forked from OSchip/llvm-project
1601 lines
52 KiB
C++
1601 lines
52 KiB
C++
//===--- HexagonGenInsert.cpp ---------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "hexinsert"
|
|
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/PassRegistry.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Timer.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
|
|
#include "Hexagon.h"
|
|
#include "HexagonRegisterInfo.h"
|
|
#include "HexagonTargetMachine.h"
|
|
#include "HexagonBitTracker.h"
|
|
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<unsigned> VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U),
|
|
cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg# cutoff for insert generation."));
|
|
// The distance cutoff is selected based on the precheckin-perf results:
|
|
// cutoffs 20, 25, 35, and 40 are worse than 30.
|
|
static cl::opt<unsigned> VRegDistCutoff("insert-dist-cutoff", cl::init(30U),
|
|
cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg distance cutoff for insert "
|
|
"generation."));
|
|
|
|
static cl::opt<bool> OptTiming("insert-timing", cl::init(false), cl::Hidden,
|
|
cl::ZeroOrMore, cl::desc("Enable timing of insert generation"));
|
|
static cl::opt<bool> OptTimingDetail("insert-timing-detail", cl::init(false),
|
|
cl::Hidden, cl::ZeroOrMore, cl::desc("Enable detailed timing of insert "
|
|
"generation"));
|
|
|
|
static cl::opt<bool> OptSelectAll0("insert-all0", cl::init(false), cl::Hidden,
|
|
cl::ZeroOrMore);
|
|
static cl::opt<bool> OptSelectHas0("insert-has0", cl::init(false), cl::Hidden,
|
|
cl::ZeroOrMore);
|
|
// Whether to construct constant values via "insert". Could eliminate constant
|
|
// extenders, but often not practical.
|
|
static cl::opt<bool> OptConst("insert-const", cl::init(false), cl::Hidden,
|
|
cl::ZeroOrMore);
|
|
|
|
namespace {
|
|
// The preprocessor gets confused when the DEBUG macro is passed larger
|
|
// chunks of code. Use this function to detect debugging.
|
|
inline bool isDebug() {
|
|
#ifndef NDEBUG
|
|
return ::llvm::DebugFlag && ::llvm::isCurrentDebugType(DEBUG_TYPE);
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
namespace {
|
|
// Set of virtual registers, based on BitVector.
|
|
struct RegisterSet : private BitVector {
|
|
RegisterSet() = default;
|
|
explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
|
|
|
|
using BitVector::clear;
|
|
|
|
unsigned find_first() const {
|
|
int First = BitVector::find_first();
|
|
if (First < 0)
|
|
return 0;
|
|
return x2v(First);
|
|
}
|
|
|
|
unsigned find_next(unsigned Prev) const {
|
|
int Next = BitVector::find_next(v2x(Prev));
|
|
if (Next < 0)
|
|
return 0;
|
|
return x2v(Next);
|
|
}
|
|
|
|
RegisterSet &insert(unsigned R) {
|
|
unsigned Idx = v2x(R);
|
|
ensure(Idx);
|
|
return static_cast<RegisterSet&>(BitVector::set(Idx));
|
|
}
|
|
RegisterSet &remove(unsigned R) {
|
|
unsigned Idx = v2x(R);
|
|
if (Idx >= size())
|
|
return *this;
|
|
return static_cast<RegisterSet&>(BitVector::reset(Idx));
|
|
}
|
|
|
|
RegisterSet &insert(const RegisterSet &Rs) {
|
|
return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
|
|
}
|
|
RegisterSet &remove(const RegisterSet &Rs) {
|
|
return static_cast<RegisterSet&>(BitVector::reset(Rs));
|
|
}
|
|
|
|
reference operator[](unsigned R) {
|
|
unsigned Idx = v2x(R);
|
|
ensure(Idx);
|
|
return BitVector::operator[](Idx);
|
|
}
|
|
bool operator[](unsigned R) const {
|
|
unsigned Idx = v2x(R);
|
|
assert(Idx < size());
|
|
return BitVector::operator[](Idx);
|
|
}
|
|
bool has(unsigned R) const {
|
|
unsigned Idx = v2x(R);
|
|
if (Idx >= size())
|
|
return false;
|
|
return BitVector::test(Idx);
|
|
}
|
|
|
|
bool empty() const {
|
|
return !BitVector::any();
|
|
}
|
|
bool includes(const RegisterSet &Rs) const {
|
|
// A.BitVector::test(B) <=> A-B != {}
|
|
return !Rs.BitVector::test(*this);
|
|
}
|
|
bool intersects(const RegisterSet &Rs) const {
|
|
return BitVector::anyCommon(Rs);
|
|
}
|
|
|
|
private:
|
|
void ensure(unsigned Idx) {
|
|
if (size() <= Idx)
|
|
resize(std::max(Idx+1, 32U));
|
|
}
|
|
static inline unsigned v2x(unsigned v) {
|
|
return TargetRegisterInfo::virtReg2Index(v);
|
|
}
|
|
static inline unsigned x2v(unsigned x) {
|
|
return TargetRegisterInfo::index2VirtReg(x);
|
|
}
|
|
};
|
|
|
|
|
|
struct PrintRegSet {
|
|
PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
|
|
: RS(S), TRI(RI) {}
|
|
friend raw_ostream &operator<< (raw_ostream &OS,
|
|
const PrintRegSet &P);
|
|
private:
|
|
const RegisterSet &RS;
|
|
const TargetRegisterInfo *TRI;
|
|
};
|
|
|
|
raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
|
|
OS << '{';
|
|
for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
|
|
OS << ' ' << PrintReg(R, P.TRI);
|
|
OS << " }";
|
|
return OS;
|
|
}
|
|
}
|
|
|
|
|
|
namespace {
|
|
// A convenience class to associate unsigned numbers (such as virtual
|
|
// registers) with unsigned numbers.
|
|
struct UnsignedMap : public DenseMap<unsigned,unsigned> {
|
|
UnsignedMap() : BaseType() {}
|
|
private:
|
|
typedef DenseMap<unsigned,unsigned> BaseType;
|
|
};
|
|
|
|
// A utility to establish an ordering between virtual registers:
|
|
// VRegA < VRegB <=> RegisterOrdering[VRegA] < RegisterOrdering[VRegB]
|
|
// This is meant as a cache for the ordering of virtual registers defined
|
|
// by a potentially expensive comparison function, or obtained by a proce-
|
|
// dure that should not be repeated each time two registers are compared.
|
|
struct RegisterOrdering : public UnsignedMap {
|
|
RegisterOrdering() : UnsignedMap() {}
|
|
unsigned operator[](unsigned VR) const {
|
|
const_iterator F = find(VR);
|
|
assert(F != end());
|
|
return F->second;
|
|
}
|
|
// Add operator(), so that objects of this class can be used as
|
|
// comparators in std::sort et al.
|
|
bool operator() (unsigned VR1, unsigned VR2) const {
|
|
return operator[](VR1) < operator[](VR2);
|
|
}
|
|
};
|
|
}
|
|
|
|
|
|
namespace {
|
|
// Ordering of bit values. This class does not have operator[], but
|
|
// is supplies a comparison operator() for use in std:: algorithms.
|
|
// The order is as follows:
|
|
// - 0 < 1 < ref
|
|
// - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg),
|
|
// or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos.
|
|
struct BitValueOrdering {
|
|
BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {}
|
|
bool operator() (const BitTracker::BitValue &V1,
|
|
const BitTracker::BitValue &V2) const;
|
|
const RegisterOrdering &BaseOrd;
|
|
};
|
|
}
|
|
|
|
|
|
bool BitValueOrdering::operator() (const BitTracker::BitValue &V1,
|
|
const BitTracker::BitValue &V2) const {
|
|
if (V1 == V2)
|
|
return false;
|
|
// V1==0 => true, V2==0 => false
|
|
if (V1.is(0) || V2.is(0))
|
|
return V1.is(0);
|
|
// Neither of V1,V2 is 0, and V1!=V2.
