forked from OSchip/llvm-project
272 lines
8.8 KiB
C++
272 lines
8.8 KiB
C++
//===-- SIShrinkInstructions.cpp - Shrink Instructions --------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
/// The pass tries to use the 32-bit encoding for instructions when possible.
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPUMCInstLower.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "SIInstrInfo.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
#define DEBUG_TYPE "si-shrink-instructions"
|
|
|
|
STATISTIC(NumInstructionsShrunk,
|
|
"Number of 64-bit instruction reduced to 32-bit.");
|
|
STATISTIC(NumLiteralConstantsFolded,
|
|
"Number of literal constants folded into 32-bit instructions.");
|
|
|
|
namespace llvm {
|
|
void initializeSIShrinkInstructionsPass(PassRegistry&);
|
|
}
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
class SIShrinkInstructions : public MachineFunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
public:
|
|
SIShrinkInstructions() : MachineFunctionPass(ID) {
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
const char *getPassName() const override {
|
|
return "SI Shrink Instructions";
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
};
|
|
|
|
} // End anonymous namespace.
|
|
|
|
INITIALIZE_PASS_BEGIN(SIShrinkInstructions, DEBUG_TYPE,
|
|
"SI Lower il Copies", false, false)
|
|
INITIALIZE_PASS_END(SIShrinkInstructions, DEBUG_TYPE,
|
|
"SI Lower il Copies", false, false)
|
|
|
|
char SIShrinkInstructions::ID = 0;
|
|
|
|
FunctionPass *llvm::createSIShrinkInstructionsPass() {
|
|
return new SIShrinkInstructions();
|
|
}
|
|
|
|
static bool isVGPR(const MachineOperand *MO, const SIRegisterInfo &TRI,
|
|
const MachineRegisterInfo &MRI) {
|
|
if (!MO->isReg())
|
|
return false;
|
|
|
|
if (TargetRegisterInfo::isVirtualRegister(MO->getReg()))
|
|
return TRI.hasVGPRs(MRI.getRegClass(MO->getReg()));
|
|
|
|
return TRI.hasVGPRs(TRI.getPhysRegClass(MO->getReg()));
|
|
}
|
|
|
|
static bool canShrink(MachineInstr &MI, const SIInstrInfo *TII,
|
|
const SIRegisterInfo &TRI,
|
|
const MachineRegisterInfo &MRI) {
|
|
|
|
const MachineOperand *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2);
|
|
// Can't shrink instruction with three operands.
|
|
// FIXME: v_cndmask_b32 has 3 operands and is shrinkable, but we need to add
|
|
// a special case for it. It can only be shrunk if the third operand
|
|
// is vcc. We should handle this the same way we handle vopc, by addding
|
|
// a register allocation hint pre-regalloc and then do the shrining
|
|
// post-regalloc.
|
|
if (Src2)
|
|
return false;
|
|
|
|
const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
|
|
const MachineOperand *Src1Mod =
|
|
TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers);
|
|
|
|
if (Src1 && (!isVGPR(Src1, TRI, MRI) || (Src1Mod && Src1Mod->getImm() != 0)))
|
|
return false;
|
|
|
|
// We don't need to check src0, all input types are legal, so just make sure
|
|
// src0 isn't using any modifiers.
|
|
if (TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers))
|
|
return false;
|
|
|
|
// Check output modifiers
|
|
if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
|
|
return false;
|
|
|
|
if (TII->hasModifiersSet(MI, AMDGPU::OpName::clamp))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief This function checks \p MI for operands defined by a move immediate
|
|
/// instruction and then folds the literal constant into the instruction if it
|
|
/// can. This function assumes that \p MI is a VOP1, VOP2, or VOPC instruction
|
|
/// and will only fold literal constants if we are still in SSA.
|
|
static void foldImmediates(MachineInstr &MI, const SIInstrInfo *TII,
|
|
MachineRegisterInfo &MRI, bool TryToCommute = true) {
|
|
|
|
if (!MRI.isSSA())
|
|
return;
|
|
|
|
assert(TII->isVOP1(MI.getOpcode()) || TII->isVOP2(MI.getOpcode()) ||
|
|
TII->isVOPC(MI.getOpcode()));
|
|
|
|
const SIRegisterInfo &TRI = TII->getRegisterInfo();
|
|
int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);
|
|
MachineOperand &Src0 = MI.getOperand(Src0Idx);
|
|
|
|
// Only one literal constant is allowed per instruction, so if src0 is a
|
|
// literal constant then we can't do any folding.
|
|
if (Src0.isImm() &&
|
|
TII->isLiteralConstant(Src0, TII->getOpSize(MI, Src0Idx)))
|
|
return;
|
|
|
|
// Literal constants and SGPRs can only be used in Src0, so if Src0 is an
|
|
// SGPR, we cannot commute the instruction, so we can't fold any literal
|
|
// constants.
