llvm-project/compiler-rt/lib/xray/xray_interface.cc

317 lines
10 KiB
C++

//===-- xray_interface.cpp --------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Implementation of the API functions.
//
//===----------------------------------------------------------------------===//
#include "xray_interface_internal.h"
#include <cstdint>
#include <cstdio>
#include <errno.h>
#include <limits>
#include <sys/mman.h>
#include "sanitizer_common/sanitizer_common.h"
#include "xray_defs.h"
namespace __xray {
#if defined(__x86_64__)
// FIXME: The actual length is 11 bytes. Why was length 12 passed to mprotect()
// ?
static const int16_t cSledLength = 12;
#elif defined(__aarch64__)
static const int16_t cSledLength = 32;
#elif defined(__arm__)
static const int16_t cSledLength = 28;
#elif SANITIZER_MIPS32
static const int16_t cSledLength = 48;
#elif SANITIZER_MIPS64
static const int16_t cSledLength = 64;
#elif defined(__powerpc64__)
static const int16_t cSledLength = 8;
#else
#error "Unsupported CPU Architecture"
#endif /* CPU architecture */
// This is the function to call when we encounter the entry or exit sleds.
__sanitizer::atomic_uintptr_t XRayPatchedFunction{0};
// This is the function to call from the arg1-enabled sleds/trampolines.
__sanitizer::atomic_uintptr_t XRayArgLogger{0};
// MProtectHelper is an RAII wrapper for calls to mprotect(...) that will undo
// any successful mprotect(...) changes. This is used to make a page writeable
// and executable, and upon destruction if it was successful in doing so returns
// the page into a read-only and executable page.
//
// This is only used specifically for runtime-patching of the XRay
// instrumentation points. This assumes that the executable pages are originally
// read-and-execute only.
class MProtectHelper {
void *PageAlignedAddr;
std::size_t MProtectLen;
bool MustCleanup;
public:
explicit MProtectHelper(void *PageAlignedAddr,
std::size_t MProtectLen) XRAY_NEVER_INSTRUMENT
: PageAlignedAddr(PageAlignedAddr),
MProtectLen(MProtectLen),
MustCleanup(false) {}
int MakeWriteable() XRAY_NEVER_INSTRUMENT {
auto R = mprotect(PageAlignedAddr, MProtectLen,
PROT_READ | PROT_WRITE | PROT_EXEC);
if (R != -1)
MustCleanup = true;
return R;
}
~MProtectHelper() XRAY_NEVER_INSTRUMENT {
if (MustCleanup) {
mprotect(PageAlignedAddr, MProtectLen, PROT_READ | PROT_EXEC);
}
}
};
} // namespace __xray
extern __sanitizer::SpinMutex XRayInstrMapMutex;
extern __sanitizer::atomic_uint8_t XRayInitialized;
extern __xray::XRaySledMap XRayInstrMap;
int __xray_set_handler(void (*entry)(int32_t,
XRayEntryType)) XRAY_NEVER_INSTRUMENT {
if (__sanitizer::atomic_load(&XRayInitialized,
__sanitizer::memory_order_acquire)) {
__sanitizer::atomic_store(&__xray::XRayPatchedFunction,
reinterpret_cast<uint64_t>(entry),
__sanitizer::memory_order_release);
return 1;
}
return 0;
}
int __xray_remove_handler() XRAY_NEVER_INSTRUMENT {
return __xray_set_handler(nullptr);
}
__sanitizer::atomic_uint8_t XRayPatching{0};
using namespace __xray;
// FIXME: Figure out whether we can move this class to sanitizer_common instead
// as a generic "scope guard".
template <class Function> class CleanupInvoker {
Function Fn;
public:
explicit CleanupInvoker(Function Fn) XRAY_NEVER_INSTRUMENT : Fn(Fn) {}
CleanupInvoker(const CleanupInvoker &) XRAY_NEVER_INSTRUMENT = default;
CleanupInvoker(CleanupInvoker &&) XRAY_NEVER_INSTRUMENT = default;
CleanupInvoker &
operator=(const CleanupInvoker &) XRAY_NEVER_INSTRUMENT = delete;
CleanupInvoker &operator=(CleanupInvoker &&) XRAY_NEVER_INSTRUMENT = delete;
~CleanupInvoker() XRAY_NEVER_INSTRUMENT { Fn(); }
};
template <class Function>
CleanupInvoker<Function> scopeCleanup(Function Fn) XRAY_NEVER_INSTRUMENT {
return CleanupInvoker<Function>{Fn};
}
inline bool patchSled(const XRaySledEntry &Sled, bool Enable,
int32_t FuncId) XRAY_NEVER_INSTRUMENT {
// While we're here, we should patch the nop sled. To do that we mprotect
// the page containing the function to be writeable.
const uint64_t PageSize = GetPageSizeCached();
void *PageAlignedAddr =
reinterpret_cast<void *>(Sled.Address & ~(PageSize - 1));
std::size_t MProtectLen = (Sled.Address + cSledLength) -
reinterpret_cast<uint64_t>(PageAlignedAddr);
MProtectHelper Protector(PageAlignedAddr, MProtectLen);
if (Protector.MakeWriteable() == -1) {
printf("Failed mprotect: %d\n", errno);
return XRayPatchingStatus::FAILED;
}
bool Success = false;
switch (Sled.Kind) {
case XRayEntryType::ENTRY:
Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_FunctionEntry);
break;
case XRayEntryType::EXIT:
Success = patchFunctionExit(Enable, FuncId, Sled);
break;
case XRayEntryType::TAIL:
Success = patchFunctionTailExit(Enable, FuncId, Sled);
break;
case XRayEntryType::LOG_ARGS_ENTRY:
Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_ArgLoggerEntry);
break;
default:
Report("Unsupported sled kind '%d' @%04x\n", Sled.Address, int(Sled.Kind));
return false;
}
return Success;
}
// controlPatching implements the common internals of the patching/unpatching
// implementation. |Enable| defines whether we're enabling or disabling the
// runtime XRay instrumentation.