|
|
// V2==1 => false, V1==1 => true
|
|
if (V2.is(1) || V1.is(1))
|
|
return !V2.is(1);
|
|
// Both V1,V2 are refs.
|
|
unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg];
|
|
if (Ind1 != Ind2)
|
|
return Ind1 < Ind2;
|
|
// If V1.Pos==V2.Pos
|
|
assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different");
|
|
return V1.RefI.Pos < V2.RefI.Pos;
|
|
}
|
|
|
|
|
|
namespace {
|
|
// Cache for the BitTracker's cell map. Map lookup has a logarithmic
|
|
// complexity, this class will memoize the lookup results to reduce
|
|
// the access time for repeated lookups of the same cell.
|
|
struct CellMapShadow {
|
|
CellMapShadow(const BitTracker &T) : BT(T) {}
|
|
const BitTracker::RegisterCell &lookup(unsigned VR) {
|
|
unsigned RInd = TargetRegisterInfo::virtReg2Index(VR);
|
|
// Grow the vector to at least 32 elements.
|
|
if (RInd >= CVect.size())
|
|
CVect.resize(std::max(RInd+16, 32U), 0);
|
|
const BitTracker::RegisterCell *CP = CVect[RInd];
|
|
if (CP == 0)
|
|
CP = CVect[RInd] = &BT.lookup(VR);
|
|
return *CP;
|
|
}
|
|
|
|
const BitTracker &BT;
|
|
|
|
private:
|
|
typedef std::vector<const BitTracker::RegisterCell*> CellVectType;
|
|
CellVectType CVect;
|
|
};
|
|
}
|
|
|
|
|
|
namespace {
|
|
// Comparator class for lexicographic ordering of virtual registers
|
|
// according to the corresponding BitTracker::RegisterCell objects.
|
|
struct RegisterCellLexCompare {
|
|
RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M)
|
|
: BitOrd(BO), CM(M) {}
|
|
bool operator() (unsigned VR1, unsigned VR2) const;
|
|
private:
|
|
const BitValueOrdering &BitOrd;
|
|
CellMapShadow &CM;
|
|
};
|
|
|
|
// Comparator class for lexicographic ordering of virtual registers
|
|
// according to the specified bits of the corresponding BitTracker::
|
|
// RegisterCell objects.
|
|
// Specifically, this class will be used to compare bit B of a register
|
|
// cell for a selected virtual register R with bit N of any register
|
|
// other than R.
|
|
struct RegisterCellBitCompareSel {
|
|
RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N,
|
|
const BitValueOrdering &BO, CellMapShadow &M)
|
|
: SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {}
|
|
bool operator() (unsigned VR1, unsigned VR2) const;
|
|
private:
|
|
const unsigned SelR, SelB;
|
|
const unsigned BitN;
|
|
const BitValueOrdering &BitOrd;
|
|
CellMapShadow &CM;
|
|
};
|
|
}
|
|
|
|
|
|
bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const {
|
|
// Ordering of registers, made up from two given orderings:
|
|
// - the ordering of the register numbers, and
|
|
// - the ordering of register cells.
|
|
// Def. R1 < R2 if:
|
|
// - cell(R1) < cell(R2), or
|
|
// - cell(R1) == cell(R2), and index(R1) < index(R2).
|
|
//
|
|
// For register cells, the ordering is lexicographic, with index 0 being
|
|
// the most significant.
|
|
if (VR1 == VR2)
|
|
return false;
|
|
|
|
const BitTracker::RegisterCell &RC1 = CM.lookup(VR1), &RC2 = CM.lookup(VR2);
|
|
uint16_t W1 = RC1.width(), W2 = RC2.width();
|
|
for (uint16_t i = 0, w = std::min(W1, W2); i < w; ++i) {
|
|
const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i];
|
|
if (V1 != V2)
|
|
return BitOrd(V1, V2);
|
|
}
|
|
// Cells are equal up until the common length.
|
|
if (W1 != W2)
|
|
return W1 < W2;
|
|
|
|
return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2];
|
|
}
|
|
|
|
|
|
bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const {
|
|
if (VR1 == VR2)
|
|
return false;
|
|
const BitTracker::RegisterCell &RC1 = CM.lookup(VR1);
|
|
const BitTracker::RegisterCell &RC2 = CM.lookup(VR2);
|
|
uint16_t W1 = RC1.width(), W2 = RC2.width();
|
|
uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN;
|
|
uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN;
|
|
// If Bit1 exceeds the width of VR1, then:
|
|
// - return false, if at the same time Bit2 exceeds VR2, or
|
|
// - return true, otherwise.
|
|
// (I.e. "a bit value that does not exist is less than any bit value
|
|
// that does exist".)
|
|
if (W1 <= Bit1)
|
|
return Bit2 < W2;
|
|
// If Bit1 is within VR1, but Bit2 is not within VR2, return false.
|
|
if (W2 <= Bit2)
|
|
return false;
|
|
|
|
const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2];
|
|
if (V1 != V2)
|
|
return BitOrd(V1, V2);
|
|
return false;
|
|
}
|
|
|
|
|
|
namespace {
|
|
class OrderedRegisterList {
|
|
typedef std::vector<unsigned> ListType;
|
|
public:
|
|
OrderedRegisterList(const RegisterOrdering &RO) : Ord(RO) {}
|
|
void insert(unsigned VR);
|
|
void remove(unsigned VR);
|
|
unsigned operator[](unsigned Idx) const {
|
|
assert(Idx < Seq.size());
|
|
return Seq[Idx];
|
|
}
|
|
unsigned size() const {
|
|
return Seq.size();
|
|
}
|
|
|
|
typedef ListType::iterator iterator;
|
|
typedef ListType::const_iterator const_iterator;
|
|
iterator begin() { return Seq.begin(); }
|
|
iterator end() { return Seq.end(); }
|
|
const_iterator begin() const { return Seq.begin(); }
|
|
const_iterator end() const { return Seq.end(); }
|
|
|
|
// Convenience function to convert an iterator to the corresponding index.
