forked from OSchip/llvm-project
317 lines
10 KiB
C++
317 lines
10 KiB
C++
//===-- xray_interface.cpp --------------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of XRay, a dynamic runtime instrumentation system.
|
|
//
|
|
// Implementation of the API functions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "xray_interface_internal.h"
|
|
|
|
#include <cstdint>
|
|
#include <cstdio>
|
|
#include <errno.h>
|
|
#include <limits>
|
|
#include <sys/mman.h>
|
|
|
|
#include "sanitizer_common/sanitizer_common.h"
|
|
#include "xray_defs.h"
|
|
|
|
namespace __xray {
|
|
|
|
#if defined(__x86_64__)
|
|
// FIXME: The actual length is 11 bytes. Why was length 12 passed to mprotect()
|
|
// ?
|
|
static const int16_t cSledLength = 12;
|
|
#elif defined(__aarch64__)
|
|
static const int16_t cSledLength = 32;
|
|
#elif defined(__arm__)
|
|
static const int16_t cSledLength = 28;
|
|
#elif SANITIZER_MIPS32
|
|
static const int16_t cSledLength = 48;
|
|
#elif SANITIZER_MIPS64
|
|
static const int16_t cSledLength = 64;
|
|
#elif defined(__powerpc64__)
|
|
static const int16_t cSledLength = 8;
|
|
#else
|
|
#error "Unsupported CPU Architecture"
|
|
#endif /* CPU architecture */
|
|
|
|
// This is the function to call when we encounter the entry or exit sleds.
|
|
__sanitizer::atomic_uintptr_t XRayPatchedFunction{0};
|
|
|
|
// This is the function to call from the arg1-enabled sleds/trampolines.
|
|
__sanitizer::atomic_uintptr_t XRayArgLogger{0};
|
|
|
|
// MProtectHelper is an RAII wrapper for calls to mprotect(...) that will undo
|
|
// any successful mprotect(...) changes. This is used to make a page writeable
|
|
// and executable, and upon destruction if it was successful in doing so returns
|
|
// the page into a read-only and executable page.
|
|
//
|
|
// This is only used specifically for runtime-patching of the XRay
|
|
// instrumentation points. This assumes that the executable pages are originally
|
|
// read-and-execute only.
|
|
class MProtectHelper {
|
|
void *PageAlignedAddr;
|
|
std::size_t MProtectLen;
|
|
bool MustCleanup;
|
|
|
|
public:
|
|
explicit MProtectHelper(void *PageAlignedAddr,
|
|
std::size_t MProtectLen) XRAY_NEVER_INSTRUMENT
|
|
: PageAlignedAddr(PageAlignedAddr),
|
|
MProtectLen(MProtectLen),
|
|
MustCleanup(false) {}
|
|
|
|
int MakeWriteable() XRAY_NEVER_INSTRUMENT {
|
|
auto R = mprotect(PageAlignedAddr, MProtectLen,
|
|
PROT_READ | PROT_WRITE | PROT_EXEC);
|
|
if (R != -1)
|
|
MustCleanup = true;
|
|
return R;
|
|
}
|
|
|
|
~MProtectHelper() XRAY_NEVER_INSTRUMENT {
|
|
if (MustCleanup) {
|
|
mprotect(PageAlignedAddr, MProtectLen, PROT_READ | PROT_EXEC);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace __xray
|
|
|
|
extern __sanitizer::SpinMutex XRayInstrMapMutex;
|
|
extern __sanitizer::atomic_uint8_t XRayInitialized;
|
|
extern __xray::XRaySledMap XRayInstrMap;
|
|
|
|
int __xray_set_handler(void (*entry)(int32_t,
|
|
XRayEntryType)) XRAY_NEVER_INSTRUMENT {
|
|
if (__sanitizer::atomic_load(&XRayInitialized,
|
|
__sanitizer::memory_order_acquire)) {
|
|
|
|
__sanitizer::atomic_store(&__xray::XRayPatchedFunction,
|
|
reinterpret_cast<uint64_t>(entry),
|
|
__sanitizer::memory_order_release);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int __xray_remove_handler() XRAY_NEVER_INSTRUMENT {
|
|
return __xray_set_handler(nullptr);
|
|
}
|
|
|
|
__sanitizer::atomic_uint8_t XRayPatching{0};
|
|
|
|
using namespace __xray;
|
|
|
|
// FIXME: Figure out whether we can move this class to sanitizer_common instead
|
|
// as a generic "scope guard".