XRayPatchingStatus controlPatching(bool Enable) XRAY_NEVER_INSTRUMENT {
if (!__sanitizer::atomic_load(&XRayInitialized,
__sanitizer::memory_order_acquire))
return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized.
uint8_t NotPatching = false;
if (!__sanitizer::atomic_compare_exchange_strong(
&XRayPatching, &NotPatching, true, __sanitizer::memory_order_acq_rel))
return XRayPatchingStatus::ONGOING; // Already patching.
uint8_t PatchingSuccess = false;
auto XRayPatchingStatusResetter = scopeCleanup([&PatchingSuccess] {
if (!PatchingSuccess)
__sanitizer::atomic_store(&XRayPatching, false,
__sanitizer::memory_order_release);
});
// Step 1: Compute the function id, as a unique identifier per function in the
// instrumentation map.
XRaySledMap InstrMap;
{
__sanitizer::SpinMutexLock Guard(&XRayInstrMapMutex);
InstrMap = XRayInstrMap;
}
if (InstrMap.Entries == 0)
return XRayPatchingStatus::NOT_INITIALIZED;
const uint64_t PageSize = GetPageSizeCached();
if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) {
Report("System page size is not a power of two: %lld\n", PageSize);
return XRayPatchingStatus::FAILED;
}
uint32_t FuncId = 1;
uint64_t CurFun = 0;
for (std::size_t I = 0; I < InstrMap.Entries; I++) {
auto Sled = InstrMap.Sleds[I];
auto F = Sled.Function;
if (CurFun == 0)
CurFun = F;
if (F != CurFun) {
++FuncId;
CurFun = F;
}
patchSled(Sled, Enable, FuncId);
}
__sanitizer::atomic_store(&XRayPatching, false,
__sanitizer::memory_order_release);
PatchingSuccess = true;
return XRayPatchingStatus::SUCCESS;
}
XRayPatchingStatus __xray_patch() XRAY_NEVER_INSTRUMENT {
return controlPatching(true);
}
XRayPatchingStatus __xray_unpatch() XRAY_NEVER_INSTRUMENT {
return controlPatching(false);
}
XRayPatchingStatus patchFunction(int32_t FuncId,
bool Enable) XRAY_NEVER_INSTRUMENT {
if (!__sanitizer::atomic_load(&XRayInitialized,
__sanitizer::memory_order_acquire))
return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized.
uint8_t NotPatching = false;
if (!__sanitizer::atomic_compare_exchange_strong(
&XRayPatching, &NotPatching, true, __sanitizer::memory_order_acq_rel))
return XRayPatchingStatus::ONGOING; // Already patching.
// Next, we look for the function index.
XRaySledMap InstrMap;
{
__sanitizer::SpinMutexLock Guard(&XRayInstrMapMutex);
InstrMap = XRayInstrMap;
}
// If we don't have an index, we can't patch individual functions.
if (InstrMap.Functions == 0)
return XRayPatchingStatus::NOT_INITIALIZED;
// FuncId must be a positive number, less than the number of functions
// instrumented.
if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions) {
Report("Invalid function id provided: %d\n", FuncId);
return XRayPatchingStatus::FAILED;
}
// Now we patch ths sleds for this specific function.
auto SledRange = InstrMap.SledsIndex[FuncId - 1];
auto *f = SledRange.Begin;
auto *e = SledRange.End;
bool SucceedOnce = false;
while (f != e)
SucceedOnce |= patchSled(*f++, Enable, FuncId);
__sanitizer::atomic_store(&XRayPatching, false,
__sanitizer::memory_order_release);
if (!SucceedOnce) {
Report("Failed patching any sled for function '%d'.", FuncId);
return XRayPatchingStatus::FAILED;
}
return XRayPatchingStatus::SUCCESS;
}
XRayPatchingStatus __xray_patch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
return patchFunction(FuncId, true);
}
XRayPatchingStatus
__xray_unpatch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
return patchFunction(FuncId, false);
}
int __xray_set_handler_arg1(void (*Handler)(int32_t, XRayEntryType, uint64_t)) {
if (!__sanitizer::atomic_load(&XRayInitialized,
__sanitizer::memory_order_acquire))
return 0;
// A relaxed write might not be visible even if the current thread gets
// scheduled on a different CPU/NUMA node. We need to wait for everyone to
// have this handler installed for consistency of collected data across CPUs.
__sanitizer::atomic_store(&XRayArgLogger, reinterpret_cast<uint64_t>(Handler),
__sanitizer::memory_order_release);
return 1;
}
int __xray_remove_handler_arg1() { return __xray_set_handler_arg1(nullptr); }
uintptr_t __xray_function_address(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
__sanitizer::SpinMutexLock Guard(&XRayInstrMapMutex);
if (FuncId <= 0 || static_cast<size_t>(FuncId) > XRayInstrMap.Functions)
return 0;
return XRayInstrMap.SledsIndex[FuncId - 1].Begin->Address;
}
size_t __xray_max_function_id() XRAY_NEVER_INSTRUMENT {
__sanitizer::SpinMutexLock Guard(&XRayInstrMapMutex);
return XRayInstrMap.Functions;
}