|
|
unsigned idx(iterator It) const { return It-begin(); }
|
|
private:
|
|
ListType Seq;
|
|
const RegisterOrdering &Ord;
|
|
};
|
|
|
|
|
|
struct PrintORL {
|
|
PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI)
|
|
: RL(L), TRI(RI) {}
|
|
friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P);
|
|
private:
|
|
const OrderedRegisterList &RL;
|
|
const TargetRegisterInfo *TRI;
|
|
};
|
|
|
|
raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) {
|
|
OS << '(';
|
|
OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end();
|
|
for (OrderedRegisterList::const_iterator I = B; I != E; ++I) {
|
|
if (I != B)
|
|
OS << ", ";
|
|
OS << PrintReg(*I, P.TRI);
|
|
}
|
|
OS << ')';
|
|
return OS;
|
|
}
|
|
}
|
|
|
|
|
|
void OrderedRegisterList::insert(unsigned VR) {
|
|
iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord);
|
|
if (L == Seq.end())
|
|
Seq.push_back(VR);
|
|
else
|
|
Seq.insert(L, VR);
|
|
}
|
|
|
|
|
|
void OrderedRegisterList::remove(unsigned VR) {
|
|
iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord);
|
|
assert(L != Seq.end());
|
|
Seq.erase(L);
|
|
}
|
|
|
|
|
|
namespace {
|
|
// A record of the insert form. The fields correspond to the operands
|
|
// of the "insert" instruction:
|
|
// ... = insert(SrcR, InsR, #Wdh, #Off)
|
|
struct IFRecord {
|
|
IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0)
|
|
: SrcR(SR), InsR(IR), Wdh(W), Off(O) {}
|
|
unsigned SrcR, InsR;
|
|
uint16_t Wdh, Off;
|
|
};
|
|
|
|
struct PrintIFR {
|
|
PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI)
|
|
: IFR(R), TRI(RI) {}
|
|
private:
|
|
const IFRecord &IFR;
|
|
const TargetRegisterInfo *TRI;
|
|
friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P);
|
|
};
|
|
|
|
raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) {
|
|
unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR;
|
|
OS << '(' << PrintReg(SrcR, P.TRI) << ',' << PrintReg(InsR, P.TRI)
|
|
<< ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')';
|
|
return OS;
|
|
}
|
|
|
|
typedef std::pair<IFRecord,RegisterSet> IFRecordWithRegSet;
|
|
}
|
|
|
|
|
|
namespace llvm {
|
|
void initializeHexagonGenInsertPass(PassRegistry&);
|
|
FunctionPass *createHexagonGenInsert();
|
|
}
|
|
|
|
|
|
namespace {
|
|
class HexagonGenInsert : public MachineFunctionPass {
|
|
public:
|
|
static char ID;
|
|
HexagonGenInsert() : MachineFunctionPass(ID), HII(0), HRI(0) {
|
|
initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
virtual StringRef getPassName() const {
|
|
return "Hexagon generate \"insert\" instructions";
|
|
}
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<MachineDominatorTree>();
|
|
AU.addPreserved<MachineDominatorTree>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
virtual bool runOnMachineFunction(MachineFunction &MF);
|
|
|
|
private:
|
|
typedef DenseMap<std::pair<unsigned,unsigned>,unsigned> PairMapType;
|
|
|
|
void buildOrderingMF(RegisterOrdering &RO) const;
|
|
void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const;
|
|
bool isIntClass(const TargetRegisterClass *RC) const;
|
|
bool isConstant(unsigned VR) const;
|
|
bool isSmallConstant(unsigned VR) const;
|
|
bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR,
|
|
uint16_t L, uint16_t S) const;
|
|
bool findSelfReference(unsigned VR) const;
|
|
bool findNonSelfReference(unsigned VR) const;
|
|
void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const;
|
|
void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const;
|
|
unsigned distance(const MachineBasicBlock *FromB,
|
|
const MachineBasicBlock *ToB, const UnsignedMap &RPO,
|
|
PairMapType &M) const;
|
|
unsigned distance(MachineBasicBlock::const_iterator FromI,
|
|
MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
|
|
PairMapType &M) const;
|
|
bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs);
|
|
void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs);
|
|
void findRemovableRegisters(unsigned VR, IFRecord IF,
|
|
RegisterSet &RMs) const;
|
|
void computeRemovableRegisters();
|
|
|
|
void pruneEmptyLists();
|
|
void pruneCoveredSets(unsigned VR);
|
|
void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M);
|
|
void pruneRegCopies(unsigned VR);
|
|
void pruneCandidates();
|
|
void selectCandidates();
|
|
bool generateInserts();
|
|
|
|
bool removeDeadCode(MachineDomTreeNode *N);
|
|
|
|
// IFRecord coupled with a set of potentially removable registers:
|
|
typedef std::vector<IFRecordWithRegSet> IFListType;
|
|
typedef DenseMap<unsigned,IFListType> IFMapType; // vreg -> IFListType
|
|
|
|
void dump_map() const;
|
|
|
|
const HexagonInstrInfo *HII;
|
|
const HexagonRegisterInfo *HRI;
|
|
|
|
MachineFunction *MFN;
|
|
MachineRegisterInfo *MRI;
|
|
MachineDominatorTree *MDT;
|
|
CellMapShadow *CMS;
|
|
|
|
RegisterOrdering BaseOrd;
|
|
RegisterOrdering CellOrd;
|
|
IFMapType IFMap;
|
|
};
|
|
|
|
char HexagonGenInsert::ID = 0;
|
|
}
|
|
|
|
|
|
void HexagonGenInsert::dump_map() const {
|
|
typedef IFMapType::const_iterator iterator;
|
|
for (iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
|
|
dbgs() << " " << PrintReg(I->first, HRI) << ":\n";
|
|
const IFListType &LL = I->second;
|
|
for (unsigned i = 0, n = LL.size(); i < n; ++i)
|
|
dbgs() << " " << PrintIFR(LL[i].first, HRI) << ", "
|
|
<< PrintRegSet(LL[i].second, HRI) << '\n';
|
|
}
|
|
}
|
|
|
|
|
|
void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const {
|
|
unsigned Index = 0;
|
|
typedef MachineFunction::const_iterator mf_iterator;
|
|
for (mf_iterator A = MFN->begin(), Z = MFN->end(); A != Z; ++A) {
|
|
const MachineBasicBlock &B = *A;
|
|
if (!CMS->BT.reached(&B))
|
|
continue;
|
|
typedef MachineBasicBlock::const_iterator mb_iterator;
|
|
for (mb_iterator I = B.begin(), E = B.end(); I != E; ++I) {
|
|
const MachineInstr *MI = &*I;
|
|
for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isReg() && MO.isDef()) {
|
|
unsigned R = MO.getReg();
|
|
assert(MO.getSubReg() == 0 && "Unexpected subregister in definition");
|
|
if (TargetRegisterInfo::isVirtualRegister(R))
|
|
RO.insert(std::make_pair(R, Index++));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Since some virtual registers may have had their def and uses eliminated,
|
|
// they are no longer referenced in the code, and so they will not appear
|
|
// in the map.
|
|
}
|
|
|
|
|
|
void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB,
|
|
RegisterOrdering &RO) const {
|
|
// Create a vector of all virtual registers (collect them from the base
|
|
// ordering RB), and then sort it using the RegisterCell comparator.
|
|
BitValueOrdering BVO(RB);
|
|
RegisterCellLexCompare LexCmp(BVO, *CMS);
|
|
typedef std::vector<unsigned> SortableVectorType;
|
|
SortableVectorType VRs;
|
|
for (RegisterOrdering::iterator I = RB.begin(), E = RB.end(); I != E; ++I)
|
|
VRs.push_back(I->first);
|
|
std::sort(VRs.begin(), VRs.end(), LexCmp);
|
|
// Transfer the results to the outgoing register ordering.
|
|
for (unsigned i = 0, n = VRs.size(); i < n; ++i)
|
|
RO.insert(std::make_pair(VRs[i], i));
|
|
}
|
|
|
|
|
|
inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const {
|
|
return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass;
|
|
}
|
|
|
|
|
|
bool HexagonGenInsert::isConstant(unsigned VR) const {
|
|
const BitTracker::RegisterCell &RC = CMS->lookup(VR);
|
|
uint16_t W = RC.width();
|
|
for (uint16_t i = 0; i < W; ++i) {
|
|
const BitTracker::BitValue &BV = RC[i];
|
|
if (BV.is(0) || BV.is(1))
|
|
continue;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
bool HexagonGenInsert::isSmallConstant(unsigned VR) const {
|
|
const BitTracker::RegisterCell &RC = CMS->lookup(VR);
|
|
uint16_t W = RC.width();
|
|
if (W > 64)
|
|
return false;
|
|
uint64_t V = 0, B = 1;
|
|
for (uint16_t i = 0; i < W; ++i) {
|
|
const BitTracker::BitValue &BV = RC[i];
|
|
if (BV.is(1))
|
|
V |= B;
|
|
else if (!BV.is(0))
|
|
return false;
|
|
B <<= 1;
|
|
}
|
|
|
|
// For 32-bit registers, consider: Rd = #s16.
