forked from OSchip/llvm-project
968 lines
35 KiB
C++
968 lines
35 KiB
C++
//===--- RDFGraph.h -------------------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Target-independent, SSA-based data flow graph for register data flow (RDF)
|
|
// for a non-SSA program representation (e.g. post-RA machine code).
|
|
//
|
|
//
|
|
// *** Introduction
|
|
//
|
|
// The RDF graph is a collection of nodes, each of which denotes some element
|
|
// of the program. There are two main types of such elements: code and refe-
|
|
// rences. Conceptually, "code" is something that represents the structure
|
|
// of the program, e.g. basic block or a statement, while "reference" is an
|
|
// instance of accessing a register, e.g. a definition or a use. Nodes are
|
|
// connected with each other based on the structure of the program (such as
|
|
// blocks, instructions, etc.), and based on the data flow (e.g. reaching
|
|
// definitions, reached uses, etc.). The single-reaching-definition principle
|
|
// of SSA is generally observed, although, due to the non-SSA representation
|
|
// of the program, there are some differences between the graph and a "pure"
|
|
// SSA representation.
|
|
//
|
|
//
|
|
// *** Implementation remarks
|
|
//
|
|
// Since the graph can contain a large number of nodes, memory consumption
|
|
// was one of the major design considerations. As a result, there is a single
|
|
// base class NodeBase which defines all members used by all possible derived
|
|
// classes. The members are arranged in a union, and a derived class cannot
|
|
// add any data members of its own. Each derived class only defines the
|
|
// functional interface, i.e. member functions. NodeBase must be a POD,
|
|
// which implies that all of its members must also be PODs.
|
|
// Since nodes need to be connected with other nodes, pointers have been
|
|
// replaced with 32-bit identifiers: each node has an id of type NodeId.
|
|
// There are mapping functions in the graph that translate between actual
|
|
// memory addresses and the corresponding identifiers.
|
|
// A node id of 0 is equivalent to nullptr.
|
|
//
|
|
//
|
|
// *** Structure of the graph
|
|
//
|
|
// A code node is always a collection of other nodes. For example, a code
|
|
// node corresponding to a basic block will contain code nodes corresponding
|
|
// to instructions. In turn, a code node corresponding to an instruction will
|
|
// contain a list of reference nodes that correspond to the definitions and
|
|
// uses of registers in that instruction. The members are arranged into a
|
|
// circular list, which is yet another consequence of the effort to save
|
|
// memory: for each member node it should be possible to obtain its owner,
|
|
// and it should be possible to access all other members. There are other
|
|
// ways to accomplish that, but the circular list seemed the most natural.
|
|
//
|
|
// +- CodeNode -+
|
|
// | | <---------------------------------------------------+
|
|
// +-+--------+-+ |
|
|
// |FirstM |LastM |
|
|
// | +-------------------------------------+ |
|
|
// | | |
|
|
// V V |
|
|
// +----------+ Next +----------+ Next Next +----------+ Next |
|
|
// | |----->| |-----> ... ----->| |----->-+
|
|
// +- Member -+ +- Member -+ +- Member -+
|
|
//
|
|
// The order of members is such that related reference nodes (see below)
|
|
// should be contiguous on the member list.
|
|
//
|
|
// A reference node is a node that encapsulates an access to a register,
|
|
// in other words, data flowing into or out of a register. There are two
|
|
// major kinds of reference nodes: defs and uses. A def node will contain
|
|
// the id of the first reached use, and the id of the first reached def.
|
|
// Each def and use will contain the id of the reaching def, and also the
|
|
// id of the next reached def (for def nodes) or use (for use nodes).
|
|
// The "next node sharing the same reaching def" is denoted as "sibling".
|
|
// In summary:
|
|
// - Def node contains: reaching def, sibling, first reached def, and first
|
|
// reached use.
|
|
// - Use node contains: reaching def and sibling.
|
|
//
|
|
// +-- DefNode --+
|
|
// | R2 = ... | <---+--------------------+
|
|
// ++---------+--+ | |
|
|
// |Reached |Reached | |
|
|
// |Def |Use | |
|
|
// | | |Reaching |Reaching
|
|
// | V |Def |Def
|
|
// | +-- UseNode --+ Sib +-- UseNode --+ Sib Sib
|
|
// | | ... = R2 |----->| ... = R2 |----> ... ----> 0
|
|
// | +-------------+ +-------------+
|
|
// V
|
|
// +-- DefNode --+ Sib
|
|
// | R2 = ... |----> ...
|
|
// ++---------+--+
|
|
// | |
|
|
// | |
|
|
// ... ...
|
|
//
|
|
// To get a full picture, the circular lists connecting blocks within a
|
|
// function, instructions within a block, etc. should be superimposed with
|
|
// the def-def, def-use links shown above.
|
|
// To illustrate this, consider a small example in a pseudo-assembly:
|
|
// foo:
|
|
// add r2, r0, r1 ; r2 = r0+r1
|
|
// addi r0, r2, 1 ; r0 = r2+1
|
|
// ret r0 ; return value in r0
|
|
//
|
|
// The graph (in a format used by the debugging functions) would look like:
|
|
//
|
|
// DFG dump:[
|
|
// f1: Function foo
|
|
// b2: === BB#0 === preds(0), succs(0):
|
|
// p3: phi [d4<r0>(,d12,u9):]
|
|
// p5: phi [d6<r1>(,,u10):]
|
|
// s7: add [d8<r2>(,,u13):, u9<r0>(d4):, u10<r1>(d6):]
|
|
// s11: addi [d12<r0>(d4,,u15):, u13<r2>(d8):]
|
|
// s14: ret [u15<r0>(d12):]
|
|
// ]
|
|
//
|
|
// The f1, b2, p3, etc. are node ids. The letter is prepended to indicate the
|
|
// kind of the node (i.e. f - function, b - basic block, p - phi, s - state-
|
|
// ment, d - def, u - use).
