAlignment(PtrAlign);
|
|
HasOwnVFPtr = true;
|
|
setSize(getSize() + PtrWidth);
|
|
setDataSize(getSize());
|
|
}
|
|
|
|
// Now lay out the non-virtual bases.
|
|
for (const auto &I : RD->bases()) {
|
|
|
|
// Ignore virtual bases.
|
|
if (I.isVirtual())
|
|
continue;
|
|
|
|
const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
|
|
|
|
// Skip the primary base, because we've already laid it out. The
|
|
// !PrimaryBaseIsVirtual check is required because we might have a
|
|
// non-virtual base of the same type as a primary virtual base.
|
|
if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
|
|
continue;
|
|
|
|
// Lay out the base.
|
|
BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
|
|
assert(BaseInfo && "Did not find base info for non-virtual base!");
|
|
|
|
LayoutNonVirtualBase(BaseInfo);
|
|
}
|
|
}
|
|
|
|
void RecordLayoutBuilder::LayoutNonVirtualBase(const BaseSubobjectInfo *Base) {
|
|
// Layout the base.
|
|
CharUnits Offset = LayoutBase(Base);
|
|
|
|
// Add its base class offset.
|
|
assert(!Bases.count(Base->Class) && "base offset already exists!");
|
|
Bases.insert(std::make_pair(Base->Class, Offset));
|
|
|
|
AddPrimaryVirtualBaseOffsets(Base, Offset);
|
|
}
|
|
|
|
void
|
|
RecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
|
|
CharUnits Offset) {
|
|
// This base isn't interesting, it has no virtual bases.
|
|
if (!Info->Class->getNumVBases())
|
|
return;
|
|
|
|
// First, check if we have a virtual primary base to add offsets for.
|
|
if (Info->PrimaryVirtualBaseInfo) {
|
|
assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
|
|
"Primary virtual base is not virtual!");
|
|
if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
|
|
// Add the offset.
|
|
assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
|
|
"primary vbase offset already exists!");
|
|
VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
|
|
ASTRecordLayout::VBaseInfo(Offset, false)));
|
|
|
|
// Traverse the primary virtual base.
|
|
AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
|
|
}
|
|
}
|
|
|
|
// Now go through all direct non-virtual bases.
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
|
|
for (const BaseSubobjectInfo *Base : Info->Bases) {
|
|
if (Base->IsVirtual)
|
|
continue;
|
|
|
|
CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
|
|
AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
|
|
}
|
|
}
|
|
|
|
void
|
|
RecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD,
|
|
const CXXRecordDecl *MostDerivedClass) {
|
|
const CXXRecordDecl *PrimaryBase;
|
|
bool PrimaryBaseIsVirtual;
|
|
|
|
if (MostDerivedClass == RD) {
|
|
PrimaryBase = this->PrimaryBase;
|
|
PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
|
|
} else {
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
PrimaryBase = Layout.getPrimaryBase();
|
|
PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
|
|
}
|
|
|
|
for (const CXXBaseSpecifier &Base : RD->bases()) {
|
|
assert(!Base.getType()->isDependentType() &&
|
|
"Cannot layout class with dependent bases.");
|
|
|
|
const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
|
|
|
|
if (Base.isVirtual()) {
|
|
if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
|
|
bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
|
|
|
|
// Only lay out the virtual base if it's not an indirect primary base.
|
|
if (!IndirectPrimaryBase) {
|
|
// Only visit virtual bases once.
|
|
if (!VisitedVirtualBases.insert(BaseDecl))
|
|
continue;
|
|
|
|
const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
|
|
assert(BaseInfo && "Did not find virtual base info!");
|
|
LayoutVirtualBase(BaseInfo);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!BaseDecl->getNumVBases()) {
|
|
// This base isn't interesting since it doesn't have any virtual bases.
|
|
continue;
|
|
}
|
|
|
|
LayoutVirtualBases(BaseDecl, MostDerivedClass);
|
|
}
|
|
}
|
|
|
|
void RecordLayoutBuilder::LayoutVirtualBase(const BaseSubobjectInfo *Base) {
|
|
assert(!Base->Derived && "Trying to lay out a primary virtual base!");
|
|
|
|
// Layout the base.
|
|
CharUnits Offset = LayoutBase(Base);
|
|
|
|
// Add its base class offset.
|
|
assert(!VBases.count(Base->Class) && "vbase offset already exists!");
|
|
VBases.insert(std::make_pair(Base->Class,
|
|
ASTRecordLayout::VBaseInfo(Offset, false)));
|
|
|
|
AddPrimaryVirtualBaseOffsets(Base, Offset);
|
|
}
|
|
|
|
CharUnits RecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
|
|
|
|
|
|
CharUnits Offset;
|
|
|
|
// Query the external layout to see if it provides an offset.
|
|
bool HasExternalLayout = false;
|
|
if (ExternalLayout) {
|
|
llvm::DenseMap<const CXXRecordDecl *, CharUnits>::iterator Known;
|
|
if (Base->IsVirtual) {
|
|
Known = ExternalVirtualBaseOffsets.find(Base->Class);
|
|
if (Known != ExternalVirtualBaseOffsets.end()) {
|
|
Offset = Known->second;
|
|
HasExternalLayout = true;
|
|
}
|
|
} else {
|
|
Known = ExternalBaseOffsets.find(Base->Class);
|
|
if (Known != ExternalBaseOffsets.end()) {
|
|
Offset = Known->second;
|
|
HasExternalLayout = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
|
|
CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
|
|
|
|
// If we have an empty base class, try to place it at offset 0.
|
|
if (Base->Class->isEmpty() &&
|
|
(!HasExternalLayout || Offset == CharUnits::Zero()) &&
|
|
EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
|
|
setSize(std::max(getSize(), Layout.getSize()));
|
|
UpdateAlignment(BaseAlign, UnpackedBaseAlign);
|
|
|
|
return CharUnits::Zero();
|
|
}
|
|
|
|
// The maximum field alignment overrides base align.
|
|
if (!MaxFieldAlignment.isZero()) {
|
|
BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
|
|
UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
|
|
}
|
|
|
|
if (!HasExternalLayout) {
|
|
// Round up the current record size to the base's alignment boundary.
|
|
Offset = getDataSize().RoundUpToAlignment(BaseAlign);
|
|
|
|
// Try to place the base.
|
|
while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
|
|
Offset += BaseAlign;
|
|
} else {
|
|
bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
|
|
(void)Allowed;
|
|
assert(Allowed && "Base subobject externally placed at overlapping offset");
|
|
|
|
if (InferAlignment && Offset < getDataSize().RoundUpToAlignment(BaseAlign)){
|
|
// The externally-supplied base offset is before the base offset we
|
|
// computed. Assume that the structure is packed.
|
|
Alignment = CharUnits::One();
|
|
InferAlignment = false;
|
|
}
|
|
}
|
|
|
|
if (!Base->Class->isEmpty()) {
|
|
// Update the data size.
|
|
setDataSize(Offset + Layout.getNonVirtualSize());
|
|
|
|
setSize(std::max(getSize(), getDataSize()));
|
|
} else
|
|
setSize(std::max(getSize(), Offset + Layout.getSize()));
|
|
|
|
// Remember max struct/class alignment.
|
|
UpdateAlignment(BaseAlign, UnpackedBaseAlign);
|
|
|
|
return Offset;
|
|
}
|
|
|
|
void RecordLayoutBuilder::InitializeLayout(const Decl *D) {
|
|
if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
|
|
IsUnion = RD->isUnion();
|
|
IsMsStruct = RD->isMsStruct(Context);
|
|
}
|
|
|
|
Packed = D->hasAttr<PackedAttr>();
|
|
|
|
// Honor the default struct packing maximum alignment flag.
|
|
if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
|
|
MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
|
|
}
|
|
|
|
// mac68k alignment supersedes maximum field alignment and attribute aligned,
|
|
// and forces all structures to have 2-byte alignment. The IBM docs on it
|
|
// allude to additional (more complicated) semantics, especially with regard
|
|
// to bit-fields, but gcc appears not to follow that.
|
|
if (D->hasAttr<AlignMac68kAttr>()) {
|
|
IsMac68kAlign = true;
|
|
MaxFieldAlignment = CharUnits::fromQuantity(2);
|
|
Alignment = CharUnits::fromQuantity(2);
|
|
} else {
|
|
if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
|
|
MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
|
|
|
|
if (unsigned MaxAlign = D->getMaxAlignment())
|
|
UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
|
|
}
|
|
|
|
// If there is an external AST source, ask it for the various offsets.
|
|
if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
|
|
if (ExternalASTSource *External = Context.getExternalSource()) {
|
|
ExternalLayout = External->layoutRecordType(RD,
|
|
ExternalSize,
|
|
ExternalAlign,
|
|
ExternalFieldOffsets,
|
|
ExternalBaseOffsets,
|
|
ExternalVirtualBaseOffsets);
|
|
|
|
// Update based on external alignment.
|
|
if (ExternalLayout) {
|
|
if (ExternalAlign > 0) {
|
|
Alignment = Context.toCharUnitsFromBits(ExternalAlign);
|
|
} else {
|
|
// The external source didn't have alignment information; infer it.
|
|
InferAlignment = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void RecordLayoutBuilder::Layout(const RecordDecl *D) {
|
|
InitializeLayout(D);
|
|
LayoutFields(D);
|
|
|
|
// Finally, round the size of the total struct up to the alignment of the
|
|
// struct itself.
|
|
FinishLayout(D);
|
|
}
|
|
|
|
void RecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
|
|
InitializeLayout(RD);
|
|
|
|
// Lay out the vtable and the non-virtual bases.
|
|
LayoutNonVirtualBases(RD);
|
|
|
|
LayoutFields(RD);
|
|
|
|
NonVirtualSize = Context.toCharUnitsFromBits(
|
|
llvm::RoundUpToAlignment(getSizeInBits(),
|
|
Context.getTargetInfo().getCharAlign()));
|
|
NonVirtualAlignment = Alignment;
|
|
|
|
// Lay out the virtual bases and add the primary virtual base offsets.
|
|
LayoutVirtualBases(RD, RD);
|
|
|
|
// Finally, round the size of the total struct up to the alignment
|
|
// of the struct itself.
|
|
FinishLayout(RD);
|
|
|
|
#ifndef NDEBUG
|
|
// Check that we have base offsets for all bases.
|
|
for (const CXXBaseSpecifier &Base : RD->bases()) {
|
|
if (Base.isVirtual())
|
|
continue;
|
|
|
|
const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
|
|
|
|
assert(Bases.count(BaseDecl) && "Did not find base offset!");
|
|
}
|
|
|
|
// And all virtual bases.
|
|
for (const CXXBaseSpecifier &Base : RD->vbases()) {
|
|
const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
|
|
|
|
assert(VBases.count(BaseDecl) && "Did not find base offset!");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void RecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
|
|
if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
|
|
const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
|
|
|
|
UpdateAlignment(SL.getAlignment());
|
|
|
|
// We start laying out ivars not at the end of the superclass
|
|
// structure, but at the next byte following the last field.
|
|
setSize(SL.getDataSize());
|
|
setDataSize(getSize());
|
|
}
|
|
|
|
InitializeLayout(D);
|
|
// Layout each ivar sequentially.