|
|
if (W == 32)
|
|
return isInt<16>(V);
|
|
|
|
// For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8)
|
|
return isInt<8>(Lo_32(V)) && isInt<8>(Hi_32(V));
|
|
}
|
|
|
|
|
|
bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR,
|
|
unsigned InsR, uint16_t L, uint16_t S) const {
|
|
const TargetRegisterClass *DstRC = MRI->getRegClass(DstR);
|
|
const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcR);
|
|
const TargetRegisterClass *InsRC = MRI->getRegClass(InsR);
|
|
// Only integet (32-/64-bit) register classes.
|
|
if (!isIntClass(DstRC) || !isIntClass(SrcRC) || !isIntClass(InsRC))
|
|
return false;
|
|
// The "source" register must be of the same class as DstR.
|
|
if (DstRC != SrcRC)
|
|
return false;
|
|
if (DstRC == InsRC)
|
|
return true;
|
|
// A 64-bit register can only be generated from other 64-bit registers.
|
|
if (DstRC == &Hexagon::DoubleRegsRegClass)
|
|
return false;
|
|
// Otherwise, the L and S cannot span 32-bit word boundary.
|
|
if (S < 32 && S+L > 32)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
bool HexagonGenInsert::findSelfReference(unsigned VR) const {
|
|
const BitTracker::RegisterCell &RC = CMS->lookup(VR);
|
|
for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
|
|
const BitTracker::BitValue &V = RC[i];
|
|
if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool HexagonGenInsert::findNonSelfReference(unsigned VR) const {
|
|
BitTracker::RegisterCell RC = CMS->lookup(VR);
|
|
for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
|
|
const BitTracker::BitValue &V = RC[i];
|
|
if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
void HexagonGenInsert::getInstrDefs(const MachineInstr *MI,
|
|
RegisterSet &Defs) const {
|
|
for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg() || !MO.isDef())
|
|
continue;
|
|
unsigned R = MO.getReg();
|
|
if (!TargetRegisterInfo::isVirtualRegister(R))
|
|
continue;
|
|
Defs.insert(R);
|
|
}
|
|
}
|
|
|
|
|
|
void HexagonGenInsert::getInstrUses(const MachineInstr *MI,
|
|
RegisterSet &Uses) const {
|
|
for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg() || !MO.isUse())
|
|
continue;
|
|
unsigned R = MO.getReg();
|
|
if (!TargetRegisterInfo::isVirtualRegister(R))
|
|
continue;
|
|
Uses.insert(R);
|
|
}
|
|
}
|
|
|
|
|
|
unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB,
|
|
const MachineBasicBlock *ToB, const UnsignedMap &RPO,
|
|
PairMapType &M) const {
|
|
// Forward distance from the end of a block to the beginning of it does
|
|
// not make sense. This function should not be called with FromB == ToB.
|
|
assert(FromB != ToB);
|
|
|
|
unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber();
|
|
// If we have already computed it, return the cached result.
|
|
PairMapType::iterator F = M.find(std::make_pair(FromN, ToN));
|
|
if (F != M.end())
|
|
return F->second;
|
|
unsigned ToRPO = RPO.lookup(ToN);
|
|
|
|
unsigned MaxD = 0;
|
|
typedef MachineBasicBlock::const_pred_iterator pred_iterator;
|
|
for (pred_iterator I = ToB->pred_begin(), E = ToB->pred_end(); I != E; ++I) {
|
|
const MachineBasicBlock *PB = *I;
|
|
// Skip back edges. Also, if FromB is a predecessor of ToB, the distance
|
|
// along that path will be 0, and we don't need to do any calculations
|
|
// on it.
|
|
if (PB == FromB || RPO.lookup(PB->getNumber()) >= ToRPO)
|
|
continue;
|
|
unsigned D = PB->size() + distance(FromB, PB, RPO, M);
|
|
if (D > MaxD)
|
|
MaxD = D;
|
|
}
|
|
|
|
// Memoize the result for later lookup.
|
|
M.insert(std::make_pair(std::make_pair(FromN, ToN), MaxD));
|
|
return MaxD;
|
|
}
|
|
|
|
|
|
unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI,
|
|
MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
|
|
PairMapType &M) const {
|
|
const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent();
|
|
if (FB == TB)
|
|
return std::distance(FromI, ToI);
|
|
unsigned D1 = std::distance(TB->begin(), ToI);
|
|
unsigned D2 = distance(FB, TB, RPO, M);
|
|
unsigned D3 = std::distance(FromI, FB->end());
|
|
return D1+D2+D3;
|
|
}
|
|
|
|
|
|
bool HexagonGenInsert::findRecordInsertForms(unsigned VR,
|
|
OrderedRegisterList &AVs) {
|
|
if (isDebug()) {
|
|
dbgs() << LLVM_FUNCTION_NAME << ": " << PrintReg(VR, HRI)
|
|
<< " AVs: " << PrintORL(AVs, HRI) << "\n";
|
|
}
|
|
if (AVs.size() == 0)
|
|
return false;
|
|
|
|
typedef OrderedRegisterList::iterator iterator;
|
|
BitValueOrdering BVO(BaseOrd);
|
|
const BitTracker::RegisterCell &RC = CMS->lookup(VR);
|
|
uint16_t W = RC.width();
|
|
|
|
typedef std::pair<unsigned,uint16_t> RSRecord; // (reg,shift)
|
|
typedef std::vector<RSRecord> RSListType;
|
|
// Have a map, with key being the matching prefix length, and the value
|
|
// being the list of pairs (R,S), where R's prefix matches VR at S.
|
|
// (DenseMap<uint16_t,RSListType> fails to instantiate.)
|
|
typedef DenseMap<unsigned,RSListType> LRSMapType;
|
|
LRSMapType LM;
|
|
|
|
// Conceptually, rotate the cell RC right (i.e. towards the LSB) by S,
|
|
// and find matching prefixes from AVs with the rotated RC. Such a prefix
|
|
// would match a string of bits (of length L) in RC starting at S.
|
|
for (uint16_t S = 0; S < W; ++S) {
|
|
iterator B = AVs.begin(), E = AVs.end();
|
|
// The registers in AVs are ordered according to the lexical order of
|
|
// the corresponding register cells. This means that the range of regis-
|
|
// ters in AVs that match a prefix of length L+1 will be contained in
|
|
// the range that matches a prefix of length L. This means that we can
|
|
// keep narrowing the search space as the prefix length goes up. This
|
|
// helps reduce the overall complexity of the search.
|
|
uint16_t L;
|
|
for (L = 0; L < W-S; ++L) {
|
|
// Compare against VR's bits starting at S, which emulates rotation
|
|
// of VR by S.
|
|
RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS);
|
|
iterator NewB = std::lower_bound(B, E, VR, RCB);
|
|
iterator NewE = std::upper_bound(NewB, E, VR, RCB);
|
|
// For the registers that are eliminated from the next range, L is
|
|
// the longest prefix matching VR at position S (their prefixes
|
|
// differ from VR at S+L). If L>0, record this information for later
|
|
// use.
|
|
if (L > 0) {
|
|
for (iterator I = B; I != NewB; ++I)
|
|
LM[L].push_back(std::make_pair(*I, S));
|
|
for (iterator I = NewE; I != E; ++I)
|
|
LM[L].push_back(std::make_pair(*I, S));
|
|
}
|
|
B = NewB, E = NewE;
|
|
if (B == E)
|
|
break;
|
|
}
|
|
// Record the final register range. If this range is non-empty, then
|
|
// L=W-S.
|
|
assert(B == E || L == W-S);
|
|
if (B != E) {
|
|
for (iterator I = B; I != E; ++I)
|
|
LM[L].push_back(std::make_pair(*I, S));
|
|
// If B!=E, then we found a range of registers whose prefixes cover the
|
|
// rest of VR from position S. There is no need to further advance S.