|
|
template <class Function> class CleanupInvoker {
|
|
Function Fn;
|
|
|
|
public:
|
|
explicit CleanupInvoker(Function Fn) XRAY_NEVER_INSTRUMENT : Fn(Fn) {}
|
|
CleanupInvoker(const CleanupInvoker &) XRAY_NEVER_INSTRUMENT = default;
|
|
CleanupInvoker(CleanupInvoker &&) XRAY_NEVER_INSTRUMENT = default;
|
|
CleanupInvoker &
|
|
operator=(const CleanupInvoker &) XRAY_NEVER_INSTRUMENT = delete;
|
|
CleanupInvoker &operator=(CleanupInvoker &&) XRAY_NEVER_INSTRUMENT = delete;
|
|
~CleanupInvoker() XRAY_NEVER_INSTRUMENT { Fn(); }
|
|
};
|
|
|
|
template <class Function>
|
|
CleanupInvoker<Function> scopeCleanup(Function Fn) XRAY_NEVER_INSTRUMENT {
|
|
return CleanupInvoker<Function>{Fn};
|
|
}
|
|
|
|
inline bool patchSled(const XRaySledEntry &Sled, bool Enable,
|
|
int32_t FuncId) XRAY_NEVER_INSTRUMENT {
|
|
// While we're here, we should patch the nop sled. To do that we mprotect
|
|
// the page containing the function to be writeable.
|
|
const uint64_t PageSize = GetPageSizeCached();
|
|
void *PageAlignedAddr =
|
|
reinterpret_cast<void *>(Sled.Address & ~(PageSize - 1));
|
|
std::size_t MProtectLen = (Sled.Address + cSledLength) -
|
|
reinterpret_cast<uint64_t>(PageAlignedAddr);
|
|
MProtectHelper Protector(PageAlignedAddr, MProtectLen);
|
|
if (Protector.MakeWriteable() == -1) {
|
|
printf("Failed mprotect: %d\n", errno);
|
|
return XRayPatchingStatus::FAILED;
|
|
}
|
|
|
|
bool Success = false;
|
|
switch (Sled.Kind) {
|
|
case XRayEntryType::ENTRY:
|
|
Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_FunctionEntry);
|
|
break;
|
|
case XRayEntryType::EXIT:
|
|
Success = patchFunctionExit(Enable, FuncId, Sled);
|
|
break;
|
|
case XRayEntryType::TAIL:
|
|
Success = patchFunctionTailExit(Enable, FuncId, Sled);
|
|
break;
|
|
case XRayEntryType::LOG_ARGS_ENTRY:
|
|
Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_ArgLoggerEntry);
|
|
break;
|
|
default:
|
|
Report("Unsupported sled kind '%d' @%04x\n", Sled.Address, int(Sled.Kind));
|
|
return false;
|
|
}
|
|
return Success;
|
|
}
|
|
|
|
// controlPatching implements the common internals of the patching/unpatching
|
|
// implementation. |Enable| defines whether we're enabling or disabling the
|
|
// runtime XRay instrumentation.
|
|
XRayPatchingStatus controlPatching(bool Enable) XRAY_NEVER_INSTRUMENT {
|
|
if (!__sanitizer::atomic_load(&XRayInitialized,
|
|
__sanitizer::memory_order_acquire))
|
|
return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized.
|
|
|
|
uint8_t NotPatching = false;
|
|
if (!__sanitizer::atomic_compare_exchange_strong(
|
|
&XRayPatching, &NotPatching, true, __sanitizer::memory_order_acq_rel))
|
|
return XRayPatchingStatus::ONGOING; // Already patching.
|
|
|
|
uint8_t PatchingSuccess = false;
|
|
auto XRayPatchingStatusResetter = scopeCleanup([&PatchingSuccess] {
|
|
if (!PatchingSuccess)
|
|
__sanitizer::atomic_store(&XRayPatching, false,
|
|
__sanitizer::memory_order_release);
|
|
});
|
|
|
|
// Step 1: Compute the function id, as a unique identifier per function in the
|
|
// instrumentation map.