|
|
// The format of a def node is:
|
|
// dN<R>(rd,d,u):sib,
|
|
// where
|
|
// N - numeric node id,
|
|
// R - register being defined
|
|
// rd - reaching def,
|
|
// d - reached def,
|
|
// u - reached use,
|
|
// sib - sibling.
|
|
// The format of a use node is:
|
|
// uN<R>[!](rd):sib,
|
|
// where
|
|
// N - numeric node id,
|
|
// R - register being used,
|
|
// rd - reaching def,
|
|
// sib - sibling.
|
|
// Possible annotations (usually preceding the node id):
|
|
// + - preserving def,
|
|
// ~ - clobbering def,
|
|
// " - shadow ref (follows the node id),
|
|
// ! - fixed register (appears after register name).
|
|
//
|
|
// The circular lists are not explicit in the dump.
|
|
//
|
|
//
|
|
// *** Node attributes
|
|
//
|
|
// NodeBase has a member "Attrs", which is the primary way of determining
|
|
// the node's characteristics. The fields in this member decide whether
|
|
// the node is a code node or a reference node (i.e. node's "type"), then
|
|
// within each type, the "kind" determines what specifically this node
|
|
// represents. The remaining bits, "flags", contain additional information
|
|
// that is even more detailed than the "kind".
|
|
// CodeNode's kinds are:
|
|
// - Phi: Phi node, members are reference nodes.
|
|
// - Stmt: Statement, members are reference nodes.
|
|
// - Block: Basic block, members are instruction nodes (i.e. Phi or Stmt).
|
|
// - Func: The whole function. The members are basic block nodes.
|
|
// RefNode's kinds are:
|
|
// - Use.
|
|
// - Def.
|
|
//
|
|
// Meaning of flags:
|
|
// - Preserving: applies only to defs. A preserving def is one that can
|
|
// preserve some of the original bits among those that are included in
|
|
// the register associated with that def. For example, if R0 is a 32-bit
|
|
// register, but a def can only change the lower 16 bits, then it will
|
|
// be marked as preserving.
|
|
// - Shadow: a reference that has duplicates holding additional reaching
|
|
// defs (see more below).
|
|
// - Clobbering: applied only to defs, indicates that the value generated
|
|
// by this def is unspecified. A typical example would be volatile registers
|
|
// after function calls.
|
|
// - Fixed: the register in this def/use cannot be replaced with any other
|
|
// register. A typical case would be a parameter register to a call, or
|
|
// the register with the return value from a function.
|
|
// - Undef: the register in this reference the register is assumed to have
|
|
// no pre-existing value, even if it appears to be reached by some def.
|
|
// This is typically used to prevent keeping registers artificially live
|
|
// in cases when they are defined via predicated instructions. For example:
|
|
// r0 = add-if-true cond, r10, r11 (1)
|
|
// r0 = add-if-false cond, r12, r13, r0<imp-use> (2)
|
|
// ... = r0 (3)
|
|
// Before (1), r0 is not intended to be live, and the use of r0 in (3) is
|
|
// not meant to be reached by any def preceding (1). However, since the
|
|
// defs in (1) and (2) are both preserving, these properties alone would
|
|
// imply that the use in (3) may indeed be reached by some prior def.
|
|
// Adding Undef flag to the def in (1) prevents that. The Undef flag
|
|
// may be applied to both defs and uses.
|
|
// - Dead: applies only to defs. The value coming out of a "dead" def is
|
|
// assumed to be unused, even if the def appears to be reaching other defs
|
|
// or uses. The motivation for this flag comes from dead defs on function
|
|
// calls: there is no way to determine if such a def is dead without
|
|
// analyzing the target's ABI. Hence the graph should contain this info,
|
|
// as it is unavailable otherwise. On the other hand, a def without any
|
|
// uses on a typical instruction is not the intended target for this flag.
|
|
//
|
|
// *** Shadow references
|
|
//
|
|
// It may happen that a super-register can have two (or more) non-overlapping
|
|
// sub-registers. When both of these sub-registers are defined and followed
|
|
// by a use of the super-register, the use of the super-register will not
|
|
// have a unique reaching def: both defs of the sub-registers need to be
|
|
// accounted for. In such cases, a duplicate use of the super-register is
|
|
// added and it points to the extra reaching def. Both uses are marked with
|
|
// a flag "shadow". Example:
|
|
// Assume t0 is a super-register of r0 and r1, r0 and r1 do not overlap:
|
|
// set r0, 1 ; r0 = 1
|
|
// set r1, 1 ; r1 = 1
|
|
// addi t1, t0, 1 ; t1 = t0+1
|
|
//
|
|
// The DFG:
|
|
// s1: set [d2<r0>(,,u9):]
|
|
// s3: set [d4<r1>(,,u10):]
|
|
// s5: addi [d6<t1>(,,):, u7"<t0>(d2):, u8"<t0>(d4):]
|
|
//
|
|
// The statement s5 has two use nodes for t0: u7" and u9". The quotation
|
|
// mark " indicates that the node is a shadow.