|
|
for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
|
|
IVD = IVD->getNextIvar())
|
|
LayoutField(IVD);
|
|
|
|
// Finally, round the size of the total struct up to the alignment of the
|
|
// struct itself.
|
|
FinishLayout(D);
|
|
}
|
|
|
|
void RecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
|
|
// Layout each field, for now, just sequentially, respecting alignment. In
|
|
// the future, this will need to be tweakable by targets.
|
|
for (const auto *Field : D->fields())
|
|
LayoutField(Field);
|
|
}
|
|
|
|
void RecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
|
|
uint64_t TypeSize,
|
|
bool FieldPacked,
|
|
const FieldDecl *D) {
|
|
assert(Context.getLangOpts().CPlusPlus &&
|
|
"Can only have wide bit-fields in C++!");
|
|
|
|
// Itanium C++ ABI 2.4:
|
|
// If sizeof(T)*8 < n, let T' be the largest integral POD type with
|
|
// sizeof(T')*8 <= n.
|
|
|
|
QualType IntegralPODTypes[] = {
|
|
Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
|
|
Context.UnsignedLongTy, Context.UnsignedLongLongTy
|
|
};
|
|
|
|
QualType Type;
|
|
for (const QualType &QT : IntegralPODTypes) {
|
|
uint64_t Size = Context.getTypeSize(QT);
|
|
|
|
if (Size > FieldSize)
|
|
break;
|
|
|
|
Type = QT;
|
|
}
|
|
assert(!Type.isNull() && "Did not find a type!");
|
|
|
|
CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
|
|
|
|
// We're not going to use any of the unfilled bits in the last byte.
|
|
UnfilledBitsInLastUnit = 0;
|
|
LastBitfieldTypeSize = 0;
|
|
|
|
uint64_t FieldOffset;
|
|
uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
|
|
|
|
if (IsUnion) {
|
|
setDataSize(std::max(getDataSizeInBits(), FieldSize));
|
|
FieldOffset = 0;
|
|
} else {
|
|
// The bitfield is allocated starting at the next offset aligned
|
|
// appropriately for T', with length n bits.
|
|
FieldOffset = llvm::RoundUpToAlignment(getDataSizeInBits(),
|
|
Context.toBits(TypeAlign));
|
|
|
|
uint64_t NewSizeInBits = FieldOffset + FieldSize;
|
|
|
|
setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
|
|
Context.getTargetInfo().getCharAlign()));
|
|
UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
|
|
}
|
|
|
|
// Place this field at the current location.
|
|
FieldOffsets.push_back(FieldOffset);
|
|
|
|
CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
|
|
Context.toBits(TypeAlign), FieldPacked, D);
|
|
|
|
// Update the size.
|
|
setSize(std::max(getSizeInBits(), getDataSizeInBits()));
|
|
|
|
// Remember max struct/class alignment.
|
|
UpdateAlignment(TypeAlign);
|
|
}
|
|
|
|
void RecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
|
|
bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
|
|
uint64_t FieldSize = D->getBitWidthValue(Context);
|
|
TypeInfo FieldInfo = Context.getTypeInfo(D->getType());
|
|
uint64_t TypeSize = FieldInfo.Width;
|
|
unsigned FieldAlign = FieldInfo.Align;
|
|
|
|
// UnfilledBitsInLastUnit is the difference between the end of the
|
|
// last allocated bitfield (i.e. the first bit offset available for
|
|
// bitfields) and the end of the current data size in bits (i.e. the
|
|
// first bit offset available for non-bitfields). The current data
|
|
// size in bits is always a multiple of the char size; additionally,
|
|
// for ms_struct records it's also a multiple of the
|
|
// LastBitfieldTypeSize (if set).
|
|
|
|
// The struct-layout algorithm is dictated by the platform ABI,
|
|
// which in principle could use almost any rules it likes. In
|
|
// practice, UNIXy targets tend to inherit the algorithm described
|
|
// in the System V generic ABI. The basic bitfield layout rule in
|
|
// System V is to place bitfields at the next available bit offset
|
|
// where the entire bitfield would fit in an aligned storage unit of
|
|
// the declared type; it's okay if an earlier or later non-bitfield
|
|
// is allocated in the same storage unit. However, some targets
|
|
// (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
|
|
// require this storage unit to be aligned, and therefore always put
|
|
// the bitfield at the next available bit offset.
|
|
|
|
// ms_struct basically requests a complete replacement of the
|
|
// platform ABI's struct-layout algorithm, with the high-level goal
|
|
// of duplicating MSVC's layout. For non-bitfields, this follows
|
|
// the the standard algorithm. The basic bitfield layout rule is to
|
|
// allocate an entire unit of the bitfield's declared type
|
|
// (e.g. 'unsigned long'), then parcel it up among successive
|
|
// bitfields whose declared types have the same size, making a new
|
|
// unit as soon as the last can no longer store the whole value.
|
|
// Since it completely replaces the platform ABI's algorithm,
|
|
// settings like !useBitFieldTypeAlignment() do not apply.
|
|
|
|
// A zero-width bitfield forces the use of a new storage unit for
|
|
// later bitfields. In general, this occurs by rounding up the
|
|
// current size of the struct as if the algorithm were about to
|
|
// place a non-bitfield of the field's formal type. Usually this
|
|
// does not change the alignment of the struct itself, but it does
|
|
// on some targets (those that useZeroLengthBitfieldAlignment(),
|
|
// e.g. ARM). In ms_struct layout, zero-width bitfields are
|
|
// ignored unless they follow a non-zero-width bitfield.
|
|
|
|
// A field alignment restriction (e.g. from #pragma pack) or
|
|
// specification (e.g. from __attribute__((aligned))) changes the
|
|
// formal alignment of the field. For System V, this alters the
|
|
// required alignment of the notional storage unit that must contain
|
|
// the bitfield. For ms_struct, this only affects the placement of
|
|
// new storage units. In both cases, the effect of #pragma pack is
|
|
// ignored on zero-width bitfields.
|
|
|
|
// On System V, a packed field (e.g. from #pragma pack or
|
|
// __attribute__((packed))) always uses the next available bit
|
|
// offset.
|
|
|
|
// In an ms_struct struct, the alignment of a fundamental type is
|
|
// always equal to its size. This is necessary in order to mimic
|
|
// the i386 alignment rules on targets which might not fully align
|
|
// all types (e.g. Darwin PPC32, where alignof(long long) == 4).
|
|
|
|
// First, some simple bookkeeping to perform for ms_struct structs.
|
|
if (IsMsStruct) {
|
|
// The field alignment for integer types is always the size.
|
|
FieldAlign = TypeSize;
|
|
|
|
// If the previous field was not a bitfield, or was a bitfield
|
|
// with a different storage unit size, we're done with that
|
|
// storage unit.
|
|
if (LastBitfieldTypeSize != TypeSize) {
|
|
// Also, ignore zero-length bitfields after non-bitfields.
|
|
if (!LastBitfieldTypeSize && !FieldSize)
|
|
FieldAlign = 1;
|
|
|
|
UnfilledBitsInLastUnit = 0;
|
|
LastBitfieldTypeSize = 0;
|
|
}
|
|
}
|
|
|
|
// If the field is wider than its declared type, it follows
|
|
// different rules in all cases.
|
|
if (FieldSize > TypeSize) {
|
|
LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D);
|
|
return;
|
|
}
|
|
|
|
// Compute the next available bit offset.
|
|
uint64_t FieldOffset =
|
|
IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
|
|
|
|
// Handle targets that don't honor bitfield type alignment.
|
|
if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
|
|
// Some such targets do honor it on zero-width bitfields.
|
|
if (FieldSize == 0 &&
|
|
Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
|
|
// The alignment to round up to is the max of the field's natural
|
|
// alignment and a target-specific fixed value (sometimes zero).
|
|
unsigned ZeroLengthBitfieldBoundary =
|
|
Context.getTargetInfo().getZeroLengthBitfieldBoundary();
|
|
FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
|
|
|
|
// If that doesn't apply, just ignore the field alignment.
|
|
} else {
|
|
FieldAlign = 1;
|
|
}
|
|
}
|
|
|
|
// Remember the alignment we would have used if the field were not packed.
|
|
unsigned UnpackedFieldAlign = FieldAlign;
|
|
|
|
// Ignore the field alignment if the field is packed unless it has zero-size.
|
|
if (!IsMsStruct && FieldPacked && FieldSize != 0)
|
|
FieldAlign = 1;
|
|
|
|
// But, if there's an 'aligned' attribute on the field, honor that.
|
|
if (unsigned ExplicitFieldAlign = D->getMaxAlignment()) {
|
|
FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
|
|
UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
|
|
}
|
|
|
|
// But, if there's a #pragma pack in play, that takes precedent over
|
|
// even the 'aligned' attribute, for non-zero-width bitfields.
|
|
if (!MaxFieldAlignment.isZero() && FieldSize) {
|
|
unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
|
|
FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
|
|
UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
|
|
}
|
|
|
|
// For purposes of diagnostics, we're going to simultaneously
|
|
// compute the field offsets that we would have used if we weren't
|
|
// adding any alignment padding or if the field weren't packed.
|
|
uint64_t UnpaddedFieldOffset = FieldOffset;
|
|
uint64_t UnpackedFieldOffset = FieldOffset;
|
|
|
|
// Check if we need to add padding to fit the bitfield within an
|
|
// allocation unit with the right size and alignment. The rules are
|
|
// somewhat different here for ms_struct structs.
|
|
if (IsMsStruct) {
|
|
// If it's not a zero-width bitfield, and we can fit the bitfield
|
|
// into the active storage unit (and we haven't already decided to
|
|
// start a new storage unit), just do so, regardless of any other
|
|
// other consideration. Otherwise, round up to the right alignment.
|
|
if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
|
|
FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
|
|
UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
|
|
UnpackedFieldAlign);
|
|
UnfilledBitsInLastUnit = 0;
|
|
}
|
|
|
|
} else {
|
|
// #pragma pack, with any value, suppresses the insertion of padding.
|
|
bool AllowPadding = MaxFieldAlignment.isZero();
|
|
|
|
// Compute the real offset.
|
|
if (FieldSize == 0 ||
|
|
(AllowPadding &&
|
|
(FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)) {
|
|
FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
|
|
}
|
|
|
|
// Repeat the computation for diagnostic purposes.
|
|
if (FieldSize == 0 ||
|
|
(AllowPadding &&
|
|
(UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize))
|
|
UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
|
|
UnpackedFieldAlign);
|
|
}
|
|
|
|
// If we're using external layout, give the external layout a chance
|
|
// to override this information.
|
|
if (ExternalLayout)
|
|
FieldOffset = updateExternalFieldOffset(D, FieldOffset);
|
|
|
|
// Okay, place the bitfield at the calculated offset.
|
|
FieldOffsets.push_back(FieldOffset);
|
|
|
|
// Bookkeeping:
|
|
|
|
// Anonymous members don't affect the overall record alignment,
|
|
// except on targets where they do.
|
|
if (!IsMsStruct &&
|
|
!Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
|
|
!D->getIdentifier())
|
|
FieldAlign = UnpackedFieldAlign = 1;
|
|
|
|
// Diagnose differences in layout due to padding or packing.