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (isDebug()) {
|
|
dbgs() << "Prefixes matching register " << PrintReg(VR, HRI) << "\n";
|
|
for (LRSMapType::iterator I = LM.begin(), E = LM.end(); I != E; ++I) {
|
|
dbgs() << " L=" << I->first << ':';
|
|
const RSListType &LL = I->second;
|
|
for (unsigned i = 0, n = LL.size(); i < n; ++i)
|
|
dbgs() << " (" << PrintReg(LL[i].first, HRI) << ",@"
|
|
<< LL[i].second << ')';
|
|
dbgs() << '\n';
|
|
}
|
|
}
|
|
|
|
|
|
bool Recorded = false;
|
|
|
|
for (iterator I = AVs.begin(), E = AVs.end(); I != E; ++I) {
|
|
unsigned SrcR = *I;
|
|
int FDi = -1, LDi = -1; // First/last different bit.
|
|
const BitTracker::RegisterCell &AC = CMS->lookup(SrcR);
|
|
uint16_t AW = AC.width();
|
|
for (uint16_t i = 0, w = std::min(W, AW); i < w; ++i) {
|
|
if (RC[i] == AC[i])
|
|
continue;
|
|
if (FDi == -1)
|
|
FDi = i;
|
|
LDi = i;
|
|
}
|
|
if (FDi == -1)
|
|
continue; // TODO (future): Record identical registers.
|
|
// Look for a register whose prefix could patch the range [FD..LD]
|
|
// where VR and SrcR differ.
|
|
uint16_t FD = FDi, LD = LDi; // Switch to unsigned type.
|
|
uint16_t MinL = LD-FD+1;
|
|
for (uint16_t L = MinL; L < W; ++L) {
|
|
LRSMapType::iterator F = LM.find(L);
|
|
if (F == LM.end())
|
|
continue;
|
|
RSListType &LL = F->second;
|
|
for (unsigned i = 0, n = LL.size(); i < n; ++i) {
|
|
uint16_t S = LL[i].second;
|
|
// MinL is the minimum length of the prefix. Any length above MinL
|
|
// allows some flexibility as to where the prefix can start:
|
|
// given the extra length EL=L-MinL, the prefix must start between
|
|
// max(0,FD-EL) and FD.
|
|
if (S > FD) // Starts too late.
|
|
continue;
|
|
uint16_t EL = L-MinL;
|
|
uint16_t LowS = (EL < FD) ? FD-EL : 0;
|
|
if (S < LowS) // Starts too early.
|
|
continue;
|
|
unsigned InsR = LL[i].first;
|
|
if (!isValidInsertForm(VR, SrcR, InsR, L, S))
|
|
continue;
|
|
if (isDebug()) {
|
|
dbgs() << PrintReg(VR, HRI) << " = insert(" << PrintReg(SrcR, HRI)
|
|
<< ',' << PrintReg(InsR, HRI) << ",#" << L << ",#"
|
|
<< S << ")\n";
|
|
}
|
|
IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet());
|
|
IFMap[VR].push_back(RR);
|
|
Recorded = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return Recorded;
|
|
}
|
|
|
|
|
|
void HexagonGenInsert::collectInBlock(MachineBasicBlock *B,
|
|
OrderedRegisterList &AVs) {
|
|
if (isDebug())
|
|
dbgs() << "visiting block BB#" << B->getNumber() << "\n";
|
|
|
|
// First, check if this block is reachable at all. If not, the bit tracker
|
|
// will not have any information about registers in it.
|
|
if (!CMS->BT.reached(B))
|
|
return;
|
|
|
|
bool DoConst = OptConst;
|
|
// Keep a separate set of registers defined in this block, so that we
|
|
// can remove them from the list of available registers once all DT
|
|
// successors have been processed.
|
|
RegisterSet BlockDefs, InsDefs;
|
|
for (MachineBasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
|
|
MachineInstr *MI = &*I;
|
|
InsDefs.clear();
|
|
getInstrDefs(MI, InsDefs);
|
|
// Leave those alone. They are more transparent than "insert".
|
|
bool Skip = MI->isCopy() || MI->isRegSequence();
|
|
|
|
if (!Skip) {
|
|
// Visit all defined registers, and attempt to find the corresponding
|
|
// "insert" representations.
|
|
for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) {
|
|
// Do not collect registers that are known to be compile-time cons-
|
|
// tants, unless requested.
|
|
if (!DoConst && isConstant(VR))
|
|
continue;
|
|
// If VR's cell contains a reference to VR, then VR cannot be defined
|
|
// via "insert". If VR is a constant that can be generated in a single
|
|
// instruction (without constant extenders), generating it via insert
|
|
// makes no sense.
|
|
if (findSelfReference(VR) || isSmallConstant(VR))
|
|
continue;
|
|
|
|
findRecordInsertForms(VR, AVs);
|
|
}
|
|
}
|
|
|
|
// Insert the defined registers into the list of available registers
|
|
// after they have been processed.
|
|
for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR))
|
|
AVs.insert(VR);
|
|
BlockDefs.insert(InsDefs);
|
|
}
|
|
|
|
MachineDomTreeNode *N = MDT->getNode(B);
|
|
typedef GraphTraits<MachineDomTreeNode*> GTN;
|
|
typedef GTN::ChildIteratorType ChildIter;
|
|
for (ChildIter I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) {
|
|
MachineBasicBlock *SB = (*I)->getBlock();
|
|
collectInBlock(SB, AVs);
|
|
}
|
|
|
|
for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(VR))
|
|
AVs.remove(VR);
|
|
}
|
|
|
|
|
|
void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF,
|
|
RegisterSet &RMs) const {
|
|
// For a given register VR and a insert form, find the registers that are
|
|
// used by the current definition of VR, and which would no longer be
|
|
// needed for it after the definition of VR is replaced with the insert
|
|
// form. These are the registers that could potentially become dead.
|
|
RegisterSet Regs[2];
|
|
|
|
unsigned S = 0; // Register set selector.
|
|
Regs[S].insert(VR);
|
|
|
|
while (!Regs[S].empty()) {
|
|
// Breadth-first search.
|
|
unsigned OtherS = 1-S;
|
|
Regs[OtherS].clear();
|
|
for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(R)) {
|
|
Regs[S].remove(R);
|
|
if (R == IF.SrcR || R == IF.InsR)
|
|
continue;
|
|
// Check if a given register has bits that are references to any other
|
|
// registers. This is to detect situations where the instruction that
|
|
// defines register R takes register Q as an operand, but R itself does
|
|
// not contain any bits from Q. Loads are examples of how this could
|
|
// happen:
|
|
// R = load Q
|
|
// In this case (assuming we do not have any knowledge about the loaded
|
|
// value), we must not treat R as a "conveyance" of the bits from Q.
|
|
// (The information in BT about R's bits would have them as constants,
|
|
// in case of zero-extending loads, or refs to R.)
|
|
if (!findNonSelfReference(R))
|
|
continue;
|
|
RMs.insert(R);
|
|
const MachineInstr *DefI = MRI->getVRegDef(R);
|
|
assert(DefI);
|
|
// Do not iterate past PHI nodes to avoid infinite loops. This can
|
|
// make the final set a bit less accurate, but the removable register
|
|
// sets are an approximation anyway.
|
|
if (DefI->isPHI())
|
|
continue;
|
|
getInstrUses(DefI, Regs[OtherS]);
|
|
}
|
|
S = OtherS;
|
|
}
|
|
// The register VR is added to the list as a side-effect of the algorithm,
|
|
// but it is not "potentially removable". A potentially removable register
|
|
// is one that may become unused (dead) after conversion to the insert form
|
|
// IF, and obviously VR (or its replacement) will not become dead by apply-
|
|
// ing IF.