|
|
//
|
|
#ifndef RDF_GRAPH_H
|
|
#define RDF_GRAPH_H
|
|
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Support/Timer.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
|
|
#include <functional>
|
|
#include <map>
|
|
#include <set>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
|
|
// RDF uses uint32_t to refer to registers. This is to ensure that the type
|
|
// size remains specific. In other places, registers are often stored using
|
|
// unsigned.
|
|
static_assert(sizeof(uint32_t) == sizeof(unsigned), "Those should be equal");
|
|
|
|
namespace llvm {
|
|
class MachineBasicBlock;
|
|
class MachineFunction;
|
|
class MachineInstr;
|
|
class MachineOperand;
|
|
class MachineDominanceFrontier;
|
|
class MachineDominatorTree;
|
|
class TargetInstrInfo;
|
|
|
|
namespace rdf {
|
|
typedef uint32_t NodeId;
|
|
|
|
struct DataFlowGraph;
|
|
|
|
struct NodeAttrs {
|
|
enum : uint16_t {
|
|
None = 0x0000, // Nothing
|
|
|
|
// Types: 2 bits
|
|
TypeMask = 0x0003,
|
|
Code = 0x0001, // 01, Container
|
|
Ref = 0x0002, // 10, Reference
|
|
|
|
// Kind: 3 bits
|
|
KindMask = 0x0007 << 2,
|
|
Def = 0x0001 << 2, // 001
|
|
Use = 0x0002 << 2, // 010
|
|
Phi = 0x0003 << 2, // 011
|
|
Stmt = 0x0004 << 2, // 100
|
|
Block = 0x0005 << 2, // 101
|
|
Func = 0x0006 << 2, // 110
|
|
|
|
// Flags: 7 bits for now
|
|
FlagMask = 0x007F << 5,
|
|
Shadow = 0x0001 << 5, // 0000001, Has extra reaching defs.
|
|
Clobbering = 0x0002 << 5, // 0000010, Produces unspecified values.
|
|
PhiRef = 0x0004 << 5, // 0000100, Member of PhiNode.
|
|
Preserving = 0x0008 << 5, // 0001000, Def can keep original bits.
|
|
Fixed = 0x0010 << 5, // 0010000, Fixed register.
|
|
Undef = 0x0020 << 5, // 0100000, Has no pre-existing value.
|
|
Dead = 0x0040 << 5, // 1000000, Does not define a value.
|
|
};
|
|
|
|
static uint16_t type(uint16_t T) { return T & TypeMask; }
|
|
static uint16_t kind(uint16_t T) { return T & KindMask; }
|
|
static uint16_t flags(uint16_t T) { return T & FlagMask; }
|
|
|
|
static uint16_t set_type(uint16_t A, uint16_t T) {
|
|
return (A & ~TypeMask) | T;
|
|
}
|
|
static uint16_t set_kind(uint16_t A, uint16_t K) {
|
|
return (A & ~KindMask) | K;
|
|
}
|
|
static uint16_t set_flags(uint16_t A, uint16_t F) {
|
|
return (A & ~FlagMask) | F;
|
|
}
|
|
|
|
// Test if A contains B.
|
|
static bool contains(uint16_t A, uint16_t B) {
|
|
if (type(A) != Code)
|
|
return false;
|
|
uint16_t KB = kind(B);
|
|
switch (kind(A)) {
|
|
case Func:
|
|
return KB == Block;
|
|
case Block:
|
|
return KB == Phi || KB == Stmt;
|
|
case Phi:
|
|
case Stmt:
|
|
return type(B) == Ref;
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
struct BuildOptions {
|
|
enum : unsigned {
|
|
None = 0x00,
|
|
KeepDeadPhis = 0x01, // Do not remove dead phis during build.
|
|
};
|
|
};
|
|
|
|
template <typename T> struct NodeAddr {
|
|
NodeAddr() : Addr(nullptr), Id(0) {}
|
|
NodeAddr(T A, NodeId I) : Addr(A), Id(I) {}
|
|
NodeAddr(const NodeAddr&) = default;
|
|
NodeAddr &operator= (const NodeAddr&) = default;
|
|
|
|
bool operator== (const NodeAddr<T> &NA) const {
|
|
assert((Addr == NA.Addr) == (Id == NA.Id));
|
|
return Addr == NA.Addr;
|
|
}
|
|
bool operator!= (const NodeAddr<T> &NA) const {
|
|
return !operator==(NA);
|
|
}
|
|
// Type cast (casting constructor). The reason for having this class
|
|
// instead of std::pair.
|
|
template <typename S> NodeAddr(const NodeAddr<S> &NA)
|
|
: Addr(static_cast<T>(NA.Addr)), Id(NA.Id) {}
|
|
|
|
T Addr;
|
|
NodeId Id;
|
|
};
|
|
|
|
struct NodeBase;
|
|
|
|
// Fast memory allocation and translation between node id and node address.
|
|
// This is really the same idea as the one underlying the "bump pointer
|
|
// allocator", the difference being in the translation. A node id is
|
|
// composed of two components: the index of the block in which it was
|
|
// allocated, and the index within the block. With the default settings,
|
|
// where the number of nodes per block is 4096, the node id (minus 1) is:
|
|
//
|
|
// bit position: 11 0
|
|
// +----------------------------+--------------+
|
|
// | Index of the block |Index in block|
|
|
// +----------------------------+--------------+
|
|
//
|
|
// The actual node id is the above plus 1, to avoid creating a node id of 0.
|
|
//
|
|
// This method significantly improved the build time, compared to using maps
|
|
// (std::unordered_map or DenseMap) to translate between pointers and ids.