|
|
if (!ExternalLayout)
|
|
CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
|
|
UnpackedFieldAlign, FieldPacked, D);
|
|
|
|
// Update DataSize to include the last byte containing (part of) the bitfield.
|
|
|
|
// For unions, this is just a max operation, as usual.
|
|
if (IsUnion) {
|
|
// FIXME: I think FieldSize should be TypeSize here.
|
|
setDataSize(std::max(getDataSizeInBits(), FieldSize));
|
|
|
|
// For non-zero-width bitfields in ms_struct structs, allocate a new
|
|
// storage unit if necessary.
|
|
} else if (IsMsStruct && FieldSize) {
|
|
// We should have cleared UnfilledBitsInLastUnit in every case
|
|
// where we changed storage units.
|
|
if (!UnfilledBitsInLastUnit) {
|
|
setDataSize(FieldOffset + TypeSize);
|
|
UnfilledBitsInLastUnit = TypeSize;
|
|
}
|
|
UnfilledBitsInLastUnit -= FieldSize;
|
|
LastBitfieldTypeSize = TypeSize;
|
|
|
|
// Otherwise, bump the data size up to include the bitfield,
|
|
// including padding up to char alignment, and then remember how
|
|
// bits we didn't use.
|
|
} else {
|
|
uint64_t NewSizeInBits = FieldOffset + FieldSize;
|
|
uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
|
|
setDataSize(llvm::RoundUpToAlignment(NewSizeInBits, CharAlignment));
|
|
UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
|
|
|
|
// The only time we can get here for an ms_struct is if this is a
|
|
// zero-width bitfield, which doesn't count as anything for the
|
|
// purposes of unfilled bits.
|
|
LastBitfieldTypeSize = 0;
|
|
}
|
|
|
|
// Update the size.
|
|
setSize(std::max(getSizeInBits(), getDataSizeInBits()));
|
|
|
|
// Remember max struct/class alignment.
|
|
UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
|
|
Context.toCharUnitsFromBits(UnpackedFieldAlign));
|
|
}
|
|
|
|
void RecordLayoutBuilder::LayoutField(const FieldDecl *D) {
|
|
if (D->isBitField()) {
|
|
LayoutBitField(D);
|
|
return;
|
|
}
|
|
|
|
uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
|
|
|
|
// Reset the unfilled bits.
|
|
UnfilledBitsInLastUnit = 0;
|
|
LastBitfieldTypeSize = 0;
|
|
|
|
bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
|
|
CharUnits FieldOffset =
|
|
IsUnion ? CharUnits::Zero() : getDataSize();
|
|
CharUnits FieldSize;
|
|
CharUnits FieldAlign;
|
|
|
|
if (D->getType()->isIncompleteArrayType()) {
|
|
// This is a flexible array member; we can't directly
|
|
// query getTypeInfo about these, so we figure it out here.
|
|
// Flexible array members don't have any size, but they
|
|
// have to be aligned appropriately for their element type.
|
|
FieldSize = CharUnits::Zero();
|
|
const ArrayType* ATy = Context.getAsArrayType(D->getType());
|
|
FieldAlign = Context.getTypeAlignInChars(ATy->getElementType());
|
|
} else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
|
|
unsigned AS = RT->getPointeeType().getAddressSpace();
|
|
FieldSize =
|
|
Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(AS));
|
|
FieldAlign =
|
|
Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(AS));
|
|
} else {
|
|
std::pair<CharUnits, CharUnits> FieldInfo =
|
|
Context.getTypeInfoInChars(D->getType());
|
|
FieldSize = FieldInfo.first;
|
|
FieldAlign = FieldInfo.second;
|
|
|
|
if (IsMsStruct) {
|
|
// If MS bitfield layout is required, figure out what type is being
|
|
// laid out and align the field to the width of that type.
|
|
|
|
// Resolve all typedefs down to their base type and round up the field
|
|
// alignment if necessary.
|
|
QualType T = Context.getBaseElementType(D->getType());
|
|
if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
|
|
CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
|
|
if (TypeSize > FieldAlign)
|
|
FieldAlign = TypeSize;
|
|
}
|
|
}
|
|
}
|
|
|
|
// The align if the field is not packed. This is to check if the attribute
|
|
// was unnecessary (-Wpacked).
|
|
CharUnits UnpackedFieldAlign = FieldAlign;
|
|
CharUnits UnpackedFieldOffset = FieldOffset;
|
|
|
|
if (FieldPacked)
|
|
FieldAlign = CharUnits::One();
|
|
CharUnits MaxAlignmentInChars =
|
|
Context.toCharUnitsFromBits(D->getMaxAlignment());
|
|
FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
|
|
UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
|
|
|
|
// The maximum field alignment overrides the aligned attribute.
|
|
if (!MaxFieldAlignment.isZero()) {
|
|
FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
|
|
UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
|
|
}
|
|
|
|
// Round up the current record size to the field's alignment boundary.
|
|
FieldOffset = FieldOffset.RoundUpToAlignment(FieldAlign);
|
|
UnpackedFieldOffset =
|
|
UnpackedFieldOffset.RoundUpToAlignment(UnpackedFieldAlign);
|
|
|
|
if (ExternalLayout) {
|
|
FieldOffset = Context.toCharUnitsFromBits(
|
|
updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
|
|
|
|
if (!IsUnion && EmptySubobjects) {
|
|
// Record the fact that we're placing a field at this offset.
|
|
bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
|
|
(void)Allowed;
|
|
assert(Allowed && "Externally-placed field cannot be placed here");
|
|
}
|
|
} else {
|
|
if (!IsUnion && EmptySubobjects) {
|
|
// Check if we can place the field at this offset.
|
|
while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
|
|
// We couldn't place the field at the offset. Try again at a new offset.
|
|
FieldOffset += FieldAlign;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Place this field at the current location.
|
|
FieldOffsets.push_back(Context.toBits(FieldOffset));
|
|
|
|
if (!ExternalLayout)
|
|
CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
|
|
Context.toBits(UnpackedFieldOffset),
|
|
Context.toBits(UnpackedFieldAlign), FieldPacked, D);
|
|
|
|
// Reserve space for this field.
|
|
uint64_t FieldSizeInBits = Context.toBits(FieldSize);
|
|
if (IsUnion)
|
|
setDataSize(std::max(getDataSizeInBits(), FieldSizeInBits));
|
|
else
|
|
setDataSize(FieldOffset + FieldSize);
|
|
|
|
// Update the size.
|
|
setSize(std::max(getSizeInBits(), getDataSizeInBits()));
|
|
|
|
// Remember max struct/class alignment.
|
|
UpdateAlignment(FieldAlign, UnpackedFieldAlign);
|
|
}
|
|
|
|
void RecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
|
|
// In C++, records cannot be of size 0.
|
|
if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
|
|
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
|
|
// Compatibility with gcc requires a class (pod or non-pod)
|
|
// which is not empty but of size 0; such as having fields of
|
|
// array of zero-length, remains of Size 0
|
|
if (RD->isEmpty())
|
|
setSize(CharUnits::One());
|
|
}
|
|
else
|
|
setSize(CharUnits::One());
|
|
}
|
|
|
|
// Finally, round the size of the record up to the alignment of the
|
|
// record itself.
|
|
uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
|
|
uint64_t UnpackedSizeInBits =
|
|
llvm::RoundUpToAlignment(getSizeInBits(),
|
|
Context.toBits(UnpackedAlignment));
|
|
CharUnits UnpackedSize = Context.toCharUnitsFromBits(UnpackedSizeInBits);
|
|
uint64_t RoundedSize
|
|
= llvm::RoundUpToAlignment(getSizeInBits(), Context.toBits(Alignment));
|
|
|
|
if (ExternalLayout) {
|
|
// If we're inferring alignment, and the external size is smaller than
|
|
// our size after we've rounded up to alignment, conservatively set the
|
|
// alignment to 1.
|
|
if (InferAlignment && ExternalSize < RoundedSize) {
|
|
Alignment = CharUnits::One();
|
|
InferAlignment = false;
|
|
}
|
|
setSize(ExternalSize);
|
|
return;
|
|
}
|
|
|
|
// Set the size to the final size.
|
|
setSize(RoundedSize);
|
|
|
|
unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
|
|
if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
|
|
// Warn if padding was introduced to the struct/class/union.
|
|
if (getSizeInBits() > UnpaddedSize) {
|
|
unsigned PadSize = getSizeInBits() - UnpaddedSize;
|
|
bool InBits = true;
|
|
if (PadSize % CharBitNum == 0) {
|
|
PadSize = PadSize / CharBitNum;
|
|
InBits = false;
|
|
}
|
|
Diag(RD->getLocation(), diag::warn_padded_struct_size)
|
|
<< Context.getTypeDeclType(RD)
|
|
<< PadSize
|
|
<< (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
|
|
}
|
|
|
|
// Warn if we packed it unnecessarily. If the alignment is 1 byte don't
|
|
// bother since there won't be alignment issues.
|
|
if (Packed && UnpackedAlignment > CharUnits::One() &&
|
|
getSize() == UnpackedSize)
|
|
Diag(D->getLocation(), diag::warn_unnecessary_packed)
|
|
<< Context.getTypeDeclType(RD);
|
|
}
|
|
}
|
|
|
|
void RecordLayoutBuilder::UpdateAlignment(CharUnits NewAlignment,
|
|
CharUnits UnpackedNewAlignment) {
|
|
// The alignment is not modified when using 'mac68k' alignment or when
|
|
// we have an externally-supplied layout that also provides overall alignment.
|
|
if (IsMac68kAlign || (ExternalLayout && !InferAlignment))
|
|
return;
|
|
|
|
if (NewAlignment > Alignment) {
|
|
assert(llvm::isPowerOf2_32(NewAlignment.getQuantity() &&
|
|
"Alignment not a power of 2"));
|
|
Alignment = NewAlignment;
|
|
}
|
|
|
|
if (UnpackedNewAlignment > UnpackedAlignment) {
|
|
assert(llvm::isPowerOf2_32(UnpackedNewAlignment.getQuantity() &&
|
|
"Alignment not a power of 2"));
|
|
UnpackedAlignment = UnpackedNewAlignment;
|
|
}
|
|
}
|
|
|
|
uint64_t
|
|
RecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
|
|
uint64_t ComputedOffset) {
|
|
assert(ExternalFieldOffsets.find(Field) != ExternalFieldOffsets.end() &&
|
|
"Field does not have an external offset");
|
|
|
|
uint64_t ExternalFieldOffset = ExternalFieldOffsets[Field];
|
|
|
|
if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
|
|
// The externally-supplied field offset is before the field offset we
|
|
// computed. Assume that the structure is packed.
|
|
Alignment = CharUnits::One();
|
|
InferAlignment = false;
|
|
}
|
|
|
|
// Use the externally-supplied field offset.
|
|
return ExternalFieldOffset;
|
|
}
|
|
|
|
/// \brief Get diagnostic %select index for tag kind for
|
|
/// field padding diagnostic message.
|
|
/// WARNING: Indexes apply to particular diagnostics only!
|
|
///
|
|
/// \returns diagnostic %select index.