|
|
RMs.remove(VR);
|
|
}
|
|
|
|
|
|
void HexagonGenInsert::computeRemovableRegisters() {
|
|
for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
|
|
IFListType &LL = I->second;
|
|
for (unsigned i = 0, n = LL.size(); i < n; ++i)
|
|
findRemovableRegisters(I->first, LL[i].first, LL[i].second);
|
|
}
|
|
}
|
|
|
|
|
|
void HexagonGenInsert::pruneEmptyLists() {
|
|
// Remove all entries from the map, where the register has no insert forms
|
|
// associated with it.
|
|
typedef SmallVector<IFMapType::iterator,16> IterListType;
|
|
IterListType Prune;
|
|
for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
|
|
if (I->second.size() == 0)
|
|
Prune.push_back(I);
|
|
}
|
|
for (unsigned i = 0, n = Prune.size(); i < n; ++i)
|
|
IFMap.erase(Prune[i]);
|
|
}
|
|
|
|
|
|
void HexagonGenInsert::pruneCoveredSets(unsigned VR) {
|
|
IFMapType::iterator F = IFMap.find(VR);
|
|
assert(F != IFMap.end());
|
|
IFListType &LL = F->second;
|
|
|
|
// First, examine the IF candidates for register VR whose removable-regis-
|
|
// ter sets are empty. This means that a given candidate will not help eli-
|
|
// minate any registers, but since "insert" is not a constant-extendable
|
|
// instruction, using such a candidate may reduce code size if the defini-
|
|
// tion of VR is constant-extended.
|
|
// If there exists a candidate with a non-empty set, the ones with empty
|
|
// sets will not be used and can be removed.
|
|
MachineInstr *DefVR = MRI->getVRegDef(VR);
|
|
bool DefEx = HII->isConstExtended(*DefVR);
|
|
bool HasNE = false;
|
|
for (unsigned i = 0, n = LL.size(); i < n; ++i) {
|
|
if (LL[i].second.empty())
|
|
continue;
|
|
HasNE = true;
|
|
break;
|
|
}
|
|
if (!DefEx || HasNE) {
|
|
// The definition of VR is not constant-extended, or there is a candidate
|
|
// with a non-empty set. Remove all candidates with empty sets.
|
|
auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool {
|
|
return IR.second.empty();
|
|
};
|
|
auto End = remove_if(LL, IsEmpty);
|
|
if (End != LL.end())
|
|
LL.erase(End, LL.end());
|
|
} else {
|
|
// The definition of VR is constant-extended, and all candidates have
|
|
// empty removable-register sets. Pick the maximum candidate, and remove
|
|
// all others. The "maximum" does not have any special meaning here, it
|
|
// is only so that the candidate that will remain on the list is selec-
|
|
// ted deterministically.
|
|
IFRecord MaxIF = LL[0].first;
|
|
for (unsigned i = 1, n = LL.size(); i < n; ++i) {
|
|
// If LL[MaxI] < LL[i], then MaxI = i.
|
|
const IFRecord &IF = LL[i].first;
|
|
unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR];
|
|
unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR];
|
|
if (M0 > R0)
|
|
continue;
|
|
if (M0 == R0) {
|
|
if (M1 > R1)
|
|
continue;
|
|
if (M1 == R1) {
|
|
if (MaxIF.Wdh > IF.Wdh)
|
|
continue;
|
|
if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off)
|
|
continue;
|
|
}
|
|
}
|
|
// MaxIF < IF.
|
|
MaxIF = IF;
|
|
}
|
|
// Remove everything except the maximum candidate. All register sets
|
|
// are empty, so no need to preserve anything.
|
|
LL.clear();
|
|
LL.push_back(std::make_pair(MaxIF, RegisterSet()));
|
|
}
|
|
|
|
// Now, remove those whose sets of potentially removable registers are
|
|
// contained in another IF candidate for VR. For example, given these
|
|
// candidates for vreg45,
|
|
// %vreg45:
|
|
// (%vreg44,%vreg41,#9,#8), { %vreg42 }
|
|
// (%vreg43,%vreg41,#9,#8), { %vreg42 %vreg44 }
|
|
// remove the first one, since it is contained in the second one.
|
|
for (unsigned i = 0, n = LL.size(); i < n; ) {
|
|
const RegisterSet &RMi = LL[i].second;
|
|
unsigned j = 0;
|
|
while (j < n) {
|
|
if (j != i && LL[j].second.includes(RMi))
|
|
break;
|
|
j++;
|
|
}
|
|
if (j == n) { // RMi not contained in anything else.
|
|
i++;
|
|
continue;
|
|
}
|
|
LL.erase(LL.begin()+i);
|
|
n = LL.size();
|
|
}
|
|
}
|
|
|
|
|
|
void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO,
|
|
PairMapType &M) {
|
|
IFMapType::iterator F = IFMap.find(VR);
|
|
assert(F != IFMap.end());
|
|
IFListType &LL = F->second;
|
|
unsigned Cutoff = VRegDistCutoff;
|
|
const MachineInstr *DefV = MRI->getVRegDef(VR);
|
|
|
|
for (unsigned i = LL.size(); i > 0; --i) {
|
|
unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR;
|
|
const MachineInstr *DefS = MRI->getVRegDef(SR);
|
|
const MachineInstr *DefI = MRI->getVRegDef(IR);
|
|
unsigned DSV = distance(DefS, DefV, RPO, M);
|
|
if (DSV < Cutoff) {
|
|
unsigned DIV = distance(DefI, DefV, RPO, M);
|
|
if (DIV < Cutoff)
|
|
continue;
|
|
}
|
|
LL.erase(LL.begin()+(i-1));
|
|
}
|
|
}
|
|
|
|
|
|
void HexagonGenInsert::pruneRegCopies(unsigned VR) {
|
|
IFMapType::iterator F = IFMap.find(VR);
|
|
assert(F != IFMap.end());
|
|
IFListType &LL = F->second;
|
|
|
|
auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool {
|
|
return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32);
|
|
};
|
|
auto End = remove_if(LL, IsCopy);
|
|
if (End != LL.end())
|
|
LL.erase(End, LL.end());
|
|
}
|
|
|
|
|
|
void HexagonGenInsert::pruneCandidates() {
|
|
// Remove candidates that are not beneficial, regardless of the final
|
|
// selection method.
|
|
// First, remove candidates whose potentially removable set is a subset
|
|
// of another candidate's set.
|
|
for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
|
|
pruneCoveredSets(I->first);
|
|
|
|
UnsignedMap RPO;
|
|
typedef ReversePostOrderTraversal<const MachineFunction*> RPOTType;
|
|
RPOTType RPOT(MFN);
|
|
unsigned RPON = 0;
|
|
for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
|
|
RPO[(*I)->getNumber()] = RPON++;
|
|
|
|
PairMapType Memo; // Memoization map for distance calculation.
|
|
// Remove candidates that would use registers defined too far away.
|
|
for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
|
|
pruneUsesTooFar(I->first, RPO, Memo);
|
|
|
|
pruneEmptyLists();
|
|
|
|
for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
|
|
pruneRegCopies(I->first);
|
|
}
|
|
|
|
|
|
namespace {
|
|
// Class for comparing IF candidates for registers that have multiple of
|
|
// them. The smaller the candidate, according to this ordering, the better.
|
|
// First, compare the number of zeros in the associated potentially remova-
|
|
// ble register sets. "Zero" indicates that the register is very likely to
|
|
// become dead after this transformation.
|
|
// Second, compare "averages", i.e. use-count per size. The lower wins.
|
|
// After that, it does not really matter which one is smaller. Resolve
|
|
// the tie in some deterministic way.