|
|
struct NodeAllocator {
|
|
// Amount of storage for a single node.
|
|
enum { NodeMemSize = 32 };
|
|
NodeAllocator(uint32_t NPB = 4096)
|
|
: NodesPerBlock(NPB), BitsPerIndex(Log2_32(NPB)),
|
|
IndexMask((1 << BitsPerIndex)-1), ActiveEnd(nullptr) {
|
|
assert(isPowerOf2_32(NPB));
|
|
}
|
|
NodeBase *ptr(NodeId N) const {
|
|
uint32_t N1 = N-1;
|
|
uint32_t BlockN = N1 >> BitsPerIndex;
|
|
uint32_t Offset = (N1 & IndexMask) * NodeMemSize;
|
|
return reinterpret_cast<NodeBase*>(Blocks[BlockN]+Offset);
|
|
}
|
|
NodeId id(const NodeBase *P) const;
|
|
NodeAddr<NodeBase*> New();
|
|
void clear();
|
|
|
|
private:
|
|
void startNewBlock();
|
|
bool needNewBlock();
|
|
uint32_t makeId(uint32_t Block, uint32_t Index) const {
|
|
// Add 1 to the id, to avoid the id of 0, which is treated as "null".
|
|
return ((Block << BitsPerIndex) | Index) + 1;
|
|
}
|
|
|
|
const uint32_t NodesPerBlock;
|
|
const uint32_t BitsPerIndex;
|
|
const uint32_t IndexMask;
|
|
char *ActiveEnd;
|
|
std::vector<char*> Blocks;
|
|
typedef BumpPtrAllocatorImpl<MallocAllocator, 65536> AllocatorTy;
|
|
AllocatorTy MemPool;
|
|
};
|
|
|
|
struct RegisterRef {
|
|
// For virtual registers, Reg and Sub have the usual meanings.
|
|
//
|
|
// Physical registers are assumed not to have any subregisters, and for
|
|
// them, Sub is the key of the LaneBitmask in the lane mask map in DFG.
|
|
// The case of Sub = 0 is treated as 'all lanes', i.e. lane mask of ~0.
|
|
// Use an key/map to access lane masks, since we only have uint32_t
|
|
// for it, and the LaneBitmask type can grow in the future.
|
|
//
|
|
// The case when Reg = 0 and Sub = 0 is reserved to mean "no register".
|
|
uint32_t Reg, Sub;
|
|
|
|
// No non-trivial constructors, since this will be a member of a union.
|
|
RegisterRef() = default;
|
|
RegisterRef(const RegisterRef &RR) = default;
|
|
RegisterRef &operator= (const RegisterRef &RR) = default;
|
|
bool operator== (const RegisterRef &RR) const {
|
|
return Reg == RR.Reg && Sub == RR.Sub;
|
|
}
|
|
bool operator!= (const RegisterRef &RR) const {
|
|
return !operator==(RR);
|
|
}
|
|
bool operator< (const RegisterRef &RR) const {
|
|
return Reg < RR.Reg || (Reg == RR.Reg && Sub < RR.Sub);
|
|
}
|
|
};
|
|
typedef std::set<RegisterRef> RegisterSet;
|
|
|
|
struct TargetOperandInfo {
|
|
TargetOperandInfo(const TargetInstrInfo &tii) : TII(tii) {}
|
|
virtual ~TargetOperandInfo() {}
|
|
virtual bool isPreserving(const MachineInstr &In, unsigned OpNum) const;
|
|
virtual bool isClobbering(const MachineInstr &In, unsigned OpNum) const;
|
|
virtual bool isFixedReg(const MachineInstr &In, unsigned OpNum) const;
|
|
|
|
const TargetInstrInfo &TII;
|
|
};
|
|
|
|
// Template class for a map translating uint32_t into arbitrary types.
|
|
// The map will act like an indexed set: upon insertion of a new object,
|
|
// it will automatically assign a new index to it. Index of 0 is treated
|
|
// as invalid and is never allocated.
|
|
template <typename T, unsigned N = 32>
|
|
struct IndexedSet {
|
|
IndexedSet() : Map() { Map.reserve(N); }
|
|
const T get(uint32_t Idx) const {
|
|
// Index Idx corresponds to Map[Idx-1].
|
|
assert(Idx != 0 && !Map.empty() && Idx-1 < Map.size());
|
|
return Map[Idx-1];
|
|
}
|
|
uint32_t insert(T Val) {
|
|
// Linear search.
|
|
auto F = find(Map, Val);
|
|
if (F != Map.end())
|
|
return F - Map.begin();
|
|
Map.push_back(Val);
|
|
return Map.size(); // Return actual_index + 1.