|
|
static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
|
|
switch (Tag) {
|
|
case TTK_Struct: return 0;
|
|
case TTK_Interface: return 1;
|
|
case TTK_Class: return 2;
|
|
default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
|
|
}
|
|
}
|
|
|
|
void RecordLayoutBuilder::CheckFieldPadding(uint64_t Offset,
|
|
uint64_t UnpaddedOffset,
|
|
uint64_t UnpackedOffset,
|
|
unsigned UnpackedAlign,
|
|
bool isPacked,
|
|
const FieldDecl *D) {
|
|
// We let objc ivars without warning, objc interfaces generally are not used
|
|
// for padding tricks.
|
|
if (isa<ObjCIvarDecl>(D))
|
|
return;
|
|
|
|
// Don't warn about structs created without a SourceLocation. This can
|
|
// be done by clients of the AST, such as codegen.
|
|
if (D->getLocation().isInvalid())
|
|
return;
|
|
|
|
unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
|
|
|
|
// Warn if padding was introduced to the struct/class.
|
|
if (!IsUnion && Offset > UnpaddedOffset) {
|
|
unsigned PadSize = Offset - UnpaddedOffset;
|
|
bool InBits = true;
|
|
if (PadSize % CharBitNum == 0) {
|
|
PadSize = PadSize / CharBitNum;
|
|
InBits = false;
|
|
}
|
|
if (D->getIdentifier())
|
|
Diag(D->getLocation(), diag::warn_padded_struct_field)
|
|
<< getPaddingDiagFromTagKind(D->getParent()->getTagKind())
|
|
<< Context.getTypeDeclType(D->getParent())
|
|
<< PadSize
|
|
<< (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1) // plural or not
|
|
<< D->getIdentifier();
|
|
else
|
|
Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
|
|
<< getPaddingDiagFromTagKind(D->getParent()->getTagKind())
|
|
<< Context.getTypeDeclType(D->getParent())
|
|
<< PadSize
|
|
<< (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
|
|
}
|
|
|
|
// Warn if we packed it unnecessarily. If the alignment is 1 byte don't
|
|
// bother since there won't be alignment issues.
|
|
if (isPacked && UnpackedAlign > CharBitNum && Offset == UnpackedOffset)
|
|
Diag(D->getLocation(), diag::warn_unnecessary_packed)
|
|
<< D->getIdentifier();
|
|
}
|
|
|
|
static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
|
|
const CXXRecordDecl *RD) {
|
|
// If a class isn't polymorphic it doesn't have a key function.
|
|
if (!RD->isPolymorphic())
|
|
return nullptr;
|
|
|
|
// A class that is not externally visible doesn't have a key function. (Or
|
|
// at least, there's no point to assigning a key function to such a class;
|
|
// this doesn't affect the ABI.)
|
|
if (!RD->isExternallyVisible())
|
|
return nullptr;
|
|
|
|
// Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
|
|
// Same behavior as GCC.
|
|
TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
|
|
if (TSK == TSK_ImplicitInstantiation ||
|
|
TSK == TSK_ExplicitInstantiationDeclaration ||
|
|
TSK == TSK_ExplicitInstantiationDefinition)
|
|
return nullptr;
|
|
|
|
bool allowInlineFunctions =
|
|
Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
|
|
|
|
for (const CXXMethodDecl *MD : RD->methods()) {
|
|
if (!MD->isVirtual())
|
|
continue;
|
|
|
|
if (MD->isPure())
|
|
continue;
|
|
|
|
// Ignore implicit member functions, they are always marked as inline, but
|
|
// they don't have a body until they're defined.
|
|
if (MD->isImplicit())
|
|
continue;
|
|
|
|
if (MD->isInlineSpecified())
|
|
continue;
|
|
|
|
if (MD->hasInlineBody())
|
|
continue;
|
|
|
|
// Ignore inline deleted or defaulted functions.
|
|
if (!MD->isUserProvided())
|
|
continue;
|
|
|
|
// In certain ABIs, ignore functions with out-of-line inline definitions.
|
|
if (!allowInlineFunctions) {
|
|
const FunctionDecl *Def;
|
|
if (MD->hasBody(Def) && Def->isInlineSpecified())
|
|
continue;
|
|
}
|
|
|
|
// We found it.
|
|
return MD;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
DiagnosticBuilder
|
|
RecordLayoutBuilder::Diag(SourceLocation Loc, unsigned DiagID) {
|
|
return Context.getDiagnostics().Report(Loc, DiagID);
|
|
}
|
|
|
|
/// Does the target C++ ABI require us to skip over the tail-padding
|
|
/// of the given class (considering it as a base class) when allocating
|
|
/// objects?
|
|
static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
|
|
switch (ABI.getTailPaddingUseRules()) {
|
|
case TargetCXXABI::AlwaysUseTailPadding:
|
|
return false;
|
|
|
|
case TargetCXXABI::UseTailPaddingUnlessPOD03:
|
|
// FIXME: To the extent that this is meant to cover the Itanium ABI
|
|
// rules, we should implement the restrictions about over-sized
|
|
// bitfields:
|
|
//
|
|
// http://mentorembedded.github.com/cxx-abi/abi.html#POD :
|
|
// In general, a type is considered a POD for the purposes of
|
|
// layout if it is a POD type (in the sense of ISO C++
|
|
// [basic.types]). However, a POD-struct or POD-union (in the
|
|
// sense of ISO C++ [class]) with a bitfield member whose
|
|
// declared width is wider than the declared type of the
|
|
// bitfield is not a POD for the purpose of layout. Similarly,
|
|
// an array type is not a POD for the purpose of layout if the
|
|
// element type of the array is not a POD for the purpose of
|
|
// layout.
|
|
//
|
|
// Where references to the ISO C++ are made in this paragraph,
|
|
// the Technical Corrigendum 1 version of the standard is
|
|
// intended.
|
|
return RD->isPOD();
|
|
|
|
case TargetCXXABI::UseTailPaddingUnlessPOD11:
|
|
// This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
|
|
// but with a lot of abstraction penalty stripped off. This does
|
|
// assume that these properties are set correctly even in C++98
|
|
// mode; fortunately, that is true because we want to assign
|
|
// consistently semantics to the type-traits intrinsics (or at
|
|
// least as many of them as possible).
|
|
return RD->isTrivial() && RD->isStandardLayout();
|
|
}
|
|
|
|
llvm_unreachable("bad tail-padding use kind");
|
|
}
|
|
|
|
static bool isMsLayout(const RecordDecl* D) {
|
|
return D->getASTContext().getTargetInfo().getCXXABI().isMicrosoft();
|
|
}
|
|
|
|
// This section contains an implementation of struct layout that is, up to the
|
|
// included tests, compatible with cl.exe (2013). The layout produced is
|
|
// significantly different than those produced by the Itanium ABI. Here we note
|
|
// the most important differences.
|
|
//
|
|
// * The alignment of bitfields in unions is ignored when computing the
|
|
// alignment of the union.
|
|
// * The existence of zero-width bitfield that occurs after anything other than
|
|
// a non-zero length bitfield is ignored.
|
|
// * There is no explicit primary base for the purposes of layout. All bases
|
|
// with vfptrs are laid out first, followed by all bases without vfptrs.
|
|
// * The Itanium equivalent vtable pointers are split into a vfptr (virtual
|
|
// function pointer) and a vbptr (virtual base pointer). They can each be
|
|
// shared with a, non-virtual bases. These bases need not be the same. vfptrs
|
|
// always occur at offset 0. vbptrs can occur at an arbitrary offset and are
|
|
// placed after the lexiographically last non-virtual base. This placement
|
|
// is always before fields but can be in the middle of the non-virtual bases
|
|
// due to the two-pass layout scheme for non-virtual-bases.
|
|
// * Virtual bases sometimes require a 'vtordisp' field that is laid out before
|
|
// the virtual base and is used in conjunction with virtual overrides during
|
|
// construction and destruction. This is always a 4 byte value and is used as
|
|
// an alternative to constructor vtables.
|
|
// * vtordisps are allocated in a block of memory with size and alignment equal
|
|
// to the alignment of the completed structure (before applying __declspec(
|
|
// align())). The vtordisp always occur at the end of the allocation block,
|
|
// immediately prior to the virtual base.
|
|
// * vfptrs are injected after all bases and fields have been laid out. In
|
|
// order to guarantee proper alignment of all fields, the vfptr injection
|
|
// pushes all bases and fields back by the alignment imposed by those bases
|
|
// and fields. This can potentially add a significant amount of padding.
|
|
// vfptrs are always injected at offset 0.
|
|
// * vbptrs are injected after all bases and fields have been laid out. In
|
|
// order to guarantee proper alignment of all fields, the vfptr injection
|
|
// pushes all bases and fields back by the alignment imposed by those bases
|
|
// and fields. This can potentially add a significant amount of padding.
|
|
// vbptrs are injected immediately after the last non-virtual base as
|
|
// lexiographically ordered in the code. If this site isn't pointer aligned
|
|
// the vbptr is placed at the next properly aligned location. Enough padding
|
|
// is added to guarantee a fit.
|
|
// * The last zero sized non-virtual base can be placed at the end of the
|
|
// struct (potentially aliasing another object), or may alias with the first
|
|
// field, even if they are of the same type.
|
|
// * The last zero size virtual base may be placed at the end of the struct
|
|
// potentially aliasing another object.
|
|
// * The ABI attempts to avoid aliasing of zero sized bases by adding padding
|
|
// between bases or vbases with specific properties. The criteria for
|
|
// additional padding between two bases is that the first base is zero sized
|
|
// or ends with a zero sized subobject and the second base is zero sized or
|
|
// trails with a zero sized base or field (sharing of vfptrs can reorder the
|
|
// layout of the so the leading base is not always the first one declared).
|
|
// This rule does take into account fields that are not records, so padding
|
|
// will occur even if the last field is, e.g. an int. The padding added for
|
|
// bases is 1 byte. The padding added between vbases depends on the alignment
|
|
// of the object but is at least 4 bytes (in both 32 and 64 bit modes).
|
|
// * There is no concept of non-virtual alignment, non-virtual alignment and
|
|
// alignment are always identical.
|
|
// * There is a distinction between alignment and required alignment.
|
|
// __declspec(align) changes the required alignment of a struct. This
|
|
// alignment is _always_ obeyed, even in the presence of #pragma pack. A
|
|
// record inherites required alignment from all of its fields and bases.
|
|
// * __declspec(align) on bitfields has the effect of changing the bitfield's
|
|
// alignment instead of its required alignment. This is the only known way
|
|
// to make the alignment of a struct bigger than 8. Interestingly enough
|
|
// this alignment is also immune to the effects of #pragma pack and can be
|
|
// used to create structures with large alignment under #pragma pack.
|
|
// However, because it does not impact required alignment, such a structure,
|
|
// when used as a field or base, will not be aligned if #pragma pack is
|
|
// still active at the time of use.
|
|
//
|
|
// Known incompatibilities:
|
|
// * all: #pragma pack between fields in a record
|
|
// * 2010 and back: If the last field in a record is a bitfield, every object
|
|
// laid out after the record will have extra padding inserted before it. The
|
|
// extra padding will have size equal to the size of the storage class of the
|
|
// bitfield. 0 sized bitfields don't exhibit this behavior and the extra
|
|
// padding can be avoided by adding a 0 sized bitfield after the non-zero-
|
|
// sized bitfield.