|
|
struct IFOrdering {
|
|
IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO)
|
|
: UseC(UC), BaseOrd(BO) {}
|
|
bool operator() (const IFRecordWithRegSet &A,
|
|
const IFRecordWithRegSet &B) const;
|
|
private:
|
|
void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
|
|
unsigned &Sum) const;
|
|
const UnsignedMap &UseC;
|
|
const RegisterOrdering &BaseOrd;
|
|
};
|
|
}
|
|
|
|
|
|
bool IFOrdering::operator() (const IFRecordWithRegSet &A,
|
|
const IFRecordWithRegSet &B) const {
|
|
unsigned SizeA = 0, ZeroA = 0, SumA = 0;
|
|
unsigned SizeB = 0, ZeroB = 0, SumB = 0;
|
|
stats(A.second, SizeA, ZeroA, SumA);
|
|
stats(B.second, SizeB, ZeroB, SumB);
|
|
|
|
// We will pick the minimum element. The more zeros, the better.
|
|
if (ZeroA != ZeroB)
|
|
return ZeroA > ZeroB;
|
|
// Compare SumA/SizeA with SumB/SizeB, lower is better.
|
|
uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA;
|
|
if (AvgA != AvgB)
|
|
return AvgA < AvgB;
|
|
|
|
// The sets compare identical so far. Resort to comparing the IF records.
|
|
// The actual values don't matter, this is only for determinism.
|
|
unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR];
|
|
if (OSA != OSB)
|
|
return OSA < OSB;
|
|
unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR];
|
|
if (OIA != OIB)
|
|
return OIA < OIB;
|
|
if (A.first.Wdh != B.first.Wdh)
|
|
return A.first.Wdh < B.first.Wdh;
|
|
return A.first.Off < B.first.Off;
|
|
}
|
|
|
|
|
|
void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
|
|
unsigned &Sum) const {
|
|
for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R)) {
|
|
UnsignedMap::const_iterator F = UseC.find(R);
|
|
assert(F != UseC.end());
|
|
unsigned UC = F->second;
|
|
if (UC == 0)
|
|
Zero++;
|
|
Sum += UC;
|
|
Size++;
|
|
}
|
|
}
|
|
|
|
|
|
void HexagonGenInsert::selectCandidates() {
|
|
// Some registers may have multiple valid candidates. Pick the best one
|
|
// (or decide not to use any).
|
|
|
|
// Compute the "removability" measure of R:
|
|
// For each potentially removable register R, record the number of regis-
|
|
// ters with IF candidates, where R appears in at least one set.
|
|
RegisterSet AllRMs;
|
|
UnsignedMap UseC, RemC;
|
|
IFMapType::iterator End = IFMap.end();
|
|
|
|
for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
|
|
const IFListType &LL = I->second;
|
|
RegisterSet TT;
|
|
for (unsigned i = 0, n = LL.size(); i < n; ++i)
|
|
TT.insert(LL[i].second);
|
|
for (unsigned R = TT.find_first(); R; R = TT.find_next(R))
|
|
RemC[R]++;
|
|
AllRMs.insert(TT);
|
|
}
|
|
|
|
for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(R)) {
|
|
typedef MachineRegisterInfo::use_nodbg_iterator use_iterator;
|
|
typedef SmallSet<const MachineInstr*,16> InstrSet;
|
|
InstrSet UIs;
|
|
// Count as the number of instructions in which R is used, not the
|
|
// number of operands.
|
|
use_iterator E = MRI->use_nodbg_end();
|
|
for (use_iterator I = MRI->use_nodbg_begin(R); I != E; ++I)
|
|
UIs.insert(I->getParent());
|
|
unsigned C = UIs.size();
|
|
// Calculate a measure, which is the number of instructions using R,
|
|
// minus the "removability" count computed earlier.
|
|
unsigned D = RemC[R];
|
|
UseC[R] = (C > D) ? C-D : 0; // doz
|
|
}
|
|
|
|
|
|
bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0;
|
|
if (!SelectAll0 && !SelectHas0)
|
|
SelectAll0 = true;
|
|
|
|
// The smaller the number UseC for a given register R, the "less used"
|
|
// R is aside from the opportunities for removal offered by generating
|
|
// "insert" instructions.
|
|
// Iterate over the IF map, and for those registers that have multiple
|
|
// candidates, pick the minimum one according to IFOrdering.
|
|
IFOrdering IFO(UseC, BaseOrd);
|
|
for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
|
|
IFListType &LL = I->second;
|
|
if (LL.empty())
|
|
continue;
|
|
// Get the minimum element, remember it and clear the list. If the
|
|
// element found is adequate, we will put it back on the list, other-
|
|
// wise the list will remain empty, and the entry for this register
|
|
// will be removed (i.e. this register will not be replaced by insert).
|
|
IFListType::iterator MinI = std::min_element(LL.begin(), LL.end(), IFO);
|
|
assert(MinI != LL.end());
|
|
IFRecordWithRegSet M = *MinI;
|
|
LL.clear();
|
|
|
|
// We want to make sure that this replacement will have a chance to be
|
|
// beneficial, and that means that we want to have indication that some
|
|
// register will be removed. The most likely registers to be eliminated
|
|
// are the use operands in the definition of I->first. Accept/reject a
|
|
// candidate based on how many of its uses it can potentially eliminate.
|
|
|
|
RegisterSet Us;
|
|
const MachineInstr *DefI = MRI->getVRegDef(I->first);
|
|
getInstrUses(DefI, Us);
|
|
bool Accept = false;
|
|
|
|
if (SelectAll0) {
|
|
bool All0 = true;
|
|
for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
|
|
if (UseC[R] == 0)
|
|
continue;
|
|
All0 = false;
|
|
break;
|
|
}
|
|
Accept = All0;
|
|
} else if (SelectHas0) {
|
|
bool Has0 = false;
|
|
for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
|
|
if (UseC[R] != 0)
|
|
continue;
|
|
Has0 = true;
|
|
break;
|
|
}
|
|
Accept = Has0;
|
|
}
|
|
if (Accept)
|
|
LL.push_back(M);
|
|
}
|
|
|
|
// Remove candidates that add uses of removable registers, unless the
|
|
// removable registers are among replacement candidates.
|
|
// Recompute the removable registers, since some candidates may have
|
|
// been eliminated.
|
|
AllRMs.clear();
|
|
for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
|
|
const IFListType &LL = I->second;
|
|
if (LL.size() > 0)
|
|
AllRMs.insert(LL[0].second);
|
|
}
|
|
for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
|
|
IFListType &LL = I->second;
|
|
if (LL.size() == 0)
|
|
continue;
|
|
unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR;
|
|
if (AllRMs[SR] || AllRMs[IR])
|
|
LL.clear();
|
|
}
|
|
|
|
pruneEmptyLists();
|
|
}
|
|
|
|
|
|
bool HexagonGenInsert::generateInserts() {
|
|
// Create a new register for each one from IFMap, and store them in the
|
|
// map.
|
|
UnsignedMap RegMap;
|
|
for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
|
|
unsigned VR = I->first;
|
|
const TargetRegisterClass *RC = MRI->getRegClass(VR);
|
|
unsigned NewVR = MRI->createVirtualRegister(RC);
|
|
RegMap[VR] = NewVR;
|
|
}
|
|
|
|
// We can generate the "insert" instructions using potentially stale re-
|
|
// gisters: SrcR and InsR for a given VR may be among other registers that
|
|
// are also replaced. This is fine, we will do the mass "rauw" a bit later.