|
|
}
|
|
|
|
private:
|
|
std::vector<T> Map;
|
|
};
|
|
|
|
struct LaneMaskIndex : private IndexedSet<LaneBitmask> {
|
|
LaneBitmask getLaneMaskForIndex(uint32_t K) const {
|
|
return K == 0 ? ~LaneBitmask(0) : get(K);
|
|
}
|
|
uint32_t getIndexForLaneMask(LaneBitmask LM) {
|
|
assert(LM != LaneBitmask(0));
|
|
return LM == ~LaneBitmask(0) ? 0 : insert(LM);
|
|
}
|
|
};
|
|
|
|
struct RegisterAggr {
|
|
typedef std::pair<uint32_t,LaneBitmask> ValueType;
|
|
|
|
RegisterAggr(const LaneMaskIndex &m, const TargetRegisterInfo &tri)
|
|
: Masks(), ExpAliasUnits(tri.getNumRegUnits()), CheckUnits(false),
|
|
LMI(m), TRI(tri) {}
|
|
RegisterAggr(const RegisterAggr &RG)
|
|
: Masks(RG.Masks), ExpAliasUnits(RG.ExpAliasUnits),
|
|
CheckUnits(RG.CheckUnits), LMI(RG.LMI), TRI(RG.TRI) {}
|
|
|
|
bool empty() const { return Masks.empty(); }
|
|
bool hasAliasOf(RegisterRef RR) const;
|
|
bool hasCoverOf(RegisterRef RR) const;
|
|
static bool isCoverOf(RegisterRef RefA, RegisterRef RefB,
|
|
const LaneMaskIndex &LMI, const TargetRegisterInfo &TRI) {
|
|
return RegisterAggr(LMI, TRI).insert(RefA).hasCoverOf(RefB);
|
|
}
|
|
|
|
RegisterAggr &insert(RegisterRef RR);
|
|
RegisterAggr &insert(const RegisterAggr &RG);
|
|
RegisterAggr &clear(RegisterRef RR);
|
|
|
|
void print(raw_ostream &OS) const;
|
|
|
|
private:
|
|
typedef std::unordered_map<ValueType::first_type,
|
|
ValueType::second_type> MapType;
|
|
MapType Masks;
|
|
BitVector ExpAliasUnits; // Register units for explicit aliases.
|
|
bool CheckUnits;
|
|
const LaneMaskIndex &LMI;
|
|
const TargetRegisterInfo &TRI;
|
|
|
|
uint32_t getLargestSuperReg(uint32_t Reg) const;
|
|
void setMaskRaw(uint32_t Reg, LaneBitmask LM);
|
|
LaneBitmask composeMaskForReg(uint32_t Reg, LaneBitmask LM,
|
|
uint32_t SuperR) const;
|
|
};
|
|
|
|
|
|
struct NodeBase {
|
|
public:
|
|
// Make sure this is a POD.
|
|
NodeBase() = default;
|
|
uint16_t getType() const { return NodeAttrs::type(Attrs); }
|
|
uint16_t getKind() const { return NodeAttrs::kind(Attrs); }
|
|
uint16_t getFlags() const { return NodeAttrs::flags(Attrs); }
|
|
NodeId getNext() const { return Next; }
|
|
|
|
uint16_t getAttrs() const { return Attrs; }
|
|
void setAttrs(uint16_t A) { Attrs = A; }
|
|
void setFlags(uint16_t F) { setAttrs(NodeAttrs::set_flags(getAttrs(), F)); }
|
|
|
|
// Insert node NA after "this" in the circular chain.
|
|
void append(NodeAddr<NodeBase*> NA);
|
|
// Initialize all members to 0.
|
|
void init() { memset(this, 0, sizeof *this); }
|
|
void setNext(NodeId N) { Next = N; }
|
|
|
|
protected:
|
|
uint16_t Attrs;
|
|
uint16_t Reserved;
|
|
NodeId Next; // Id of the next node in the circular chain.
|
|
// Definitions of nested types. Using anonymous nested structs would make
|
|
// this class definition clearer, but unnamed structs are not a part of
|
|
// the standard.
|
|
struct Def_struct {
|
|
NodeId DD, DU; // Ids of the first reached def and use.
|
|
};
|
|
struct PhiU_struct {
|
|
NodeId PredB; // Id of the predecessor block for a phi use.
|
|
};
|
|
struct Code_struct {
|
|
void *CP; // Pointer to the actual code.
|
|
NodeId FirstM, LastM; // Id of the first member and last.
|
|
};
|
|
struct Ref_struct {
|
|
NodeId RD, Sib; // Ids of the reaching def and the sibling.
|
|
union {
|
|
Def_struct Def;
|
|
PhiU_struct PhiU;
|
|
};
|
|
union {
|
|
MachineOperand *Op; // Non-phi refs point to a machine operand.
|
|
RegisterRef RR; // Phi refs store register info directly.
|
|
};
|
|
};
|
|
|
|
// The actual payload.
|
|
union {
|
|
Ref_struct Ref;
|
|
Code_struct Code;
|
|
};
|
|
};
|
|
// The allocator allocates chunks of 32 bytes for each node. The fact that
|
|
// each node takes 32 bytes in memory is used for fast translation between
|
|
// the node id and the node address.