|
|
// * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
|
|
// greater due to __declspec(align()) then a second layout phase occurs after
|
|
// The locations of the vf and vb pointers are known. This layout phase
|
|
// suffers from the "last field is a bitfield" bug in 2010 and results in
|
|
// _every_ field getting padding put in front of it, potentially including the
|
|
// vfptr, leaving the vfprt at a non-zero location which results in a fault if
|
|
// anything tries to read the vftbl. The second layout phase also treats
|
|
// bitfields as separate entities and gives them each storage rather than
|
|
// packing them. Additionally, because this phase appears to perform a
|
|
// (an unstable) sort on the members before laying them out and because merged
|
|
// bitfields have the same address, the bitfields end up in whatever order
|
|
// the sort left them in, a behavior we could never hope to replicate.
|
|
|
|
namespace {
|
|
struct MicrosoftRecordLayoutBuilder {
|
|
struct ElementInfo {
|
|
CharUnits Size;
|
|
CharUnits Alignment;
|
|
};
|
|
typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
|
|
MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {}
|
|
private:
|
|
MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &)
|
|
LLVM_DELETED_FUNCTION;
|
|
void operator=(const MicrosoftRecordLayoutBuilder &) LLVM_DELETED_FUNCTION;
|
|
public:
|
|
void layout(const RecordDecl *RD);
|
|
void cxxLayout(const CXXRecordDecl *RD);
|
|
/// \brief Initializes size and alignment and honors some flags.
|
|
void initializeLayout(const RecordDecl *RD);
|
|
/// \brief Initialized C++ layout, compute alignment and virtual alignment and
|
|
/// existence of vfptrs and vbptrs. Alignment is needed before the vfptr is
|
|
/// laid out.
|
|
void initializeCXXLayout(const CXXRecordDecl *RD);
|
|
void layoutNonVirtualBases(const CXXRecordDecl *RD);
|
|
void layoutNonVirtualBase(const CXXRecordDecl *BaseDecl,
|
|
const ASTRecordLayout &BaseLayout,
|
|
const ASTRecordLayout *&PreviousBaseLayout);
|
|
void injectVFPtr(const CXXRecordDecl *RD);
|
|
void injectVBPtr(const CXXRecordDecl *RD);
|
|
/// \brief Lays out the fields of the record. Also rounds size up to
|
|
/// alignment.
|
|
void layoutFields(const RecordDecl *RD);
|
|
void layoutField(const FieldDecl *FD);
|
|
void layoutBitField(const FieldDecl *FD);
|
|
/// \brief Lays out a single zero-width bit-field in the record and handles
|
|
/// special cases associated with zero-width bit-fields.
|
|
void layoutZeroWidthBitField(const FieldDecl *FD);
|
|
void layoutVirtualBases(const CXXRecordDecl *RD);
|
|
void finalizeLayout(const RecordDecl *RD);
|
|
/// \brief Gets the size and alignment of a base taking pragma pack and
|
|
/// __declspec(align) into account.
|
|
ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
|
|
/// \brief Gets the size and alignment of a field taking pragma pack and
|
|
/// __declspec(align) into account. It also updates RequiredAlignment as a
|
|
/// side effect because it is most convenient to do so here.
|
|
ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
|
|
/// \brief Places a field at an offset in CharUnits.
|
|
void placeFieldAtOffset(CharUnits FieldOffset) {
|
|
FieldOffsets.push_back(Context.toBits(FieldOffset));
|
|
}
|
|
/// \brief Places a bitfield at a bit offset.
|
|
void placeFieldAtBitOffset(uint64_t FieldOffset) {
|
|
FieldOffsets.push_back(FieldOffset);
|
|
}
|
|
/// \brief Compute the set of virtual bases for which vtordisps are required.
|
|
void computeVtorDispSet(
|
|
llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet,
|
|
const CXXRecordDecl *RD) const;
|
|
const ASTContext &Context;
|
|
/// \brief The size of the record being laid out.
|
|
CharUnits Size;
|
|
/// \brief The non-virtual size of the record layout.
|
|
CharUnits NonVirtualSize;
|
|
/// \brief The data size of the record layout.
|
|
CharUnits DataSize;
|
|
/// \brief The current alignment of the record layout.
|
|
CharUnits Alignment;
|
|
/// \brief The maximum allowed field alignment. This is set by #pragma pack.
|
|
CharUnits MaxFieldAlignment;
|
|
/// \brief The alignment that this record must obey. This is imposed by
|
|
/// __declspec(align()) on the record itself or one of its fields or bases.
|
|
CharUnits RequiredAlignment;
|
|
/// \brief The size of the allocation of the currently active bitfield.
|
|
/// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
|
|
/// is true.
|
|
CharUnits CurrentBitfieldSize;
|
|
/// \brief Offset to the virtual base table pointer (if one exists).
|
|
CharUnits VBPtrOffset;
|
|
/// \brief Minimum record size possible.
|
|
CharUnits MinEmptyStructSize;
|
|
/// \brief The size and alignment info of a pointer.
|
|
ElementInfo PointerInfo;
|
|
/// \brief The primary base class (if one exists).
|
|
const CXXRecordDecl *PrimaryBase;
|
|
/// \brief The class we share our vb-pointer with.
|
|
const CXXRecordDecl *SharedVBPtrBase;
|
|
/// \brief The collection of field offsets.
|
|
SmallVector<uint64_t, 16> FieldOffsets;
|
|
/// \brief Base classes and their offsets in the record.
|
|
BaseOffsetsMapTy Bases;
|
|
/// \brief virtual base classes and their offsets in the record.
|
|
ASTRecordLayout::VBaseOffsetsMapTy VBases;
|
|
/// \brief The number of remaining bits in our last bitfield allocation.
|
|
/// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
|
|
/// true.
|
|
unsigned RemainingBitsInField;
|
|
bool IsUnion : 1;
|
|
/// \brief True if the last field laid out was a bitfield and was not 0
|
|
/// width.
|
|
bool LastFieldIsNonZeroWidthBitfield : 1;
|
|
/// \brief True if the class has its own vftable pointer.
|
|
bool HasOwnVFPtr : 1;
|
|
/// \brief True if the class has a vbtable pointer.
|
|
bool HasVBPtr : 1;
|
|
/// \brief True if the last sub-object within the type is zero sized or the
|
|
/// object itself is zero sized. This *does not* count members that are not
|
|
/// records. Only used for MS-ABI.
|
|
bool EndsWithZeroSizedObject : 1;
|
|
/// \brief True if this class is zero sized or first base is zero sized or
|
|
/// has this property. Only used for MS-ABI.
|
|
bool LeadsWithZeroSizedBase : 1;
|
|
};
|
|
} // namespace
|
|
|
|
MicrosoftRecordLayoutBuilder::ElementInfo
|
|
MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
|
|
const ASTRecordLayout &Layout) {
|
|
ElementInfo Info;
|
|
Info.Alignment = Layout.getAlignment();
|
|
// Respect pragma pack.
|
|
if (!MaxFieldAlignment.isZero())
|
|
Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
|
|
// Track zero-sized subobjects here where it's already available.
|
|
EndsWithZeroSizedObject = Layout.hasZeroSizedSubObject();
|
|
// Respect required alignment, this is necessary because we may have adjusted
|
|
// the alignment in the case of pragam pack. Note that the required alignment
|
|
// doesn't actually apply to the struct alignment at this point.
|
|
Alignment = std::max(Alignment, Info.Alignment);
|
|
RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
|
|
Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
|
|
Info.Size = Layout.getNonVirtualSize();
|
|
return Info;
|
|
}
|
|
|
|
MicrosoftRecordLayoutBuilder::ElementInfo
|
|
MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
|
|
const FieldDecl *FD) {
|
|
// Get the alignment of the field type's natural alignment, ignore any
|
|
// alignment attributes.
|
|
ElementInfo Info;
|
|
std::tie(Info.Size, Info.Alignment) =
|
|
Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
|
|
// Respect align attributes on the field.
|
|
CharUnits FieldRequiredAlignment =
|
|
Context.toCharUnitsFromBits(FD->getMaxAlignment());
|
|
// Respect align attributes on the type.
|
|
if (Context.isAlignmentRequired(FD->getType()))
|
|
FieldRequiredAlignment = std::max(
|
|
Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment);
|
|
// Respect attributes applied to subobjects of the field.
|
|
if (FD->isBitField())
|
|
// For some reason __declspec align impacts alignment rather than required
|
|
// alignment when it is applied to bitfields.
|
|
Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
|
|
else {
|
|
if (auto RT =
|
|
FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
|
|
auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
|
|
EndsWithZeroSizedObject = Layout.hasZeroSizedSubObject();
|
|
FieldRequiredAlignment = std::max(FieldRequiredAlignment,
|
|
Layout.getRequiredAlignment());
|
|
}
|
|
// Capture required alignment as a side-effect.
|
|
RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
|
|
}
|
|
// Respect pragma pack, attribute pack and declspec align
|
|
if (!MaxFieldAlignment.isZero())
|
|
Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
|
|
if (FD->hasAttr<PackedAttr>())
|
|
Info.Alignment = CharUnits::One();
|
|
Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
|
|
return Info;
|
|
}
|
|
|
|
void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
|
|
// For C record layout, zero-sized records always have size 4.
|
|
MinEmptyStructSize = CharUnits::fromQuantity(4);
|
|
initializeLayout(RD);
|
|
layoutFields(RD);
|
|
DataSize = Size = Size.RoundUpToAlignment(Alignment);
|
|
RequiredAlignment = std::max(
|
|
RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
|
|
finalizeLayout(RD);
|
|
}
|
|
|
|
void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
|
|
// The C++ standard says that empty structs have size 1.
|
|
MinEmptyStructSize = CharUnits::One();
|
|
initializeLayout(RD);
|
|
initializeCXXLayout(RD);
|
|
layoutNonVirtualBases(RD);
|
|
layoutFields(RD);
|
|
injectVBPtr(RD);
|
|
injectVFPtr(RD);
|
|
if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
|
|
Alignment = std::max(Alignment, PointerInfo.Alignment);
|
|
auto RoundingAlignment = Alignment;
|
|
if (!MaxFieldAlignment.isZero())
|
|
RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
|
|
NonVirtualSize = Size = Size.RoundUpToAlignment(RoundingAlignment);
|
|
RequiredAlignment = std::max(
|
|
RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
|
|
layoutVirtualBases(RD);
|
|
finalizeLayout(RD);
|
|
}
|
|
|
|
void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
|
|
IsUnion = RD->isUnion();
|
|
Size = CharUnits::Zero();
|
|
Alignment = CharUnits::One();
|
|
// In 64-bit mode we always perform an alignment step after laying out vbases.
|
|
// In 32-bit mode we do not. The check to see if we need to perform alignment
|
|
// checks the RequiredAlignment field and performs alignment if it isn't 0.
|
|
RequiredAlignment = Context.getTargetInfo().getPointerWidth(0) == 64 ?
|
|
CharUnits::One() : CharUnits::Zero();
|
|
// Compute the maximum field alignment.
|
|
MaxFieldAlignment = CharUnits::Zero();
|
|
// Honor the default struct packing maximum alignment flag.
|
|
if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
|
|
MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
|
|
// Honor the packing attribute. The MS-ABI ignores pragma pack if its larger
|
|
// than the pointer size.
|
|
if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
|
|
unsigned PackedAlignment = MFAA->getAlignment();
|
|
if (PackedAlignment <= Context.getTargetInfo().getPointerWidth(0))
|
|
MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
|
|
}
|
|
// Packed attribute forces max field alignment to be 1.