|
|
if (Src0.isReg() && !isVGPR(&Src0, TRI, MRI))
|
|
return;
|
|
|
|
// Try to fold Src0
|
|
if (Src0.isReg()) {
|
|
unsigned Reg = Src0.getReg();
|
|
MachineInstr *Def = MRI.getUniqueVRegDef(Reg);
|
|
if (Def && Def->isMoveImmediate()) {
|
|
MachineOperand &MovSrc = Def->getOperand(1);
|
|
bool ConstantFolded = false;
|
|
|
|
if (MovSrc.isImm() && isUInt<32>(MovSrc.getImm())) {
|
|
Src0.ChangeToImmediate(MovSrc.getImm());
|
|
ConstantFolded = true;
|
|
}
|
|
if (ConstantFolded) {
|
|
if (MRI.use_empty(Reg))
|
|
Def->eraseFromParent();
|
|
++NumLiteralConstantsFolded;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// We have failed to fold src0, so commute the instruction and try again.
|
|
if (TryToCommute && MI.isCommutable() && TII->commuteInstruction(&MI))
|
|
foldImmediates(MI, TII, MRI, false);
|
|
|
|
}
|
|
|
|
bool SIShrinkInstructions::runOnMachineFunction(MachineFunction &MF) {
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
const SIInstrInfo *TII =
|
|
static_cast<const SIInstrInfo *>(MF.getSubtarget().getInstrInfo());
|
|
const SIRegisterInfo &TRI = TII->getRegisterInfo();
|
|
std::vector<unsigned> I1Defs;
|
|
|
|
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
|
|
BI != BE; ++BI) {
|
|
|
|
MachineBasicBlock &MBB = *BI;
|
|
MachineBasicBlock::iterator I, Next;
|
|
for (I = MBB.begin(); I != MBB.end(); I = Next) {
|
|
Next = std::next(I);
|
|
MachineInstr &MI = *I;
|
|
|
|
// Try to use S_MOVK_I32, which will save 4 bytes for small immediates.
|
|
if (MI.getOpcode() == AMDGPU::S_MOV_B32) {
|
|
const MachineOperand &Src = MI.getOperand(1);
|
|
|
|
if (Src.isImm()) {
|
|
if (isInt<16>(Src.getImm()) && !TII->isInlineConstant(Src, 4))
|
|
MI.setDesc(TII->get(AMDGPU::S_MOVK_I32));
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
if (!TII->hasVALU32BitEncoding(MI.getOpcode()))
|
|
continue;
|
|
|
|
if (!canShrink(MI, TII, TRI, MRI)) {
|
|
// Try commuting the instruction and see if that enables us to shrink
|
|
// it.
|
|
if (!MI.isCommutable() || !TII->commuteInstruction(&MI) ||
|
|
!canShrink(MI, TII, TRI, MRI))
|
|
continue;
|
|
}
|
|
|
|
// getVOPe32 could be -1 here if we started with an instruction that had
|
|
// a 32-bit encoding and then commuted it to an instruction that did not.
|
|
if (!TII->hasVALU32BitEncoding(MI.getOpcode()))
|
|
continue;
|
|
|
|
int Op32 = AMDGPU::getVOPe32(MI.getOpcode());
|
|
|
|
if (TII->isVOPC(Op32)) {
|
|
unsigned DstReg = MI.getOperand(0).getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
|
|
// VOPC instructions can only write to the VCC register. We can't
|
|
// force them to use VCC here, because the register allocator has
|
|
// trouble with sequences like this, which cause the allocator to run
|
|
// out of registers if vreg0 and vreg1 belong to the VCCReg register
|
|
// class:
|
|
// vreg0 = VOPC;
|
|
// vreg1 = VOPC;
|
|
// S_AND_B64 vreg0, vreg1
|
|
//
|
|
// So, instead of forcing the instruction to write to VCC, we provide
|
|
// a hint to the register allocator to use VCC and then we we will run
|
|
// this pass again after RA and shrink it if it outputs to VCC.
|
|
MRI.setRegAllocationHint(MI.getOperand(0).getReg(), 0, AMDGPU::VCC);
|
|
continue;
|
|
}
|
|
if (DstReg != AMDGPU::VCC)
|
|
continue;
|
|
}
|
|
|
|
// We can shrink this instruction
|
|
DEBUG(dbgs() << "Shrinking "; MI.dump(); dbgs() << '\n';);
|
|
|
|
MachineInstrBuilder Inst32 =
|
|
BuildMI(MBB, I, MI.getDebugLoc(), TII->get(Op32));
|
|
|
|
// dst
|
|
Inst32.addOperand(MI.getOperand(0));
|
|
|
|
Inst32.addOperand(*TII->getNamedOperand(MI, AMDGPU::OpName::src0));
|
|
|
|
const MachineOperand *Src1 =
|
|
TII->getNamedOperand(MI, AMDGPU::OpName::src1);
|
|
if (Src1)
|
|
Inst32.addOperand(*Src1);
|
|
|
|
++NumInstructionsShrunk;
|
|
MI.eraseFromParent();
|
|
|
|
foldImmediates(*Inst32, TII, MRI);
|
|
DEBUG(dbgs() << "e32 MI = " << *Inst32 << '\n');
|
|
|
|
|
|
}
|
|
}
|
|
return false;
|
|
}
|