|
|
static_assert(sizeof(NodeBase) <= NodeAllocator::NodeMemSize,
|
|
"NodeBase must be at most NodeAllocator::NodeMemSize bytes");
|
|
|
|
typedef std::vector<NodeAddr<NodeBase*>> NodeList;
|
|
typedef std::set<NodeId> NodeSet;
|
|
|
|
struct RefNode : public NodeBase {
|
|
RefNode() = default;
|
|
RegisterRef getRegRef() const;
|
|
MachineOperand &getOp() {
|
|
assert(!(getFlags() & NodeAttrs::PhiRef));
|
|
return *Ref.Op;
|
|
}
|
|
void setRegRef(RegisterRef RR);
|
|
void setRegRef(MachineOperand *Op);
|
|
NodeId getReachingDef() const {
|
|
return Ref.RD;
|
|
}
|
|
void setReachingDef(NodeId RD) {
|
|
Ref.RD = RD;
|
|
}
|
|
NodeId getSibling() const {
|
|
return Ref.Sib;
|
|
}
|
|
void setSibling(NodeId Sib) {
|
|
Ref.Sib = Sib;
|
|
}
|
|
bool isUse() const {
|
|
assert(getType() == NodeAttrs::Ref);
|
|
return getKind() == NodeAttrs::Use;
|
|
}
|
|
bool isDef() const {
|
|
assert(getType() == NodeAttrs::Ref);
|
|
return getKind() == NodeAttrs::Def;
|
|
}
|
|
|
|
template <typename Predicate>
|
|
NodeAddr<RefNode*> getNextRef(RegisterRef RR, Predicate P, bool NextOnly,
|
|
const DataFlowGraph &G);
|
|
NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
|
|
};
|
|
|
|
struct DefNode : public RefNode {
|
|
NodeId getReachedDef() const {
|
|
return Ref.Def.DD;
|
|
}
|
|
void setReachedDef(NodeId D) {
|
|
Ref.Def.DD = D;
|
|
}
|
|
NodeId getReachedUse() const {
|
|
return Ref.Def.DU;
|
|
}
|
|
void setReachedUse(NodeId U) {
|
|
Ref.Def.DU = U;
|
|
}
|
|
|
|
void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
|
|
};
|
|
|
|
struct UseNode : public RefNode {
|
|
void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
|
|
};
|
|
|
|
struct PhiUseNode : public UseNode {
|
|
NodeId getPredecessor() const {
|
|
assert(getFlags() & NodeAttrs::PhiRef);
|
|
return Ref.PhiU.PredB;
|
|
}
|
|
void setPredecessor(NodeId B) {
|
|
assert(getFlags() & NodeAttrs::PhiRef);
|
|
Ref.PhiU.PredB = B;
|
|
}
|
|
};
|
|
|
|
struct CodeNode : public NodeBase {
|
|
template <typename T> T getCode() const {
|
|
return static_cast<T>(Code.CP);
|
|
}
|
|
void setCode(void *C) {
|
|
Code.CP = C;
|
|
}
|
|
|
|
NodeAddr<NodeBase*> getFirstMember(const DataFlowGraph &G) const;
|
|
NodeAddr<NodeBase*> getLastMember(const DataFlowGraph &G) const;
|
|
void addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);
|
|
void addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
|
|
const DataFlowGraph &G);
|
|
void removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);
|
|
|
|
NodeList members(const DataFlowGraph &G) const;
|
|
template <typename Predicate>
|
|
NodeList members_if(Predicate P, const DataFlowGraph &G) const;
|
|
};
|
|
|
|
struct InstrNode : public CodeNode {
|
|
NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
|
|
};
|
|
|
|
struct PhiNode : public InstrNode {
|
|
MachineInstr *getCode() const {
|
|
return nullptr;
|
|
}
|
|
};
|
|
|
|
struct StmtNode : public InstrNode {
|
|
MachineInstr *getCode() const {
|
|
return CodeNode::getCode<MachineInstr*>();
|
|
}
|
|
};
|
|
|
|
struct BlockNode : public CodeNode {
|
|
MachineBasicBlock *getCode() const {
|
|
return CodeNode::getCode<MachineBasicBlock*>();
|
|
}
|
|
void addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G);
|
|
};
|
|
|
|
struct FuncNode : public CodeNode {
|
|
MachineFunction *getCode() const {
|
|
return CodeNode::getCode<MachineFunction*>();
|
|
}
|
|
NodeAddr<BlockNode*> findBlock(const MachineBasicBlock *BB,
|
|
const DataFlowGraph &G) const;
|
|
NodeAddr<BlockNode*> getEntryBlock(const DataFlowGraph &G);
|
|
};
|
|
|
|
struct DataFlowGraph {
|
|
DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
|
|
const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
|
|
const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi);
|
|
|
|
NodeBase *ptr(NodeId N) const;
|
|
template <typename T> T ptr(NodeId N) const {
|
|
return static_cast<T>(ptr(N));
|
|
}
|
|
NodeId id(const NodeBase *P) const;
|
|
|
|
template <typename T> NodeAddr<T> addr(NodeId N) const {
|
|
return { ptr<T>(N), N };
|
|
}
|
|
|
|
NodeAddr<FuncNode*> getFunc() const { return Func; }
|
|
MachineFunction &getMF() const { return MF; }
|
|
LaneMaskIndex &getLMI() { return LMI; }
|
|
const LaneMaskIndex &getLMI() const { return LMI; }
|
|
const TargetInstrInfo &getTII() const { return TII; }
|
|
const TargetRegisterInfo &getTRI() const { return TRI; }
|
|
const MachineDominatorTree &getDT() const { return MDT; }
|
|
const MachineDominanceFrontier &getDF() const { return MDF; }
|
|
|
|
struct DefStack {
|
|
DefStack() = default;
|
|
bool empty() const { return Stack.empty() || top() == bottom(); }
|
|
private:
|
|
typedef NodeAddr<DefNode*> value_type;
|
|
struct Iterator {
|
|
typedef DefStack::value_type value_type;
|
|
Iterator &up() { Pos = DS.nextUp(Pos); return *this; }
|
|
Iterator &down() { Pos = DS.nextDown(Pos); return *this; }
|
|
value_type operator*() const {
|
|
assert(Pos >= 1);
|
|
return DS.Stack[Pos-1];
|
|
}
|
|
const value_type *operator->() const {
|
|
assert(Pos >= 1);
|
|
return &DS.Stack[Pos-1];
|
|
}
|
|
bool operator==(const Iterator &It) const { return Pos == It.Pos; }
|
|
bool operator!=(const Iterator &It) const { return Pos != It.Pos; }
|
|
private:
|
|
Iterator(const DefStack &S, bool Top);
|
|
// Pos-1 is the index in the StorageType object that corresponds to
|
|
// the top of the DefStack.