|
|
if (RD->hasAttr<PackedAttr>())
|
|
MaxFieldAlignment = CharUnits::One();
|
|
}
|
|
|
|
void
|
|
MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
|
|
EndsWithZeroSizedObject = false;
|
|
LeadsWithZeroSizedBase = false;
|
|
HasOwnVFPtr = false;
|
|
HasVBPtr = false;
|
|
PrimaryBase = nullptr;
|
|
SharedVBPtrBase = nullptr;
|
|
// Calculate pointer size and alignment. These are used for vfptr and vbprt
|
|
// injection.
|
|
PointerInfo.Size =
|
|
Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
|
|
PointerInfo.Alignment = PointerInfo.Size;
|
|
// Respect pragma pack.
|
|
if (!MaxFieldAlignment.isZero())
|
|
PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
|
|
}
|
|
|
|
void
|
|
MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
|
|
// The MS-ABI lays out all bases that contain leading vfptrs before it lays
|
|
// out any bases that do not contain vfptrs. We implement this as two passes
|
|
// over the bases. This approach guarantees that the primary base is laid out
|
|
// first. We use these passes to calculate some additional aggregated
|
|
// information about the bases, such as reqruied alignment and the presence of
|
|
// zero sized members.
|
|
const ASTRecordLayout *PreviousBaseLayout = nullptr;
|
|
// Iterate through the bases and lay out the non-virtual ones.
|
|
for (const CXXBaseSpecifier &Base : RD->bases()) {
|
|
const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
|
|
const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
|
|
// Mark and skip virtual bases.
|
|
if (Base.isVirtual()) {
|
|
HasVBPtr = true;
|
|
continue;
|
|
}
|
|
// Check fo a base to share a VBPtr with.
|
|
if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
|
|
SharedVBPtrBase = BaseDecl;
|
|
HasVBPtr = true;
|
|
}
|
|
// Only lay out bases with extendable VFPtrs on the first pass.
|
|
if (!BaseLayout.hasExtendableVFPtr())
|
|
continue;
|
|
// If we don't have a primary base, this one qualifies.
|
|
if (!PrimaryBase) {
|
|
PrimaryBase = BaseDecl;
|
|
LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
|
|
}
|
|
// Lay out the base.
|
|
layoutNonVirtualBase(BaseDecl, BaseLayout, PreviousBaseLayout);
|
|
}
|
|
// Figure out if we need a fresh VFPtr for this class.
|
|
if (!PrimaryBase && RD->isDynamicClass())
|
|
for (CXXRecordDecl::method_iterator i = RD->method_begin(),
|
|
e = RD->method_end();
|
|
!HasOwnVFPtr && i != e; ++i)
|
|
HasOwnVFPtr = i->isVirtual() && i->size_overridden_methods() == 0;
|
|
// If we don't have a primary base then we have a leading object that could
|
|
// itself lead with a zero-sized object, something we track.
|
|
bool CheckLeadingLayout = !PrimaryBase;
|
|
// Iterate through the bases and lay out the non-virtual ones.
|
|
for (const CXXBaseSpecifier &Base : RD->bases()) {
|
|
if (Base.isVirtual())
|
|
continue;
|
|
const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
|
|
const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
|
|
// Only lay out bases without extendable VFPtrs on the second pass.
|
|
if (BaseLayout.hasExtendableVFPtr()) {
|
|
VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
|
|
continue;
|
|
}
|
|
// If this is the first layout, check to see if it leads with a zero sized
|
|
// object. If it does, so do we.
|
|
if (CheckLeadingLayout) {
|
|
CheckLeadingLayout = false;
|
|
LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
|
|
}
|
|
// Lay out the base.
|
|
layoutNonVirtualBase(BaseDecl, BaseLayout, PreviousBaseLayout);
|
|
VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
|
|
}
|
|
// Set our VBPtroffset if we know it at this point.
|
|
if (!HasVBPtr)
|
|
VBPtrOffset = CharUnits::fromQuantity(-1);
|
|
else if (SharedVBPtrBase) {
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
|
|
VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
|
|
}
|
|
}
|
|
|
|
void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
|
|
const CXXRecordDecl *BaseDecl,
|
|
const ASTRecordLayout &BaseLayout,
|
|
const ASTRecordLayout *&PreviousBaseLayout) {
|
|
// Insert padding between two bases if the left first one is zero sized or
|
|
// contains a zero sized subobject and the right is zero sized or one leads
|
|
// with a zero sized base.
|
|
if (PreviousBaseLayout && PreviousBaseLayout->hasZeroSizedSubObject() &&
|
|
BaseLayout.leadsWithZeroSizedBase())
|
|
Size++;
|
|
ElementInfo Info = getAdjustedElementInfo(BaseLayout);
|
|
CharUnits BaseOffset = Size.RoundUpToAlignment(Info.Alignment);
|
|
Bases.insert(std::make_pair(BaseDecl, BaseOffset));
|
|
Size = BaseOffset + BaseLayout.getNonVirtualSize();
|
|
PreviousBaseLayout = &BaseLayout;
|
|
}
|
|
|
|
void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
|
|
LastFieldIsNonZeroWidthBitfield = false;
|
|
for (const FieldDecl *Field : RD->fields())
|
|
layoutField(Field);
|
|
}
|
|
|
|
void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
|
|
if (FD->isBitField()) {
|
|
layoutBitField(FD);
|
|
return;
|
|
}
|
|
LastFieldIsNonZeroWidthBitfield = false;
|
|
ElementInfo Info = getAdjustedElementInfo(FD);
|
|
Alignment = std::max(Alignment, Info.Alignment);
|
|
if (IsUnion) {
|
|
placeFieldAtOffset(CharUnits::Zero());
|
|
Size = std::max(Size, Info.Size);
|
|
} else {
|
|
CharUnits FieldOffset = Size.RoundUpToAlignment(Info.Alignment);
|
|
placeFieldAtOffset(FieldOffset);
|
|
Size = FieldOffset + Info.Size;
|
|
}
|
|
}
|
|
|
|
void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
|
|
unsigned Width = FD->getBitWidthValue(Context);
|
|
if (Width == 0) {
|
|
layoutZeroWidthBitField(FD);
|
|
return;
|
|
}
|
|
ElementInfo Info = getAdjustedElementInfo(FD);
|
|
// Clamp the bitfield to a containable size for the sake of being able
|
|
// to lay them out. Sema will throw an error.
|
|
if (Width > Context.toBits(Info.Size))
|
|
Width = Context.toBits(Info.Size);
|
|
// Check to see if this bitfield fits into an existing allocation. Note:
|
|
// MSVC refuses to pack bitfields of formal types with different sizes
|
|
// into the same allocation.
|
|
if (!IsUnion && LastFieldIsNonZeroWidthBitfield &&
|
|
CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
|
|
placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
|
|
RemainingBitsInField -= Width;
|
|
return;
|
|
}
|
|
LastFieldIsNonZeroWidthBitfield = true;
|
|
CurrentBitfieldSize = Info.Size;
|
|
if (IsUnion) {
|
|
placeFieldAtOffset(CharUnits::Zero());
|
|
Size = std::max(Size, Info.Size);
|
|
// TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
|
|
} else {
|
|
// Allocate a new block of memory and place the bitfield in it.
|
|
CharUnits FieldOffset = Size.RoundUpToAlignment(Info.Alignment);
|
|
placeFieldAtOffset(FieldOffset);
|
|
Size = FieldOffset + Info.Size;
|
|
Alignment = std::max(Alignment, Info.Alignment);
|
|
RemainingBitsInField = Context.toBits(Info.Size) - Width;
|
|
}
|
|
}
|
|
|
|
void
|
|
MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
|
|
// Zero-width bitfields are ignored unless they follow a non-zero-width
|
|
// bitfield.
|
|
if (!LastFieldIsNonZeroWidthBitfield) {
|
|
placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
|
|
// TODO: Add a Sema warning that MS ignores alignment for zero
|
|
// sized bitfields that occur after zero-size bitfields or non-bitfields.
|
|
return;
|
|
}
|
|
LastFieldIsNonZeroWidthBitfield = false;
|
|
ElementInfo Info = getAdjustedElementInfo(FD);
|
|
if (IsUnion) {
|
|
placeFieldAtOffset(CharUnits::Zero());
|
|
Size = std::max(Size, Info.Size);
|
|
// TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
|
|
} else {
|
|
// Round up the current record size to the field's alignment boundary.
|
|
CharUnits FieldOffset = Size.RoundUpToAlignment(Info.Alignment);
|
|
placeFieldAtOffset(FieldOffset);
|
|
Size = FieldOffset;
|
|
Alignment = std::max(Alignment, Info.Alignment);
|
|
}
|
|
}
|
|
|
|
void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
|
|
if (!HasVBPtr || SharedVBPtrBase)
|
|
return;
|
|
// Inject the VBPointer at the injection site.
|
|
CharUnits InjectionSite = VBPtrOffset;
|
|
// But before we do, make sure it's properly aligned.
|
|
VBPtrOffset = VBPtrOffset.RoundUpToAlignment(PointerInfo.Alignment);
|
|
// Determine where the first field should be laid out after the vbptr.
|
|
CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
|
|
// Make sure that the amount we push the fields back by is a multiple of the
|
|
// alignment.
|
|
CharUnits Offset = (FieldStart - InjectionSite).RoundUpToAlignment(
|
|
std::max(RequiredAlignment, Alignment));
|
|
// Increase the size of the object and push back all fields by the offset
|
|
// amount.
|
|
Size += Offset;
|
|
for (uint64_t &FieldOffset : FieldOffsets)
|
|
FieldOffset += Context.toBits(Offset);
|
|
for (BaseOffsetsMapTy::value_type &Base : Bases)
|
|
if (Base.second >= InjectionSite)
|
|
Base.second += Offset;
|
|
}
|
|
|
|
void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
|
|
if (!HasOwnVFPtr)
|
|
return;
|
|
// Make sure that the amount we push the struct back by is a multiple of the
|
|
// alignment.
|
|
CharUnits Offset = PointerInfo.Size.RoundUpToAlignment(
|
|
std::max(RequiredAlignment, Alignment));
|
|
// Increase the size of the object and push back all fields, the vbptr and all
|
|
// bases by the offset amount.
|
|
Size += Offset;
|
|
for (uint64_t &FieldOffset : FieldOffsets)
|
|
FieldOffset += Context.toBits(Offset);
|
|
if (HasVBPtr)
|
|
VBPtrOffset += Offset;
|
|
for (BaseOffsetsMapTy::value_type &Base : Bases)
|
|
Base.second += Offset;
|
|
}
|
|
|
|
void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
|
|
if (!HasVBPtr)
|
|
return;
|
|
// Vtordisps are always 4 bytes (even in 64-bit mode)
|
|
CharUnits VtorDispSize = CharUnits::fromQuantity(4);
|
|
CharUnits VtorDispAlignment = VtorDispSize;
|
|
// vtordisps respect pragma pack.
|
|
if (!MaxFieldAlignment.isZero())
|
|
VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
|
|
// The alignment of the vtordisp is at least the required alignment of the
|
|
// entire record. This requirement may be present to support vtordisp
|
|
// injection.