|
|
XRaySledMap InstrMap;
|
|
{
|
|
__sanitizer::SpinMutexLock Guard(&XRayInstrMapMutex);
|
|
InstrMap = XRayInstrMap;
|
|
}
|
|
if (InstrMap.Entries == 0)
|
|
return XRayPatchingStatus::NOT_INITIALIZED;
|
|
|
|
const uint64_t PageSize = GetPageSizeCached();
|
|
if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) {
|
|
Report("System page size is not a power of two: %lld\n", PageSize);
|
|
return XRayPatchingStatus::FAILED;
|
|
}
|
|
|
|
uint32_t FuncId = 1;
|
|
uint64_t CurFun = 0;
|
|
for (std::size_t I = 0; I < InstrMap.Entries; I++) {
|
|
auto Sled = InstrMap.Sleds[I];
|
|
auto F = Sled.Function;
|
|
if (CurFun == 0)
|
|
CurFun = F;
|
|
if (F != CurFun) {
|
|
++FuncId;
|
|
CurFun = F;
|
|
}
|
|
patchSled(Sled, Enable, FuncId);
|
|
}
|
|
__sanitizer::atomic_store(&XRayPatching, false,
|
|
__sanitizer::memory_order_release);
|
|
PatchingSuccess = true;
|
|
return XRayPatchingStatus::SUCCESS;
|
|
}
|
|
|
|
XRayPatchingStatus __xray_patch() XRAY_NEVER_INSTRUMENT {
|
|
return controlPatching(true);
|
|
}
|
|
|
|
XRayPatchingStatus __xray_unpatch() XRAY_NEVER_INSTRUMENT {
|
|
return controlPatching(false);
|
|
}
|
|
|
|
XRayPatchingStatus patchFunction(int32_t FuncId,
|
|
bool Enable) XRAY_NEVER_INSTRUMENT {
|
|
if (!__sanitizer::atomic_load(&XRayInitialized,
|
|
__sanitizer::memory_order_acquire))
|
|
return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized.
|
|
|
|
uint8_t NotPatching = false;
|
|
if (!__sanitizer::atomic_compare_exchange_strong(
|
|
&XRayPatching, &NotPatching, true, __sanitizer::memory_order_acq_rel))
|
|
return XRayPatchingStatus::ONGOING; // Already patching.
|
|
|
|
// Next, we look for the function index.
|
|
XRaySledMap InstrMap;
|
|
{
|
|
__sanitizer::SpinMutexLock Guard(&XRayInstrMapMutex);
|
|
InstrMap = XRayInstrMap;
|
|
}
|
|
|
|
// If we don't have an index, we can't patch individual functions.
|
|
if (InstrMap.Functions == 0)
|
|
return XRayPatchingStatus::NOT_INITIALIZED;
|
|
|
|
// FuncId must be a positive number, less than the number of functions
|
|
// instrumented.
|
|
if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions) {
|
|
Report("Invalid function id provided: %d\n", FuncId);
|
|
return XRayPatchingStatus::FAILED;
|
|
}
|
|
|
|
// Now we patch ths sleds for this specific function.
|
|
auto SledRange = InstrMap.SledsIndex[FuncId - 1];
|
|
auto *f = SledRange.Begin;
|
|
auto *e = SledRange.End;
|
|
|
|
bool SucceedOnce = false;
|
|
while (f != e)
|
|
SucceedOnce |= patchSled(*f++, Enable, FuncId);
|
|
|
|
__sanitizer::atomic_store(&XRayPatching, false,
|
|
__sanitizer::memory_order_release);
|
|
|
|
if (!SucceedOnce) {
|
|
Report("Failed patching any sled for function '%d'.", FuncId);
|
|
return XRayPatchingStatus::FAILED;
|
|
}
|
|
|
|
return XRayPatchingStatus::SUCCESS;
|
|
}
|
|
|
|
XRayPatchingStatus __xray_patch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
|
|
return patchFunction(FuncId, true);
|
|
}
|
|
|
|
XRayPatchingStatus
|
|
__xray_unpatch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
|
|
return patchFunction(FuncId, false);
|
|
}
|
|
|
|
int __xray_set_handler_arg1(void (*Handler)(int32_t, XRayEntryType, uint64_t)) {
|
|
if (!__sanitizer::atomic_load(&XRayInitialized,
|
|
__sanitizer::memory_order_acquire))
|
|
return 0;
|
|
|
|
// A relaxed write might not be visible even if the current thread gets
|
|
// scheduled on a different CPU/NUMA node. We need to wait for everyone to
|
|
// have this handler installed for consistency of collected data across CPUs.
|
|
__sanitizer::atomic_store(&XRayArgLogger, reinterpret_cast<uint64_t>(Handler),
|
|
__sanitizer::memory_order_release);
|
|
return 1;
|
|
}
|
|
int __xray_remove_handler_arg1() { return __xray_set_handler_arg1(nullptr); }
|
|
|
|
uintptr_t __xray_function_address(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
|
|
__sanitizer::SpinMutexLock Guard(&XRayInstrMapMutex);
|
|
if (FuncId <= 0 || static_cast<size_t>(FuncId) > XRayInstrMap.Functions)
|
|
return 0;
|
|
return XRayInstrMap.SledsIndex[FuncId - 1].Begin->Address;
|
|
}
|
|
|
|
size_t __xray_max_function_id() XRAY_NEVER_INSTRUMENT {
|
|
__sanitizer::SpinMutexLock Guard(&XRayInstrMapMutex);
|
|
return XRayInstrMap.Functions;
|
|
}
|