|
|
const DefStack &DS;
|
|
unsigned Pos;
|
|
friend struct DefStack;
|
|
};
|
|
public:
|
|
typedef Iterator iterator;
|
|
iterator top() const { return Iterator(*this, true); }
|
|
iterator bottom() const { return Iterator(*this, false); }
|
|
unsigned size() const;
|
|
|
|
void push(NodeAddr<DefNode*> DA) { Stack.push_back(DA); }
|
|
void pop();
|
|
void start_block(NodeId N);
|
|
void clear_block(NodeId N);
|
|
private:
|
|
friend struct Iterator;
|
|
typedef std::vector<value_type> StorageType;
|
|
bool isDelimiter(const StorageType::value_type &P, NodeId N = 0) const {
|
|
return (P.Addr == nullptr) && (N == 0 || P.Id == N);
|
|
}
|
|
unsigned nextUp(unsigned P) const;
|
|
unsigned nextDown(unsigned P) const;
|
|
StorageType Stack;
|
|
};
|
|
|
|
// Make this std::unordered_map for speed of accessing elements.
|
|
// Map: Register (physical or virtual) -> DefStack
|
|
typedef std::unordered_map<uint32_t,DefStack> DefStackMap;
|
|
|
|
void build(unsigned Options = BuildOptions::None);
|
|
void pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DM);
|
|
void markBlock(NodeId B, DefStackMap &DefM);
|
|
void releaseBlock(NodeId B, DefStackMap &DefM);
|
|
|
|
NodeAddr<RefNode*> getNextRelated(NodeAddr<InstrNode*> IA,
|
|
NodeAddr<RefNode*> RA) const;
|
|
NodeAddr<RefNode*> getNextImp(NodeAddr<InstrNode*> IA,
|
|
NodeAddr<RefNode*> RA, bool Create);
|
|
NodeAddr<RefNode*> getNextImp(NodeAddr<InstrNode*> IA,
|
|
NodeAddr<RefNode*> RA) const;
|
|
NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
|
|
NodeAddr<RefNode*> RA, bool Create);
|
|
NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
|
|
NodeAddr<RefNode*> RA) const;
|
|
|
|
NodeList getRelatedRefs(NodeAddr<InstrNode*> IA,
|
|
NodeAddr<RefNode*> RA) const;
|
|
|
|
void unlinkUse(NodeAddr<UseNode*> UA, bool RemoveFromOwner) {
|
|
unlinkUseDF(UA);
|
|
if (RemoveFromOwner)
|
|
removeFromOwner(UA);
|
|
}
|
|
void unlinkDef(NodeAddr<DefNode*> DA, bool RemoveFromOwner) {
|
|
unlinkDefDF(DA);
|
|
if (RemoveFromOwner)
|
|
removeFromOwner(DA);
|
|
}
|
|
|
|
// Some useful filters.
|
|
template <uint16_t Kind>
|
|
static bool IsRef(const NodeAddr<NodeBase*> BA) {
|
|
return BA.Addr->getType() == NodeAttrs::Ref &&
|
|
BA.Addr->getKind() == Kind;
|
|
}
|
|
template <uint16_t Kind>
|
|
static bool IsCode(const NodeAddr<NodeBase*> BA) {
|
|
return BA.Addr->getType() == NodeAttrs::Code &&
|
|
BA.Addr->getKind() == Kind;
|
|
}
|
|
static bool IsDef(const NodeAddr<NodeBase*> BA) {
|
|
return BA.Addr->getType() == NodeAttrs::Ref &&
|
|
BA.Addr->getKind() == NodeAttrs::Def;
|
|
}
|
|
static bool IsUse(const NodeAddr<NodeBase*> BA) {
|
|
return BA.Addr->getType() == NodeAttrs::Ref &&
|
|
BA.Addr->getKind() == NodeAttrs::Use;
|
|
}
|
|
static bool IsPhi(const NodeAddr<NodeBase*> BA) {
|
|
return BA.Addr->getType() == NodeAttrs::Code &&
|
|
BA.Addr->getKind() == NodeAttrs::Phi;
|
|
}
|
|
static bool IsPreservingDef(const NodeAddr<DefNode*> DA) {
|
|
uint16_t Flags = DA.Addr->getFlags();
|
|
return (Flags & NodeAttrs::Preserving) && !(Flags & NodeAttrs::Undef);
|
|
}
|
|
|
|
// Register aliasing.