|
|
for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
|
|
MachineInstr *MI = MRI->getVRegDef(I->first);
|
|
MachineBasicBlock &B = *MI->getParent();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
unsigned NewR = RegMap[I->first];
|
|
bool R32 = MRI->getRegClass(NewR) == &Hexagon::IntRegsRegClass;
|
|
const MCInstrDesc &D = R32 ? HII->get(Hexagon::S2_insert)
|
|
: HII->get(Hexagon::S2_insertp);
|
|
IFRecord IF = I->second[0].first;
|
|
unsigned Wdh = IF.Wdh, Off = IF.Off;
|
|
unsigned InsS = 0;
|
|
if (R32 && MRI->getRegClass(IF.InsR) == &Hexagon::DoubleRegsRegClass) {
|
|
InsS = Hexagon::subreg_loreg;
|
|
if (Off >= 32) {
|
|
InsS = Hexagon::subreg_hireg;
|
|
Off -= 32;
|
|
}
|
|
}
|
|
// Advance to the proper location for inserting instructions. This could
|
|
// be B.end().
|
|
MachineBasicBlock::iterator At = MI;
|
|
if (MI->isPHI())
|
|
At = B.getFirstNonPHI();
|
|
|
|
BuildMI(B, At, DL, D, NewR)
|
|
.addReg(IF.SrcR)
|
|
.addReg(IF.InsR, 0, InsS)
|
|
.addImm(Wdh)
|
|
.addImm(Off);
|
|
|
|
MRI->clearKillFlags(IF.SrcR);
|
|
MRI->clearKillFlags(IF.InsR);
|
|
}
|
|
|
|
for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
|
|
MachineInstr *DefI = MRI->getVRegDef(I->first);
|
|
MRI->replaceRegWith(I->first, RegMap[I->first]);
|
|
DefI->eraseFromParent();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) {
|
|
bool Changed = false;
|
|
typedef GraphTraits<MachineDomTreeNode*> GTN;
|
|
for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I)
|
|
Changed |= removeDeadCode(*I);
|
|
|
|
MachineBasicBlock *B = N->getBlock();
|
|
std::vector<MachineInstr*> Instrs;
|
|
for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
|
|
Instrs.push_back(&*I);
|
|
|
|
for (auto I = Instrs.begin(), E = Instrs.end(); I != E; ++I) {
|
|
MachineInstr *MI = *I;
|
|
unsigned Opc = MI->getOpcode();
|
|
// Do not touch lifetime markers. This is why the target-independent DCE
|
|
// cannot be used.
|
|
if (Opc == TargetOpcode::LIFETIME_START ||
|
|
Opc == TargetOpcode::LIFETIME_END)
|
|
continue;
|
|
bool Store = false;
|
|
if (MI->isInlineAsm() || !MI->isSafeToMove(nullptr, Store))
|
|
continue;
|
|
|
|
bool AllDead = true;
|
|
SmallVector<unsigned,2> Regs;
|
|
for (ConstMIOperands Op(*MI); Op.isValid(); ++Op) {
|
|
if (!Op->isReg() || !Op->isDef())
|
|
continue;
|
|
unsigned R = Op->getReg();
|
|
if (!TargetRegisterInfo::isVirtualRegister(R) ||
|
|
!MRI->use_nodbg_empty(R)) {
|
|
AllDead = false;
|
|
break;
|
|
}
|
|
Regs.push_back(R);
|
|
}
|
|
if (!AllDead)
|
|
continue;
|
|
|
|
B->erase(MI);
|
|
for (unsigned I = 0, N = Regs.size(); I != N; ++I)
|
|
MRI->markUsesInDebugValueAsUndef(Regs[I]);
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
|
|
bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) {
|
|
if (skipFunction(*MF.getFunction()))
|
|
return false;
|
|
|
|
bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail;
|
|
bool Changed = false;
|
|
TimerGroup __G("hexinsert");
|
|
NamedRegionTimer __T("hexinsert", Timing && !TimingDetail);
|
|
|
|
// Sanity check: one, but not both.
|
|
assert(!OptSelectAll0 || !OptSelectHas0);
|
|
|
|
IFMap.clear();
|
|
BaseOrd.clear();
|
|
CellOrd.clear();
|
|
|
|
const auto &ST = MF.getSubtarget<HexagonSubtarget>();
|
|
HII = ST.getInstrInfo();
|
|
HRI = ST.getRegisterInfo();
|
|
MFN = &MF;
|
|
MRI = &MF.getRegInfo();
|
|
MDT = &getAnalysis<MachineDominatorTree>();
|
|
|
|
// Clean up before any further processing, so that dead code does not
|
|
// get used in a newly generated "insert" instruction. Have a custom
|
|
// version of DCE that preserves lifetime markers. Without it, merging
|
|
// of stack objects can fail to recognize and merge disjoint objects
|
|
// leading to unnecessary stack growth.
|
|
Changed = removeDeadCode(MDT->getRootNode());
|
|
|
|
const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
|
|
BitTracker BTLoc(HE, MF);
|
|
BTLoc.trace(isDebug());
|
|
BTLoc.run();
|
|
CellMapShadow MS(BTLoc);
|
|
CMS = &MS;
|
|
|
|
buildOrderingMF(BaseOrd);
|
|
buildOrderingBT(BaseOrd, CellOrd);
|
|
|
|
if (isDebug()) {
|
|
dbgs() << "Cell ordering:\n";
|
|
for (RegisterOrdering::iterator I = CellOrd.begin(), E = CellOrd.end();
|
|
I != E; ++I) {
|
|
unsigned VR = I->first, Pos = I->second;
|
|
dbgs() << PrintReg(VR, HRI) << " -> " << Pos << "\n";
|
|
}
|
|
}
|
|
|
|
// Collect candidates for conversion into the insert forms.
|
|
MachineBasicBlock *RootB = MDT->getRoot();
|
|
OrderedRegisterList AvailR(CellOrd);
|
|
|
|
{
|
|
NamedRegionTimer _T("collection", "hexinsert", TimingDetail);
|
|
collectInBlock(RootB, AvailR);
|
|
// Complete the information gathered in IFMap.
|
|
computeRemovableRegisters();
|
|
}
|
|
|
|
if (isDebug()) {
|
|
dbgs() << "Candidates after collection:\n";
|
|
dump_map();
|
|
}
|
|
|
|
if (IFMap.empty())
|
|
return Changed;
|
|
|
|
{
|
|
NamedRegionTimer _T("pruning", "hexinsert", TimingDetail);
|
|
pruneCandidates();
|
|
}
|
|
|
|
if (isDebug()) {
|
|
dbgs() << "Candidates after pruning:\n";
|
|
dump_map();
|
|
}
|
|
|
|
if (IFMap.empty())
|
|
return Changed;
|
|
|
|
{
|
|
NamedRegionTimer _T("selection", "hexinsert", TimingDetail);
|
|
selectCandidates();
|
|
}
|
|
|
|
if (isDebug()) {
|
|
dbgs() << "Candidates after selection:\n";
|
|
dump_map();
|
|
}
|
|
|
|
// Filter out vregs beyond the cutoff.
|
|
if (VRegIndexCutoff.getPosition()) {
|
|
unsigned Cutoff = VRegIndexCutoff;
|
|
typedef SmallVector<IFMapType::iterator,16> IterListType;
|
|
IterListType Out;
|
|
for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
|
|
unsigned Idx = TargetRegisterInfo::virtReg2Index(I->first);
|
|
if (Idx >= Cutoff)
|
|
Out.push_back(I);
|
|
}
|
|
for (unsigned i = 0, n = Out.size(); i < n; ++i)
|
|
IFMap.erase(Out[i]);
|
|
}
|
|
if (IFMap.empty())
|
|
return Changed;
|
|
|
|
{
|
|
NamedRegionTimer _T("generation", "hexinsert", TimingDetail);
|
|
generateInserts();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
FunctionPass *llvm::createHexagonGenInsert() {
|
|
return new HexagonGenInsert();
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Public Constructor Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert",
|
|
"Hexagon generate \"insert\" instructions", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
|
|
INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert",
|
|
"Hexagon generate \"insert\" instructions", false, false)
|