|
|
for (const CXXBaseSpecifier &VBase : RD->vbases()) {
|
|
const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
|
|
const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
|
|
RequiredAlignment =
|
|
std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
|
|
}
|
|
VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
|
|
// Compute the vtordisp set.
|
|
llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet;
|
|
computeVtorDispSet(HasVtorDispSet, RD);
|
|
// Iterate through the virtual bases and lay them out.
|
|
const ASTRecordLayout *PreviousBaseLayout = nullptr;
|
|
for (const CXXBaseSpecifier &VBase : RD->vbases()) {
|
|
const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
|
|
const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
|
|
bool HasVtordisp = HasVtorDispSet.count(BaseDecl) > 0;
|
|
// Insert padding between two bases if the left first one is zero sized or
|
|
// contains a zero sized subobject and the right is zero sized or one leads
|
|
// with a zero sized base. The padding between virtual bases is 4
|
|
// bytes (in both 32 and 64 bits modes) and always involves rounding up to
|
|
// the required alignment, we don't know why.
|
|
if ((PreviousBaseLayout && PreviousBaseLayout->hasZeroSizedSubObject() &&
|
|
BaseLayout.leadsWithZeroSizedBase()) || HasVtordisp) {
|
|
Size = Size.RoundUpToAlignment(VtorDispAlignment) + VtorDispSize;
|
|
Alignment = std::max(VtorDispAlignment, Alignment);
|
|
}
|
|
// Insert the virtual base.
|
|
ElementInfo Info = getAdjustedElementInfo(BaseLayout);
|
|
CharUnits BaseOffset = Size.RoundUpToAlignment(Info.Alignment);
|
|
VBases.insert(std::make_pair(BaseDecl,
|
|
ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
|
|
Size = BaseOffset + BaseLayout.getNonVirtualSize();
|
|
PreviousBaseLayout = &BaseLayout;
|
|
}
|
|
}
|
|
|
|
void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
|
|
// Respect required alignment. Note that in 32-bit mode Required alignment
|
|
// may be 0 and cause size not to be updated.
|
|
DataSize = Size;
|
|
if (!RequiredAlignment.isZero()) {
|
|
Alignment = std::max(Alignment, RequiredAlignment);
|
|
auto RoundingAlignment = Alignment;
|
|
if (!MaxFieldAlignment.isZero())
|
|
RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
|
|
RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
|
|
Size = Size.RoundUpToAlignment(RoundingAlignment);
|
|
}
|
|
if (Size.isZero()) {
|
|
EndsWithZeroSizedObject = true;
|
|
LeadsWithZeroSizedBase = true;
|
|
// Zero-sized structures have size equal to their alignment if a
|
|
// __declspec(align) came into play.
|
|
if (RequiredAlignment >= MinEmptyStructSize)
|
|
Size = Alignment;
|
|
else
|
|
Size = MinEmptyStructSize;
|
|
}
|
|
}
|
|
|
|
// Recursively walks the non-virtual bases of a class and determines if any of
|
|
// them are in the bases with overridden methods set.
|
|
static bool
|
|
RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> &
|
|
BasesWithOverriddenMethods,
|
|
const CXXRecordDecl *RD) {
|
|
if (BasesWithOverriddenMethods.count(RD))
|
|
return true;
|
|
// If any of a virtual bases non-virtual bases (recursively) requires a
|
|
// vtordisp than so does this virtual base.
|
|
for (const CXXBaseSpecifier &Base : RD->bases())
|
|
if (!Base.isVirtual() &&
|
|
RequiresVtordisp(BasesWithOverriddenMethods,
|
|
Base.getType()->getAsCXXRecordDecl()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
|
|
llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet,
|
|
const CXXRecordDecl *RD) const {
|
|
// /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
|
|
// vftables.
|
|
if (RD->getMSVtorDispMode() == MSVtorDispAttr::ForVFTable) {
|
|
for (const CXXBaseSpecifier &Base : RD->vbases()) {
|
|
const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
|
|
if (Layout.hasExtendableVFPtr())
|
|
HasVtordispSet.insert(BaseDecl);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If any of our bases need a vtordisp for this type, so do we. Check our
|
|
// direct bases for vtordisp requirements.
|
|
for (const CXXBaseSpecifier &Base : RD->bases()) {
|
|
const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
|
|
for (const auto &bi : Layout.getVBaseOffsetsMap())
|
|
if (bi.second.hasVtorDisp())
|
|
HasVtordispSet.insert(bi.first);
|
|
}
|
|
// We don't introduce any additional vtordisps if either:
|
|
// * A user declared constructor or destructor aren't declared.
|
|
// * #pragma vtordisp(0) or the /vd0 flag are in use.
|
|
if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
|
|
RD->getMSVtorDispMode() == MSVtorDispAttr::Never)
|
|
return;
|
|
// /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
|
|
// possible for a partially constructed object with virtual base overrides to
|
|
// escape a non-trivial constructor.
|
|
assert(RD->getMSVtorDispMode() == MSVtorDispAttr::ForVBaseOverride);
|
|
// Compute a set of base classes which define methods we override. A virtual
|
|
// base in this set will require a vtordisp. A virtual base that transitively
|
|
// contains one of these bases as a non-virtual base will also require a
|
|
// vtordisp.
|
|
llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
|
|
llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
|
|
// Seed the working set with our non-destructor, non-pure virtual methods.
|
|
for (const CXXMethodDecl *MD : RD->methods())
|
|
if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD) && !MD->isPure())
|
|
Work.insert(MD);
|
|
while (!Work.empty()) {
|
|
const CXXMethodDecl *MD = *Work.begin();
|
|
CXXMethodDecl::method_iterator i = MD->begin_overridden_methods(),
|
|
e = MD->end_overridden_methods();
|
|
// If a virtual method has no-overrides it lives in its parent's vtable.
|
|
if (i == e)
|
|
BasesWithOverriddenMethods.insert(MD->getParent());
|
|
else
|
|
Work.insert(i, e);
|
|
// We've finished processing this element, remove it from the working set.
|
|
Work.erase(MD);
|
|
}
|
|
// For each of our virtual bases, check if it is in the set of overridden
|
|
// bases or if it transitively contains a non-virtual base that is.
|
|
for (const CXXBaseSpecifier &Base : RD->vbases()) {
|
|
const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
|
|
if (!HasVtordispSet.count(BaseDecl) &&
|
|
RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
|
|
HasVtordispSet.insert(BaseDecl);
|
|
}
|
|
}
|
|
|
|
/// \brief Get or compute information about the layout of the specified record
|
|
/// (struct/union/class), which indicates its size and field position
|
|
/// information.
|
|
const ASTRecordLayout *
|
|
ASTContext::BuildMicrosoftASTRecordLayout(const RecordDecl *D) const {
|
|
MicrosoftRecordLayoutBuilder Builder(*this);
|
|
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
|
|
Builder.cxxLayout(RD);
|
|
return new (*this) ASTRecordLayout(
|
|
*this, Builder.Size, Builder.Alignment, Builder.RequiredAlignment,
|
|
Builder.HasOwnVFPtr,
|
|
Builder.HasOwnVFPtr || Builder.PrimaryBase,
|
|
Builder.VBPtrOffset, Builder.NonVirtualSize, Builder.FieldOffsets.data(),
|
|
Builder.FieldOffsets.size(), Builder.NonVirtualSize,
|
|
Builder.Alignment, CharUnits::Zero(), Builder.PrimaryBase,
|
|
false, Builder.SharedVBPtrBase,
|
|
Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
|
|
Builder.Bases, Builder.VBases);
|
|
} else {
|
|
Builder.layout(D);
|
|
return new (*this) ASTRecordLayout(
|
|
*this, Builder.Size, Builder.Alignment, Builder.RequiredAlignment,
|
|
Builder.Size, Builder.FieldOffsets.data(), Builder.FieldOffsets.size());
|
|
}
|
|
}
|
|
|
|
/// getASTRecordLayout - Get or compute information about the layout of the
|
|
/// specified record (struct/union/class), which indicates its size and field
|
|
/// position information.
|
|
const ASTRecordLayout &
|
|
ASTContext::getASTRecordLayout(const RecordDecl *D) const {
|
|
// These asserts test different things. A record has a definition
|
|
// as soon as we begin to parse the definition. That definition is
|
|
// not a complete definition (which is what isDefinition() tests)
|
|
// until we *finish* parsing the definition.
|
|
|
|
if (D->hasExternalLexicalStorage() && !D->getDefinition())
|
|
getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
|
|
|
|
D = D->getDefinition();
|
|
assert(D && "Cannot get layout of forward declarations!");
|
|
assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
|
|
assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
|
|
|
|
// Look up this layout, if already laid out, return what we have.
|
|
// Note that we can't save a reference to the entry because this function
|
|
// is recursive.
|
|
const ASTRecordLayout *Entry = ASTRecordLayouts[D];
|
|
if (Entry) return *Entry;
|
|
|
|
const ASTRecordLayout *NewEntry = nullptr;
|
|
|
|
if (isMsLayout(D) && !D->getASTContext().getExternalSource()) {
|
|
NewEntry = BuildMicrosoftASTRecordLayout(D);
|
|
} else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
|
|
EmptySubobjectMap EmptySubobjects(*this, RD);
|
|
RecordLayoutBuilder Builder(*this, &EmptySubobjects);
|
|
Builder.Layout(RD);
|
|
|
|
// In certain situations, we are allowed to lay out objects in the
|
|
// tail-padding of base classes. This is ABI-dependent.
|
|
// FIXME: this should be stored in the record layout.
|
|
bool skipTailPadding =
|
|
mustSkipTailPadding(getTargetInfo().getCXXABI(), cast<CXXRecordDecl>(D));
|
|
|
|
// FIXME: This should be done in FinalizeLayout.
|
|
CharUnits DataSize =
|
|
skipTailPadding ? Builder.getSize() : Builder.getDataSize();
|
|
CharUnits NonVirtualSize =
|
|
skipTailPadding ? DataSize : Builder.NonVirtualSize;
|
|
NewEntry =
|
|
new (*this) ASTRecordLayout(*this, Builder.getSize(),
|
|
Builder.Alignment,
|
|
/*RequiredAlignment : used by MS-ABI)*/
|
|
Builder.Alignment,
|
|
Builder.HasOwnVFPtr,
|
|
RD->isDynamicClass(),
|
|
CharUnits::fromQuantity(-1),
|
|
DataSize,
|
|
Builder.FieldOffsets.data(),
|
|
Builder.FieldOffsets.size(),
|
|
NonVirtualSize,
|
|
Builder.NonVirtualAlignment,
|
|
EmptySubobjects.SizeOfLargestEmptySubobject,
|
|
Builder.PrimaryBase,
|
|
Builder.PrimaryBaseIsVirtual,
|
|
nullptr, false, false,
|
|
Builder.Bases, Builder.VBases);
|
|
} else {
|
|
RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
|
|
Builder.Layout(D);
|
|
|
|
NewEntry =
|
|
new (*this) ASTRecordLayout(*this, Builder.getSize(),
|
|
Builder.Alignment,
|
|
/*RequiredAlignment : used by MS-ABI)*/
|
|
Builder.Alignment,
|
|
Builder.getSize(),
|
|
Builder.FieldOffsets.data(),
|
|
Builder.FieldOffsets.size());
|
|
}
|
|
|
|
ASTRecordLayouts[D] = NewEntry;
|
|
|
|
if (getLangOpts().DumpRecordLayouts) {
|
|
llvm::outs() << "\n*** Dumping AST Record Layout\n";
|
|
DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
|
|
}
|
|
|
|
return *NewEntry;
|
|
}
|
|
|
|
const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
|
|
if (!getTargetInfo().getCXXABI().hasKeyFunctions())
|
|
return nullptr;
|
|
|
|
assert(RD->getDefinition() && "Cannot get key function for forward decl!");
|
|
RD = cast<CXXRecordDecl>(RD->getDefinition());
|
|
|
|
// Beware:
|
|
// 1) computing the key function might trigger deserialization, which might
|
|
// invalidate iterators into KeyFunctions
|
|
// 2) 'get' on the LazyDeclPtr might also trigger deserialization and
|
|
// invalidate the LazyDeclPtr within the map itself
|
|
LazyDeclPtr Entry = KeyFunctions[RD];
|
|
const Decl *Result =
|
|
Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
|
|
|
|
// Store it back if it changed.