|
|
bool alias(RegisterRef RA, RegisterRef RB) const;
|
|
|
|
private:
|
|
void reset();
|
|
|
|
RegisterSet getAliasSet(uint32_t Reg) const;
|
|
RegisterSet getLandingPadLiveIns() const;
|
|
|
|
NodeAddr<NodeBase*> newNode(uint16_t Attrs);
|
|
NodeAddr<NodeBase*> cloneNode(const NodeAddr<NodeBase*> B);
|
|
NodeAddr<UseNode*> newUse(NodeAddr<InstrNode*> Owner,
|
|
MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
|
|
NodeAddr<PhiUseNode*> newPhiUse(NodeAddr<PhiNode*> Owner,
|
|
RegisterRef RR, NodeAddr<BlockNode*> PredB,
|
|
uint16_t Flags = NodeAttrs::PhiRef);
|
|
NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
|
|
MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
|
|
NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
|
|
RegisterRef RR, uint16_t Flags = NodeAttrs::PhiRef);
|
|
NodeAddr<PhiNode*> newPhi(NodeAddr<BlockNode*> Owner);
|
|
NodeAddr<StmtNode*> newStmt(NodeAddr<BlockNode*> Owner,
|
|
MachineInstr *MI);
|
|
NodeAddr<BlockNode*> newBlock(NodeAddr<FuncNode*> Owner,
|
|
MachineBasicBlock *BB);
|
|
NodeAddr<FuncNode*> newFunc(MachineFunction *MF);
|
|
|
|
template <typename Predicate>
|
|
std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
|
|
locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
|
|
Predicate P) const;
|
|
|
|
typedef std::map<NodeId,RegisterSet> BlockRefsMap;
|
|
|
|
void buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In);
|
|
void buildBlockRefs(NodeAddr<BlockNode*> BA, BlockRefsMap &RefM);
|
|
void recordDefsForDF(BlockRefsMap &PhiM, BlockRefsMap &RefM,
|
|
NodeAddr<BlockNode*> BA);
|
|
void buildPhis(BlockRefsMap &PhiM, BlockRefsMap &RefM,
|
|
NodeAddr<BlockNode*> BA);
|
|
void removeUnusedPhis();
|
|
|
|
template <typename T> void linkRefUp(NodeAddr<InstrNode*> IA,
|
|
NodeAddr<T> TA, DefStack &DS);
|
|
void linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA);
|
|
void linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA);
|
|
|
|
void unlinkUseDF(NodeAddr<UseNode*> UA);
|
|
void unlinkDefDF(NodeAddr<DefNode*> DA);
|
|
void removeFromOwner(NodeAddr<RefNode*> RA) {
|
|
NodeAddr<InstrNode*> IA = RA.Addr->getOwner(*this);
|
|
IA.Addr->removeMember(RA, *this);
|
|
}
|
|
|
|
NodeAddr<BlockNode*> findBlock(MachineBasicBlock *BB) {
|
|
return BlockNodes[BB];
|
|
}
|
|
|
|
TimerGroup TimeG;
|
|
NodeAddr<FuncNode*> Func;
|
|
NodeAllocator Memory;
|
|
// Local map: MachineBasicBlock -> NodeAddr<BlockNode*>
|
|
std::map<MachineBasicBlock*,NodeAddr<BlockNode*>> BlockNodes;
|
|
// Lane mask map.
|
|
LaneMaskIndex LMI;
|
|
|
|
MachineFunction &MF;
|
|
const TargetInstrInfo &TII;
|
|
const TargetRegisterInfo &TRI;
|
|
const MachineDominatorTree &MDT;
|
|
const MachineDominanceFrontier &MDF;
|
|
const TargetOperandInfo &TOI;
|
|
}; // struct DataFlowGraph
|
|
|
|
template <typename Predicate>
|
|
NodeAddr<RefNode*> RefNode::getNextRef(RegisterRef RR, Predicate P,
|
|
bool NextOnly, const DataFlowGraph &G) {
|
|
// Get the "Next" reference in the circular list that references RR and
|
|
// satisfies predicate "Pred".
|
|
auto NA = G.addr<NodeBase*>(getNext());
|
|
|
|
while (NA.Addr != this) {
|
|
if (NA.Addr->getType() == NodeAttrs::Ref) {
|
|
NodeAddr<RefNode*> RA = NA;
|
|
if (RA.Addr->getRegRef() == RR && P(NA))
|
|
return NA;
|
|
if (NextOnly)
|
|
break;
|
|
NA = G.addr<NodeBase*>(NA.Addr->getNext());
|
|
} else {
|
|
// We've hit the beginning of the chain.
|
|
assert(NA.Addr->getType() == NodeAttrs::Code);
|
|
NodeAddr<CodeNode*> CA = NA;
|
|
NA = CA.Addr->getFirstMember(G);
|
|
}
|
|
}
|
|
// Return the equivalent of "nullptr" if such a node was not found.
|
|
return NodeAddr<RefNode*>();
|
|
}
|
|
|
|
template <typename Predicate>
|
|
NodeList CodeNode::members_if(Predicate P, const DataFlowGraph &G) const {
|
|
NodeList MM;
|
|
auto M = getFirstMember(G);
|
|
if (M.Id == 0)
|
|
return MM;
|
|
|
|
while (M.Addr != this) {
|
|
if (P(M))
|
|
MM.push_back(M);
|
|
M = G.addr<NodeBase*>(M.Addr->getNext());
|
|
}
|
|
return MM;
|
|
}
|
|
|
|
|
|
template <typename T> struct Print;
|
|
template <typename T>
|
|
raw_ostream &operator<< (raw_ostream &OS, const Print<T> &P);
|
|
|
|
template <typename T>
|
|
struct Print {
|
|
Print(const T &x, const DataFlowGraph &g) : Obj(x), G(g) {}
|
|
const T &Obj;
|
|
const DataFlowGraph &G;
|
|
};
|
|
|
|
template <typename T>
|
|
struct PrintNode : Print<NodeAddr<T>> {
|
|
PrintNode(const NodeAddr<T> &x, const DataFlowGraph &g)
|
|
: Print<NodeAddr<T>>(x, g) {}
|
|
};
|
|
} // namespace rdf
|
|
} // namespace llvm
|
|
|
|
#endif // RDF_GRAPH_H
|