|
|
if (Entry.isOffset() || Entry.isValid() != bool(Result))
|
|
KeyFunctions[RD] = const_cast<Decl*>(Result);
|
|
|
|
return cast_or_null<CXXMethodDecl>(Result);
|
|
}
|
|
|
|
void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
|
|
assert(Method == Method->getFirstDecl() &&
|
|
"not working with method declaration from class definition");
|
|
|
|
// Look up the cache entry. Since we're working with the first
|
|
// declaration, its parent must be the class definition, which is
|
|
// the correct key for the KeyFunctions hash.
|
|
llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr>::iterator
|
|
I = KeyFunctions.find(Method->getParent());
|
|
|
|
// If it's not cached, there's nothing to do.
|
|
if (I == KeyFunctions.end()) return;
|
|
|
|
// If it is cached, check whether it's the target method, and if so,
|
|
// remove it from the cache. Note, the call to 'get' might invalidate
|
|
// the iterator and the LazyDeclPtr object within the map.
|
|
LazyDeclPtr Ptr = I->second;
|
|
if (Ptr.get(getExternalSource()) == Method) {
|
|
// FIXME: remember that we did this for module / chained PCH state?
|
|
KeyFunctions.erase(Method->getParent());
|
|
}
|
|
}
|
|
|
|
static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
|
|
const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
|
|
return Layout.getFieldOffset(FD->getFieldIndex());
|
|
}
|
|
|
|
uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
|
|
uint64_t OffsetInBits;
|
|
if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
|
|
OffsetInBits = ::getFieldOffset(*this, FD);
|
|
} else {
|
|
const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
|
|
|
|
OffsetInBits = 0;
|
|
for (const NamedDecl *ND : IFD->chain())
|
|
OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND));
|
|
}
|
|
|
|
return OffsetInBits;
|
|
}
|
|
|
|
/// getObjCLayout - Get or compute information about the layout of the
|
|
/// given interface.
|
|
///
|
|
/// \param Impl - If given, also include the layout of the interface's
|
|
/// implementation. This may differ by including synthesized ivars.
|
|
const ASTRecordLayout &
|
|
ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
|
|
const ObjCImplementationDecl *Impl) const {
|
|
// Retrieve the definition
|
|
if (D->hasExternalLexicalStorage() && !D->getDefinition())
|
|
getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
|
|
D = D->getDefinition();
|
|
assert(D && D->isThisDeclarationADefinition() && "Invalid interface decl!");
|
|
|
|
// Look up this layout, if already laid out, return what we have.
|
|
const ObjCContainerDecl *Key =
|
|
Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
|
|
if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
|
|
return *Entry;
|
|
|
|
// Add in synthesized ivar count if laying out an implementation.
|
|
if (Impl) {
|
|
unsigned SynthCount = CountNonClassIvars(D);
|
|
// If there aren't any sythesized ivars then reuse the interface
|
|
// entry. Note we can't cache this because we simply free all
|
|
// entries later; however we shouldn't look up implementations
|
|
// frequently.
|
|
if (SynthCount == 0)
|
|
return getObjCLayout(D, nullptr);
|
|
}
|
|
|
|
RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
|
|
Builder.Layout(D);
|
|
|
|
const ASTRecordLayout *NewEntry =
|
|
new (*this) ASTRecordLayout(*this, Builder.getSize(),
|
|
Builder.Alignment,
|
|
/*RequiredAlignment : used by MS-ABI)*/
|
|
Builder.Alignment,
|
|
Builder.getDataSize(),
|
|
Builder.FieldOffsets.data(),
|
|
Builder.FieldOffsets.size());
|
|
|
|
ObjCLayouts[Key] = NewEntry;
|
|
|
|
return *NewEntry;
|
|
}
|
|
|
|
static void PrintOffset(raw_ostream &OS,
|
|
CharUnits Offset, unsigned IndentLevel) {
|
|
OS << llvm::format("%4" PRId64 " | ", (int64_t)Offset.getQuantity());
|
|
OS.indent(IndentLevel * 2);
|
|
}
|
|
|
|
static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
|
|
OS << " | ";
|
|
OS.indent(IndentLevel * 2);
|
|
}
|
|
|
|
static void DumpCXXRecordLayout(raw_ostream &OS,
|
|
const CXXRecordDecl *RD, const ASTContext &C,
|
|
CharUnits Offset,
|
|
unsigned IndentLevel,
|
|
const char* Description,
|
|
bool IncludeVirtualBases) {
|
|
const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
|
|
|
|
PrintOffset(OS, Offset, IndentLevel);
|
|
OS << C.getTypeDeclType(const_cast<CXXRecordDecl *>(RD)).getAsString();
|
|
if (Description)
|
|
OS << ' ' << Description;
|
|
if (RD->isEmpty())
|
|
OS << " (empty)";
|
|
OS << '\n';
|
|
|
|
IndentLevel++;
|
|
|
|
const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
|
|
bool HasOwnVFPtr = Layout.hasOwnVFPtr();
|
|
bool HasOwnVBPtr = Layout.hasOwnVBPtr();
|
|
|
|
// Vtable pointer.
|
|
if (RD->isDynamicClass() && !PrimaryBase && !isMsLayout(RD)) {
|
|
PrintOffset(OS, Offset, IndentLevel);
|
|
OS << '(' << *RD << " vtable pointer)\n";
|
|
} else if (HasOwnVFPtr) {
|
|
PrintOffset(OS, Offset, IndentLevel);
|
|
// vfptr (for Microsoft C++ ABI)
|
|
OS << '(' << *RD << " vftable pointer)\n";
|
|
}
|
|
|
|
// Collect nvbases.
|
|
SmallVector<const CXXRecordDecl *, 4> Bases;
|
|
for (const CXXBaseSpecifier &Base : RD->bases()) {
|
|
assert(!Base.getType()->isDependentType() &&
|
|
"Cannot layout class with dependent bases.");
|
|
if (!Base.isVirtual())
|
|
Bases.push_back(Base.getType()->getAsCXXRecordDecl());
|
|
}
|
|
|
|
// Sort nvbases by offset.
|
|
std::stable_sort(Bases.begin(), Bases.end(),
|
|
[&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
|
|
return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
|
|
});
|
|
|
|
// Dump (non-virtual) bases
|
|
for (const CXXRecordDecl *Base : Bases) {
|
|
CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
|
|
DumpCXXRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
|
|
Base == PrimaryBase ? "(primary base)" : "(base)",
|
|
/*IncludeVirtualBases=*/false);
|
|
}
|
|
|
|
// vbptr (for Microsoft C++ ABI)
|
|
if (HasOwnVBPtr) {
|
|
PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
|
|
OS << '(' << *RD << " vbtable pointer)\n";
|
|
}
|
|
|
|
// Dump fields.
|
|
uint64_t FieldNo = 0;
|
|
for (CXXRecordDecl::field_iterator I = RD->field_begin(),
|
|
E = RD->field_end(); I != E; ++I, ++FieldNo) {
|
|
const FieldDecl &Field = **I;
|
|
CharUnits FieldOffset = Offset +
|
|
C.toCharUnitsFromBits(Layout.getFieldOffset(FieldNo));
|
|
|
|
if (const CXXRecordDecl *D = Field.getType()->getAsCXXRecordDecl()) {
|
|
DumpCXXRecordLayout(OS, D, C, FieldOffset, IndentLevel,
|
|
Field.getName().data(),
|
|
/*IncludeVirtualBases=*/true);
|
|
continue;
|
|
}
|
|
|
|
PrintOffset(OS, FieldOffset, IndentLevel);
|
|
OS << Field.getType().getAsString() << ' ' << Field << '\n';
|
|
}
|
|
|
|
if (!IncludeVirtualBases)
|
|
return;
|
|
|
|
// Dump virtual bases.
|
|
const ASTRecordLayout::VBaseOffsetsMapTy &vtordisps =
|
|
Layout.getVBaseOffsetsMap();
|
|
for (const CXXBaseSpecifier &Base : RD->vbases()) {
|
|
assert(Base.isVirtual() && "Found non-virtual class!");
|
|
const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl();
|
|
|
|
CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
|
|
|
|
if (vtordisps.find(VBase)->second.hasVtorDisp()) {
|
|
PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
|
|
OS << "(vtordisp for vbase " << *VBase << ")\n";
|
|
}
|
|
|
|
DumpCXXRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
|
|
VBase == PrimaryBase ?
|
|
"(primary virtual base)" : "(virtual base)",
|
|
/*IncludeVirtualBases=*/false);
|
|
}
|
|
|
|
PrintIndentNoOffset(OS, IndentLevel - 1);
|
|
OS << "[sizeof=" << Layout.getSize().getQuantity();
|
|
if (!isMsLayout(RD))
|
|
OS << ", dsize=" << Layout.getDataSize().getQuantity();
|
|
OS << ", align=" << Layout.getAlignment().getQuantity() << '\n';
|
|
|
|
PrintIndentNoOffset(OS, IndentLevel - 1);
|
|
OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
|
|
OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity() << "]\n";
|
|
}
|
|
|
|
void ASTContext::DumpRecordLayout(const RecordDecl *RD,
|
|
raw_ostream &OS,
|
|
bool Simple) const {
|
|
const ASTRecordLayout &Info = getASTRecordLayout(RD);
|
|
|
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
|
|
if (!Simple)
|
|
return DumpCXXRecordLayout(OS, CXXRD, *this, CharUnits(), 0, nullptr,
|
|
/*IncludeVirtualBases=*/true);
|
|
|
|
OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
|
|
if (!Simple) {
|
|
OS << "Record: ";
|
|
RD->dump();
|
|
}
|
|
OS << "\nLayout: ";
|
|
OS << "<ASTRecordLayout\n";
|
|
OS << " Size:" << toBits(Info.getSize()) << "\n";
|
|
if (!isMsLayout(RD))
|
|
OS << " DataSize:" << toBits(Info.getDataSize()) << "\n";
|
|
OS << " Alignment:" << toBits(Info.getAlignment()) << "\n";
|
|
OS << " FieldOffsets: [";
|
|
for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
|
|
if (i) OS << ", ";
|
|
OS << Info.getFieldOffset(i);
|
|
}
|
|
OS << "]>\n";
|
|
}
|